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Abstract The refinement order on partitions corre-
sponds to the operation of merging blocks in a par-

tition, which is relevant to image segmentation and fil-

tering methods. Its mathematical extension to partial

partitions, that we call standard order, involves sev-

eral operations, not only merging, but also creating new
blocks or inflating existing ones, which are equally rel-

evant to image segmentation and filtering techniques.

These three operations correspond to three basic par-

tial orders on partial partitions, the merging, inclusion
and inflating orders. There are three possible combi-

nations of these three basic orders, one of them is the

standard order, the other two are the merging-inflating

and inclusion-inflating orders. We study these orders

in detail, giving in particular their minimal and maxi-
mal elements, covering relations and height functions.

We interpret hierarchies of partitions and partial parti-

tions in terms of an adjunction between (partial) par-

titions (possibly with connected blocks) and scalars.
This gives a lattice-theoretical interpretation of edge

saliency, hence a typology for the edges in partial par-

titions. The use of hierarchies in image filtering, in par-

ticular with component trees, is also discussed. Finally,

we briefly mention further orders on partial partitions
that can be useful for image segmentation.
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ICube, Université de Strasbourg, CNRS
300 Boulevard Sébastien Brant,
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1 Introduction

This paper discusses partial order relations on parti-

tions (or partial partitions) that can be relevant to the
process of image segmentation or filtering. It elaborates

on the first part of [26].

Let E be a set. A partition of E is a family of non-

void mutually disjoint subsets of E, called blocks [17],
whose union is E. We write Π(E) for the set of all

partitions of E. A partial partition of E is a partition

of any subset of E, it consists also of non-void mutually

disjoint blocks, but their union is not necessarily equal

to E. We writeΠ∗(E) for the set of all partial partitions
of E. Given π ∈ Π∗(E), the union of all blocks of π is

called the support of π and written supp(π); thus π is

a partition of supp(π); the complement E \ supp(π) of

the support is the background of π.

The set Π(E) is partially ordered by refinement : for

π1, π2 ∈ Π(E), we say that π1 is finer than π2, or that

π2 is coarser than π1, and write π1 ≤ π2 (or π2 ≥ π1),

if and only if every block of π1 is included in a block of

π2, equivalently, every block of π2 is a union of blocks
of π1. Then (Π(E),≤) is a complete lattice, whose least

(finest) and greatest (coarsest) elements are the identity

partition (whose blocks are all singletons in E) and the

universal partition (with E as single block) [17].

The set Π(E) and its order ≤ are both relevant to
image segmentation. We consider images as functions

E → T , where T is the set of image values, and the

goal of segmentation is to build from such a function

F : E → T a segmentation defined as a partition π of
E, such that F is in some sense “homogeneous” on each

block of π. Now Soille [37] summarizes conventional re-

quirements of image segmentation as follows:
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1. The segmentation method relies on a criterion that

determines, for every function F and every subset

A of E, whether F is homogeneous on A or not.

2. Given a function F , its segmentation is a partition

of E into connected blocks on which F is homoge-
neous; these blocks are called segmentation classes.

3. Merging two or more adjacent segmentation classes,

F is not homogeneous on the resulting set; in other

words F cannot be homogeneous on a connected
union of two or more segmentation classes.

Here Soille considers the connectivity of sets arising

from an adjacency graph, but more generally we can

assume that the so-called connected sets constitute a

connection C on P(E) [30,21,27]. For any function F :
E → T , let CF be the family of all A ∈ C (i.e., A is a

connected subset of E) such that F is homogeneous on

A according to the criterion of item 1. By item 2, the

segmentation of F is a partition πF of E whose blocks

belong to CF . Now let π′ > πF be a strictly coarser
partition; then the larger blocks of π′ are obtained by

merging segmentation classes of πF ; either the merged

classes are not adjacent, and the resulting block of π′

will not be connected, or these merged classes are ad-
jacent, but then by item 3, F will not be homogeneous

on the resulting block of π′. In any case, a larger block

of π′ does not belong to CF . Therefore πF must be a

maximal element, for the refinement ordering, of the

family Π(E, CF ) of all partitions whose blocks belong
to CF .

Here we see the relevance to image segmentation

of the refinement order in terms of the operation in-

volved in the coarsening of a partition: merging blocks.
We can also consider the opposite operation, involved

in the refinement of a partition: splitting blocks. These

two operations are well-understood and have been used

for a long time, for instance in the split-and-merge ap-

proaches to image segmentation [19].
The refinement order on partitions intervenes also

in connected filtering. The flat zones of a function F :

E → T are the maximal connected subsets of E on

which F has constant value; they constitute a partition
of E, let us write it πflat(F ). Now a connected filter

ψ transforms F into a function ψ(F ) where each flat

zone is a union of flat zones of F , in other words, the

partition of flat zones of ψ(F ) is coarser than the one

of flat zones of F : πflat(F ) ≤ πflat(ψ(F )).
The refinement order on Π(E) extends naturally

to the set Π∗(E) of all partial partitions of E: for

π1, π2 ∈ Π∗(E), we write π1 ≤ π2 (or π2 ≥ π1), if and

only if every block of π1 is included in a block of π2.
Following [26], we call this partial order the standard or-

der. Then (Π∗(E),≤) is a complete lattice, whose least

and greatest elements are the empty partial partition

(having no block) and the universal partition (with E

as single block).

In [22] we pointed out the interest of considering

partial partitions for the study of image segmentation.

Let us give here several reasons:

– Some image segmentation algorithms produce seg-

mentation classes separated by boundaries made of

pixels; this happens with some versions of the wa-

tershed algorithm, but it arises also by necessity
in some connective segmentation methods [32,27],

such as the smooth and jump connections, where

seeds (or points) are agglomerated on the basis of

overlapping or contact, and distinct regions must be

non-adjacent in order to prevent their merger. Here
the regions (segmentation classes) constitute a par-

tial partition of the space E, and the boundaries

form the background (complement of the support)

of that partial partition.
– It is interesting to combine region-based segmen-

tation (like watershed or connective segmentation)

with edge detection [15]. Indeed, in region-based

segmentation methods, the only edges that are pre-

served are those that separate distinct regions, in
particular, edges that are not closed will usually dis-

appear; one might want to preserve unclosed edges,

so that they could be closed with some post-proces-

sing; furthermore, there is no guarantee that the re-
gions will always be separated along the most salient

edges. Thus one can constrain the segmentation by

providing not only initial markers for the regions,

but also markers for the edges that will remain out-

side the final regions constituting the segmentation.
– Morphological segmentation usually works in a bot-

tom-up way, by growing mutually disjoint regions

from markers (as in the watershed), or by construct-

ing successively the segmentation classes (in a com-
pound segmentation paradigm, see [31,27]). This

means constructing a sequence of partial partitions

that is growing for the standard order.

– From a top-down point of view, a segmentation al-

gorithm associates to every function F : E → T
and every subset A of E a partition (or partial

partition) πF (A) of A [32,27]. This leads to the

block splitting operator on Π∗(E) that applies πF to

each block of a partial partition: Π∗(E) → Π∗(E) :
ξ 7→

⋃
A∈ξ π

F (A). This operator is anti-extensive for

the standard order, and we showed in [24,25] that

for three image segmentation methodologies (con-

nective segmentation and its compound and con-

strained variants) this operator is idempotent and
has specific algebraic properties related to order.

Compared to the refinement order on Π(E), the

standard order on Π∗(E) shares many algebraic prop-
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Fig. 1 In each partial partition, the distinct blocks are iden-
tified by their hatching or grey-level. We have π1 on the left,
and π2 on the right, with π1 ≤ π2. We show the 4 ways in
which a block of π2 not itself in π1 can be obtained from
blocks of π1.

erties [22–25]. However it is conceptually more complex.

Let π1, π2 ∈ Π∗(E) such that π1 ≤ π2; thus every block
of π1 is included in a block of π2. But contrarily to the

case of the refinement order on Π(E), a block of π2 will

not necessarily be a union of blocks of π1. When it is

not itself a block of π1, it can be obtained by one of
the following operations: (a) creating a new block; (b)

inflating a block of π1; (c) merging several blocks of π1;

(d) merging and inflating several blocks of π1. See Fig-

ure 1. Therefore it is not appropriate to call this order

on Π∗(E) refinement, as we did in [22]; hence the new
name standard order [26].

We saw above that the operation of merging blocks

is relevant to image segmentation. Now the two other
operations, inflating and creating blocks, are also rel-

evant, since they are involved respectively in region

growing (such as watershed) and in compound segmen-

tation (where the segmentation classes are built succes-

sively with varying criteria [31,27]). This suggests that
the standard order is in fact a combination of three ba-

sic orders, associated to the three basic operations of

merging, inflating and creating blocks. We will indeed

define three primary partial order relations on Π∗(E),
the merging, inclusion and inflating orders, written ⊑,

⊆ and E; all three are included in the standard order ≤.

Next we will describe two secondary partial order rela-

tions obtained by combining two of the three primary

orders, themerging-inflating and inclusion-inflating or-
ders, written ⊑E and ⊆E; on the other hand combining

merging with inclusion, one generates the standard or-

der.

There are other meaningful partial order relations
on Π∗(E) that are not included in the standard or-

der. Serra [33,34] defined on Π∗(E) the building order

⋐ by a kind of logical inversion of the standard order:

π1 ⋐ π2 if and only if every block of π2 contains at least
one block of π1 (it may also contain or intersect other

blocks of π1). To be more precise, Serra studied in fact

the partial order on P(E) induced by the building or-

der on the partial partition of connected components

of a set: for X,Y ∈ P(E), X ⋐ Y if and only if every

connected component of Y contains a connected com-

ponent of X . (NB. He also used the symbol � instead

of ⋐). Now ⋐ is a partial order relation, and it is gen-
erally unrelated to the standard order ≤, except when

the partial partitions have the same support: if π1 ≤ π2
and supp(π1) = supp(π2), then π1 ⋐ π2; in particu-

lar for partitions, the building order ⋐ contains the re-
finement order ≤. However the building order does not

constitute a lattice, and it is not easy to define opera-

tors with given order-theoretic properties (for instance,

isotony).
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(b)

Fig. 2 (a) The graph of a one-dimensional grey-level edge;
below we show (top bar) its segmentation into connected
classes with bounded slope (light grey rectangles for non-
singleton classes, vertically hatched ones for groups of sin-
gleton classes); note the large number of small classes on the
edge; eliminating them (middle bar), the final segmentation
(bottom bar) consists of the influence zones of the two large
classes. (b) From left to right: a disk B; a subset of the plane
is segmented into two connected zones open by B, while the
remaining points form singletons; the desired segmentation
is obtained by the the influence zones of the two connected
open zones.

This new order relation was motivated by the prob-

lem, encountered with many image segmentation algo-

rithms, of “small parasitic” segmentation classes ap-

pearing along contours and transitions, where the re-
gion homogeneity criterion fails. Serra proposes to elim-

inate them and take as final partition the watershed or

influence zones (in a Voronoi diagram) of the remaining

segmentation classes corresponding to significant ob-
jects. See Figure 2. Now both operations of first remov-

ing “parasitic” blocks and next inflating the remaining

blocks, are extensive for the building order. More pre-

cisely, starting from a partial partition π0:

1. Remove “small parasitic” blocks from π0 (through

some “parasitism” and size criterion); the resulting

partial partition π1 satisfies π0 ≥ π1 but π0 ⋐ π1.

2. Inflate the blocks of π1 (for example by a Voronoi
diagram, or through a homogeneity criterion), with-

out creating any new block; the merging of blocks,

although not excluded in theory, is not used in prac-
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tice; the resulting partial partition π2 satisfies both

π1 ≤ π2 and π1 ⋐ π2.

Then the partial partition π2, having fewer but bigger

blocks than π0, is “better”, a quality that is certified

by the order π0 ⋐ π2.
Note that the example of Figure 2 (a) can be adap-

ted to give an edge enhancement method, by consid-

ering flat zones instead of segmentation classes: “small

parasitic” flat zones along the edge are removed, then

the remaining large flat zones are extended to cover the
removed small ones.

Let us remark that the criteria are vital: if we had

removed “big non-parasitic” blocks and then inflated

the remaining “small parasitic” ones, the result would
be catastrophic, while the two operations would still be

extensive for the building order.

Taking a critical look at Serra’s argument, we first

note that the construction of π2 from π0 involves two

restricted operations (first removing blocks, next inflat-
ing blocks), guided by two distinct criteria (first size

and “parasitism”, next homogeneity or distance to the

marker); in fact these two operations correspond to two

restricted orders, the inverse inclusion and the inflating
orders: π0 ⊇ π1 E π2. Next, although we have a grow-

ing sequence for the building order, π0 ⋐ π1 ⋐ π2,

intuitively π1 cannot be considered as a “good” result,

since it has a smaller support than π0; this is corrobo-

rated by the standard order that gives π0 ≥ π1 ≤ π2. In
all practical examples, the block growth of step 2 must

be repeated until the blocks removed in step 1 are fully

covered, in other words supp(π2) = sup(π0) (in fact,

Serra considers that π0 and π2 are partitions of E).
Thus in our opinion, the building order on Π∗(E)

is too general to be meaningful. We can consider that

since the two operations of first removing then inflating

blocks use distinct criteria, they constitute two distinct

stages in segmentation, hence they must correspond to
two distinct order relations, namely the inverse inclu-

sion and inflating orders. Another possibility is to con-

sider the succession of the two operations as a com-

pound operation that is successful only if the support
of the initial partial partition is fully recovered. We call

this compound operation apportioning: some blocks in

a partial partition may be split, and their parts are

merged with some remaining blocks; this includes the

possibility of a block being merged with another with-
out being split. This introduces a new partial order re-

lation on Π∗(E), which extends the merging order. We

call it the apportioning order ; it was briefly suggested

in Serra’s work [33,34], but was not pursued further.
We will study it in a future paper.

We have seen that several partial order relations

on Π∗(E) can be defined by purely mathematical re-

lations on blocks, but they become really meaningful

when they correspond to certain types of operations on

partial partitions that are effectively used in segmen-

tation (or filtering), and these operations are generally

guided by specific criteria.

The purpose of this paper is the detailed study, with

a view on image segmentation and filtering, of these or-

ders on partial partitions: the three basic ones (merging,
inclusion and inflating orders) and their combinations

(merging-inflating, inclusion-inflating and standard or-

ders). In particular, we consider least and greatest ele-

ments, the covering relation, the length of intervals and
the height of elements. Indeed, since an order on par-

tial partitions corresponds to a type of operation in the

construction of a segmentation, the height of a partial

partition will correspond to its complexity in terms of

elementary operations necessary to obtain it.

An important notion in morphological image seg-

mentation is that of a hierarchy, that is, a growing se-
quence of segmentation partitions, starting and ending

with the least and greatest partitions [12,13]; a related

concept is that of edge saliency [16], namely, specify-

ing for each edge portion its evolution through the lev-

els of the hierarchy. They have been studied for Π(E)
with the refinement order. Following the framework of

[23], where the hierarchy corresponds to an erosion from

scalars to partitions, with the adjoint dilation measur-

ing the diameter of blocks according to an ultramet-
ric, we extend this analysis to partial partitions with

the standard order. Also the notion of an edge be-

tween blocks implicitly assumes the connectedness of

these blocks, and indeed one makes such an assump-

tion in segmentation; thus we will work in the lattice
of (partial) partitions with blocks belonging to a gi-

ven (partial) connection. In the case of a connectivity

based on an adjacency graph, we need to consider the

saliency not only of the edge separating a pair of adja-
cent points, but also of each individual point. We also

briefly discuss the relation to saliency of the basic oper-

ations of merging, creating or inflating blocks involved

in the orders that we have studied. Finally, hierarchies

of partial partitions with connected blocks intervene in
connected filtering through the structure of the max-

tree and min-tree [28,29] (also called component tree

[14]), so we consider the relevance of our new orders to

this filtering approach.

This paper being very long, we have left out a topic

discussed in [26]: the numerical evaluation of segmen-

tation partitions by some function (called energy in [7,
35,10,36] and valuation in [26]), which has to be min-

imized or maximized. An example of such function is

the order-theoretical height, which we determine for the



Ordering partial partitions 5

orders introduced in this paper. This topic will be dealt

with in a future paper.

There are also many more orders on Π∗(E), such as

the apportioning order briefly mentioned above, then

its combinations with the inflating and the inclusion

orders, but also orders obtained by combining one of

the three basic orders with the inverse of another one.
This will be discussed in yet another paper.

Paper organization

Section 2 recalls basic facts concerning the refinement

order on partitions and the standard order on partial

partitions, the structure of the corresponding complete

lattices, as well as their relations with connections and
partial connections. It also describes some basic re-

lations between partial partitions defined in terms of

block inclusion. Section 3 studies the three basic or-

ders (merging, inclusion and inflating) and their com-

binations (standard, merging-inflating and inclusion-
inflating). Section 4 analyses hierarchies and saliency,

with a view on image segmentation and filtering. Fi-

nally Section 5 concludes, summarizing our results, dis-

cussing their relevance and putting them into perspec-
tive. Appendix A discusses the compatibility of all these

partial order relations with local knowledge.

2 Mathematical preliminaries

We give here our notation and recall some known ma-

thematical facts. We will also introduce some new gen-

eral results about partial partitions.

In mathematical formulas, we will write “&” for the

logical “and”. Given a set A, we will write: P(A) for the
set of parts of A; given any subset B of A, P(A/B) for

the set of parts of A containing B, P(A/B) = {X | B ⊆
X ⊆ A}; |A| for the cardinal of A. Given two subsets

A and B of a set E, we say that A and B overlap, and

write A ≬ B, if A ∩B 6= ∅.

2.1 Relations and orders

Each binary relation R is identified with the set of or-
dered pairs (a, b) such that a R b, so if we say that the

relation S is included in the relation R, or that R con-

tains S, this means that a S b implies a R b; similarly,

the intersection (resp., union) of two relations R and S
is the relation Q such that a Q b iff a R b and (resp.,

or) a S b. This applies in particular to partial order

relations.

Our terminology on orders and lattices follows [3,4,

6]. We will consider several distinct order relations; for

their notation we follow a common rule: we use some

symbol for the strict order “strictly less than” (e.g., ◭),

the underlined symbol for the corresponding wide order
“less than or equal to” (e.g., ◭), then the mirror sym-

bol for the inverse strict order “strictly greater than”

(e.g., ◮) and the underlined mirror symbol for the in-

verse wide order “greater than or equal to” (e.g., ◮).
The only exception is for the building order on partial

partitions, where we use ⋐ for “less than or equal to”

and ⋑ for “greater than or equal to”, without any spe-

cific symbol for “strictly less than” and “strictly greater

than”; indeed, we consider this order as a mathematical
relation which is not really a “meaningful order”.

Given a partial order relation ≤ on a set P , we

call isolated any x ∈ P that is incomparable to any

other element of P : ∀ y ∈ P , neither y < x nor x < y

holds (equivalently, x is both maximal and minimal).

For x, y ∈ P we say that y covers x (or x is covered by
y) if x < y but there is no z ∈ P such that x < z < y;

this relation is usually written x ≺ y or y ≻ x; when

we analyse the covering relation for distinct orders, we

can distinguish them by using various superscripts like
r
≺. Given x, y ∈ P with x ≤ y, the length of the in-

terval [x, y] = {z ∈ P | x ≤ z ≤ y} is the supremum
of all integers n with x = z0 < · · · < zn = y; when

this length is finite (for instance when P is finite), it is

the greatest such n, and the sequence takes the form

x = z0 ≺ · · · ≺ zn = y, we call it a covering chain be-
tween x and y. When P has a least element 0, the height

of x ∈ P is the length of the interval [0, x]. When P has

no least element, but for every x ∈ P there exists a

minimal element m such that m ≤ x, we call the height

of x w.r.t. m the length of the interval [m,x].

The poset P is graded if there is a map g : P → Z

such that for any x, y ∈ P , x < y ⇒ g(x) < g(y) and

x ≺ y ⇒ g(y) = g(x) + 1 [3]; more specifically, we say

that P is graded by g. We have then x ≺ y ⇔ [x ≤
y & g(y) = g(x) + 1]. (NB. In [6] this consequence is

given as the definition, which is unsufficient, because it
does not guarantee the finite length of intervals.) In a

graded poset P , every interval has finite length, and P

satisfies the Jordan-Dedekind chain condition, namely

that all covering chains between x and y (for x < y)
have the same length, which is g(y)−g(x). Furthermore,

if P has a least element 0, then the height h satisfies

h(x) = g(x)− g(0) for all x ∈ P , thus P is graded by h.

Since we will consider compound orders on partial

partitions, with compound covering relations, we need

to introduce compound grading functions:
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Proposition 1 In a poset (P,≤), let the covering re-

lation ≺ be the disjoint union of t relations
1
≺, . . . ,

t
≺.

Consider t maps g1, . . . , gt : P → Z, and let g =∑t

i=1 gi. Suppose that:

1. For all x, y ∈ P and i = 1, . . . , t we have

x
i
≺ y =⇒

{
gi(y) = gi(x) + 1 ,

gj(y) = gj(x) for j 6= i .

Then the following two statements are equivalent:

2. Every interval in P has finite length.

3. For all x, y ∈ P ,

x < y =⇒

{
∀ i = 1, . . . , t, gi(y) ≥ gi(x) ,

∃ i ∈ {1, . . . , t}, gi(y) > gi(x) .

When these conditions are met, we obtain the following:

4. For all x, y ∈ P and i = 1, . . . , t we have

x
i
≺ y ⇐⇒ x ≤ y &

{
gi(y) = gi(x) + 1 ,

gj(y) = gj(x) for j 6= i .

5. In a covering chain z0 ≺ · · · ≺ zn in P , among

the n coverings zℓ−1 ≺ zℓ (ℓ = 1, . . . , n), there are

gi(zn) − gi(z0) occurrences of zℓ−1

i
≺ zℓ for i =

1, . . . , t.

6. P is graded by g.

Proof When x ≺ y, we have x
i
≺ y for some i, then

item 1 gives gi(y) = gi(x) + 1 and gj(y) = gj(x) for

j 6= i, hence g(y) = g(x) + 1. Now for x < y, item 3

gives g(y) > g(x). Thus items 1 and 3 together imply
that P is graded by g, that is, item 6.

Next, item 6 implies item 2. Let x < y; we show

by induction on g(y)− g(x) that the interval [x, y] has

length at most g(y) − g(x). If x ≺ y, then the interval

[x, y] has length 1 ≤ g(y)−g(x). Otherwise, for any z ∈
P such that x < z < y, we have g(x) < g(z) < g(y), and
as g(z)− g(x), g(y)− g(z) < g(y) − g(x), by induction

hypothesis the intervals [x, z] and [z, y] have lengths at

most g(z)−g(x) and g(y)−g(z), so any chain containing

z must have length at most g(z) − g(x) + g(y) − g(z);
therefore the interval [x, y] has length at most g(y) −
g(x).

Also, items 1 and 6 together imply item 4. The for-

ward implication =⇒ in item 4 follows directly from

item 1. Consider the reverse implication ⇐=. Let i ∈
{1, . . . , t} and x, y ∈ P such that x ≤ y, gi(y) = gi(x)+
1 and gj(y) = gj(x) for j 6= i; thus g(y) = g(x) + 1.

Then x 6= y, that is, x < y. If x 6≺ y, then x < z < y

for some z ∈ P , and item 6 gives g(x) < g(z) < g(y),

which contradicts g(y) = g(x)+1. Thus x ≺ y; if x
j
≺ y

for j 6= i, then gi(y) = gi(x) by item 1, a contradiction.

Therefore x
i
≺ y.

Now item 1 implies item 5. Let i ∈ {1, . . . , t}. In a

covering chain z0 ≺ · · · ≺ zn, for ℓ = 1, . . . , n, when

zℓ−1

i
≺ zℓ we get gi(zℓ) − gi(zℓ−1) = 1, while when

zℓ−1

j
≺ zℓ for j 6= i we get gi(zℓ) − gi(zℓ−1) = 0; hence

gi(zn) − gi(z0) =
∑n

ℓ=1[gi(zℓ) − gi(zℓ−1)] counts the

number of occurrences of zℓ−1

i
≺ zℓ.

Finally, items 2 and 5 together imply item 3. Let
x < y. By item 2 there is a covering chain x = z0 ≺
· · · ≺ zn = y. By item 5, for i = 1, . . . , t, gi(y) − gi(x)

counts the number of occurrences of zℓ−1

i
≺ zℓ in that

chain, hence this number must always be ≥ 0, and it is

> 0 for at least one i, because n > 0.

We have shown that 1 & 3 ⇒ 6, 6 ⇒ 2, 1 & 6 ⇒
4, 1 ⇒ 5 and 2 & 5 ⇒ 3. This completes the proof
that 1 & 2 ⇔ 1 & 3 ⇒ 4 & 5 & 6. ⊓⊔

Note that item 3 can also be written: for all x, y ∈ P ,

x < y =⇒

{
∀ i = 1, . . . , t, gi(y) ≥ gi(x)

& g(y) > g(x) .
(1)

When the above properties are satisfied, we will say

that P is graded by (g1, . . . , gt) for (
1
≺, . . . ,

t
≺). For t =

1, we obtain the classical notion of grading: items 1

and 3 mean that P is graded by g = g1, and item 6 is
redundant; now item 4 is the above-mentioned variant

definition x ≺ y ⇔ [x ≤ y & g(y) = g(x) + 1] from

[3], which is equivalent only if we assume item 2; finally

item 5 is the Jordan-Dedekind chain condition.

A quasi-order is a reflexive and transitive binary
relation. Note that a non-empty intersection of quasi-

orders is a quasi-order, and that the intersection of an

order and a quasi-order is an order.

The set of all partial order relations on a set P is
closed under non-void intersection. However, it does not

constitute a lattice, because the supremum of partial

order relations is not necessarily defined; for instance,

there is no partial order containing both an order ≤ and

its inverse ≥, because antisymmetry would fail. Never-
theless, given a fixed partial order ≤ on P , the set O(≤)

of all partial order relations on P that are included in ≤
is a complete lattice (since it is closed under intersection

and has a greatest element).

2.2 Partial partitions and the standard order

Our notation follows [22,23]. A partial partition of E is
constituted of mutually disjoint non-void subsets of E

called blocks. We write Π(E) for the set of all partitions

of E, and Π∗(E) for the set of all partial partitions
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of E. Thus Π∗(E) =
⋃
A∈P(E)Π(A). Write Ø for the

empty partial partition (with no block); in fact, Π(∅) =
Π∗(∅) = {Ø}. Set 1∅ = 0∅ = Ø, while for any A ∈
P(E) \ {∅}, let 1A = {A} (the partition of A into a

single block) and 0A =
{
{p} | p ∈ A

}
(the partition

of A into its singletons); following [17], we say that 0A
is the identity partition of A, and 1A is the universal

partition of A. For π ∈ Π∗(E), the support of π, written

supp(π), is the union of its blocks: supp(π) =
⋃
π; the

complement E\supp(π) of the support is the background
of π. For π ∈ Π∗(E), a transversal of π is a subset of

E made by choosing one point in each block of π, in

other words a set A ⊆ supp(π) such that |A ∩ B| = 1

for any B ∈ π; a crossing of π is set A ⊆ supp(π) such
that A∩B 6= ∅ for any B ∈ π; it necessarily contains a

transversal.

The refinement order on Π(E) and the standard

order on Π∗(E) are given by the same definition: for

π1, π2 ∈ Π∗(E),

π1 ≤ π2 (also written π2 ≥ π1)

⇐⇒ ∀B ∈ π1, ∃C ∈ π2, B ⊆ C .

Then both (Π(E),≤) and (Π∗(E),≤) are complete lat-

tices. Their least and greatest elements are 0E and 1E
for Π(E), but Ø and 1E for Π∗(E). The reader is re-

ferred to [22] for the description of the supremum and
infimum operations in these lattices; they are written

∨

and
∧

(or ∨ and ∧ for their binary counterparts). Note

that the non-void supremum and infimum operations

in Π(E) are exactly the same as in Π∗(E), and simi-
larly, for A ⊆ E, the non-void supremum and infimum

operations in Π(A) and in Π∗(A) are again the same

as in Π∗(E).

Given π1, π2 ∈ Π∗(E), let us write π1
m
≺ π2 and say

that π2 m-covers π1, if π2 is obtained by merging two

blocks of π1:

π1
m
≺ π2 ⇐⇒

|π1| ≥ 2, ∃C1, C2 ∈ π1, C1 6= C2,

π2 =
(
π1 \ {C1, C2}

)
∪ {C1 ∪ C2} .

(2)

Now let us write π1
s
≺ π2 and say that π2 s-covers π1,

if π2 is obtained by adding a singleton block to π1:

π1
s
≺ π2 ⇐⇒

supp(π1) ⊂ E, ∃ p ∈ E \ supp(π1),
π2 = π1 ∪

{
{p}

}
.

(3)

Then
m
≺ is the covering relation on partitions, and more

generally on partial partitions having a common sup-

port. On the other hand, the covering relation on partial

partitions is the union ≺ =
m
≺ ∪

s
≺ [23], in other words,

π1 ≺ π2 if and only if π1
m
≺ π2 or π1

s
≺ π2.

Assume now that E is finite. For any π ∈ Π∗(E), we

define hm(π), them-height of π, and hs(π), the s-height

of π, as follows:

hm(π) = |supp(π)| − |π| , hs(π) = |supp(π)| . (4)

Since every block has at least one point, |supp(π)| ≥ |π|,
thus hm and hs are both non-negative integers. Now the

height of π [23] is their sum:

h(π) = hm(π) + hs(π) = 2|supp(π)| − |π| . (5)

We can now determine the grading and height in

Π∗(E) and in Π(A) (for A ⊆ E). Note that the height

in Π∗(E) and in Π(A) was already given in [23]:

Theorem 2 Let E be finite. Then Π∗(E) is graded by

(hm, hs) for (
m
≺,

s
≺), that is, for any π1, π2 ∈ Π∗(E) we

have:

π1 < π2 =⇒



hm(π1) ≤ hm(π2) &

hs(π1) ≤ hs(π2) &

h(π1) < h(π2)


 ,

π1
m
≺ π2 =⇒

[
hs(π2) = hs(π1) &

hm(π2) = hm(π1) + 1

]
,

π1
s
≺ π2 =⇒

[
hm(π2) = hm(π1) &

hs(π2) = hs(π1) + 1

]
.

In particular, (Π∗(E),≤) is graded by h = hm + hs.

Also hm(Ø) = hs(Ø) = 0, and for π ∈ Π∗(E), the

height of π in Π∗(E) is h(π).

For any A ⊆ E, (Π(A),≤) is graded by hm. Also
hm(0A) = 0, and for π ∈ Π(A), the height of π in

Π(A) is hm(π).

Proof For π1 ≤ π2, we have supp(π1) ⊆ supp(π2), thus

hs(π1) = |supp(π1)| ≤ |supp(π2)| = hs(π2). Given a

block C ∈ π2 containing exactly k blocks B1, . . . , Bk ∈
π1, either k = 0 and

∑k

i=1(|Bi| − 1) = 0 ≤ |C| − 1, or

k ≥ 1 and
∑k

i=1(|Bi| − 1) =
∣∣⋃k

i=1Bi
∣∣ − k ≤ |C| − 1

(because C contains the disjoint union of B1, . . . , Bk).

Hence
∑

B∈π1∩P(C)(|B| − 1) ≤ |C| − 1 anyway (here
π1 ∩ P(C) is the set of blocks of π1 included in C).

Since π1 ≤ π2, every block of π1 is included in a unique

block of π2, so we get

hm(π1) = |supp(π1)| − |π1| =
∑

B∈π1

(|B| − 1)

=
∑

C∈π2

∑

B∈π1∩P(C)

(|B| − 1) ≤
∑

C∈π2

(|C| − 1)

= |supp(π2)| − |π2| = hm(π2) .

Hence hm and hs are growing functions: π1 < π2 ⇒
hm(π1) ≤ hm(π2) & hs(π1) ≤ hs(π2). Given π1 ≤
π2, as h = hm + hs, we have h(π2) = h(π1) if and

only if hm(π2) = hm(π1) and hs(π2) = hs(π1); then
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|supp(π2)| = |supp(π1)| and |π2| = |π1|; as supp(π1) ⊆
supp(π2), we deduce that supp(π1) = supp(π2). So ev-

ery block of π2 is a union of blocks of π1, and as |π2| =
|π1|, two blocks of π1 may not be merged in π2, hence

π2 = π1. Therefore π1 < π2 ⇒ h(π1) < h(π2).

If π1
m
≺ π2, then (2) gives |supp(π2)| = |supp(π1)|

and |π2| = |π1| − 1, hence hm(π2) = hm(π1) + 1 and

hs(π2) = hs(π1). If π1
s
≺ π2, then (3) gives |supp(π2)| =

|supp(π1)| + 1 and |π2| = |π1| + 1, hence hm(π2) =

hm(π1) and hs(π2) = hs(π1) + 1.

We have thus shown that relatively to (
m
≺,

s
≺), the

pair (hm, hs) satisfies the conditions in Proposition 1,

namely item 1 and the alternate form (1) of item 3,

henceΠ∗(E) is graded by (hm, hs) for (
m
≺,

s
≺). By item 6

of the Proposition, Π∗(E) is graded by h = hm + hs.

Obviously hm(Ø) = hs(Ø) = 0. Since Ø is the

least element of Π∗(E), the height of any π ∈ Π∗(E)

is h(π) − h(Ø) = h(π).

Finally, let A ⊆ E. For π1, π2 ∈ Π(A), hs(π1) =

|supp(π1)| = |supp(π2)| = hs(π2). From the above we

deduce that π1 < π2 =⇒ hm(π1) < hm(π2) and

π1
m
≺ π2 =⇒ hm(π2) = hm(π1) + 1, which means that

(Π(A),≤) is graded by hm. Obviously hm(0A) = 0.

Since 0A is the least element of Π(A), the height of

any π ∈ Π(A) is hm(π) − hm(0A) = hm(π). ⊓⊔

By item 4 of Proposition 1, for any π1, π2 ∈ Π∗(E),

– π1 ≺ π2 iff π1 ≤ π2 and h(π2) = h(π1) + 1.

– π1
m
≺ π2 iff π1 ≤ π2, hm(π2) = hm(π1) + 1 and

hs(π2) = hs(π1).

– π1
s
≺ π2 iff π1 ≤ π2, hs(π2) = hs(π1) + 1 and

hm(π2) = hm(π1).

Given π, π′ ∈ Π∗(E) such that π ≤ π′, by item 2 of that

Proposition, there is a covering chain between π and π′.

By item 5, in such a covering chain π = π0 ≺ · · · ≺ πn =

π′, among the n coverings πi ≺ πi+1 (i = 0, . . . , n− 1),

there are hm(π′) − hm(π) m-coverings πi
m
≺ πi+1 and

hs(π
′)− hs(π) s-coverings πi

s
≺ πi+1, in particular n =

h(π′)− h(π).

2.3 Connections and partial connections

For any family C ⊆ P(E), let Π(E, C) = Π(E) ∩P
(
C \

{∅}
)
and Π∗(E, C) = Π∗(E) ∩P

(
C \ {∅}

)
, be the fam-

ilies respectively of partitions and of partial partitions,
whose blocks belong to C (in fact, to C \ {∅}).

Let A ∈ P(E) and B ⊆ P(A). Then we say [22] that
A is chained by B if

∨
B∈B 1B = 1A (in particular, we

must have
⋃
B = A); equivalently, for any p, q ∈ A,

there are B0, . . . , Bn ∈ B (n ≥ 0) such that p ∈ B0,

q ∈ Bn and Bt−1 ∩ Bt 6= ∅ for all t = 1, . . . , n; we may

assume that the elements of B are non-empty, because

A will be chained by B \{∅} anyway. Note in particular

that the empty set is chained by the empty family of

its subsets.
Let S(E) be the set of all singletons {x}, x ∈ E.

A partial connection on P(E) is a family C ⊆ P(E)

such that ∅ ∈ C and ∀B ⊆ C,
⋂
B 6= ∅ ⇒

⋃
B ∈ C

(for B = ∅, we have indeed
⋂
B = E 6= ∅ and

⋃
B =

∅ ∈ C). A connection on P(E) is a partial connection C
such that S(E) ⊂ C; in fact, for any C ⊆ P(E), C is a

partial connection if and only if C∪S(E) is a connection.

Given a partial connection C, for any A ∈ P(E), let

us write PC
C(A) for the partial partition of connected

components of A according to C [22].

Given a family B of subsets of E, the least partial

connection (resp., connection) containing B is called the

partial connection (resp., connection) generated by B
and it is written Con∗(B) (resp., Con(B)). Then Con∗(B)
is the set of all X ∈ P(E) that are chained by P(X)∩B,
while Con(B) = Con∗(B) ∪ S(E). Note that Con∗(B) =
Con∗(B \ {∅}) and that for the empty family we get

Con
∗(∅) = {∅}.
Serra [32] showed that for C ⊆ P(E) with ∅ ∈ C, C is

a connection if and only if Π(E, C) is closed under the

supremum operation of Π(E) (in particular Π(E, C)
comprises the empty supremum of Π(E), that is, the
least element 0E). Then we showed [22] that C is a par-

tial connection if and only if Π∗(E, C) is closed under

the supremum operation ofΠ∗(E) (obviously,Π∗(E, C)
comprises the empty supremum of Π∗(E), that is, the

least element Ø). We generalize these two results as
follows:

Proposition 3 Let B ⊆ P(E). Then:

1. The subset of Π∗(E) closed under the supremum op-

eration generated by the partial partitions 1B, B ∈
B, is Π∗(E,Con∗(B)).

2. The subset of Π(E) closed under the supremum op-

eration generated by the partitions 1B ∨ 0E = 1B ∪
0E\B, B ∈ B, is Π(E,Con(B)).

Proof We can assume that the elements of B are non-

empty, because Con∗(B) = Con∗(B\{∅}) and Con(B) =
Con(B \ {∅}). We can also assume that B is non-void,

because the result holds trivially for B = ∅: we get

then Con
∗(∅) = {∅} and Con(∅) = {∅} ∪ S(E), hence

Π∗(E,Con∗(∅)) = {Ø} and Π(E,Con(∅)) = {0E}, and
both are indeed generated by the empty supremum in

their respective lattices Π∗(E) and Π(E).

1. Let X be the subset of Π∗(E) closed under sup-
remum generated by all 1B, B ∈ B. For any B ∈ B,
B ∈ Con∗(B), so 1B ∈ Π∗(E,Con∗(B)); since Con∗(B)
is a partial connection, Π∗(E,Con∗(B)) is closed under
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supremum, hence X ⊆ Π∗(E,Con∗(B)). Conversely, let
π ∈ Π∗(E,Con∗(B)); for any A ∈ π, A ∈ Con∗(B), so A
is chained by P(A) ∩ B, that is, 1A =

∨
B∈P(A)∩B 1B;

we get thus

π =
∨

A∈π

1A =
∨

A∈π

∨

B∈P(A)∩B

1B ,

so π is a supremum of some 1B, B ∈ B, hence π ∈ X .

Therefore X = Π∗(E,Con∗(B)).
2. Let Y be the subset of Π(E) closed under sup-

remum generated by all 1B ∨ 0E = 1B ∪ 0E\B, B ∈ B.
For any B ∈ B, B ∈ Con(B), and for p ∈ E \ B,

{p} ∈ Con(B), so 1B ∪ 0E\B ∈ Π(E,Con(B)); since
Con(B) is a connection, Π(E,Con(B)) is closed under
supremum, hence Y ⊆ Π(E,Con(B)). Conversely, let
π ∈ Π(E,Con(B)); let π1 be the set of singleton blocks

of π, and let π2 = π \ π1 be the set of non-singleton

blocks of π; for any A ∈ π1, 1A ∨ 0E = 0E ; for any
A ∈ π2, A ∈ Con∗(B), so 1A =

∨
B∈P(A)∩B 1B (cf.

item 1), hence 1A ∨0E =
∨
B∈P(A)∩B(1B ∨0E); we get

thus

π = π ∨ 0E =
∨

A∈π

(1A ∨ 0E)

=
( ∨

A∈π1

0E

)
∨
( ∨

A∈π2

∨

B∈P(A)∩B

(1B ∨ 0E)
)
,

so either π2 is empty and π = 0E , or π is a supremum
of some 1B ∨ 0E , B ∈ B; hence π ∈ Y in any case.

Therefore Y = Π(E,Con(B)). ⊓⊔

For example, if E is endowed with an adjacency

graph and C is the connection consisting of all con-

nected subsets of E according to that graph, then C =

Con(B) for the set B of pairs of adjacent points of E, so
Π(E, C) is generated by suprema of 1P ∨0E , where P is

a pair of adjacent points of E. Also C = Con∗(B∪S(E)),

where S(E) is the set of singletons of E, so Π∗(E, C) is
generated by suprema of 1P , where P is a singleton or
a pair of adjacent points of E. A particular case is when

any two distinct points are adjacent in that graph, so

C = P(E), Π(E, C) = Π(E), Π∗(E, C) = Π∗(E) and

B is the family of all pairs of points of E; thus every

partition is a supremum of 1P ∨0E , where P is a pair of
points of E, and every partial partition is a supremum

of 1P , where P is a singleton or a pair of points of E.

2.4 Other relations on partial partitions

The standard order and its logical couterpoint given by

the building order suggest several possible binary rela-
tions between partial partitions, based on the inclusion

of blocks; we also consider those relating the supports

of the partial partitions.

Each such binary relation will get a name; we will

define it by the conditions that two partial partitions

π1, π2 must satisfy in order for the ordered pair (π1, π2)

to belong to that relation.

Let us start with supports. The following three re-
lations are quasi-orders:

1. Support inclusion: supp(π1) ⊆ supp(π2).

2. Support containment : supp(π1) ⊇ supp(π2).

3. Support equality: supp(π1) = supp(π2).

Next, we consider relations between two partial par-

titions based on the inclusion of blocks. The standard

order relation π1 ≤ π2, namely that every block of

π1 is included in one block of π2, can be expressed as

π1 ⊆
⋃
B∈π2

P(B).
Note that by the disjointness of the blocks of a par-

tial partition, the following relation is universally satis-

fied: Every block of π1 is included in at most one block

of π2:

∀B ∈ π1, ∀C,C′ ∈ π2,[
B ⊆ C & B ⊆ C′

]
=⇒ C = C′ .

(6)

We define the inclusion function of π1 in π2 as the set

incπ1,π2
of all (B,C) ∈ π1 × π2 such that B ⊆ C. Then

(6) means that incπ1,π2
is a partially defined function

from π1 to π2. We have incπ1,π2
◦ incπ0,π1

⊆ incπ0,π2
,

which means that for B ∈ π0 such that incπ0,π1
(B)

and incπ1,π2
(incπ0,π1

(B)) are defined, then incπ0,π2
(B)

is defined and we have

incπ1,π2
(incπ0,π1

(B)) = incπ0,π2
(B) ,

but there can exist C ∈ π0 such that incπ0,π2
(C) is de-

fined, but incπ0,π1
(C) or incπ1,π2

(incπ0,π1
(C)) is not de-

fined. Now π1 ≤ π2 means that the function incπ1,π2
is

totally defined, in other words it is a map π1 → π2. For

π0 ≤ π1 ≤ π2, we have the equality incπ1,π2
◦ incπ0,π1

=
incπ0,π2

.

The building order relation

π1 ⋐ π2 (also written π2 ⋑ π1)

⇐⇒ ∀C ∈ π2, ∃B ∈ π1, B ⊆ C ,

namely that every block of π2 contains (at least) one

block of π1, can be expressed as π2 ⊆
⋃
B∈π1

P(E/B); it

also means that the partially defined function incπ1,π2

is surjective. This relation satisfies the following:

∀π1, π2 ∈ Π∗(E), ∀A ∈ P(E),

π1 ⋐ π2 =⇒ π1 ∩ P(A) ⋐ π2 ∩ P(A) .
(7)

Note that ⋐ contains ⊇: when π1 ⊇ π2, every block of

π2 contains itself and is a block of π1, hence π1 ⋐ π2.

Also

∀π0, π1, π2 ∈ Π∗(E),[
π0 ≤ π1 ≤ π2 & π0 ⋐ π2

]
=⇒ π1 ⋐ π2 .

(8)
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Indeed, if incπ1,π2
and incπ0,π1

are maps and incπ1,π2
◦

incπ0,π1
= incπ0,π2

is surjective, then the map incπ1,π2

must be surjective. Serra [33,34] showed the first and

last sentences of the following:

Proposition 4 The building order ⋐ is a partial order
relation on Π∗(E). Furthermore,

∀π1, π2 ∈ Π∗(E),

π1 ≤ π2 =⇒ π1 ⋐ π2 \ P
(
E \ supp(π1)

)
,

(9)

and π2 \ P(E \ supp(π1)) ⋐ π2 ∩ P(supp(π1)). In par-
ticular, the restriction of the building order to parti-

tions of a fixed set contains the refinement order: gi-

ven π1, π2 ∈ Π∗(E) such that supp(π1) = supp(π2) and

π1 ≤ π2, then π1 ⋐ π2.

Proof Here π2 \ P(E \ supp(π1)) is the set of blocks
of π2 that overlap supp(π1), while π2 ∩ P(supp(π1)) is

the set of blocks of π2 that are included in supp(π1);

since blocks are non-void, π2 \ P(E \ supp(π1)) ⊇ π2 ∩
P(supp(π1)), so π2\P(E\supp(π1)) ⋐ π2∩P(supp(π1)).

We show (9). Let C ∈ π2 \ P(E \ supp(π1)); then C ≬
supp(π1), so it must overlap a block B ∈ π1, but as

π1 ≤ π2, there is a block C′ ∈ π2 such that B ⊆ C′;

since ∅ ⊂ C ∩B ⊆ C ∩C′, the blocks C and C′ overlap,

hence we have C = C′, so B ⊆ C: every block of π2 \
P(E \ supp(π1)) contains a block of π1.

When supp(π1) = supp(π2), we get

π2 \ P(E \ supp(π1)) = π2 ∩ P(supp(π1)) = π2 ,

and in this case (9) gives π1 ≤ π2 ⇒ π1 ⋐ π2, so

indeed (9) generalizes Serra’s statement. ⊓⊔

The remark (6) suggests the following relation:

– singularity: every block of π2 contains at most one

block of π1,

π1 ⇚ π2 (also written π2 ⇛ π1) ⇐⇒
 ∀B,B′ ∈ π1, ∀C ∈ π2,[

B ⊆ C & B′ ⊆ C
]
=⇒ B = B′


 .

(10)

It means that the partially defined function incπ1,π2

is injective. Note that when B ⊆ C for B ∈ π1 and

C ∈ π2, we have B = B ∩C 6= ∅, so B ∈ π1 ∧ π2, hence

∀π1, π2 ∈ Π∗(E), π1 ∧ π2 ⇚ π2 =⇒ π1 ⇚ π2 . (11)

We have the following:

∀π1, π2, π3, π4 ∈ Π∗(E),[
π1 ⇚ π2 & π3 ⊆ π1 & π4 ⊆ π2

]
=⇒ π3 ⇚ π4 .

(12)

The counterpart of (8) is

∀π0, π1, π2 ∈ Π∗(E),[
π1 ≤ π2 & π0 ⇚ π2

]
=⇒ π0 ⇚ π1 .

(13)

Indeed, let B,B′ ∈ π0 and C ∈ π1 such that B,B′ ⊆ C;
since π1 ≤ π2, there is D ∈ π2 such that C ⊆ D, but as

B,B′ ⊆ D and π0 ⇚ π2, we must have B = B′.

Singularity itself, as well as its intersection with the

building order, is not transitive:

Property 5 When |E| ≥ 5, the intersection of the build-
ing order, the singularity and the support equality re-

lations, is not transitive; in other words, there exist

π0, π1, π2 ∈ Π∗(E) such that π0 ⋐ π1 ⋐ π2, supp(π0) =

supp(π1) = supp(π2) and π0 ⇚ π1 ⇚ π2, but π0 6⇚ π2.

E π2 π1 π0

K N

L M

J J K N

L M

K N

L M

J K N

L M

J

Fig. 3 Illustration of Property 5.

Indeed, see Figure 3, we partition E into 5 mutually

disjoint non-void sets J,K,L,M,N , and take

π2 = {J ∪K,L ∪M ∪N} ,

π1 = {J,K ∪ L,M ∪N} ,

π0 = {J,K,L ∪M,N} .

Then every block of π2 contains exactly one block of

π1, every block of π1 contains exactly one block of π0,

but every block of π2 is the union of two blocks of π0.

However we have the following:

Proposition 6 The intersection of the standard order

and of the singularity relation, i.e., the set of ordered

pairs (π1, π2) such that π1 ≤ π2 and π1 ⇚ π2, is a

partial order relation on Π∗(E).

Proof Obviously singularity is reflexive; hence its inter-

section with the standard order will also be reflexive,

and that intersection will inherit the antisymmetry of

that order. Let us show that this intersection is transi-
tive. Take π0, π1, π2 ∈ Π∗(E) such that π0 ≤ π1 ≤ π2
and π0 ⇚ π1 ⇚ π2; then the transitivity of the or-

der ≤ gives π0 ≤ π2, thus we have only to show that

π0 ⇚ π2. Since π0 ≤ π1 ≤ π2 and π0 ⇚ π1 ⇚ π2,
both incπ0,π1

and incπ1,π2
are injective maps, thus the

map incπ1,π2
◦ incπ0,π1

= incπ0,π2
is injective, that is,

π0 ⇚ π2. ⊓⊔
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In [33], Serra defined the partial order relation on

P(E) consisting of all ordered pairs (X,Y ) ∈ P(E)2

such that X ⊆ Y and PCC(X) ⇚ PCC(Y ) (for a gi-

ven partial connection C on P(E)). Since X ⊆ Y ⇒
PC

C(X) ≤ PC
C(Y ), the property of being a partial or-

der follows from Proposition 6.

Besides the standard and building orders, we have

obtained a new partial order relation on Π∗(E) defined
in Proposition 6; it is in fact the inclusion-inflating or-

der ⊆E that we will study in Subection 3.2.

3 The basic orders and their direct

combinations

In Subsection 3.1, we will study our basic orders: the

merging, inclusion and inflating orders, all three in-

cluded in the standard order. They are linked by a trian-

gular relation. Then Subsection 3.2 will consider com-
binations of these basic orders, generated by the com-

position of two of them; these combinations are direct,

in the sense that none of the basic orders is inverted

w.r.t. the other. We get then the merging-inflating and
inclusion-inflating orders, again included in the stan-

dard order; the standard order will also be obtained as

a combination of merging and inclusion. We will rely

heavily on the results of Subsections 2.2 and 2.4.

3.1 The merging, inclusion and inflating triangle

Before introducing our basic orders, we define the cor-

responding covering relations and heights. For π1, π2 ∈

Π∗(E), let us write π1
c
≺ π2 and say that π2 c-covers

π1, if π2 is obtained by adding a block to π1:

π1
c
≺ π2 ⇐⇒

supp(π1) ⊂ E, ∃B ⊆ E \ supp(π1),
B 6= ∅, π2 = π1 ∪ {B} .

(14)

Next, let us write π1
i
≺ π2 and say that π2 i-covers π1,

if π2 is obtained by inflating one block of π1, to which

one point is added:

π1
i
≺ π2 ⇐⇒



supp(π1) ⊂ E, π1 6= Ø,
∃ p ∈ E \ supp(π1), ∃B ∈ π1,

π2 =
(
π1 \ {B}

)
∪
{
B ∪ {p}

}


 .

(15)

When E is finite, for any π ∈ Π∗(E), we define

hc(π), the c-height of π, as its size:

hc(π) = hs(π) − hm(π) = |π| . (16)

Thus, see (4), hm(π) = hs(π) − hc(π) and hs(π) =

hm(π) + hc(π).

The first basic order is the merging order ⊑ (we

called it pure refinement order in [26]). It is defined

as the intersection of the standard order and of the
support equality relation:

∀π1, π2 ∈ Π∗(E),

π1 ⊑ π2 ⇐⇒
[
π1 ≤ π2 & supp(π1) = supp(π2)

]
.

(17)

Here every block of π1 is included in a block of π2, and

every block of π2 is a union of blocks of π1: indeed, for

any C ∈ π2 and p ∈ C, as p ∈ supp(π1), there is some
B ∈ π1 such that p ∈ B, and B ⊆ C′ for some C′ ∈ π2,

thus p ∈ C ∩ C′, so C = C′ and p ∈ B ⊆ C. We say

then that π1 is a splitting of π2, or that π2 is a merging

of π1.

Theorem 7 Merging ⊑ is a partial order relation on

Π∗(E); it is included in the standard order: π1 ⊑ π2 ⇒
π1 ≤ π2. Further,

∀π0, π1, π2 ∈ Π∗(E),[
π0 ≤ π1 ≤ π2 & π0 ⊑ π2

]
=⇒ π0 ⊑ π1 ⊑ π2 .

(18)

The poset (Π∗(E),⊑) is the disjoint union of the com-
plete lattices (Π(A),≤) for all A ∈ P(E), where for

distinct A,A′ ∈ P(E), elements of Π(A) and Π(A′)

are mutually incomparable. The maximal and minimal

elements are all 1A and 0A respectively, for A ∈ P(E);
every π ∈ Π∗(E) majorates a unique minimal element,

namely 0supp(π). The covering relation is
m
≺.

Let E be finite. Then (Π∗(E),⊑) is graded by hm,

that is, for any π1, π2 ∈ Π∗(E) we have

π1 ⊏ π2 =⇒ hm(π1) < hm(π2) ,

π1
m
≺ π2 =⇒ hm(π2) = hm(π1) + 1 .

For π ∈ Π∗(E), the height of π w.r.t. 0supp(π) is hm(π).

Proof Being the intersection of the partial order ≤ and

of the quasi-order given by support equality, merging

⊑ is a partial order relation included in ≤.
If π0 ≤ π1 ≤ π2, then supp(π0) ⊆ supp(π1) ⊆

supp(π2), and if π0 ⊑ π2, then supp(π0) = supp(π2),

from which we deduce that supp(π0) = supp(π1) =

supp(π2), hence π0 ⊑ π1 ⊑ π2. Therefore (18) holds.

Obviously Π∗(E) is the disjoint union of the Π(A)
for all A ∈ P(E), and π1 ⊑ π2 means that there is

some A ∈ P(E) with π1, π2 ∈ Π(A) and π1 ≤ π2 (for

the refinement order), so the two sentences following

(18) are valid. Similarly the covering relation is the one

for the refinement order, that is
m
≺.

When E is finite, the grading by hm, and the latter

being the height, follow from Theorem 2. ⊓⊔
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In the Introduction, we already argued that the re-

finement order on partitions is relevant to image seg-

mentation and connected filtering. For partial parti-

tions, the merging order is involved in split-and-merge

operations in segmentation.

Our second basic order is inclusion: for π1, π2 ∈
Π∗(E), π1 ⊆ π2 simply means that each block of π1
is a block of π2; in other words, the inclusion function

incπ1,π2
is the identity map on π1:

∀B ∈ π1, incπ1,π2
(B) = B .

Theorem 8 Inclusion ⊆ is a partial order relation on

Π∗(E); it is included in the standard order: π1 ⊆ π2 ⇒
π1 ≤ π2. Further,

∀π0, π1, π2 ∈ Π∗(E),[
π0 ≤ π1 ≤ π2 & π0 ⊆ π2

]
=⇒ π0 ⊆ π1 .

(19)

In the poset (Π∗(E),⊆), every non-void family {πi | i ∈
I} (I 6= ∅) has an infimum, given by the intersection⋂
i∈I πi; it has a supremum if and only if all distinct

blocks in the union
⋃
i∈I πi are pairwise disjoint, and

then this union is the supremum. The least element is

Ø, the maximal elements are all partitions of E. For
any π ∈ Π∗(E), P(π) ⊆ Π∗(E), it is the set of mino-

rants of π and it is closed under non-void infima and

suprema. The covering relation is
c
≺.

Let E be finite. Then (Π∗(E),⊆) is graded by hc,

that is, for any π1, π2 ∈ Π∗(E) we have

π1 ⊂ π2 =⇒ hc(π1) < hc(π2) ,

π1
c
≺ π2 =⇒ hc(π2) = hc(π1) + 1 .

The height of any π ∈ Π∗(E) is hc(π).

Proof The first sentence is obvious. If π0 ≤ π1 ≤ π2 and

π0 ⊆ π2, then for any B ∈ π0, there are C ∈ π1 and

D ∈ π2 with B ⊆ C ⊆ D, and B ∈ π2; as B,D ∈ π2
with B ⊆ D, we get B = D, and as B ⊆ C ⊆ D = B,

B = C, hence B ∈ π1; therefore π0 ⊆ π1. Thus (19)

holds.

Given a non-void family {πi | i ∈ I} (I 6= ∅) of par-
tial partitions,

⋂
i∈I πi is a partial partition, it is thus

their infimum for the inclusion order. If in
⋃
i∈I πi we

have B ∈ πi and C ∈ πj with B ≬ C, then no par-

tial partition can have both B and C as blocks, hence

it cannot contain both πi and πj : the family has no

supremum. On the other hand if all blocks of
⋃
i∈I πi

are pairwise disjoint, then
⋃
i∈I πi is a partial partition,

hence it is the supremum for the inclusion order.

For any π ∈ Π∗(E), we always have Ø ⊆ π, so
Ø is the least element. If π /∈ Π(E), then π ⊂ π ∪
{E \ π}, but if π ∈ Π(E), we cannot have π ⊂ π′, so

the maximal elements are partitions. Obviously P(π),

ordered by inclusion, is a subset of Π∗(E), closed under

non-void infima and suprema.

When E is finite, as hc(π) = |π|, cf. (16), the state-

ments about the grading and the height are straight-

forward. ⊓⊔

It should be noted that for π1 ⊆ π2, as π2 is ob-

tained by adding to π1 new blocks outside its support,

|supp(π2)|−|supp(π1)| = |supp(π2\π1)| and |π2|−|π1| =
|π2 \ π1|. Thus:

∀π1, π2 ∈ Π∗(E),

π1 ⊆ π2 =⇒



hc(π2)− hc(π1) = hc(π2 \ π1) ,
hs(π2)− hs(π1) = hs(π2 \ π1) ,
hm(π2)− hm(π1) = hm(π2 \ π1) .




Comparing (19) with (18), when π0 ⊆ π1 ≤ π2 and

π0 ⊆ π2, we cannot deduce that π1 ⊆ π2; take for ex-

ample π0 = {A}, π1 = {A,B} and π2 = {A,C}, where
∅ ⊂ A, ∅ ⊂ B ⊂ C and A ∩ C = ∅.

As we saw in the Introduction, the inclusion order

is involved in the elimination of “parasitic” segmenta-

tion classes [33,34], but also in the compound segmen-

tation paradigm [31,27], where we add to the blocks of
a first segmentation those of a second segmentation of

the residue. In the lattice P(E), an anti-extensive oper-

ator ψ is connected if and only if for any X ∈ P(E), the

partial partition of all connected components of ψ(X)
is a subset of the one of all connected components of

X : PCC(ψ(X)) ⊆ PCC(X).

The third basic order is the inflating order E, de-

fined as the intersection of the standard and building

orders and of the singularity relation:

∀π1, π2 ∈ Π∗(E),

π1 E π2 ⇐⇒
[
π1 ≤ π2 & π1 ⋐ π2 & π1 ⇚ π2

]
.

(20)

In other words, every block of π1 is included in a unique

block of π2 and every block of π2 contains a unique

block of π1, the inclusion function incπ1,π2
is a bijection

between π1 and π2. We say then that π1 is a deflation

of π2, or that π2 is an inflation of π1.

Theorem 9 Inflating E is a partial order relation on

Π∗(E); it is included in the standard order: π1 E π2 ⇒
π1 ≤ π2. Further,

∀π0, π1, π2 ∈ Π∗(E),[
π0 E π1 ≤ π2 & π0 E π2

]
=⇒ π1 E π2 ,[

π0 ≤ π1 E π2 & π0 E π2
]
=⇒ π0 E π1 .

(21)

Ø is isolated. In Π∗(E)\{Ø}, the minimal elements are

all 0A for A ∈ P(E) \ {∅}, while the maximal elements

are all partitions of E. Given π ∈ Π∗(E), the minimal
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elements majorated by π are the 0A for all transversals

A of π (for π = Ø, A = ∅ and 0A = Ø). The covering

relation is
i
≺.

Let E be finite. Then (Π∗(E),E) is graded by hm,

that is, for any π1, π2 ∈ Π∗(E) we have

π1 ⊳ π2 =⇒ hm(π1) < hm(π2) ,

π1
i
≺ π2 =⇒ hm(π2) = hm(π1) + 1 .

For π ∈ Π∗(E) and a transversal A of π, the height of

π w.r.t. 0A is hm(π).

Proof By Propositions 4 and 6, ⋐ and ≤ ∩ ⇚ are par-
tial orders, and E is the intersection of the two, hence

it is a partial order relation included in ≤.

If π0 ≤ π1 ≤ π2, then the maps incπ0,π1
: π0 → π1,

incπ1,π2
: π1 → π2 and incπ0,π2

: π0 → π2 are totally
defined and satisfy incπ1,π2

◦ incπ0,π1
= incπ0,π2

. Here

πi E πj (i < j) means that incπi,πj is a bijection; thus if

any two of incπ0,π1
, incπ1,π2

and incπ1,π2
are bijections,

then by composition the third one will be a bijection,
so we get (21).

For π 6= Ø, we have no bijection between π and

Ø, thus neither Ø E π nor π E Ø: Ø is isolated. In
Π∗(E) \ {Ø}, a partial partition π is minimal if and

only if one cannot decrease any of its blocks, in other

words all its blocks are singletons, while π is maximal

if one cannot increase any of its blocks, in other words

supp(π) = E. For π ∈ Π∗(E) and A ∈ P(E), we have
0A E π if and only if every point of A belongs to a

block of π and every block of π contains a unique point

of A, in other words A is a transversal of π.

If π0 ⊳ π1 ⊳ π2, then π2 is obtained from π0 either

by increasing several distinct blocks, or by increasing

twice a single block, then that block increases by at least

two points. Conversely if π0 ⊳ π2 and π2 is obtained

from π0 by increasing several distinct blocks, then π1
resulting from the increase of only one of these blocks

satisfies π0 ⊳ π1 ⊳ π2; similarly, if π2 is obtained by

adding to a block of π0 at least two points, then π1
resulting from adding to that block only one of these
points satisfies π0 ⊳ π1 ⊳ π2. Therefore the covering

relation is
i
≺, where one block is increased by exactly

one point.

Let E be finite. For π1 E π2, we have π1 ≤ π2,

so hm(π1) ≤ hm(π2) by Theorem 2. By the bijection

incπ1,π2
we get |π2| = |π1|. If hm(π2) = hm(π1), then by

(4) we get hs(π2) = hs(π1), so π1 = π2 by Theorem 2.

Hence π1 ⊳ π2 ⇒ hm(π1) < hm(π2). If π1
i
≺ π2,

then π1 E π2, |π2| = |π1| and |supp(π2)| = |supp(π1)|+
1, thus by (4) we get hm(π2) = |supp(π2)| − |π2| =

|supp(π1)|−|π1|+1 = hm(π1)+1. Therefore (Π∗(E),E)

is graded by hm. Let A be a transversal of π ∈ Π∗(E);

as hm(0A) = 0 by Theorem 2, the height of π w.r.t. 0A
is hm(π)− hm(0A) = hm(π). ⊓⊔

Comparing (21) with (18), when π0 ≤ π1 ≤ π2 and

π0 E π2, we cannot deduce that π0 E π1 or π1 E π2;

take for example π0 = {A}, π1 = {A,B} and π2 =

{A ∪B} for two disjoint non-void A and B. We will in

fact obtain (30).

In the Introduction we saw that the inflating order is

involved in region growing methods for segmentation,

such as the watershed, or the growth of regions from

seeds, guided by a homogeneity condition, see for in-
stance [1]. The fact that Ø is isolated reflects the fact

that in region growing, we need at least one marker

for growing a region. Also in Serra’s method [33,34],

in the second step, eliminated “parasitic” segmentation

classes are covered by inflating the remaining classes.

For homotopic reduction (or thinning) of binary im-

ages in E = Z2, we consider two connections F and B
for the foreground and background respectively (for in-

stance, the ones arising from the 8- and 4-adjacencies).
The topological condition is that the inclusion relation

between connected components of the figure after and

before reduction, and between those of the complement

before and after reduction, are bijections [20]. In other
words, given a figure F0 ∈ P(E) and its reduction F1,

we must have

{
PCF(F1) E PCF (F0) &

PCB(E \ F0) E PCB(E \ F1) .
(22)

See Figure 4, left and middle.

Fig. 4 Left: the foreground and background are in black and
light grey respectively; alternatively, the light grey connected
components are the basins, and the black region is the divide.
Middle: a homotopic reduction of the black foreground. Right:
the connected basins grow, and the divide is reduced; com-
pared with the homotopic reduction, we have also removed
the black segment, whose points are adjacent to a single basin.

In the watershed construction, we have connected
basins, and the complement of their union is the di-

vide; the divide is reduced, but its topology must not

be preserved; only the connectivity of basins must be
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preserved. So if D0 and D1 are the initial and reduced

divides, the condition is

PCB(E \D0) E PCB(E \D1) . (23)

NB. Since D1 ⊆ D0, we have PCF(D1) ≤ PCF(D0)

anyway. A possible method is to perform a homotopic
reduction of the divide until it reduces to a skeleton

without any topologically simple point, and then to re-

move from it all points adjacent to a single basin. See

Figure 4. This approach has recently been formalized
in the framework of simplicial complexes [5].

In the Introduction, we mentioned that several con-

nective segmentation methods produce a partial parti-

tion of connected regions, and the boundaries separat-

ing them constitute the background; for some of these
methods (such as the smooth connection [32,27]), the

boundaries are often thick. Thus one can apply to the

segmentation background a homotopic thinning (22),

or reduce it as a watershed divide (23); in both cases
all segmentation classes are inflated, cf. the light grey

zones in Figure 4.

Let us now give the triangular relation linking these

three orders. It means that each one can be obtained

by combining the other two in some order:

Proposition 10 For any π1, π2 ∈ Π∗(E),

1. If π1 E π2, then there exists π ∈ Π∗(E) such that

π1 ⊆ π ⊑ π2.

2. If π1 ⊑ π2, then there exists π ∈ Π∗(E) such that

π1 ⊇ π E π2.

3. If π1 6= Ø and π1 ⊆ π2, then there exists π ∈ Π∗(E)
such that π1 E π ⊒ π2.

See Figure 5, top row.
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Fig. 5 Illustration of Proposition 10 (top) and of its proof
(bottom).

Proof Our argument is illustrated in Figure 5, bottom

row. In both items 1 and 2, if π1 = Ø, then π2 = Ø

and we take π = Ø; we can thus assume that π1 6= Ø,

and then π2 6= Ø.

1. Let π1 E π2. For any B ∈ π1, let f(B) =

incπ1,π2
(B) \ B; thus π2 = {B ∪ f(B) | B ∈ π1}.

Take π = π1 ∪ {f(B) | B ∈ π1, f(B) 6= ∅}, we have

π1 ⊆ π ⊑ π2.

2. Let π1 ⊑ π2. For any C ∈ π2, choose one B ∈ π1
such that B ⊆ C, and set f(C) = B (in other words,

incπ1,π2
◦ f is the identity on π2). Take π = {f(C) |

C ∈ π2}, we have π1 ⊇ π E π2.

3. Let π1 ⊆ π2. For any C ∈ π2, choose f(C) ∈
π1 with the condition that when C ∈ π1, f(C) = C

(in other words, f ◦ incπ1,π2
is the identity on π1). For

B ∈ π1, let g(B) =
⋃
f−1(B), the union of all C ∈ π2

such that f(C) = B; as f(B) = B, B ⊆ g(B). Take
π = {g(B) | B ∈ π1}, we have π1 E π ⊒ π2. ⊓⊔

3.2 Direct combinations

We will now consider orders generated by the composi-

tion of any two basic orders. We obtain two new partial

order relations, the merging-inflating ⊑E and inclusion-
inflating ⊆E orders, while the standard order is gener-

ated by the merging and inclusion orders. We finally

describe the lattice of order relations on Π∗(E) gener-

ated by the three basic orders ⊑, ⊆ and E. NB. The
combination of one basic order with the inverse of an-

other one will be considered in another paper.

Theorem 11 The standard order is generated by in-

clusion followed by merging: for any π1, π2 ∈ Π∗(E),

π1 ≤ π2 ⇐⇒ ∃π ∈ Π∗(E), π1 ⊆ π ⊑ π2.

Proof If π1 ⊆ π ⊑ π2, then π1 ≤ π ≤ π2, hence π1 ≤ π2.

Suppose now that π1 ≤ π2; let π
′ = {B \supp(π1) | B ∈

π2, B 6⊆ supp(π1)} and π = π1 ∪ π
′. Then π1 ⊆ π by

construction; now every block of π1∪π′ is included in a

block of π2, so π ≤ π2, and supp(π) = supp(π2), hence

π ⊑ π2. See Figure 6. ⊓⊔

Note that in particular inflating is generated by

inclusion followed by merging, cf. item 1 of Proposi-

tion 10.

Let us now consider the two other combinations,

of inflating with either merging or inclusion. First, the

merging-inflating order ⊑E (called refinement-inflating

order in [26]). It is defined as the intersection of the
standard and building orders:

∀π1, π2 ∈ Π∗(E),

π1 ⊑E π2 ⇐⇒
[
π1 ≤ π2 & π1 ⋐ π2

]
.

(24)
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Fig. 6 Illustration of Theorem 11: from π1 ≤ π2 we get π1 ⊆
π ⊑ π2.

In other words, every block of π1 is included in a unique

block of π2 and every block of π2 contains at least one

block of π1, the inclusion function incπ1,π2
is a surjec-

tive map from π1 to π2.

Theorem 12 Merging-inflating ⊑E is a partial order
relation on Π∗(E); it is included in the standard or-

der and it contains the merging and inflating orders:

π1 ⊑E π2 ⇒ π1 ≤ π2, π1 ⊑ π2 ⇒ π1 ⊑E π2 and π1 E
π2 ⇒ π1 ⊑E π2. It is generated by composing merging
and inflating in any order: for any π1, π2 ∈ Π∗(E),

π1 ⊑E π2 ⇐⇒
(
∃π3 ∈ Π∗(E), π1 ⊑ π3 E π2

)

⇐⇒
(
∃π4 ∈ Π∗(E), π1 E π4 ⊑ π2

)
.

Further,

∀π0, π1, π2 ∈ Π∗(E),[
π0 ≤ π1 ≤ π2 & π0 ⊑E π2

]
=⇒ π1 ⊑E π2

(25)

and
[
π0 ⊑E π1 ≤ π2 & π0 E π2

]
=⇒ π0 E π1 E π2 . (26)

Ø is isolated. In Π∗(E) \ {Ø}, the greatest element

is 1E and the minimal elements are all 0A for A ∈
P(E) \ {∅}. Given π ∈ Π∗(E), the minimal elements

majorated by π are the 0A for all crossings A of π (for

π = Ø, A = ∅ and 0A = Ø). The covering relation is
mi
≺ =

m
≺ ∪

i
≺.

Let E be finite. Then Π∗(E) is graded by (−hc, hs)

for (
m
≺,

i
≺), that is, for any π1, π2 ∈ Π∗(E) we have

π1 ⊏⊳ π2 =⇒



hs(π1) ≤ hs(π2) &
hc(π1) ≥ hc(π2) &

hm(π1) < hm(π2)


 ,

π1
m
≺ π2 =⇒

[
hs(π2) = hs(π1) &

hc(π2) = hc(π1)− 1

]
,

π1
i
≺ π2 =⇒

[
hc(π2) = hc(π1) &
hs(π2) = hs(π1) + 1

]
.

In particular, (Π∗(E),⊑E) is graded by hm = hs − hc.

For π ∈ Π∗(E) and a crossing A of π, the height of π

w.r.t. 0A is hm(π).
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Fig. 7 Illustration of Theorem 12: from π1 ⊑E π2 (top) we get
π1 ⊑ π3 E π2 (middle) and π1 E π4 ⊑ π2 (bottom).

Proof Since ⊑E is the intersection of the standard and

the building orders, both being order relations (see Pro-

position 4), it is a partial order relation included in ≤.

By Proposition 4 and (17), both the building and the
standard orders contain ⊑, and comparing (20) with

(24), ⊑E contains E.

If π1 ⊑ π3 E π2, then π1 ⊑E π3 ⊑E π2, and if π1 E
π4 ⊑ π2, then π1 ⊑E π4 ⊑E π2, thus π1 ⊑E π2 in both

cases. Suppose now that π1 ⊑E π2. We will construct
π3, π4 ∈ Π∗(E) such that π1 ⊑ π3 E π2 and π1 E π4 ⊑
π2; this is illustrated in Figure 7.

Since π1 ⋐ π2, every block C of π2 contains a block

of π1, so C ∩ supp(π1) 6= ∅. Let

π3 = π2 ∧ 1supp(π1) = {C ∩ supp(π1) | C ∈ π2} ;

as supp(π1) ⊆ supp(π2), we have supp(π3) = supp(π1),

and as π1 ≤ π2, we get π1 ≤ π3, hence π1 ⊑ π3 by (17).

Now π3 ≤ π2 and for any C ∈ π2, C ∩ supp(π1) is the

unique block of π3 included in C; hence incπ3,π2
is a

bijection, so π3 E π2. Therefore π1 ⊑ π3 E π2.
For any C ∈ π2, choose one B ∈ π1 such that B ⊆

C, and set f(C) = B (in other words, incπ1,π2
◦f is the

identity on π2). Let πa = {f(C) | C ∈ π2} ⊆ π1 and

π0 = π1 \ πa. For any C ∈ π2, C ∩ supp(πa) = f(C),
because every block of πa distinct from f(C) must be

f(C′) for another C′ ∈ π2, so f(C
′)∩C ⊆ C′∩C = ∅; let

g(C) = C \supp(π0); then g(C) =
(
C∩supp(πa)

)
∪
(
C \
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supp(π1)
)
= f(C)∪

(
C\supp(π1)

)
, so f(C) ⊆ g(C) ⊆ C.

Let πb = {g(C) | C ∈ π2}; since f(C) ⊆ g(C) and f(C)

is the unique block of πa included in C, hence in g(C),

incπa,πb is the bijection f(C) 7→ g(C) for all C ∈ π2, so

πa E πb. Now supp(πb) ∩ supp(π0) = ∅, so π4 = π0 ∪ πb
is a partial partition. Then π1 = π0∪πa E π0∪πb = π4,

since incπ1,π4
is the bijection given by f(C) 7→ g(C) for

C ∈ π2 and B 7→ B for B ∈ π0. As π0 ⊆ π1 ≤ π2, and

g(C) ⊆ C for C ∈ π2, we have π4 = π0 ∪ πb ≤ π2; now

supp(πb) =
⋃

C∈π2

g(C) =
⋃

C∈π2

(
C \ supp(π0)

)

= supp(π2) \ supp(π0) ,

so supp(π4) = supp(π0)∪supp(πb) = supp(π2), and since

π4 ≤ π2, (17) gives π4 ⊑ π2. Therefore π1 E π4 ⊑ π2.

Now (25) follows from (8) and (24). If π0 ⊑E π1 ≤ π2
and π0 E π2, then incπ0,π1

is a surjection, incπ1,π2
is

a map, incπ0,π2
= incπ1,π2

◦ incπ0,π1
and incπ0,π2

is a

bijection; but then the surjection incπ0,π1
must also be

injective, hence it is a bijection, so π0 E π1, and by (21)
we deduce that π1 E π2. Therefore (26) holds.

For π 6= Ø, we have no surjection π → Ø or Ø →
π, thus neither Ø ⊑E π nor π ⊑E Ø: Ø is isolated. In

Π∗(E) \ {Ø}, a partial partition π is minimal if and

only if one cannot decrease or split any of its blocks, in

other words all its blocks are singletons. On the other
hand, for π ∈ Π∗(E) \ {Ø}, we have π ⊑E 1E , so 1E is

the greatest element of Π∗(E) \ {Ø}. For π ∈ Π∗(E)

and A ∈ P(E), we have 0A ⊑E π if and only if every

point of A belongs to a block of π and every block of π

contains at least one point of A, in other words A is a
crossing of π.

Let π1
m
≺ π2; thus π1 ≺ π2. If π1 ⊏⊳ π ⊏⊳ π2, then

π1 < π < π2, which contradicts the fact that ≺ is the
covering relation for ≤. Hence π2 covers π1 for ⊑E. Now

let π1
i
≺ π2; thus π1 ⊳ π2. If π1 ⊏⊳ π ⊏⊳ π2, then (26)

gives π1 ⊳ π ⊳ π2, which contradicts the fact that
i
≺

is the covering relation for E, see Theorem 9. Hence π2
covers π1 for ⊑E. Conversely, let π2 cover π1. We obtain

π1 ⊑ π3 E π2 as above; the three cases π1 ⊏ π3 ⊳ π2,
π1 = π3 ⊳ π ⊳ π2 and π1 ⊏ π ⊏ π3 = π2 contradict

the covering of π1 by π2, so there remain only the cases

where π2 covers π1 for ⊑ or for E, that is, π1
m
≺ π2 or

π1
i
≺ π2 (Theorems 7 and 9). Therefore the covering

relation is
m
≺ ∪

i
≺.

Let E be finite. For π1 ⊑E π2, we have π1 ≤ π2, so

Theorem 2 gives hs(π1) ≤ hs(π2), while the surjection

incπ1,π2
gives |π1| ≥ |π2|, that is, hc(π1) ≥ hc(π2); thus

hm(π2)− hm(π1)

=
(
hs(π2)− hs(π1)

)
+
(
hc(π1)− hc(π2)

)
≥ 0 ,

with both terms hs(π2) − hs(π1) and hc(π1) − hc(π2)

being ≥ 0. If hm(π2) = hm(π1), then hs(π2) = hs(π1),

and as π1 ≤ π2, Theorem 2 gives π1 = π2. Hence π1 ⊏⊳
π2 ⇒ hm(π1) < hm(π2), with hs(π1) ≤ hs(π2) and

hc(π1) ≥ hc(π2). Now π1
m
≺ π2 gives hs(π2) = hs(π1)

and hc(π2) = hc(π1) − 1 by Theorem 2, while π1
i
≺

π2 gives hs(π2) = hs(π1) + 1 and hc(π2) = hc(π1) by

Theorem 9. Therefore Π∗(E) is graded by (−hc, hs) for

(
m
≺,

i
≺), see Proposition 1. By item 6 of that Proposition,

(Π∗(E),⊑E) is graded by hm = hs − hc.

For a crossing A of π, hm(0A) = 0 by Theorem 2, so

the height of π w.r.t. 0A is hm(π)− hm(0A) = hm(π).

⊓⊔

By item 5 of Proposition 1, in a covering chain

π0
mi
≺ · · ·

mi
≺ πn, among the n coverings πi

mi
≺ πi+1

(i = 0, . . . , n−1), there are hc(π0)−hc(πn)m-coverings

πi
m
≺ πi+1 and hs(πn)− hs(π0) i-coverings πi

i
≺ πi+1.

Comparing (25) with similar identities (18,19,21),

when π0 ≤ π1 ⊑E π2 and π0 ⊑E π2, we cannot deduce

that π0 ⊑E π1; take for example π0 = {A}, π1 = {A,B}
and π2 = {A ∪B} for two disjoint non-void A and B.

The merging-inflating order intervenes in segmenta-

tion algorithms where one starts regions with markers,

then one can both grow regions and merge them, see for
example [12]. Also we saw above that an anti-extensive

connected operator ψ on P(E) will remove some con-

nected components of a set, i.e., PCC(ψ(X)) ⊆ PCC(X).

Now assuming that the connection C arises from a graph

and that E is connected, a connected component C of
the set X is adjacent to a connected component D of

the complement E \ X ; thus if ψ removes C from X ,

it will not become a connected component of the com-

plement E \ ψ(X) , because C ∪ D will be connected.
Hence the connected components of the complement

will be inflated and merged, but none will be created,

so PCC(E \ ψ(X)) ⊒D PCC(E \X).

The next compound order is the inclusion-inflating

order ⊆E, it is the one defined in Proposition 6, namely
the intersection of the standard order and of the singu-

larity relation:

∀π1, π2 ∈ Π∗(E),

π1 ⊆E π2 ⇐⇒
[
π1 ≤ π2 & π1 ⇚ π2

]
.

(27)

In other words, every block of π1 is included in a unique

block of π2 and every block of π2 contains at most one

block of π1, the inclusion function incπ1,π2
is an injec-

tive map from π1 to π2. We have an alternate formula-

tion for this relation:

Proposition 13

∀π1, π2 ∈ Π∗(E), π1 ⊆E π2 ⇐⇒ π2 ∧1supp(π1) = π1 .
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Proof If π2 ∧ 1supp(π1) = π1, then π1 ≤ π2 and π2 ∧
1supp(π1) ≤ π1. Consider A ∈ π1 and C ∈ π2 such that

A ⊆ C; then ∅ ⊂ A ⊆ C ∩ supp(π1) and C ∩ supp(π1) ∈
π2∧1supp(π1); as π2∧1supp(π1) ≤ π1, there is some B ∈ π1
such that C ∩ supp(π1) ⊆ B, hence A ⊆ B and so
A = B: thus C cannot contain any other block of π1
other than B, so π1 ⇚ π2. Therefore π1 ⊆E π2.

If π1 ⊆E π2, then π1 ≤ π2, π1 ≤ 1supp(π1), thus π1 ≤
π2∧1supp(π1), but also supp(π2∧1supp(π1)) = supp(π2)∩
supp(π1) = supp(π1), hence π1 ⊑ π2 ∧ 1supp(π1): every
block of π2 ∧ 1supp(π1) is a union of blocks of π1; given

B1, B2 ∈ π1 and C ∈ π2 ∧1supp(π1) with B1, B2 ⊆ C, as

π2 ∧ 1supp(π1) ≤ π2, we have C ⊆ D for some D ∈ π2,

but as π1 ⇚ π2 and B1, B2 ⊆ D, we get B1 = B2;
thus every block of π2 ∧ 1supp(π1) is a block of π1, so

π2 ∧ 1supp(π1) ⊆ π1; from the double inequality π2 ∧
1supp(π1) ≤ π1 ≤ π2 ∧ 1supp(π1) we derive the equality.

⊓⊔

Theorem 14 Inclusion-inflating ⊆E is a partial order
relation on Π∗(E); it is included in the standard order

and it contains the inclusion and inflating orders: π1 ⊆E
π2 ⇒ π1 ≤ π2, π1 ⊆ π2 ⇒ π1 ⊆E π2 and π1 E
π2 ⇒ π1 ⊆E π2. It is generated by composing inclusion
and inflating in any order: for any π1, π2 ∈ Π∗(E),

π1 ⊆E π2 ⇐⇒
(
∃π3 ∈ Π∗(E), π1 ⊆ π3 E π2

)

⇐⇒
(
∃π4 ∈ Π∗(E), π1 E π4 ⊆ π2

)
.

Further,

∀π0, π1, π2 ∈ Π∗(E),[
π0 ≤ π1 ≤ π2 & π0 ⊆E π2

]
=⇒ π0 ⊆E π1

(28)

and

[
π0 ≤ π1 ⊆E π2 & π0 E π2

]
=⇒ π0 E π1 E π2 . (29)

The least element is Ø, the maximal elements are all

partitions of E. The covering relation is
si
≺ =

s
≺ ∪

i
≺.

Let E be finite. Then Π∗(E) is graded by (hc, hm)

for (
s
≺,

i
≺), that is, for any π1, π2 ∈ Π∗(E) we have

π1 ⊂⊳ π2 =⇒



hm(π1) ≤ hm(π2) &
hc(π1) ≤ hc(π2) &

hs(π1) < hs(π2)


 ,

π1
s
≺ π2 =⇒

[
hm(π2) = hm(π1) &

hc(π2) = hc(π1) + 1

]
,

π1
i
≺ π2 =⇒

[
hc(π2) = hc(π1) &
hm(π2) = hm(π1) + 1

]
.

In particular, (Π∗(E),⊆E) is graded by hs = hm + hc.

The height of any π ∈ Π∗(E) is hs(π).
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Fig. 8 Illustration of Theorem 14: from π1 ⊆E π2 we get π1 ⊆
π1 ∪ πa E π2 and π1 E π4 ⊆ π2.

Proof Proposition 6 showed that ⊆E is a partial order

relation, it is included in the standard order. When

π1 ⊆ π2, two distinct blocks of π1 are distinct blocks of

π2, hence π1 ⇚ π2; also π1 ≤ π2; thus ⊆E contains ⊆.
Comparing (20) with (27), ⊆E contains E.

If π1 ⊆ π3 E π2, then π1 ⊆E π3 ⊆E π2, and if π1 E
π4 ⊆ π2, then π1 ⊆E π4 ⊆E π2, thus π1 ⊆E π2 in both
cases. Suppose now that π1 ⊆E π2. As π1 ⇚ π2, each

block of π2 contains at most one block of π1. Let π4 be

the set of blocks of π2 containing (exactly) one block of

π1; as π1 ≤ π2, every block of π1 is included in (exactly)

one block of π4; thus π1 E π4, and obviously, π4 ⊆ π2.
Let πa = π2 \π4 be the set of blocks of π2 containing no

block of π1; then supp(πa) is disjoint from supp(π1), so

π1∪πa is a partial partition; as π1 E π4, π1∪πa E π4∪
πa = π2; obviously π1 ⊆ π1∪πa. Therefore π3 = π1∪πa
satisfies π1 ⊆ π3 E π2. This is illustrated in Figure 8.

The inflation of π1 into π4 and the creation of blocks of

πa are independent operations.

Now (28) follows from (13) and (27). If π0 ≤ π1 ⊆E π2
and π0 E π2, then incπ0,π1

is a map, incπ1,π2
is an

injection, incπ0,π2
= incπ1,π2

◦ incπ0,π1
and incπ0,π2

is a

bijection; but then the injection incπ1,π2
must also be

surjective, hence it is a bijection, so π1 E π2, and by
(21) we deduce that π0 E π1. Therefore (29) holds.

For any π ∈ Π∗(E), Ø ⊆ π, so Ø ⊆E π, and Ø is the

least element. If π /∈ Π(E), then π ⊂ π∪{E\π}, thus π
is not maximal. Now if π ∈ Π(E), π is maximal for the

order ⊆ (Theorem 8) and for the order E (Theorem 9),

and from the above this means that π is maximal for

⊆E.

Let π1
s
≺ π2; thus π1 ≺ π2. If π1 ⊂⊳ π ⊂⊳ π2, then

π1 < π < π2, which contradicts the fact that ≺ is the

covering relation for ≤. Hence π2 covers π1 for ⊆E. Now

let π1
i
≺ π2; thus π1 ⊳ π2. If π1 ⊂⊳ π ⊂⊳ π2, then (29)

gives π1 ⊳ π ⊳ π2, which contradicts the fact that
i
≺

is the covering relation for E, see Theorem 9. Hence π2
covers π1 for ⊆E. Conversely, let π2 cover π1. We obtain
π1 ⊆ π3 E π2 as above; the three cases π1 ⊂ π3 ⊳ π2,

π1 = π3 ⊳ π ⊳ π2 and π1 ⊂ π ⊂ π3 = π2 contradict

the covering of π1 by π2, so there remain only the cases

where π2 covers π1 for ⊆ or for E, that is, π1
c
≺ π2 or
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π1
i
≺ π2 (Theorems 8 and 9). Now π1

c
≺ π2 means that

π2 = π1 ∪ {B} for B ⊆ E \ supp(π1) with B 6= ∅, see
(14); if B is not a singleton (it contains at least two

points), then for p ∈ B we have π1 ⊂ π1 ∪
{
{p}

}
⊳

π1 ∪ {B} = π2, contradicting the covering of π1 by π2;

hence B is a singleton and π1
s
≺ π2, see (3). Therefore

the covering relation is
s
≺ ∪

i
≺.

Let E be finite. For π1 ⊆E π2, we have π1 ≤ π2, so

Theorem 2 gives hm(π1) ≤ hm(π2), while the injection

incπ1,π2
gives |π1| ≤ |π2|, that is, hc(π1) ≤ hc(π2); thus

hs(π2)− hs(π1)

=
(
hm(π2)− hm(π1)

)
+
(
hc(π2)− hc(π1)

)
≥ 0 ,

with both terms hm(π2)− hm(π1) and hc(π2)− hc(π1)

being ≥ 0. If hs(π2) = hs(π1), then hm(π2) = hm(π1),

and as π1 ≤ π2, Theorem 2 gives π1 = π2. Hence π1 ⊂⊳
π2 ⇒ hs(π1) < hs(π2), with hm(π1) ≤ hm(π2) and

hc(π1) ≤ hc(π2). Now π1
s
≺ π2 gives hm(π2) = hm(π1)

and hc(π2) = hc(π1) + 1 by Theorem 2, while π1
i
≺ π2

gives hm(π2) = hm(π1) + 1 and hc(π2) = hc(π1) by

Theorem 9. Therefore Π∗(E) is graded by(hc, hm) for

(
s
≺,

i
≺), see Proposition 1. By item 6 of that Proposition,

(Π∗(E),⊆E) is graded by hs = hm + hc.

Now hs(Ø) = 0 by Theorem 2, and the height of π

is hs(π)− hs(Ø) = hs(π). ⊓⊔

Thus in a covering chain π0
si
≺ · · ·

si
≺ πn, among

the n coverings πi
si
≺ πi+1 (i = 0, . . . , n − 1), there are

hc(πn) − hc(π0) s-coverings πi
s
≺ πi+1 and hm(πn) −

hm(π0) i-coverings πi
i
≺ πi+1.

As with (25), comparing (28) with previous similar
identities (18,19,21), when π0 ⊆E π1 ≤ π2 and π0 ⊆E π2,

we cannot deduce that π1 ⊆E π2; take for example π0 =

{A}, π1 = {A,B,C} and π2 = {A,B ∪ C} for three

mutually disjoint non-void A, B and C. We have also
the following:

∀π0, π1, π2 ∈ Π∗(E),[
π0 ≤ π1 ≤ π2 & π0 E π2

]
=⇒ π0 ⊆E π1 ⊑E π2 .

(30)

Indeed, incπ0,π1
and incπ1,π2

are maps, and incπ0,π2
=

incπ1,π2
◦ incπ0,π1

is a bijection, thus incπ0,π1
will be

injective and incπ1,π2
will be surjective, that is, π0 ⊆E

π1 ⊑E π2.

The inclusion-inflating order corresponds to a model

of segmentation by region growing, where markers for

new regions can be created before the growth of previ-

ously created region is completed. This is more flexible
than the compound segmentation paradigm, where each

new region is created only after the previous ones have

been completely determined.

We have seen that the standard, merging-inflating

and inclusion-inflating orders are generated each by the

composition of two of the three basic orders. There is

also the identity, or equality relation =. We will show

that there are no other orders to be obtained from the
basic orders by any combination such as intersection

or composition. Indeed, as explained in Subsection 2.1,

the set O(≤) of all partial order relations on Π∗(E)

that are included in the standard order, constitutes a
complete lattice; its greatest element is the standard

order ≤, its least element is the identity =, and the

infimum operation is the intersection. It is thus possi-

ble to consider the sublattice of O(≤) generated by the

three basic orders ⊑, ⊆ and E.

merging−
inflating

inclusion−
inflating

identity

standard

inclusioninflatingmerging

Fig. 9 Hasse diagram of the lattice of partial orders on Π∗(E)
generated by the three basic orders.

Theorem 15 In O(≤), the complete lattice of partial

order relations on Π∗(E) included in ≤, the sublattice

generated by the three basic orders (merging, inclusion
and inflating) contains these three orders, the merging-

inflating, inclusion-inflating and standard orders, and

the identity. Its Hasse diagram is that of Figure 9.

Proof Let O = {=,⊑,E,⊆,⊑E,⊆E,≤} be the set of par-

tial orders in Figure 9. In order to avoid confusion with
the elements ⊆ and = of O, we will use the symbols

j and ≡ for the inclusion and equality between binary

relations on Π∗(E). Write ⊔ for the binary supremum

operation in O(≤) (the infimum being the intersection).
We first note that the edges in the diagram of Figure 9

correspond to inclusion relations, namely

= j

{ ⊑
E
⊆

}
j ⊑E}
j ⊆E

}
j ≤ .

We know from Theorems 11, 12 and 14 that⊑ ⊔ ⊆ ≡ ≤,

⊑ ⊔ E ≡ ⊑E and E ⊔ ⊆ ≡ ⊆E. Given two incomparable
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elements of O, either they form the pair {⊑,E} with

supremum ⊑E, or the pair {E,⊆} with supremum ⊆E, or

one contains ⊑ and the other contains ⊆, giving the

supremum ≤. Hence O is closed under ⊔, and this op-

eration follows the diagram of Figure 9. Now for the
intersection of incomparable elements of O, we need

first to consider three particular cases:

1. ⊑E ∩ ⊆E ≡ E. This follows immediately from the

definitions (20,24,27): E ≡ ≤ ∩ ⋐ ∩ ⇚, ⊑E ≡ ≤ ∩ ⋐
and ⊆E ≡ ≤ ∩ ⇚.

2. ⊑ ∩ E ≡ =. Indeed, if π1 ⊑ π2 and π1 E π2,

then every block of π2 at the same time contains a

unique block of π1 and is a union of blocks of π1; this

means that π2 ⊆ π1, hence π1 = π2.
3. E ∩ ⊆ ≡ =. Indeed, if π1 E π2 and π1 ⊆ π2,

then every block of π2 contains a block of π1 which is

itself a block of π2, thus they are equal and so π2 ⊆ π1,

hence π1 = π2.

Now let R1, R2 be two incomparable elements of
O; then we have 3 cases: (a) {R1, R2} ≡ {⊑E,⊆E},
so R1 ∩ R2 ≡ E by item 1; (b) Ri ≡ ⊑ and Rj j ⊆E
(where {i, j} = {1, 2}), so

R1 ∩R2 j ⊑ ∩ ⊆E ≡
(
⊑ ∩ ⊑E

)
∩ ⊆E

≡ ⊑ ∩
(
⊑E ∩ ⊆E

)
≡ ⊑ ∩ E ≡ =

by the inclusion of ⊑ in ⊑E, items 1 and 2; (c) Ri ≡ ⊆
and Rj j ⊑E (where {i, j} = {1, 2}), so

R1 ∩R2 j ⊆ ∩ ⊑E ≡
(
⊆ ∩ ⊆E

)
∩ ⊑E

≡ ⊆ ∩
(
⊆E ∩ ⊑E

)
≡ ⊆ ∩ E ≡ =

by the inclusion of ⊆ in ⊆E, items 1 and 3. Hence O is

closed under ∩, and this operation follows the diagram

of Figure 9. ⊓⊔

We end this section by pointing out some general

features concerning the standard order and the five or-

der relations that we have introduced. We recall in Ta-

ble 1 the notation and definition of each of them, as well
as of the relations introduced in Subsection 2.4. All six

orders have a well-defined covering relation; in the fi-

nite case they are graded and have a height function,

see Table 2. This is useful as a measure of the complex-

ity of a partial partition from a constructive view: it
tells how many elementary operations are necessary to

obtain that partial partition.

The three basic orders (merging, inclusion and in-

flating) have simple covering relations, respectively
m
≺,

c
≺ and

i
≺. The standard, merging-inflating and inclu-

sion-inflating orders are compound orders, built each
by combining two basic orders, and they have com-

pound covering relations; the latter can be obtained

by combining the corresponding covering relations of

the involved basic orders, except that
c
≺ is replaced

by
s
≺; thus we get ≺ =

m
≺ ∪

s
≺ for the standard or-

der (combining merging and inclusion),
mi
≺ =

m
≺ ∪

i
≺

for the merging-inflating order, and
si
≺ =

s
≺ ∪

i
≺ for

the inclusion-inflating order. Their grading is also com-

pound, where each of the two functions counts the num-
ber of coverings of each type, cf. item 5 of Proposition 1.

Let π ∈ Π∗(E); we give here, for each order, the

number of elementary coverings (thus of elementary op-

erations) of each type in a covering chain from a mini-

mal element under π to π:

– For the merging order ⊑: in every covering chain

between 0supp(π) and π, there are hm(π)m-coverings
m
≺, i.e., π is obtained from 0supp(π) by hm(π) block
mergings.

– For the inclusion order ⊆: in every covering chain

betweenØ and π, there are hc(π) c-coverings
c
≺, i.e.,

π is obtained from Ø by hc(π) block creations.

– For the inflating order E: given a transversal A of

π, in every covering chain between 0A and π, there

are hm(π) i-coverings
i
≺, i.e., π is obtained from 0A

by hm(π) inflations of a block by one point.

– For the merging-inflating order ⊑E: given a crossing

A of π, in every covering chain between 0A and π,

there are |A|−hc(π) m-coverings
m
≺ and hs(π)−|A|

i-coverings
i
≺, i.e., π is obtained from 0A by |A| −

hc(π) block mergings and hs(π) − |A| inflations of
a block by one point; when A is a transversal of π,

|A| = hc(π), 0A E π, there are hm(π) i-coverings
i
≺ but no m-covering, i.e., π is obtained from 0A by

hm(π) inflations of a block by one point.

– For the inclusion-inflating order⊆E: in every covering

chain between Ø and π, there are hc(π) s-coverings
s
≺ and hm(π) i-coverings

i
≺, i.e., π is obtained from

Ø by hc(π) creations of singleton blocks and hm(π)
inflations of a block by one point.

– For the standard order ≤: in every covering chain

between Ø and π, there are hm(π) m-coverings
m
≺

and hs(π) s-coverings
s
≺, i.e., π is obtained from

Ø by hm(π) block mergings and hs(π) creations of

singleton blocks.

We can thus suggest that partial partitions can be built

bottom-up by combining several types of elementary

operations in a succession, where each elementary op-

eration has a distinct complexity, in such a way that
the global complexity does not depend on the order of

the operations.

In addition to characterizing the covering relation

and the height of each order, we also gave equations
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Table 1 Binary relations on Π∗(E), then partial order relations on Π∗(E). Notation designates the mathematical notation;
for a partial order, we omit “order” in the Name; for a relation R, Definition defines π1 R π2.

Notation Name Definition

support inclusion supp(π1) ⊆ supp(π2)

support containment supp(π1) ⊇ supp(π2)

support equality supp(π1) = supp(π2)

⇚ singularity ∀B,B′ ∈ π1, ∀C ∈ π2 :
[

B ⊆ C,B′ ⊆ C
]

⇒ B = B′

≤ standard ∀B ∈ π1, ∃C ∈ π2 : B ⊆ C

⋐ building ∀C ∈ π2, ∃B ∈ π1 : B ⊆ C

⊑ merging π1 ≤ π2, supp(π1) = supp(π2)

⊆ inclusion π1 ⊆ π2

E inflating π1 ≤ π2, π1 ⋐ π2, π1 ⇚ π2

⊑E merging-inflating π1 ≤ π2, π1 ⋐ π2

⊆E inclusion-inflating π1 ≤ π2, π1 ⇚ π2

Table 2 Covering relations and heights for the 6 partial order relations on Π∗(E). Order designates the partial order, and Cover

the corresponding covering relation; given a covering relation
x

≺, Construction describes how π2 is obtained from π1 for π1

x

≺ π2,
and Height designates the height function hx such that hx(π2) = hx(π1) + 1. Here hm(π) = |supp(π)| − |π|, hs(π) = |supp(π)|,
hc(π) = |π| and h(π) = 2|supp(π)| − |π|. The last column Grading gives the compound grading corresponding to the compound
covering relation for the last 3 orders.

Order Cover Construction Height Grading
s

≺ one new singleton block is added

⊑
m

≺ two blocks are merged hm

⊆
c

≺ one new block is added hc

E
i

≺ one block is increased by one point hm

⊑E
mi

≺
m

≺ ∪
i

≺ hm (−hc, hs) for (
m

≺,
i

≺)

⊆E
si

≺
s

≺ ∪
i

≺ hs (hc, hm) for (
s

≺,
i

≺)

≤ ≺
m

≺ ∪
s

≺ h (hm, hs) for (
m

≺,
s

≺)

(18,19,21,25,26,28,29,30). They all deal with the situa-

tion where π0 ≤ π1 ≤ π2 and a stronger order relation

between π0 and π2 induces a stronger order relation be-

tween π0 and π1 or between π1 and π2. Some of them

were used in the determination of the covering relations
for the merging-inflating and inclusion-inflating orders.

Also, (19) and (28) mean respectively that the inclusion

and inclusion-inflating orders are well-composed accord-

ing to [26] (the standard order is also well-composed);
this property is useful in the compound segmentation

paradigm (see Theorem 2 of [26]).

These identities are also useful for showing that the

six orders satisfy Ore’s quadrilateral condition [18], an

extension to posets of the lattice-theoretical property

of upper semi-modularity [3,6]; this condition implies
in particular the Jordan-Dedekind chain condition sat-

isfied by these orders. This will be discussed in another

paper.

4 Hierarchies, connectivity and saliency

A hierarchy is an increasing sequence of (partial) par-

titions going from the least to the greatest element of
the lattice: π0 ≤ . . . ≤ πn = 1E , where π0 = 0E for

partitions but π0 = Ø for partial partitions. Hierar-

chies have been used in image segmentation [35,10,36]

and filtering [14,28,29]. A hierarchy of partitions can be
represented by a dendrogram, see Figure 10 (a) and (b);

this representation can be extended to partial parti-

tions, see Figure 10 (c) and (d), but it becomes more

complicated, as points can enter into the support at a

level above 0.

In [23] we introduced a theory of hierarchies of par-
titions or partial partitions. We extend it in Subsec-

tion 4.1 by including the requirement that the blocks

of the partial partitions belong to a partial connection

C; the previous theory of [23] corresponds then to the
case where C = P(E). In Subsection 4.2 we consider

the particular case where C is a connection arising from

a graph; then block boundaries are made of edge ele-
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(a) (b)

(c) (d)

π0 π1

b d f

eca

π2 3π

π0 π1

3ππ2

a b c e d f 0

1

2

3

b d f

eca

a b c e d f 0

1

2

3

Fig. 10 Here E = {a, b, c, d, e, f}. (a) A hierarchy of 4 parti-
tions; in each one, the blocks are shown as rectangles. (b) The
corresponding dendrogram. (c) A hierarchy of 4 partial par-
titions; in each one, the blocks are shown as grey rectangles,
while points outside the support are shown as hollow circles.
(d) The corresponding dendrogram.

ments associated to pairs of adjacent points, and we can

study their saliency, that is, the range of levels where

they are visible; each one of our orders has a peculiar

behaviour in this respect. Finally Subsection 4.3 applies
our orders to image filtering by component trees.

4.1 Connective maps and connected hierarchies

In order to take into account more general models, such

as continuous hierarchies (where the levels are not dis-

crete), we replace the finite chain {0, . . . , n} by a com-
plete lattice L with least and greatest elements ⊥ and

⊤; in [23] we assumed that L is a closed subset ofR with

⊥ = 0. Then a hierarchy is an erosion ε : L → Π(E),

where for t ∈ L, ε(t) = πt, the partition at level t;

it is in fact convenient to consider the adjoint dilation
δ : Π(E) → L. Without loss of generality, we can re-

place Π(E) by Π∗(E) in this adjunction. Indeed, the

inclusion map IN : Π(E) → Π∗(E) : π 7→ π is an ero-

sion, whose adjoint dilation is the “fill with singletons”
map FS : Π∗(E) → Π(E) : π 7→ π∪0E\supp(π) = π∨0E
[23]. Thus we get the erosion ε∗ = IN · ε : L →
Π∗(E) : t 7→ ε(t) with the adjoint dilation δ∗ = δ ·FS :

Π∗(E) → L : π 7→ δ(π∨0E), in particular for π ∈ Π(E)

we have π ∨ 0E = π, so δ∗(π) = δ(π); thus δ∗ extends
δ to partial partitions.

In [23] we called strongly triangular any map θ :

E2 → L such that for any x, y, z ∈ E we have θ(x, x) ≤
θ(x, y), θ(x, y) = θ(y, x) and x 6= y 6= z 6= x ⇒

θ(x, z) ≤ θ(x, y) ∨ θ(y, z); equivalently, it satisfies the

two requirements of symmetry and ultratriangular in-

equality:

∀x, y, z ∈ E,

θ(x, y) = θ(y, x) and θ(x, z) ≤ θ(x, y) ∨ θ(y, z) .

(31)

We have then a one-to-one correspondence between di-

lationsΠ∗(E) → L and strongly triangular maps E2 →
L: to a dilation δ∗ corresponds the strongly triangular

map θ given by θ(x, y) = δ∗(1{x,y}), while to a strongly

triangular map θ corresponds the dilation δ∗ given by

δ∗(π) =
∨
B∈π

∨
(p,q)∈B2 θ(p, q). The fact that for all

t ∈ L we have ε∗(t) ∈ Π(E), in other words 0E ≤ ε∗(t),
is equivalent to 0E ≤ ε∗(⊥), in other words δ∗(0E) = ⊥,

which can be expressed as

∀x ∈ E, θ(x, x) = ⊥ . (32)

Note that δ∗(0E) = ⊥ if and only if δ∗ = δ · FS for a

dilation δ : Π(E) → L, where δ is in fact the restriction
of δ∗ to Π(E). The stronger requirement that ε∗(⊥) =

0E means that both δ∗(0E) = ⊥ and δ∗(π) > ⊥ for

π > 0E, in other words both (32) and the following:

∀x, y ∈ E, x 6= y =⇒ θ(x, y) > ⊥ . (33)

On the other hand, the fact that ε∗ is an erosion guar-

antees that ε∗(⊤) = 1E . If L ⊂ R with ⊥ = 0, as
assumed in [23], the three conditions (31,32,33) mean

that θ is an ultrametric distance [11]. We obtain thus,

in a general setting, the equivalence shown in [2,9] be-

tween ultrametrics and hierarchies of partitions.
In [8], hierarchies were also studied through adjunc-

tions. However, instead of partitions, the authors con-

sidered non-oriented graphs, in other words reflexive

and symmetrical relations; thus their conditions on θ

were weaker: symmetry θ(x, y) = θ(y, x), θ(x, x) = ⊥
(32) and θ(x, y) ≥ ⊥.

The approach initiated by [2,9] and extended in [8]

has been motivated by the problem of classification,

where no topological conditions are imposed on the
classes. However in segmentation [12,13,16], the classes

are supposed to be connected. We will thus modify

the theory of [23] in order to take into account this

constraint. As we saw in Subsection 2.3, for a par-

tial connection C, Π∗(E, C) is closed under the sup-
remum operation of Π∗(E), and when C is a connec-

tion, Π(E, C) is closed under the supremum operation

of Π(E); we can thus analyse dilations Π∗(E, C) → L

andΠ(E, C) → L with the same tools as in [23], notably
connective maps. Instead of strongly triangular maps,

we will get pre-connective maps defined on a family gen-

erating the (partial) connection C. The particular case
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when C = P(E) will give the theory of [23] and the

above result.

From now on, let C be a partial connection and L be

a complete lattice with least and greatest elements ⊥
and ⊤. Recall that by definition of a partial connection,

for B ⊆ C with
⋂
B 6= ∅, we have

⋃
B ∈ C.

Definition 16 A map ψ : C → L is called connective

[23] if ψ(∅) = ⊥ and for any B ⊆ C,
⋂
B 6= ∅ ⇒

ψ
(⋃

B
)
=

∨
C∈B ψ(C). When C is a connection, a con-

nective map ψ : C → L is said to be strict if ψ({x}) = ⊥
for every x ∈ E.

Note that for B = ∅,
⋂
B = E 6= ∅, so ψ

(⋃
B
)
=

ψ(∅) = ⊥ =
∨
∅ =

∨
C∈B ψ(C), as postulated. A con-

nective map is necessarily isotone (order-preserving)

[23]: ∀C,C′ ∈ C, C ⊆ C′ ⇒ ψ(C) ≤ ψ(C′).

Lemma 17 Let ψ : C → L be connective, let B ∈ P(E)

and A ⊆ C such that B is chained by A. Then ψ(B) =∨
C∈A ψ(C).

Proof Our proof follows an argument used in the proof

of Theorem 13 of [23]. We know [22] thatB ∈ C, but this
follows also from the present argument. If A is empty
or A = {∅}, then B = ∅ and indeed ψ(B) = ⊥ =∨
C∈A ψ(C). We can thus assume that A is non-empty

and contains a non-empty set D; we have
∨
A = B and

D ⊆ B. Let z =
∨
C∈A ψ(C); then ψ(D) ≤ z. Let

B = {X ∈ C | D ⊆ X ⊆ B, ψ(X) ≤ z} ;

then D ∈ B, so
⋂
B = D 6= ∅. Let Y =

⋃
B; then

Y ∈ C, D ⊆ Y ⊆ B and since ψ is connective,

ψ(Y ) =
∨

X∈B

ψ(X)

=
∨

{ψ(X) | D ⊆ X ⊆ B, ψ(X) ≤ z} ≤ z .

Thus Y ∈ B, so Y is the greatest element of B. If Y ⊂ B,

as B is chained by A, there must be some C ∈ A such
that C overlaps both Y and B\Y . Now ψ(C) ≤ z and as

ψ is connective, we get ψ(Y ∪ C) = ψ(Y ) ∨ ψ(C) ≤ z,

hence Y ∪ C ∈ B, so Y ∪ C ⊆ Y , a contradiction.

Therefore Y = B and ψ(B) ≤ z. Every C ∈ A satisfies
C ⊆ B; since ψ is isotone, ψ(C) ≤ ψ(B); thus z ≤
ψ(B). We conclude that ψ(B) = z =

∨
C∈A ψ(C). ⊓⊔

Theorem 18 There is a bijection between connective

maps C → L and dilations Π∗(E, C) → L, under which

– To a connective map ψ : C → L corresponds the dila-
tion δψ : Π∗(E, C) → L : π 7→ δψ(π) =

∨
B∈π ψ(B).

– To a dilation δ : Π∗(E, C) → L corresponds the

connective map ψδ : C → L : C 7→ ψδ(C) = δ(1C).

When C is a connection, a map δ : Π(E, C) → L is a

dilation if and only if it is the restriction to Π(E, C)
of a dilation Π∗(E, C) → L corresponding to a strict

connective map C → L.

Proof Let ψ : C → L be connective and define δψ :
Π∗(E, C) → L as above. Let F ⊆ Π∗(E, C). If F is

empty, then
∨
F = Ø and by definition δψ(Ø) is the

empty supremum ⊥. Suppose now F non-empty, and

let π =
∨
F . For any π ∈ F , π ≤ π, thus every block

B ∈ π is included in a block C ∈ π, and as ψ is isotone,
ψ(B) ≤ ψ(C); the definition of δψ gives then δψ(π) ≤
δψ(π). Hence

∨
π∈F δψ(π) ≤ δψ(π). Now every block

C ∈ π is obtained by chaining some blocks of partial

partitions in F ; in other words C is chained by some
A ⊆

⋃
F ; by Lemma 17 and the definition of δψ , we

get

ψ(C) =
∨

B∈A

ψ(B) ≤
∨

B∈
⋃

F

ψ(B)

=
∨

π∈F

∨

B∈π

ψ(B) =
∨

π∈F

δψ(π) .

Hence δψ(π) =
∨
C∈π ψ(C) ≤

∨
π∈F δψ(π). The equal-

ity
∨
π∈F δψ(π) = δψ(π) = δψ

(∨
F
)
follows. Therefore

δψ is a dilation. For C ∈ C we have ψδψ (C) = δψ(1C) =

ψ(C), thus ψδψ = ψ.

Conversely, let δ : Π∗(E, C) → L be a dilation. We

have 1∅ = Ø, so ψδ(∅) = δ(1∅) = δ(Ø) = ⊥. Let

B ⊆ C such that
⋂
B 6= ∅; we have 1⋃

B =
∨
C∈B 1C

[22] (for B empty, this equality remains valid, it reduces
to 1∅ = Ø); as δ commutes with the supremum,

ψδ
(⋃

B
)
= δ

(
1⋃

B

)
= δ

( ∨

C∈B

1C
)

=
∨

C∈B

δ(1C) =
∨

C∈B

ψδ(C) .

Therefore ψδ is connective. For π ∈ Π∗(E, C) we have

δψδ(π) =
∨

B∈π

ψδ(B) =
∨

B∈π

δ(1B)

= δ
( ∨

B∈π

1B
)
= δ(π) ,

hence δψδ = δ.

We have thus shown that ψ 7→ δψ and δ 7→ ψδ are

a bijection and its inverse, between connective maps

C → L and dilations Π∗(E, C) → L. Again, our proof
followed an argument from the proof of Theorem 13 of

[23].

Assume now that C is a connection. The supremum
in Π(E, C) is the one in Π(E), while the supremum in

Π∗(E, C) is the one in Π∗(E). Let δ : Π(E, C) → L

be a dilation. The dilation FS : Π∗(E) → Π(E) : π 7→
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π∨0E , restricted to Π∗(E, C), becomes a dilation FSC :

Π∗(E, C) → Π(E, C) (since C comprises all singletons,

0E ∈ Π(E, C)). As above, we obtain the dilation δ∗ =

δ · FSC : Π∗(E, C) → L : π 7→ δ(π ∨ 0E), and indeed

δ is the restriction of δ∗ to Π(E, C): for π ∈ Π(E, C),
π∨0E = π and so δ∗(π) = δ(π). Let ψ be the connective

map corresponding to δ∗. Since FSC(Ø) = Ø ∨ 0E =

0E = 0E ∨ 0E = FSC(0E), we have δ∗(Ø) = δ(0E) =

δ∗(0E), with δ∗(0E) =
∨
p∈E ψ({p}) and δ∗(Ø) = ⊥.

Hence ψ({p}) = ⊥ for all p ∈ E, that is, ψ is strict.

Conversely, let ψ be a strict connective map and

consider the corresponding dilation δψ : Π∗(E, C) → L,

which commutes with the supremum in Π∗(E, C) (for

partial partitions). We must show that its restriction
to Π(E, C) is a dilation Π(E, C) → L, in other words

it commutes with the supremum in Π(E, C) (for parti-

tions). For a non-empty family F ⊆ Π(E, C), its supre-
mum in Π(E, C) and in Π∗(E, C) coincide, thus the
equality δψ

(∨
F
)

=
∨
π∈F δψ(π) holds for the same

supremum
∨
F in both Π∗(E, C) and Π(E, C). When

F is empty,
∨
F = Ø in Π∗(E, C) but

∨
F = 0E

in Π(E, C), however δψ(0E) =
∨
p∈E ψ({p}) = ⊥ =

δψ(Ø), so we get δψ
(∨

F
)
= ⊥ =

∨
π∈F δψ(π) for the

supremum
∨
F either in Π∗(E, C) or in Π(E, C). ⊓⊔

Recall that S(E) is the set of singletons of E. In

Proposition 18 of [22] we showed that C is a partial

connection if and only if C ∪ S(E) is a connection; in
particular, for a connection C, C \S(E) will be a partial

connection. In [23] we showed that the dilation FS :

Π∗(E) → Π(E) is also an erosion, whose lower adjoint

is the dilation RSIN : Π(E) → Π∗(E) : π 7→ π \ 0E
that removes all singleton blocks from a partition. This
will allow us to reverse the above argument about the

restriction of FS to Π∗(E, C).

Proposition 19 Let C be a connection and let C∗ =
C \S(E). Given a connective map ψ : C∗ → L, the map

ψ+ : C → L defined by

∀X ∈ C, ψ+(X) =

{
⊥ if X ∈ S(E) ,

ψ(X) if X ∈ C∗ ,
(34)

is a strict connective map. For π ∈ Π(E, C), we have

δψ+(π) = δψ(π \ 0E) =
∨
B∈π\0E

ψ(B).

Proof Let RSINC be the restriction to Π(E, C) of the
dilation RSIN : Π(E) → Π∗(E) : π 7→ π \ 0E ; for π ∈
Π(E, C), π\0E has no singleton block, so RSINC(π) =

π \ 0E ∈ Π∗(E, C∗); thus RSINC is a map Π(E, C) →
Π∗(E, C∗); since Π(E, C) and Π∗(E, C∗) inherit the

supremum operation of Π(E) and Π∗(E) respectively,
RSINC will be a dilation Π(E, C) → Π∗(E, C∗).

We apply Theorem 18: δψ : Π∗(E, C∗) → L is a

dilation; but RSINC : Π(E, C) → Π∗(E, C∗) is also a

dilation; hence δψ ·RSINC : Π(E, C) → L : π 7→ δψ(π \
0E) =

∨
B∈π\0E

ψ(B) will be a dilation, thus there is a

strict connective map ψ1 : C → L such that δψ ·RSINC

is the restriction to Π(E, C) of δψ1
: Π∗(E, C) → L. Let

A ∈ C; if A is a singleton, then ψ1(A) = ⊥ = ψ+(A); if
A is not a singleton, letting π = FS(1A) = 1A∪0E\A ∈
Π(E, C), we get

δψ1
(π) = ψ1(A)∨

∨

p∈E\A

ψ1({p}) = ψ1(A)∨⊥ = ψ1(A) ,

while

δψ ·RSINC(π) =
∨

B∈π\0E

ψ(B) = ψ(A) = ψ+(A) ,

hence ψ1(A) = δψ1
(π) = δψ · RSINC(π) = ψ+(A).

Therefore ψ+ = ψ1, ψ
+ is a strict connective map,

and for π ∈ Π(E, C), δψ+(π) = δψ · RSINC(π) =

δψ(π \ 0E) =
∨
B∈π\0E

ψ(B). ⊓⊔

One can also check directly that ψ+ is a strict con-
nective map, without recourse to the dilation RSINC,

using an argument similar to the one in the proof of

Proposition 18 of [22].

Proposition 19 can also be applied when the con-

nective map ψ is defined on C rather than C∗; then (34)

modifies the value of the map on singletons.

We will now generalize the strong triangular maps

of [23]. From now on we assume that G is a non-empty
family of non-empty subsets of E. Recall that Con∗(G)
is the partial connection generated by G and Con(G) =
Con∗(G) ∪ S(E) is the connection generated by G.

Definition 20 A map ξ : G → L is called pre-connec-

tive if for any B ⊆ G and A,B ∈ G such that B is

chained by B and A ⊆ B, we have ξ(A) ≤
∨
X∈B ξ(X).

A pre-connective map is necessarily isotone (order-

preserving): ∀A,B ∈ G, A ⊆ B ⇒ ξ(A) ≤ ξ(B); this

follows by taking B = {B}.
For instance, if G is the set of singletons and pairs

of points of E, the map ξ is pre-connective if and only
if the map θ : E2 → L defined by θ(x, x) = ξ({x})
and θ(x, y) = ξ({x, y}) for x 6= y, is strongly triangu-

lar (31). Indeed, symmetry is obvious because the pair

{x, y} is unordered, while the ultratriangular inequality

is required because {x, z} is chained by
{
{x, y}, {y, z}

}
;

these two conditions are sufficient: if B is chained by B
and x, y ∈ B (with x, y equal or different), there is a

sequence p0, . . . , pn ∈ B such that p0 = x, pn = y

and {pi, pi+1} ∈ B for i = 0, . . . , n − 1, then apply-
ing inductively the ultratriangular inequality we get

θ(x, y) ≤
∨n−1
i=0 θ(pi, pi+1). The following result gener-

alizes Proposition 33 of [23]:
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Proposition 21 Consider a map ξ : G → L.

1. The map ξ is pre-connective if and only it is the

restriction to G of a connective map ψ : Con∗(G) →
L. This map ψ is then unique, it is the map ψξ given

by

∀C ∈ Con∗(G), ψξ(C) =
∨

X∈P(C)∩G

ξ(X) . (35)

2. Assume that G ∩ S(E) = ∅ (elements of G are not

singletons). The map ξ is pre-connective if and only

it is the restriction to G of a strict connective map
ψ : Con(G) → L. This map ψ is then unique, it is

the map ψ+
ξ defined according to (34,35), that is,

for C ∈ Con∗(G), ψ+
ξ (C) = ψξ(C), and for x ∈ E,

ψ({x}) = ⊥.

Proof 1. Let ξ : G → L be the restriction to G of

a connective map ψ : Con∗(G) → L. Let B ⊆ G and
A,B ∈ G such that B is chained by B and A ⊆ B;

then B ∈ Con∗(G), ψ(B) =
∨
X∈B ψ(X) by Lemma 17,

and ψ(A) ≤ ψ(B) since ψ is isotone; thus ξ(A) =

ψ(A) ≤ ψ(B) =
∨
X∈B ψ(X) =

∨
X∈B ξ(X). Hence ξ

is pre-connective. For any C ∈ Con∗(G), C is chained

by P(C) ∩ G, so by Lemma 17 again we get ψ(C) =∨
X∈P(C)∩G ψ(X) =

∨
X∈P(C)∩G ξ(X) = ψξ(C). There-

fore ψ = ψξ and the map ψ is unique.

Conversely, let the map ξ : G → L be pre-connec-

tive. Since ∅ /∈ G, by (35) ψξ(∅) gives the empty supre-

mum ⊥. Now let B ⊆ Con∗(G) such that
⋂
B 6= ∅, and

set B =
⋃
B. Each C ∈ B is chained by P(C) ∩ G, and

as
⋂
B 6= ∅, B is chained by

⋃
C∈B(P(C) ∩ G). As ξ is

pre-connective, for Y ∈ P(B) ∩ G,

ξ(Y ) ≤
∨{

ξ(X) | X ∈
⋃

C∈B

(P(C) ∩ G)
}

=
∨

C∈B

∨

X∈P(C)∩G

ξ(X) =
∨

C∈B

ψξ(C) .

Hence ψξ(B) =
∨
Y ∈P(B)∩G ξ(Y ) ≤

∨
C∈B ψξ(C). On

the other hand, for any C ∈ B, as C ⊆ B, P(C) ∩
G ⊆ P(B) ∩ G, hence ψξ(C) =

∨
X∈P(C)∩G ξ(X) ≤∨

X∈P(B)∩G ξ(X) = ψξ(B). We deduce that ψξ(B) =∨
C∈B ψξ(C), and ψξ is connective.

Finally, for any B ∈ G, B ∈ P(B) ∩ G, so B is

chained by P(B)∩G, hence ξ(B) ≤
∨
X∈P(B)∩G ξ(X) =

ψξ(B); but since ξ is isotone, for any X ∈ P(B)∩G we

have ξ(X) ≤ ξ(B), hence ψξ(B) =
∨
X∈P(B)∩G ξ(X) ≤

ξ(B). We conclude that ψξ(B) = ξ(B), thus ξ is the
restriction of ψξ to G.

2. Assume that elements of G are not singletons.
Since any element of Con∗(G) is obtained by chaining

some elements of G, it cannot be a singleton. Thus

Con∗(G) ∩ S(E) = ∅, hence Con∗(G) = Con(G) \ S(E).

Let ξ : G → L be the restriction to G of a strict con-

nective map ψ : Con(G) → L. Let ψ′ be the restriction

of ψ to Con∗(G); then ψ′ remains connective, and ξ is

the restriction of ψ′ to G. By item 1, ξ is pre-connective

and ψ′ = ψξ. Since ψ is strict, we have ψ({x}) = ⊥ for
all x ∈ E, and we deduce from (34) that ψ = ψ+

ξ .

Conversely, let the map ξ : G → L be pre-connec-

tive. By item 1, ψξ : Con∗(G) → L is connective and

ξ is the restriction of ψξ to G. By Proposition 19, ψ+
ξ

is strict connective, and ψξ is the restriction of ψ+
ξ to

Con
∗(G) = Con(G)\S(E). Therefore ξ is the restriction

of ψ+
ξ to G. ⊓⊔

Note that in the case of item 2, that is, G∩S(E) = ∅,
if we extend the formula in (35) to Con(G), we obtain

ψξ({x}) = ⊥ for any x ∈ E, thus ψ+
ξ is given by ex-

tending (35) to Con(G).
Combining Theorem 18 and Proposition 21, we get

the dilation

δψξ : Π∗(E,Con∗(G)) → L

: π 7→
∨

B∈π

∨

X∈P(B)∩G

ξ(X) ; (36)

furthermore, when G ∩ S(E) = ∅, from Proposition 19

we get the dilation

δψ+

ξ
: Π∗(E,Con(G)) → L

: π 7→
∨

B∈π\0E

∨

X∈P(B)∩G

ξ(X) , (37)

whose restriction to Π(E,Con(G)) remains a dilation

(because δψ+

ξ
(0E) = ⊥).

4.2 Graph connectivity and edge saliency

Let us illustrate our theory in the case of graph-theore-
tical connectivity. Suppose that E is endowed with an

irreflexive and symmetrical adjacency relation ∼, and

let G be the set of all pairs of distinct adjacent points:

G =
{
{p, q} | p, q ∈ E, p 6= q, p ∼ q

}
; then (E,G) is

an undirected graph. Let C = Con(G); it is the set of

all subsets of E that are connected according to that

graph (in particular singletons in E are connected). Let

G∗ = G ∪ S(E); we have then Con∗(G∗) = C. Given

a map ξ defined on G or G∗, we will write ξ(p, q) for
ξ({p, q}) and ξ(p) for ξ({p}). A map ξ : G → L is

pre-connective if and only if ξ satisfies the following

generalization of the ultratriangular inequality to cycles

in the graph:

∀x0, . . . , xn ∈ E (n ≥ 2),

{x0, x1}, . . . , {xn−1, xn}, {xn, x0} ∈ G

=⇒ ξ(xn, x0) ≤
n−1∨

i=0

ξ(xi, xi+1) .

(38)
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In other words, the maximum value taken by ξ in a cycle

is attained on at least two edges. We call this condition

the ultracyclic inequality. A map ξ : G∗ → L is pre-

connective if and only if ξ satisfies the ultracyclic in-

equality (38) and for {x, y} ∈ G we have ξ(x) ≤ ξ(x, y).

We first characterize a hierarchy of partitions. Let

ξ : G → L be pre-connective; we get the strict connec-

tive map ψ+
ξ : C → L; let δ = δψ+

ξ
: Π∗(E, C) → L,

cf. (37), and let ε be the upper adjoint erosion L →
Π∗(E, C) providing the hierarchy; in fact, δ(0E) = ⊥,
so ε(⊥) ≥ 0E and every t ∈ L gives ε(t) ∈ Π(E, C),
we have a hierarchy of partitions. Note that ε(⊤) =

PCC(E), the partition of all connected components of

E, which is indeed the greatest element of Π(E, C). For
any pair {p, q} ∈ G, ξ(p, q) = ψ+

ξ ({p, q}) = δ(1{p,q}), it

is the least t ∈ L such that 1{p,q} ≤ ε(t), that is, {p, q}
is included in a block of ε(t). The condition ε(⊥) = 0E
is satisfied if and only if ⊥ < ξ(p, q) for all {p, q} ∈ G, cf.
(33) above; then p and q belong to two distinct blocks
of ε(t) for ⊥ ≤ t < ξ(p, q).

Next, we characterize a hierarchy of partial parti-

tions. Let ξ : G∗ → L be pre-connective; we get the

connective map ψξ : C = Con∗(G∗) → L; let δ = δψξ :

Π∗(E, C) → L, cf. (36), and let ε be the upper adjoint
erosion L → Π∗(E, C) providing the hierarchy. Again,

ε(⊤) = PCC(E). For any {p, q} ∈ G, ξ(p, q) is the least

t ∈ L such that {p, q} is included in a block of ε(t); for

p ∈ E, ξ(p) is the least t ∈ L such that 1{p} ≤ ε(t), that
is, p ∈ supp(ε(t)). The condition ε(⊥) = Ø is satisfied

if and only if ⊥ < ξ(p) for all p ∈ E.

Now assume that L is a chain. For {p, q} ∈ G, as t
ranges from ⊥ to ⊤, we encounter 4 possible cases in

the following order:

(a) t < min(ξ(p), ξ(q)): both p and q lie in the back-
ground E \ supp(ε(t)).

(b) min(ξ(p), ξ(q)) ≤ t < max(ξ(p), ξ(q)): one of p and

q lies in a block of ε(t) and the other in the back-

ground E \ supp(ε(t)).
(c) max(ξ(p), ξ(q)) ≤ t < ξ(p, q): p and q lie in two

distinct blocks of ε(t).

(d) ξ(p, q) ≤ t: p and q lie in a same block of ε(t).

The case where C = P(E), Π∗(E, C) = Π∗(E) and

Π(E, C) = Π(E), is obtained when any two distinct

points of E are adjacent, thus G consists in the set of
all pairs of points; here the ultracyclic inequality (38)

reduces to the ultratriangular inequality (31); we obtain

then the theory of [23].

Let us consider the particular case where E is the

digital space Zn with a usual adjacency (4 or 8 in Z2,
6, 18 or 26 in Z3, etc.); each pair {p, q} ∈ G can be

seen as the unoriented edge element e(p, q) separating

the square or cubic cells corresponding to the adjacent

qp

e(p,q)

p q
p

q
e(p,q)

e(p,q)

Fig. 11 Left: in 2D (n = 2), two pixels p and q correspond
to square cells; when they are axially adjacent, they are sep-
arated by a line edge element e(p, q). Middle: when the two
pixels p and q are diagonally adjacent, they are separated by
a point edge element e(p, q). Right: in 3D (n = 3), the two
6-adjacent voxels p and q correspond to cubic cells, separated
by the surface edge element e(p, q).

digital points p and q; this is illustrated in Figure 11

for n = 2 and 3.

For a hierarchy of partitions, we have a pre-connec-

tive map ξ : G → L and we set the hierarchy erosion

ε : L → Π∗(E, C) as the upper adjoint of the dilation

δψ+

ξ
given by (37). Let {p, q} ∈ G. For t < ξ(p, q), p

and q belong to two distinct blocks of ε(t) and the edge
element e(p, q) lies in the boundary separating these

two blocks, while for t ≥ ξ(p, q), p and q belong to the

same block of ε(t) and the edge element e(p, q) does

no more belong to the boundary of a block. Assum-
ing that ε(⊥) = 0E, ⊥ < ξ(p, q) and the edge element

e(p, q) belongs to a boundary separating blocks of ε(t)

for ⊥ ≤ t < ξ(p, q). Note that E is here connected,

so ε(⊤) = 1E . When L is a finite chain, we can make

an analogy between the hierarchy and the flooding pro-
cess in watershed segmentation, so the partition ε(t)

gives the basins at flooding level t, and ξ(p, q) is the

level at which the two basins containing p and q are

merged. Thus the pre-connective map ξ generalizes the
edge saliency [16] of a hierarchy of partitions.

(a) (b) (c) (d)

p
p

p q

q
q

p q

Fig. 12 Typology of the edge element e(p, q) between two
adjacent points p and q: (a) background edge element; (b)
outer edge element; (c) separating edge element; (d) inner
edge element.

For a hierarchy of partial partitions, we have a pre-

connective map ξ : G∗ → L and we set the hierarchy

erosion ε : L→ Π∗(E, C) as the upper adjoint of the di-
lation δψξ given by (36). Let {p, q} ∈ G. Assuming that
L is a chain, the four cases (a,b,c,d) above translate as

follows:

(a) t < min(ξ(p), ξ(q)): the edge element e(p, q) lies be-

tween two points in the background E \ supp(ε(t)),
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see Figure 12 (a), we call it a background edge ele-

ment.

(b) min(ξ(p), ξ(q)) ≤ t < max(ξ(p), ξ(q)): the edge ele-

ment e(p, q) belongs to the boundary separating a

block of ε(t) and the background E \supp(ε(t)), see
Figure 12 (b), we call it a outer edge element.

(c) max(ξ(p), ξ(q)) ≤ t < ξ(p, q): the edge element

e(p, q) belongs to the boundary separating two dis-

tinct blocks of ε(t), see Figure 12 (c), we call it a
separating edge element.

(d) ξ(p, q) ≤ t: the edge element e(p, q) lies between two

points in a same block of ε(t), see Figure 12 (d), we

call it an inner edge element.

Only cases (b) and (c) correspond to block boundaries,

with “visible” edge elements; on the other hand, in cases

(a) and (d) edge elements will be “invisible”. Thus when

min(ξ(p), ξ(q)) < ξ(p, q), e(p, q) belongs to the bound-
ary of a block of ε(t) for min(ξ(p), ξ(q)) ≤ t < ξ(p, q),

being then an outer or separating edge element. On the

other hand when min(ξ(p), ξ(q)) = ξ(p, q), e(p, q) will

never belong to a boundary of a block of ε(t), it can be

only a background or inner edge element. Hence in a
hierarchy of partial partitions, the saliency of an edge

element is given by an interval, possibly empty, not a

number.

The 4 items (a,b,c,d) have decomposed L into 4 suc-
cessive intervals through which t passes as it increases

from ⊥ to ⊤, some of them can be empty. The suc-

cession of these intervals leads to an ordering on the 4

corresponding types of edge elements:

background < outer < separating < inner ; (39)

as t increases, the edge element type increases. Since

some of the intervals can be empty, some types can be

skipped, for instance, it is possible to pass directly from
background to inner.

We illustrate in Figure 13 a preconnective map and

the corresponding hierarchy of partial partitions, with

the different types of edge elements.

Note that in the case of a hierarchy of partitions, we
obtain only the types (c) separating and (d) inner; in-

deed, here ξ+(p) = ξ+(q) = ⊥, so max(ξ+(p), ξ+(q)) ≤
t anyway.

Let us now discuss the effect on edge type of the
elementary operations of merging, creating or inflating

blocks, corresponding to the covering relations
m
≺,

s
≺ ,

c
≺ and

i
≺. We start from a partial partition π1.

(1◦) Merging two blocks B,C ∈ π1, getting π2 =(
π \ {B,C}

)
∪ {B ∪C}, with π1

m
≺ π2. Since π2 has its

blocks in C, the two blocks B and C must be adjacent,

so there are adjacent points p ∈ B and q ∈ C, and the

corresponding edge elements e(p, q) form together the

ε(0) ε(1)

ε(2) ε(3) ε(4)

ξ

1 2 1 4 2

322

1 1 1 4 3

Fig. 13 E is a 2×3 rectangle in Z2, with horizontal and ver-
tical adjacency; L = {0, 1, 2, 3, 4}. Top left: points are shown
as disks and pairs of points as elongated diamonds linking
them, with values of ξ written inside. Next: the hierarchy of
partial partitions ε(t), t ∈ L. Each point is shown as a disk
surrounded by a square cell; those in the support have filled
disks and grey cells, while those in the background have hol-
low disks and white cells. Edge elements are drawn as lines:
dotted lines for background edges, thick lines for outer or
separating edges, and dashed lines for inner edges.

boundary between B and C. For any such pair {p, q},
the merging ofB and C changes the edge element e(p, q)

from separating to inner, while other edge elements are
not modified.

(2◦) Adding a singleton block {p} to π1, getting π2 =

π1∪
{
{p}

}
, with π1

s
≺ π2. For any point q ∈ E adjacent

to p, we get 2 cases for the evolution of the edge element

e(p, q): (i) q ∈ supp(π1) and e(p, q) changes from outer

to separating; (ii) q ∈ E \ supp(π2) and e(p, q) changes
from background to outer. Other edge elements are not
modified.

(3◦) Adding a non-singleton block B to π1, getting

π2 = π1 ∪ {B}, with π1
c
≺ π2. Only edge elements with

at least one point in B are changed. Given p ∈ B, for

q ∈ E adjacent to p, we get 3 cases for the evolution

of the edge element e(p, q): (i) q ∈ supp(π1) and e(p, q)

changes from outer to separating; (ii) q ∈ B and e(p, q)

changes from background to inner; (iii) q ∈ E\supp(π2)
and e(p, q) changes from background to outer.

(4◦) Inflating a block by one point, the point p is

added to block B ∈ π1, so we get π2 =
(
π1 \ {B}

)
∪

{
B ∪{p}

}
, with π1

i
≺ π2. Since B ∪{p} ∈ C, p must be

adjacent to some q ∈ B. The operation can be decom-

posed into first creating the singleton block {p}, then
merging it with B. For any point q ∈ E adjacent to

p, we get 3 cases for the evolution of the edge element

e(p, q): (i) q ∈ B and e(p, q) changes from outer to in-

ner; (ii) q ∈ C for another block C ∈ π1 and e(p, q)
changes from outer to separating; (iii) q ∈ E \ supp(π2)
and e(p, q) changes from background to outer.

(5◦) Although this does not correspond to a cover-
ing relation, we can finally consider inflating a block by

more than one point, a set D is added to block B ∈ π1,

so we get π2 =
(
π1 \ {B}

)
∪ {B ∪D}. Here B ∪D ∈ C,
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and at least one point in D must be adjacent to one

point in B. Only edge elements with at least one point

in D are changed. Given p ∈ D, for q ∈ E adjacent

to p, we get 4 cases for the evolution of the edge ele-

ment e(p, q): (i) q ∈ B and e(p, q) changes from outer
to inner; (ii) q ∈ C for another block C ∈ π1 and e(p, q)

changes from outer to separating; (iii) q ∈ D and e(p, q)

changes from background to inner; (iv) q ∈ E\supp(π2)
and e(p, q) changes from background to outer.

We summarize in Table 3 the changes of edge ele-

ment types for the 4 first cases, corresponding to the 4

elementary covering relations. Assuming partial parti-

tions with finite support, each one of the six orders is

the reflexive and transitive closure of the correspond-
ing covering relation, thus the changes of edge element

types are obtained by composing those possible for the

covering relation. We obtain then Table 4.

Table 3 Covering relations and corresponding changes of
edge element types; we write in bold the “visible” types outer
and separating, and in italics the “invisible” types background
and inner. The dag † indicates that the change must happen
in at least one edge element in order to maintain block con-
nectedness.

Cover Change Must
m

≺ separating −→ inner †
s

≺ background −→ outer

outer −→ separating
c

≺ background −→ outer

background −→ inner

outer −→ separating

i

≺ background −→ outer

outer −→ separating

outer −→ inner †

We see then that the 6 orders involve changes of
edge types from “invisible” to “visible”. When π1 in-

creases to π2, an edge can change from background to

outer or separating; the only order where this never

happens is the merging order ⊑. Conversely, when π2
decreases to π1, an edge can change from inner to outer

or separating; the only order where this never happens

is the inclusion order ⊆. In other words, the only oper-

ations that do not create visible edges are merging or

removing blocks. They are indeed the operations that
have been considered in connected filtering.

4.3 Connected filtering and component trees

In connected filtering, one usually merges flat zones,

so that separating edges between merged flat zones are

removed (in fact, they become invisible inner edges),

Table 4 Order relations and corresponding changes of edge
element types; we write in bold the “visible” types outer and
separating, and in italics the “invisible” types background

and inner.

Orders Change

⊑ separating −→ inner

⊆ background −→ outer

background −→ separating

background −→ inner

outer −→ separating

E, ⊆E background −→ outer

background −→ separating

background −→ inner

outer −→ separating

outer −→ inner

⊑E, ≤ background −→ outer

background −→ separating

background −→ inner

outer −→ separating

outer −→ inner

separating −→ inner

while other edges are unchanged. With the component
tree [14], an image is represented by a hierarchy of

partial partitions, and a connected filter operates on

the image by removing some blocks; this removes their

boundaries (in fact, these outer or separating edges be-

come invisible background edges). This tree comes in
two dual forms, the max-tree and min-tree, the first

one has been used for anti-extensive operators, and the

second one for extensive operators.

From now one we assume that L is a finite chain
with least and greatest elements ⊥ and ⊤. We take a

fixed partial connection C on P(E) such that E ∈ C.
A map ε : L → Π∗(E, C) is an erosion if and only if

ε is isotone (order-preserving) and ε(⊤) = 1E . For a

hierachy, one should normally have ε(⊥) = Ø, but this
is not crucial; when ε(⊥) > Ø, we can add to L a new

least element ⊥ (thus ⊥< ⊥) and set ε(⊥) = Ø.

Let us first describe the max-tree. The construction

is illustrated in Figure 14. Consider a function F : E →
L. For each t ∈ L, we define the thresholding above

Xt(F ) = {p ∈ E | F (p) ≥ t} .

We can consider the partial partition PCC(Xt(F )) of

connected components of Xt(F ). We have X⊥(F ) = E,

so PCC(X⊥(F )) = 1E ; now when t increases, Xt(F ) de-

creases, so PCC(Xt(F ) decreases for the standard order.
Hence the map t 7→ PCC(Xt(F )) is an erosion from the

dual lattice (L,≥) to the lattice (Π∗(E, C),≤). We can

also take an inversion N of L, that is a map N : L→ L

such that for t, t′ ∈ L, t < t′ ⇒ N(t) > N(t′) and
N(N(t)) = t; then the map t 7→ PCC(XN(t)(F ) is an

erosion L → Π∗(E, C). A component of F is any con-

nected component of Xt(F ) for any t ∈ L; thus the set
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of components of F is

Comp(F ) =
⋃

t∈L

PCC(Xt(F )) .

Note that we consider distinct components of F , in
other words, when C ∈ PCC(Xt(F )) for several values

t ∈ L, it appears only once in Comp(F ). We associate

to each component C its altitude h(C) [14], which is

the highest level t at which it appears in PCC(Xt(F )),
and also the least value of its points for F :

h(C) = max{t ∈ L | C ∈ PCC(Xt(F ))}

= min{F (p) | p ∈ C} .

For C,C′ ∈ Comp(F ), C ⊂ C′ ⇒ h(C) > h(C′). For

p ∈ E and C ∈ Comp(F ), p ∈ C ⇒ F (p) ≥ h(C),
and the least C ∈ Comp(F ) such that p ∈ C is the one

with h(C) = F (p). Thus F can be reconstructed from

the set of pairs (C, h(C)) for C ∈ Comp(F ):

∀ p ∈ E, F (p) = max{h(C) | C ∈ Comp(F ), p ∈ C} .

Then the max-tree is the directed graph whose vertices

are the components of F and where we draw a directed
edge from C0 to C1 when C0 covers C1 for the inclusion

order on Comp(F ); this graph is indeed a tree whose

root is E and where each directed edge goes from parent

to child. The branches correspond to peaks, and the

leaves to regional maxima.
The min-tree is the dual of the max-tree w.r.t. the

order on L. For t ∈ L, we define the thresholding below

Yt(F ) = {p ∈ E | F (p) ≤ t} .

We consider then the partial partition PCC(Yt(F )). We

have Y⊤(F ) = E, so PCC(Y⊤(F )) = 1E; now when t

increases, Yt(F ) increases, so PCC(Yt(F ) increases for
the standard order. Hence the map t 7→ PCC(Yt(F )) is

an erosion L→ Π∗(E, C). We take

Comp∗(F ) =
⋃

t∈L

PCC(Yt(F )) ,

and for C ∈ Comp∗(F ) we set

h∗(C) = min{t ∈ L | C ∈ PC
C(Yt(F ))}

= max{F (p) | p ∈ C} .

For C,C′ ∈ Comp∗(F ), C ⊂ C′ ⇒ h∗(C) < h∗(C′).

For p ∈ E and C ∈ Comp∗(F ), p ∈ C ⇒ F (p) ≤
h∗(C), and the least C ∈ Comp

∗(F ) such that p ∈ C is
the one with h∗(C) = F (p). We get

∀ p ∈ E, F (p) = min{h∗(C) | C ∈ Comp∗(F ), p ∈ C} .

We construct then the min-tree with Comp∗(F ) as set

of nodes, and directed edges corresponding to the cover-

ing relation for the inclusion order on Comp∗(F ). Here
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Fig. 14 Here E is a one-dimensional digital set of 15 points,
and the connection C corresponds to the adjacency relation
between consecutive points. We take L = {0, 1, 2, 3, 4, 5, 6}.
Top left: the function F . Top right: we show in grey the sets
C × {h(C)} for all C ∈ Comp(F ); when C ∈ PCC(Xt(F )) for
t < h(C), the set C × {t} is shown dashed. Bottom left: when
the altitude decreases from ⊤ to ⊥, a point p enters at altitude
F (p) the component C such that p ∈ C and h(C) = F (p); then
C gets included in the component C′ of highest altitude that
strictly contains C. We obtain a dendrogram drawn upside
down. Bottom right: each component becomes a node of the
max-tree, with parent-child directed edges corresponding to
the covering relation in the dendrogram.

the branches correspond to troughs, and the leaves to

regional minima.

We can then process a function F by acting on the

hierarchy PCC(Xt(F )) or PCC(Yt(F )) (t ∈ L), for ex-

ample using a flat operator, i.e., an order-preserving

operator on functions that works by applying a set

operator to the thresholdings. For instance, an anti-
extensive connected flat operator ψ on functions sat-

isfies PCC(Xt(ψ(F ))) ⊆ PCC(Xt(F )) for all t ∈ L; in

terms of the max-tree, this means that some branches

are pruned: some nodes are removed, and then all their
descendants are removed too. Dually an extensive one

satisfies PCC(Yt(ψ(F ))) ⊆ PCC(Yt(F )); here the min-

tree will be pruned.

For homotopic reduction, given the foreground and

background connections F and B, the original function
F0 and the reduced one F1 satisfy the following ana-

logue of (22):

∀ t ∈ L,

{
PCF (Xt(F1)) E PCF(Xt(F0)) &

PCB(Yt(F0)) E PCB(Yt(F1)) .
(40)

Here the max- and min-tree remain unchanged, except

that a node having a unique child node can be removed;
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if the removed node is not the root, its parent node

becomes the new parent of the child node.

In a topological watershed construction, an initial

divide function D0 is reduced to a smaller one D1 sat-
isfying, cf. (23),

∀ t ∈ L, PCB(Yt(D0)) E PCB(Yt(D1)) . (41)

NB. Anyway, PCF (Xt(D1)) ≤ PCF(Xt(D0)).

Note that a union of several components of a func-

tion is not connected, except if one of these components

contains all others (i.e., it is their common ancestor in
the tree), so the union reduces to that component. In-

deed, let X ⊆ Comp(F ); set g = min{h(C) | C ∈ X}
and let Ĉ ∈ X such that h(Ĉ) = g; in other words

Ĉ is the component from X with least altitude. Then

for all C ∈ X , h(C) ≥ g, so C ⊆ Xg(F ); thus
⋃
X ⊆

Xg(F ). Now Ĉ is a connected component of Xg(F ),
which means that it is a maximal connected subset of

Xg(F ). Since Ĉ ⊆
⋃
X ⊆ Xg(F ), this means that if⋃

X is connected, then we must have
⋃
X = Ĉ, in

other words C ⊆ Ĉ for all C ∈ X . A dual argument

holds for X ⊆ Comp∗(F ).

It follows that the merging order cannot be used

in the framework of the component tree. However the

merging-inflating order can lead to image simplifica-

tions where the separation between clustered peaks (or
troughs) is filled, so that they become merged. For ex-

ample a flat operator ψ such that PCC(Xt(ψ(F ))) ⊒D
PCC(Xt(F )) for all t ∈ L will inflate and merge peaks.

In terms of the max-tree, this means that going from

the root to the leaves, at several places two child nodes
of the same parent node can be merged, hence whole

branches of the tree can be merged.

Of course, the operator need not be flat, we can work

directly on the component tree, by pruning or merging
branches. This allows to change the altitude of compo-

nents, but the order between the altitude of the parent

and child nodes must be preserved, in other words the

contrast between two neighbouring flat zones may in-
crease or decrease, but not change sign. This allows to

impose on the operator some topological properties in

terms of peaks and troughs, as we did in (40,41).

5 Discussion, conclusion and perspectives

The literature on partitions and partial partitions has

considered only one order, the refinement order on par-

titions, and its extension to partial partitions that we

call the standard order. The situation evolved when
Serra defined the building order [33,34] for partitions

and partial partitions. Following his work, we have in-

troduced 5 new order relations on partial partitions:

the merging, inclusion, inflating, merging-inflating and

inclusion-inflating orders. They are all included in the

standard order. Table 1 summarizes the notation and

definition of each of them.

The identity (equality relation), the standard order

and the 5 new orders constitute a lattice whose Hasse

diagram is illustrated in Figure 9. It is generated by

the inclusion, inflating and merging orders, which corre-

spond to basic operations on the blocks of a partial par-
tition: creating a new block, inflating an existing block,

and merging several blocks. The other orders combine

together several basic operations.

If one restricts oneself to partitions of a given set
(or partial partitions with a fixed support), then the

operations of creating or inflating a block are no more

available, and there remain only the identity and refine-

ment orders. More precisely: (a) the standard, merging
and merging-inflating orders reduce to the refinement

order; (b) the inclusion, inflating and inclusion-inflating

orders reduce to the identity.

The greater number of order relations for partial
partitions, in comparison with partitions, indicates the

greater flexibility in the processing of partial partitions.

We already argued in the Introduction that partial par-

titions are necessary for the modeling of various oper-
ations involved in the construction of image segmenta-

tion partitions or in connected filtering.

We have given for each order the covering relation.

All these orders are graded and have a height function,
see Table 2. This height function is a measure of the

complexity of a partial partition from the point of view

of its construction by an iteration of elementary opera-

tions; this complexity does not depend on the order of

these elementary operations.

We have investigated hierarchies of partial parti-

tions with connected blocks, the edge elements belong

to 4 ordered types, cf. (39), and as the level increases,

they change from one type to a higher type; the saliency
of an edge is the interval of levels where it belongs to

the two “visible” types (outer and separating). In the

growing of partial partitions, each elementary operation

leads to some specific changes of edge type, see Table 3;
by extension, each order restricts the growth to a set

of possible changes of edge type, see Table 4. For a hi-

erarchy of partitions, the only change of type is from

separating to inner, and the saliency of the edge indi-

cates the level where this happens.

Hierarchies of partial partitions intervene in compo-

nent trees, for which our orders can be used to describe

operators with topological properties that translate into

specific operations on the tree.

Our theory is relevant to image segmentation for

three reasons. First, the basic operations involved in
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our orders (merging two blocks, creating a new block or

inflating an existing block) are used in various segmen-

tation algorithms. Second, we have taken into account

the possible requirement that the segmentation classes

should be connected according to some partial connec-
tion. Third, we were able to characterize hierarchies.

This paper is a first step in the study of orders on

partial partitions. Further topics will be discussed in

future papers. First, other orders can be defined on
Π∗(E). They can be built from previous ones by com-

posing an order with the inverse of another, or by in-

tersecting an order with a quasi-order. Let us briefly

describe six new orders that will be studied in detail;

we hinted at some of them in the last paragraph of [26].
Three orders can be obtained by replacing the merging

of block by apportioning, cf. the Introduction:

1. The apportioning order :

π1 ⋐ π2 and supp(π1) = supp(π2) .

It contains the merging order.

2. The apportioning-inflating order :

π1 ⋐ π2 and supp(π1) ⊆ supp(π2) .

It contains the merging-inflating and apportioning

orders and is generated by composing apportioning

and inflating in any order.

3. The extended order :

π1 ⋐ π2 ∩ P(supp(π1)) and supp(π1) ⊆ supp(π2) .

It contains the standard and apportioning orders

and is generated by composing inclusion followed
by apportioning.

There is a strong analogy between these three orders

and the merging, merging-inflating and standard or-

ders that they extend: everything that we said in The-

orems 7, 12, 11 and 2 can be transposed to these three

new orders by just replacing merging with apportion-

ing, and the m-covering
m
≺ with a new a-covering rela-

tion
a
≺ associated to apportioning.

The apportioning order can be used to eliminate
“small parasitic” segmentation classes, as explained in

the Introduction. The apportioning-inflating order can

be used when, on top of “parasitic” classes, significant

regions are separated by thick background edges that

need to be thinned.
We mentioned that the only operations that do not

create “visible” edges are merging blocks (in the order

⊑) or removing blocks (in the order ⊇). Removing a

block can be seen as merging it with the background,
and the latter can be considered as a special block of

a partition if we distinguish it with a special marker

point:

4. Let ℘ /∈ E and E∗ = E ∪ {℘}. Then the map

Π∗(E) → Π(E∗) : π 7→ π ∪ {E∗ \ supp(π)}

is a bijection. Its inverse (removing from a parti-

tion of E∗ the block containing ℘) isomorphically
transforms the refinement order on Π(E∗) into the

regional order onΠ∗(E), relating π1, π2 ∈ Π∗(E) iff

every block of π2 is a union of some blocks of π1, in

other words, π2 is obtained by merging some blocks
of π1 and removing some other blocks in it. This or-

der is generated by composing in any order inverse

inclusion ⊇ and merging ⊑, its least and greatest el-

ements are respectively 0E and Ø, and its covering

relation is
m
≺ ∪

c
≻. When E is finite, the height of

any π ∈ Π∗(E) is |E| − hc(π).

Comparing the apportioning and apportioning-in-

flating orders, we can invert the inclusion of supports:

5. The partial apportioning order :

π1 ⋐ π2 and supp(π1) ⊇ supp(π2) ;

some blocks are removed, and part of their contents

can be erased before they are apportioned to other

blocks. It contains the inverse inclusion ⊇, appor-
tioning and regional orders.

Let us finally mention an order that is defined not

in terms of block inclusion, but of block overlap:

6. The linking order : supp(π1) ⊇ supp(π2) and every
block of π1 overlaps at most one block of π2. It con-

tains the merging ⊑, inverse inflating D, inverse in-

clusion ⊇ and regional orders; for non-void partial

partitions, it is generated by composing merging ⊑
followed by inverse inflating D.

We have seen that the regional order is generated

by composing merging ⊑ and inverse inclusion ⊇ in
any order, while the linking order is generated by com-

posing merging ⊑ followed by inverse inflating D. Now

the building order ⋐ is generated by inverse inclusion ⊇
followed by inflating E (these two operations were in-
deed used in Serra’s method for eliminating “parasitic”

segmentation classes, cf. the Introduction). Thus com-

bining one of the three basic orders with the inverse of

another gives an order.

The above six new orders are graded. On the other
hand the building order is not graded, and this is an-

other reason for not considering it as “meaningful”.

A second topic to be investigated is the one intro-

duced in the second part of [26] (Sections 3, 4 and 5
there). We explained in the Introduction that the seg-

mentation of a function F is considered to be a maxi-

mal element, for the refinement ordering, of the family
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Π(E, CF ) of all partitions whose blocks belong to CF ,
the set all elements of the connection C on which F is

homogeneous according to the segmentation criterion.

In the case of a partial connection C, the segmenta-

tion will be a maximal element of Π∗(E, CF ). We can
analyse this maximality from the point of view of other

orders, in particular in the case of compound segmenta-

tion using two successive criteria. Also, for a fixed func-

tion F , the segmentation induces a set splitting opera-
tor σF : X 7→ σF (X) ∈ Π∗(X, C), which induces a block

splitting operator β(σF ) on Π∗(E) that applies σF to

each block of a partial partition [24,25]; the maximality

of σF (X) in Π∗(X, C) or Π(X, C) should be related to

the properties of the operator β.

The selection of a maximal partition (relatively to

some order) can be done by maximizing what we call

in [26] a valuation; it is a strictly isotone map f :
Π∗(E) → R+. Indeed, a partial partition with greatest

valuation will be maximal. Now, assuming that all in-

tervals have finite height, the covering relation is useful

for verifying that f is a valuation: we have only to check
that whenever π2 covers π1, we get f(π2) > f(π1). The

valuation can take into account some numerical charac-

teristics, such as the number of blocks, their sizes, etc.

For example the height is a valuation. We saw at the end

of Subsection 3.2 that for the 3 compound orders, the
covering relation is compound, and all covering chains

between two comparable partial partitions comprise a

constant number of each type of elementary covering

(
m
≺,

s
≺ or

i
≺). Thus we can give to each elementary cov-

ering a different weight; this amounts to taking other

combinations of hc, hm and hs. Valuations based on

such parameters measure the fact that the partial par-

tition has big blocks, a small number of blocks, and a
big support; this can indeed be a useful criterion for

selecting a partial partition as the segmentation. This

idea is related to the one first introduced by Guigues [7],

then expounded by Serra [35,10,36], where instead of a
valuation (based on block numbers and sizes), one con-

siders an energy computed from the variation of grey-

levels inside blocks and accross their borders; also Serra

aimed at minimizing the energy, while we maximized

the valuation. Although he gave methods for iteratively
selecting a partition of minimum energy while climbing

up a hierarchy, this energy is not in itself linked to an

order relation, as is the valuation.

Finally, there is some mathematical structure un-

derlying the fact that the six orders studied in this pa-

per satisfy the Jordan-Dedekind chain condition, and

that the three compound orders (standard, merging-
inflating and inclusion-inflating) satisfy a stronger con-

dition similar to the original Jordan-Hölder theorem in

group theory, namely that all covering chains between

two comparable partial partitions comprise a constant

number of each type of elementary covering (
m
≺,

s
≺ or

i
≺). It is related to the lattice-theoretical property of up-

per semi-modularity [3,6] and its translation to posets
as Ore’s quadrilateral condition [18]. This will be the

topic of a purely mathematical paper.
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A Local knowledge: truncation and restriction

We introduced numerous binary relations on Π∗(E), most of
them being partial order relations, cf. Table 1. We will now
consider how such relations are preserved by the following two
operations on partial partitions, for any A ∈ P(E): truncation
by A:

π 7→ π ∧ 1A = {B ∩ A | B ∈ π, B ∩ A 6= ∅} , (42)

and restriction to A:

π 7→ π ∩ P(A) = {B ∈ π | B ⊆ A} . (43)

These operations are relevant to the problem of local knowl-

edge, what Serra [32] calls class permanency : given a partial
partition π and a restricted window A, viewing π through A

means either truncating all blocks of π, that is, taking π∧1A,
or restricting π to blocks inside A, that is, taking π ∩ P(A);
then it becomes interesting to know if these two operations
of truncation and restriction preserve a given order on partial
partitions.

We first consider compatibility with truncation. The fol-

lowing relations are preserved by truncation by A:

– The support inclusion, support containment and support

equality relations, since supp(πi ∧ 1A) = supp(πi) ∩A.
– The standard order : standard lattice theory gives π1 ≤

π2 ⇒ π1 ∧ 1A ≤ π2 ∧ 1A.
– The merging order, since it is the intersection of the stan-

dard order and the support equality relation.
– The inclusion order : for π1 ⊆ π2, the blocks of π1∧1A are

all non-void B ∩A for B ∈ π1, so they belong to π2 ∧ 1A.
– The inclusion-inflating order, that is, the intersection of

the standard order and of the singularity relation. Indeed,
let π1 ≤ π2 and π1 ⇚ π2. Then π1 ∧ 1A ≤ π2 ∧ 1A. The
blocks of π1 ∧ 1A (resp., π2 ∧ 1A) are the non-void B ∩A

for B ∈ π1 (resp., for B ∈ π2). If C ∩ A (C ∈ π2) contains
B1∩A and B2∩A (B1, B2 ∈ π1), then B1 and B2 intersect
C, and as π1 ≤ π2, B1, B2 ⊆ C, but as π1 ⇚ π2, we deduce
that B1 = B2, so B1∩A = B2∩A. Thus π1∧1A ⇚ π2∧1A.

The following relations are not preserved by truncation by A:

– The singularity relation: take π1 = {B, C} and π2 = {A},
where B ≬ A ≬ C but B,C 6⊆ A, then π1 ⇚ π2 but π1 ∧
1A = {A ∩ B,A ∩ C} 6⇚ π2 = π2 ∧ 1A.

– The building order : take B ⊃ A ⊃ ∅, π1 = 1B\A and
π2 = 1B, then π1 ⋐ π2 but π1 ∧ 1A = Ø 6⋐ 1A = π2 ∧ 1A.

– The inflating order : take the counterexample given for the
building order.

– The merging-inflating order : take the same counterexam-
ple.

We now consider compatibility with restriction. The fol-

lowing relations are preserved by restriction to A:

– The singularity relation: this is a special case of (12).
– The building order, see (7).
– The inclusion order : standard set theory gives π1 ⊆ π2 ⇒

π1 ∩ P(A) ⊆ π2 ∩ P(A).

The following relations are not preserved by restriction to A:
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– The support inclusion, support containment and support

equality relations; indeed, the support does not tell any-
thing about the existence of blocks included in A.

– The standard order.
– The merging order.
– The inflating order.
– The merging-inflating order.
– The inclusion-inflating order.

In fact, any order included in the standard order, that is com-

patible with restriction, must be included in the inclusion order.
Indeed, if π1 ≤ π2 but π1 6⊆ π2, then there is B ∈ π1 and
C ∈ π2 such that B ⊂ C, so B ∈ π1 ∩ P(B) but π2 ∩ P(B) ⊆
π2 \ {C}, and B is not included in a block of π2 \ {C}, thus
π1 ∩ P(B) 6≤ π2 ∩ P(B).
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