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Abstract In this paper, we propose an inertial forward back-
ward splitting algorithm to compute a zero of the sum of
two monotone operators, with one of the two operators be-
ing co-coercive. The algorithm is inspired by the accelerated
gradient method of Nesterov, but can be applied to a much
larger class of problems including convex-concave saddle
point problems and general monotone inclusions. We prove
convergence of the algorithm in a Hilbert space setting and
show that several recently proposed first-order methods can
be obtained as special cases of the general algorithm. Nu-
merical results show that the proposed algorithm converges
faster than existing methods, while keeping the computa-
tional cost of each iteration basically unchanged.

Keywords convex optimization, forward-backward
splitting, monotone inclusions, primal-dual algorithms,
saddle-point problems, image restoration

1 Introduction

A fundamental problem is to find a zero of a maximal mono-
tone operator T in a real Hilbert space X:

find x ∈ X : 0 ∈ T (x). (1)

This problem includes, as special cases, variational inequal-
ity problems, non-smooth convex optimization problems and
convex-concave saddle-point problems. Therefore this prob-
lem finds many important applications in scientific fields
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such as image processing, computer vision, machine learn-
ing and signal processing.

In case, T = ∇f is the gradient of a differentiable con-
vex function f , the most simple approach to solve (1) is to
apply for each k ≥ 0 the following recursion:

xk+1 = (Id−λkT )(xk) ,

where the operator (Id−λkT ) is the so-called forward op-
erator. Note, that the above scheme is nothing else than the
classical method of steepest descend and λk > 0 is the step
size parameter that has to be chosen according to a rule that
guarantees convergence of the algorithm.

In case, T is a general monotone operator, the classical
algorithm to solve (1) is the proximal point algorithm which
can be traced back to the early works of Minty [31] and Mar-
tinet [30]. See also the thesis of Eckstein [20] for a detailed
treatment of the subject.

The proximal point algorithm generates a sequence xk

according to the recursion

xk+1 = (Id +λkT )−1(xk) , (2)

where λk > 0 is a regularization parameter. The operator
(Id +λkT )−1 is the so-called resolvent operator, that has
been introduced by Moreau in [32]. In the context of al-
gorithms, the resolvent operator is often referred to as the
backward operator. In the seminal paper [46], Rockafellar
has shown that the sequence xk generated by the proximal
point algorithm converges weakly to a point x∗ satisfying
0 ∈ T (x∗).

Unfortunately, in many interesting cases, the evaluation
of the resolvent operator is as difficult as solving the origi-
nal problem, which limits the practicability of the proximal
point algorithm in its plain form. To partly overcome this
problem, it is shown in [46], that the algorithm still con-
verges when using inexact evaluations of the resolvent op-
erator. In fact, the evaluation errors have to satisfy a certain
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2 D. Lorenz, T. Pock

summability condition which essentially means that the re-
solvent operators have to be computed with increasing ac-
curacy. This is still somewhat limiting, since in practice the
errors of the resolvent operator are often hard to control.

1.1 Splitting methods

In many problems, however, the operator T can be writ-
ten as the sum of two maximal monotone operators, i.e.
T = A + B, such that the resolvent operators (Id +λA)−1

and (Id +λB)−1, are much easier to compute than the full
resolvent (Id +λT )−1. Then, by combining the resolvents
with respect to A, and B in a certain way, one might be able
to mimic the effect of the full proximal step based on T . The
two most successful instances that are based on combining
forward and backward steps with respect toA andB, are the
Peaceman-Rachford splitting algorithm [40],

xk+1 = (Id +λB)−1(Id−λA)(Id +λA)−1(Id−λB)(xk) ,

and the Douglas-Rachford splitting algorithm [18],

xk+1 = (Id +λB)−1[(Id +λA)−1(Id−λB) + λB](xk) .

These splitting techniques have been originally proposed in
the context of linear operators and therefore cannot be ap-
plied to general monotone operators. In [29], Lions and Mer-
cier have analyzed and further developed these splitting al-
gorithms. Their idea was to perform a change of variables
xk = (Id +λB)−1(vk), such that the Peaceman-Rachford
and Douglas-Rachford splitting algorithms have a meaning
even for A and B being multivalued operators. Regarding
convergence of the algorithms, the Peaceman-Rachford al-
gorithm still needs to assume that B is single-valued but the
Douglas-Rachford algorithm converges even in the general
setting, where A+B is just maximal monotone.

In [21], Eckstein has pointed out that the Douglas-Rach-
ford splitting algorithm can be re-written in the form of (2).
Hence, it is basically a certain instance of the proximal point
algorithm. Moreover, Eckstein has shown that the applica-
tion of the Douglas-Rachford algorithm to the dual of a cer-
tain structured convex optimization problem coincides with
the so-called alternating direction method of multipliers. It
is remarkable, that the Douglas-Rachford splitting algorithm
and its variants have seen a considerable renaissance in mod-
ern convex optimization [25,8]. The main reason for the re-
newed interest lies in the fact that it is well suited for dis-
tributed convex programming. This is an important aspect
for solving large scale convex optimization problems aris-
ing in recent image processing and machine learning appli-
cations.

Another important line of splitting methods is given by
the so-called forward-backward splitting technique [24,28,

9,29]. In contrast to the more complicated splitting tech-
niques discussed above, the forward-backward scheme is
based (as the name suggests) on the recursive application
of an explicit forward step with respect to B, followed by
an implicit backward step with respect to A. The forward-
backward algorithm is written as:

xk+1 = (Id +λkA)−1(Id−λkB)(xk) (3)

In the most general setting, where both A and B are gen-
eral monotone operators, the convergence result is rather
weak [39], basically, λk has to fulfill the same step-size
restrictions as unconstrained subgradient descend schemes.
However, if in additionB is single valued and Lipschitz, e.g.
B is the gradient of a smooth convex function, the situation
becomes much more beneficial. In fact, if B is L-Lipschitz,
and λk is chosen such that λk < 2/L, the forward back-
ward algorithm (3) converges to a zero of T = A + B [23,
47]. Similar to the Douglas-Rachford splitting algorithm, the
forward-backward algorithm has seen a renewed interest. It
has been proposed and further improved in the context of
sparse signal recovery [17,15], image processing [45], and
machine learning [19] applications.

1.2 Inertial methods

In [44], Polyak introduced the so-called heavy ball method,
a two-step iterative method for minimizing a smooth convex
function f . The algorithm takes the following form:{
yk = xk + αk(xk − xk−1)

xk+1 = yk − λk∇f(xk) ,

where αk ∈ [0, 1) is an extrapolation factor and λk is again a
step-size parameter that has to be chosen sufficiently small.
The difference compared to a standard gradient method is
that in each iteration, the extrapolated point yk is used in-
stead of xk. It is remarkable that this minor change greatly
improves the performance of the scheme. In fact, its effi-
ciency estimate [44] on strongly convex functions is equiv-
alent to the known lower complexity bounds of first-order
methods [35] and hence the heavy-ball method resembles
an optimal method. The acceleration is explained by the fact
that the new iterate is given by taking a step which is a com-
bination of the direction xk − xk−1 and the current anti-
gradient direction −∇f(xk).

The heavy ball method can also be interpreted as an ex-
plicit finite differences discretization of the time dynamical
system

ẍ(t) + α1ẋ(t) + α2∇f(x(t)) = 0 ,

where α1,2 > 0 are free model parameters of the equation.
This equation is used to describe the motion of a heavy body
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in a potential field f and hence the system is coined the
heavy ball with friction dynamical system.

In [2], Alvarez and Attouch translated the idea of the
heavy ball method to the setting of a general maximal mono-
tone operator using the framework of the proximal point
algorithm (2). The resulting algorithm is called the inertial
proximal point algorithm and it is written as{
yk = xk + αk(xk − xk−1)

xk+1 = (Id +λkT )−1(yk) ,
(4)

It is shown that under certain conditions on αk and λk, the
algorithm converges weakly to a zero of T . In fact, the algo-
rithm converges if λk is non-decreasing and αk ∈ [0, 1) is
chosen such that∑
k

αk‖xk − xk−1‖2 <∞ , (5)

which can be achieved by choosing αk with respect to a sim-
ple on-line rule which ensures summability or in particular
it is also true for αk < 1/3.

In subsequent work [33], Moudafi and Oliny introduced
an additional single-valued and Lipschitz continuous opera-
tor B into the inertial proximal point algorithm:{
yk = xk + αk(xk − xk−1)

xk+1 = (Id +λkA)−1(yk − λkB(xk)) ,
(6)

It turns out that this algorithm converges as long as λk <
2/L, where L is the Lipschitz constant of B and the same
condition (5), which is used to ensure convergence of the
inertial proximal point algorithm. Note that for αk > 0,
the algorithm does not take the form of a forward-backward
splitting algorithm, since B is still evaluated at the point xk.

In recent work, Pesquet and Pustelnik proposed a Douglas-
Rachford type parallel splitting method for finding the zero
of the sum of an arbitrary number maximal monotone op-
erators. The method also includes inertial forces [41] which
numerically speeds up the convergence of the algorithm. Re-
lated algorithms also including inertial forces have been pro-
posed and investigated in [7,6].

1.3 Optimal methods

In a seminal paper [34], Nesterov proposed a modification
of the heavy ball method in order to improve the conver-
gence rate on smooth convex functions. While the heavy ball
method evaluates the gradient in each iterate at the point xk,
the idea of Nesterov was to use the extrapolated point yk

also for evaluating the gradient. Additionally, the extrapo-
lation parameter αk is computed according to some special

law that allows to prove optimal convergence rates of this
scheme. The scheme is given by:{
yk = xk + αk(xk − xk−1)

xk+1 = yk − λk∇f(yk) ,
(7)

where λk = 1/L, There are several choices to define an
optimal sequence {αk} [34,35,4,48]. In [35], it has been
shown that the efficiency estimate of the above scheme is
up to some constant factor equivalent to the lower complex-
ity bounds of first-order methods for the class of µ-strongly
convex functions, µ ≥ 0, with L-Lipschitz gradient.

In [26], Güler has translated Nesterov’s idea to the gen-
eral setting of the proximal point algorithm, with the restric-
tion that the operator T is the subdifferential of a convex
function. Inexact versions of this algorithm have been pro-
posed and studied in [50]. In [4], Beck and Teboulle have
proposed the so-called fast iterative shrinkage thresholding
algorithm (FISTA), that combines in a clever way the ideas
of Nesterov and Güler within the forward-backward split-
ting framework. The algorithm features the same optimal
convergence rate as Nesterov’s method but it can be applied
also in the presence of an additional but simple (with easy to
compute proximal map) non-smooth convex function. The
FISTA algorithm can be applied to a variety of practical
problem arising in sparse signal recovery, image process-
ing and machine learning and hence has become a standard
algorithm. Related algorithms with similar properties have
been independently proposed by Nesterov in [36,37].

1.4 Content

In this paper we propose a modification of the forward-back-
ward splitting algorithm (3) to solve monotone inclusions.
Our method is inspired by the inertial forward-backward
splitting method (6), but differs from this method in two re-
gards. First, the operator B is evaluated at the inertial ex-
trapolate yk which is inspired by Nesterov’s optimal gradi-
ent method (7). In addition, we consider a symmetric posi-
tive definite map M , which can be interpreted as a precon-
ditioner or variable metric and is inspired by recently work
on primal dual algorithms [10,22,42,27] and forward back-
ward splitting [14,12,11]. These changes allow us to define
a new “meta-algorithm”, that includes, as special cases for
example several convex optimization algorithms that have
recently attracted a lot of attention in the imaging, signal
processing and machine learning communities.

In section 2 we will define the proposed algorithm and
prove the general convergence in a Hilbert space setting. In
section 3 we will apply the proposed algorithm to a class of
convex-concave saddle-point problems and will show how
several known algorithms can be recovered from the pro-
posed “meta-algorithm”. In section 4, we will apply the pro-
posed algorithm to image processing problems including,
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image restoration and image deconvolution. In the last sec-
tion, we will give some concluding remarks.

2 Proposed algorithm

We consider the problem of finding a point x∗ in a Hilbert
space X such that

0 ∈ (A+B)(x∗) , (8)

where A,B are maximal monotone operators. We addition-
ally assume that the operator B is single-valued and co-
coercive with respect to the solution set S := (A+B)−1(0)

and a linear, selfadjoint and positive definite map L, i.e. for
all x ∈ X , y ∈ S

〈B(x)−B(y), x− y〉 ≥ ‖B(x)−B(y)‖2L−1 (9)

where, as usual, we denote ‖x‖2L−1 = 〈L−1x, x〉. Note that
in the most simple case where L = l Id, l > 0, the operator
B is 1/l co-coercive and hence l-Lipschitz. However, we
will later see that in some cases, it makes sense to consider
more general L.

The algorithm we propose in this paper is a basically a
modification of the forward-backward splitting algorithm (3).
The scheme is as follows:{
yk = xk + αk(xk − xk−1)

xk+1 = (Id +λkM
−1A)−1(Id−λkM−1B)(yk) ,

(10)

where αk ∈ [0, 1) is an extrapolation factor, λk is a step-size
parameter and M is a linear selfadjoint and positive definite
map that can be used as a preconditioner for the algorithm
(cf. Section 3.2). Note that the iteration can be equivalently
expressed as{
yk = xk + αk(xk − xk−1)

xk+1 = (M + λkA)−1(M − λkB)(yk) ,
(11)

Observe that (10) (resp. (11)) differs from the inertial forward-
backward algorithm of Moudafi and Oliny insofar that we
also evaluate the operator B at the inertial extrapolate yk.
This allows us to rewrite the algorithm in the form of the
standard forward-backward algorithm (3).

In the following Theorem, we analyze the basic conver-
gence properties of the proposed algorithm.

Theorem 1 Let X be a real Hilbert space and A,B : X ⇒
X be maximally monotone operators. Further assume that
M,L : X → X are linear, bounded, selfadjoint and positive
definite maps and that B is single valued and co-coercive
w.r.t.L−1 (cf. (9)). Moreover, let λk > 0, α < 1, αk ∈ [0, α],
x0 = x−1 ∈ X and let the sequences xk and yk be defined
by (10) (or (11)). If

(i) Sk = M − λk

2 L is positive definite for all k and
(ii)

∑∞
k=1 αk‖xk − xk−1‖2M <∞

then xk converges weakly to a solution of the inclusion 0 ∈
(A+B)(x).

Proof Denote by x∗ a zero of A+B. From (8), it holds that

−B(x∗) ∈ A(x∗) .

Furthermore, the second line in (11) can be equivalently ex-
pressed as

M(yk − xk+1)− λkB(yk) ∈ λkA(xk+1) .

For convenience, we define for any symmetric positive defi-
nite M ,

φkM = 1
2‖x

k − x∗‖2M = 1
2 〈M(xk − x∗), xk − x∗〉 ,

∆k
M = 1

2‖x
k − xk−1‖2M = 1

2 〈M(xk − xk−1), xk − xk−1〉
Γ kM = 1

2‖x
k+1 − yk‖2M = 1

2 〈M(xk+1 − yk), xk+1 − yk〉 .

From the well-known identity

〈a−b, a−c〉M = 1
2‖a−b‖

2
M+ 1

2‖a−c‖
2
M− 1

2‖b−c‖
2
M (12)

we have by using the definition of the inertial extrapolate yk
that

φkM − φk+1
M = ∆k+1

M + 〈yk − xk+1, xk+1 − x∗〉M
−αk〈xk − xk−1, xk+1 − x∗〉M .

(13)

Then, by using the monotonicity of A we deduce that

〈λkA(xk+1)− λkA(x∗), xk+1 − x∗〉 ≥ 0

〈M(yk − xk+1)− λkB(yk) + λkB(x∗), xk+1 − x∗〉 ≥ 0

and

〈yk − xk+1, xk+1 − x∗〉M
+ λk〈B(x∗)−B(yk), xk+1 − x∗〉 ≥ 0 .

Combining with (13), we obtain

φkM − φk+1
M ≥ ∆k+1

M + λk〈B(yk)−B(x∗), xk+1 − x∗〉
−αk〈xk − xk−1, xk+1 − x∗〉M .

(14)

From the co-coercivity property of B we have that

〈B(yk)−B(x∗), xk+1 − x∗〉
= 〈B(yk)−B(x∗), xk+1 − yk + yk − x∗〉
≥ ‖B(yk)−B(x∗)‖2L−1 + 〈B(yk)−B(x∗), xk+1 − yk〉
≥ ‖B(yk)−B(x∗)‖2L−1 − ‖B(yk)−B(x∗)‖2L−1 − 1

2Γ
k
L

= − 1
2Γ

k
L
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Substituting back into (14) we arrive at

φkM − φk+1
M ≥ ∆k+1

M − λk

2 Γ
k
L − αk〈xk − xk−1, xk+1 − x∗〉M

Invoking again (12), it follows that

φk+1
M − φkM − αk

(
φkM − φk−1M

)
≤ −∆k+1

M + λk

2 Γ
k
L

+ αk
(
∆k
M + 〈xk − xk−1, xk+1 − xk〉M

)
= −Γ kM + λk

2 Γ
k
L + (αk + α2

k)∆k
M .

(15)

The rest of the proof closely follows the proof of Theorem
2.1 in [2]. By the definition of Sk and using (αk + α2

k)/2 ≤
αk, we have

φk+1
M − φkM − αk(φkM − φk−1M ) ≤ −Γ kSk

+ 2αk∆
k
M . (16)

By assumption (i), the first term is non-positive and since
αk ≥ 0, the second term is non-negative.

Now, defining θk = max(0, φkM − φ
k−1
M ) and setting

δk = 2αk∆
k
M = αk‖xk − xk−1‖2M ,

we obtain

θk+1 ≤ αkθk + δk ≤ αθk + δk

Applying this inequality recursively, one obtaines a geomet-
ric series of the form

θk+1 ≤ αkθ1 +

k−1∑
i=0

αiδk−i

Summing this inequality from k = 0, . . . ,∞, one has

∞∑
k=0

θk+1 ≤ 1

1− α

(
θ1 +

∞∑
k=1

δk

)

Note that the series on the right hand side converges by as-
sumption (ii).

Now we set tk = φkM −
∑k
i=1 θ

k and since φkM ≥ 0

and
∑k
i=1 θi is bounded independently of k, we see that tk

is bounded from below. On the other hand,

tk+1 = φk+1
M − θk+1 −

k∑
i=1

θi

≤ φk+1
M − φk+1

M + φkM −
k∑
i=1

θi = tk

and hence, tk is also non-decreasing, thus convergent. This
implies that φkM is convergent and especially that θk → 0.

From (16) we get

1
2‖x

k+1 − yk‖2Sk
≤ −θk+1 − αθk + δk

1
2‖x

k+1 − xk − αk(xk − xk−1)‖2Sk
≤ −θk+1 − αθk + δk

Since δk is summable it follows that ‖xk − xk−1‖Sk
→ 0

and hence

lim
k→∞

‖xk+1 − xk − αk(xk − xk−1)‖Sk
= 0 .

We already know that xk is bounded hence, there is a con-
vergent subsequence xν ⇀ x̄. Then we also get that yν =

(1 + αν)xν − ανxν−1 ⇀ x̄. Now we get from (10) that

xν = (Id +λνM
−1A)−1(yν − λνM−1B(yν))

and pass to the limit (extracting another subsequence such
that λν → λ̄ if necessary) to obtain

x̄ = (Id +λ̄M−1A)−1(x̄− λ̄M−1B(x̄))

which is equivalent to

−B(x̄) ∈ A(x̄)

which in turn shows that x̄ is a solution. Opial’s Theorem [38]
concludes the proof. ut

Next, we address the question whether the sequence {αk}
can be chosen a-priori such that the algorithm is guaranteed
to converge. Indeed, in case of the inertial proximal point
algorithm (4), it has already been shown in [2] that con-
vergence is ensured if {αk} is a nondecreasing sequence in
[0, α] with α < 1/3. The next theorem presents a related
result for the proposed algorithm.

Theorem 2 In addition to the conditions to Theorem 1 as-
sume that {λk} and {αk} are nondecreasing sequences and
that there exists a ε > 0 such that for all αk

Rk = (1− 3αk)M − (1− αk)2 λk

2 L ≥ εM . (17)

Then xk converges weakly to a solution of the inclusion 0 ∈
(A+B)(x∗).

Proof The proof of this result is an adaption of the proof
of Proposition 2.1 in [2]. From the last estimate in (15) and
using the definition of yk in (6) it follows that

φk+1
M − φkM − αk(φkM − φk−1M )

≤ −Γ kSk
+ αk(1 + αk)∆k

M

≤ −∆k+1
Sk
− α2

k∆
k
Sk

+ αk〈xk+1 − xk, xk − xk−1〉Sk

+ (αk + α2
k)∆k

M

≤ (αk − 1)∆k+1
Sk

+ (αk − α2
k)∆k

Sk
+ (αk + α2

k)∆k
M

≤ (αk − 1)∆k+1
Sk

+ αk∆
k
Tk
,

where Tk = 2M − (1−αk)λk

2 L.
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We define µk = φkM − αkφ
k−1
M + αk∆

k
Tk

and since
αk+1 ≥ αk and using the above inequality,

µk+1 − µk

= φk+1
M − αk+1φ

k
M + αk+1∆

k+1
Tk+1

− φkM + αkφ
k−1
M − αk∆k

Tk

≤ φk+1
M − φkM − αk(φkM − φk−1M ) + αk+1∆

k+1
Tk+1

− αk∆k
Tk

≤ (αk − 1)∆k+1
Sk

+ αk+1∆
k+1
Tk+1

.

Then, we obtain since αk+1 ≥ αk

µk+1 − µk

≤ 1
2 〈((αk − 1)Sk + αk+1Tk) (xk+1 − xk), xk+1 − xk〉

≤ 1
2 〈((αk+1 − 1)Sk + αk+1Tk) (xk+1 − xk), xk+1 − xk〉 .

Now using αk+1 ≥ αk and λk+1 ≥ λk we obtain

(αk+1 − 1)Sk + αk+1Tk

≤ (3αk+1 − 1)M + (1− αk+1)2 λk+1

2 L = Rk

which finally gives

µk+1 − µk ≤ −∆k
Rk
. (18)

Observe that by assumption (17), the sequence {µk} is non-
increasing and hence

φkM − αφk−1M ≤ µk ≤ µ1 .

It follows that

φkM ≤ αkφ0 + µ1
k−1∑
i=0

αi ≤ αkφ0 +
µ1

1− α

On the other hand, we have by summing up (18) from i = 1

to k,

µk+1 − µ1 ≤ −
k∑
i=1

∆i
Ri
.

Combining these two estimates it follows that

k∑
i=1

∆i
Ri
≤ µ1 − µk+1 ≤ µ1 + αφkM ≤ αk+1φ0 +

µ1

1− α
.

Since Rk ≥ εM , it follows that

∞∑
k=1

∆k
M <∞ ,

which especially shows (ii) in Theorem 1. The weak conver-
gence of the xk now follows from Theorem 1. ut

0 1 2
0

1/8

1/4

1/3

γ

α

Fig. 1 Upper bound on the extrapolation factor α in dependence on γ.

Remark 3 In case, M = m Id, L = l Id, λk ≡ λ and defin-
ing the normalized step size γ = lλ

m ∈ (0, 2), assertion (17)
reduces to

1− 3αk − ε−
(1− αk)2

2
γ ≥ 0 .

It easily follows that for any ε ∈ (0, (9 − 4γ)/(2γ)), the
algorithm converges, if the sequence {αk} is non-decreasing
with 0 ≤ αk ≤ α(γ), where

α(γ) = 1 +

√
9− 4γ − 2εγ − 3

γ
.

See Figure 1 for a plot of α(γ) using ε = 10−6.

Remark 4 Let us consider a “fully-implicit” variant of the
scheme (10), which is given by{
yk = xk + αk(xk − xk−1) ,

xk+1 = (Id +λkM
−1

(A+B))−1(yk) ,

where M is again a linear, selfadjoint and positive definite
map. In fact this algorithm, is an inertial proximal point
algorithm, in the M metric, whose convergence properties
have been studied in [2]. This algorithm has less stringent
convergence properties compared to the algorithm proposed
in this paper, but its application to practical problems is lim-
ited since the resolvent with respect to A + B can be com-
plicated.

Interestingly, if the operatorB is a linear, selfadjoint and
positive semi-definite map, the above fully-implicit scheme
can be significantly simplified. In fact, using λk ≡ λ and
setting M = M − λB, where λ is chosen such that M > 0,
it turns out that the fully implicit scheme in the M metric is
equivalent to our proposed inertial forward-backward split-
ting algorithm (10) in the M metric, which only requires to
compute the resolvent with respect to A.

According to Theorem 2.1 and Proposition 2.1 in [2],
condition (i) of Theorem 1 can be replaced by the simpler
condition M −λB > 0 and convergence of the algorithm is
guaranteed for {αk} non-decreasing in [0, α] with α < 1/3.
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3 Application to convex-concave saddle-point problems

Recently, so-called primal-dual splitting techniques have been
proposed which are motivated by the need to solve large-
scale non-smooth convex optimization problems in image
processing [10,22,42,27,16,13,49]. These algorithms can
be applied if the structure of the problem allows to rewrite it
as certain convex-concave saddle-point problems.

Now letX and Y be two Hilbert spaces and consider the
saddle point problem

min
x∈X

max
y∈Y

G(x) +Q(x) + 〈Kx, y〉 − F ∗(y)− P ∗(y) (19)

with convex G,Q : X → R∞, F ∗, P ∗ : Y → R∞, K :

X → Y linear and bounded and Q,P ∗ differentiable with
Lipschitz gradient (with respective Lipschitz constants LQ,
LP ).

We define the monotone operators A,B on X × Y as

A =

[
∂G K∗

−K ∂F ∗

]
, B =

[
∇Q 0

0 ∇P ∗
]

and observe that the optimality system of the saddle point
problem can be written as

0 ∈ (A+B)

[
x

y

]
.

This setup fits into our general framework of section 2.
The standard splitting iterations (3) and (6) would not

be applicable in general since the evaluation of the proxi-
mal mapping (Id +λA)−1 may be prohibitively expensive
in this case. However, if we consider the preconditioned it-
eration (10) with an appropriate mapping M the iteration
becomes feasible. The idea is, to choose M such that one
of the off-diagonal blocks in A cancel out. However, M still
has to be symmetric and positive definite and this leads to
the choice

M =

[
1
τ Id −K∗
−K 1

σ Id

]
. (20)

From (10) we get for λk = 1 the following inertial primal-
dual forward-backward algorithm

ξk = xk + αk(xk − xk−1)

ζk = yk + αk(yk − yk−1)

xk+1 = (Id +τ∂G)−1(ξk − τ(∇Q(ξk) +K∗ζk))

ξ̄k+1 = 2xk+1 − ξk

yk+1 = (Id +σ∂F ∗)−1(ζk − σ(∇P ∗(ζk)−Kξ̄k+1)).

(21)

In the case that Q = P ∗ = 0 and αk = 0 we obtain the
primal-dual method from [10].

The next two results characterize the conditions under
which the proposed inertial primal-dual forward-backward
algorithm algorithm converges.

Theorem 5 The iterates given by method (21) converge weakly
to a solution of the saddle point problem (19) if

0 < τ < 2/LQ, 0 < σ < 2/LP ,

‖K‖2 < ( 1
τ −

LQ

2 )( 1
σ −

LP

2 ),
(22)

and if αk ∈ [0, α] with α < 1 and the iterates (xk, yk) fulfill

∞∑
k=1

αk‖(xk, yk)− (xk−1, yk−1)‖2M <∞. (23)

Furthermore, condition (23) is fulfilled, if {αk} is nonde-
creasing and there exists ε > 0 such for all αk

1−3αk−ε
τ ≥ (1−αk)

2

2 LQ,

1−3αk−ε
σ ≥ (1−αk)

2

2 LP ,(
1−3αk−ε

τ − (1−αk)
2

2 LQ

)(
1−3αk−ε

σ − (1−αk)
2

2 LP

)
≥ (1− 3αk − ε)2‖K‖2 .

(24)

Proof SinceQ andP ∗ are convex with Lipschitz-continuous
gradients with Lipschitz constants LQ and LP , respectively,
it follows from the Baillon-Haddad Theorem ([3, Corollary
18.16]) that that ∇Q and ∇P ∗ are co-coercive w.r.t. L−1Q
and L−1P , respectively. Hence, for x, ξ ∈ X and y, ζ ∈ Y it
holds that

〈B(x, y)−B(ξ, ζ), (x, y)− (ξ, ζ)〉X×Y
= 〈∇Q(x)−∇Q(ξ), x−ξ〉X+〈∇P ∗(y)−∇P ∗(ζ), y−ζ〉Y
≥ L−1Q ‖∇Q(x)−∇Q(ξ)‖2X+L−1P ‖∇P

∗(y)−∇P ∗(ζ)‖2Y .

Thus B is co-coercive w.r.t. the mapping

L−1 =

[
L−1Q Id 0

0 L−1P Id

]
It is easy to check that

S = M − 1
2L =

[
( 1
τ −

LQ

2 ) Id −K∗
−K ( 1

σ −
LP

2 ) Id

]
is positive definite if (22) is fulfilled and (23) follows from
Theorem 1.

Applying condition (17) to (21) we have:

(1− 3αk)

[
1
τ Id −K∗
−K 1

σ Id

]
− (1− αk)2

2

[
LQ Id 0

0 LP Id

]
≥ ε

[
1
τ Id −K∗
−K 1

σ Id

]
which can be checked to be true under the stated condi-
tion (24). ut
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Let us present some practical rules to choose feasible pa-
rameters for the algorithm. For this we introduce the param-
eters γ, δ ∈ (0, 2), which can be interpreted as normalized
step sizes in the primal and dual variables and the parame-
ter r > 0, which controls the relative scaling between the
primal and dual step sizes.

Lemma 6 Choose γ, δ ∈ (0, 2) and r > 0 and set

τ =
1

‖K‖r + LQ/γ
and σ =

1

‖K‖/r + LP /δ
,

Furthermore, let {αk} be a non-decreasing sequence satis-
fying 0 ≤ αk ≤ α(γ, δ), where

α(γ, δ) = 1 +

√
9− 4 max(γ, δ)− 2εmax(γ, δ)− 3

max(γ, δ)
,

(25)

and ε ∈ (0, (9 − 4 max(γ, δ))/(2 max(γ, δ))). Then, the
conditions (22) and (24) of Theorem 5 hold, i.e. algorithm (21)
converges weakly to a solution of the saddle-point prob-
lem (19).

Proof It can be easily checked that the conditions (22) hold.
Indeed, one has τ < 2/LQ, σ < 2/LP and also(

1
τ −

LQ

2

) (
1
σ −

LP

2

)
=

‖K‖2 + ‖K‖
(
rLP (2−δ)

2δ +
LQ(2−γ)

2γr

)
+ LQLP

(2−γ)(2−δ)
4γδ

≥ ‖K‖2 . (26)

Next, we can compute the maximum value of αk that en-
sures convergence of the algorithm. Observe that for any
r > 0 assertion (24) holds in particular if

(1− 3αk − ε)−
(1− αk)2

2

τLQ
1− τ‖K‖r

≥ 0 ,

and

(1− 3αk − ε)−
(1− αk)2

2

σLP
1− σ‖K‖/r

≥ 0 .

where γ =
τLQ

1−τ‖K‖r and δ = σLP

1−σ‖K‖/r . Clearly, the two
inequalities are fulfilled if

(1− 3αk − ε)−
(1− αk)2

2
max(γ, δ) ≥ 0 ,

from which the upper bound α(γ, δ) follows. ut

Remark 7 From equation (26), we can see that in caseLP or
LQ is zero (and fixed γ respectively δ), it might be favorable
to choose larger respectively smaller values of r, since it
leads to a smaller product of the terms on the left hand side
of (26) and hence to larger product of primal and dual step
sizes.

3.1 Recovering known algorithms

The proposed algorithm includes several popular algorithms
for convex optimization as special cases:

– Forward-backward splitting: Set K = F ∗ = P ∗ = 0

in (19), and set M = Id, λk < 2/LQ and αk = 0

in (21). We obtain exactly the popular forward-backward
splitting algorithm (3) for minimizing the sum of a smooth
and a non-smooth convex function. See [15,17].

– Nesterov’s accelerated gradient method: In addition
to the previous setting, let λk = 1/LQ and let the se-
quence {αk} be computed according to one of the laws
proposed in [34,35,4]. We can exactly recover Nesterov’s
accelerated gradient method [34,35], the accelerated prox-
imal point algorithm [26] and FISTA [4].
These algorithms offer an optimal convergence rate of
O(1/k2) for the function gap (G + Q)(xk) − (G +

Q)(x∗). However, it is still unclear whether the sequence
of iterates {xk} converges. We cannot give a full an-
swer here but we can at least modify the FISTA algo-
rithm such that the sequence αk‖xk − xk−1‖2 has fi-
nite length. Following [2], condition (ii) can be easily
enforced “on-line” because it involves only past iterates.
One possibility to ensure summability in (ii) is to require
that αk‖xk − xk−1‖2M = O(1/k2), e.g.

αk = min((k−1)/(k+2), c/(k2‖xk−xk−1‖2M )), (27)

for some c > 0. However, since in the FISTA algorithm
αk = (k − 1)/(k + 2) → 1, Theorem 1 still does not
imply convergence of the iterates. This is left for future
investigation.

– Primal-dual algorithms: Setting in (19) P ∗ = Q =

0 and let in (21) αk = 0, we clearly obtain the first-
order primal-dual algorithm investigated in [43,22,10,
27]. Furthermore, if we let Q be a convex function with
Lipschitz continuous gradient ∇Q, we obtain the first-
order primal-dual algorithm of Condat [16]. Moreover,
in the present of smooth terms Q and P ∗ in the primal
and dual problem, we recover Vũ’s algorithm from [49].
We point out that the methods in [16,49] involve an ad-
ditional relaxation step of the form:

xk+1 = ((1− ρk) Id +ρk(Id +λkT )−1)(xk) , (28)

where ρk is the relaxation parameter. In case there are
no smooth termQ and P ∗ the relaxation parameter ρk ∈
(0, 2), in presence of Q and P ∗ the relaxation parameter
is further restricted. See Section 4 for numerical compar-
isons. Observe, that the overrelaxation technique is quite
different from the inertial technique we used in this pa-
per, which is of the form:

xk+1 = (Id +λkT )−1)(xk + αk(xk − xk−1)) . (29)



An inertial forward-backward algorithm for monotone inclusions 9

Indeed, it was shown in [1] that one can even use over-
relaxation and inertial forces simultaneously. However,
introducing an additional overrelaxation step in the pro-
posed framework is left for future investigation.

3.2 Preconditioning

Besides the property of the map M to make the primal-dual
iterations feasible, the map M can also be interpreted as ap-
plying the algorithm (10) using M = Id to the modified
inclusion:

−M−1B(x∗) ∈M−1A(x∗) ,

and hence, M−1 can be interpreted as a left preconditioner
to the inclusion (8). In the context of saddle point problems,
Pock and Chambolle [42] proposed a preconditioning of the
form

M =

[
T−1 −K∗
−K Σ−1

]
.

where T and Σ are selfadjoint, positive definite maps. A
condition for the positive definiteness of M follows from
the following lemma.

Lemma 8 Let A1, A2 be symmetric positive definite maps
and B a bounded operator. If ‖A−

1
2

2 BA
1
2
1 ‖ < 1, then A =[

A1 B
∗

B A2

]
is positive definite.

Proof We calculate

〈
[
x

y

]
,

[
A1 B

∗

B A2

] [
x

y

]
〉 = 〈x,A1x〉+ 2〈Bx, y〉+ 〈y,A2y〉

and estimate the middle term from below by Cauchy-Schwarz
and Young’s inequality and get for every c > 0 that

〈Bx, y〉 = 〈A−
1
2

2 BA
− 1

2
1 A

1
2
1 x,A

1
2
2 y〉

≥ − c
2‖A

− 1
2

2 BA
− 1

2
1 ‖2‖A

1
2
1 x‖2 − 1

2c‖A
1
2
2 y‖2.

Combining this with the assumption that ‖A−
1
2

2 BA
1
2
1 ‖ < 1

we see that we can choose c such that

〈
[
x

y

]
, A

[
x

y

]
〉

≥ (1− c‖A−
1
2

2 BA
− 1

2
1 ‖2)‖A

1
2
1 x‖2 + (1− 1

c )‖A
1
2
2 y‖2

> 0

which proves the auxiliary statement. ut

We conclude that algorithm (10) converges as long as one
has ‖Σ− 1

2KT−
1
2 ‖ < 1. In order to keep the proximal maps

with respect to G and F ∗ feasible, the maps T and Σ were
restricted to diagonal matrices. However, in recent work [5],
it was shown that some proximal maps are still efficiently
computable if T and Σ are the sum of a diagonal matrix and
a rank-one matrix.

Applying the preconditioning technique to the proposed
inertial primal-dual forward-backward algorithm (21), we
obtain the method

ξk = xk + αk(xk − xk−1)

ζk = yk + αk(yk − yk−1)

xk+1 = (Id +T∂G)−1(ξk − T (∇Q(ξk) +K∗ζk))

ξ̄k+1 = 2xk+1 − ξk

yk+1 = (Id +Σ∂F ∗)−1(ζk −Σ(∇P ∗(ζk)−Kξ̄k+1)).

(30)

It turns out that the resulting method converges under appro-
priate conditions.

Theorem 9 In the setting of Theorem 5 let furthermore∇Q
and ∇P ∗ be co-coercive w.r.t. the two bound, linear, sym-
metric and positive linear mapsD−1 andE−1, respectively.
If it holds that

Σ−1 − 1
2E > 0, (31)

T−1 − 1
2D > 0, (32)

‖(Σ−1 − 1
2E)−

1
2K(T−1 − 1

2D)−
1
2 ‖ < 1, (33)

and that αk is a nondecreasnig sequence in [0, α] with α <
1, and the iterates (xk, yk) of (30) fulfill

∞∑
k=1

αk‖(xk, yk)− (xk−1, yk−1)‖2M <∞

then (xk, yk) converges weakly to a saddle point of (19).
Furthermore, convergence is assured if there exists an ε > 0

such that for all αk it holds that

(1− 3αk − ε)Σ−1 ≥ (1−αk)
2

2 E,

(1− 3αk − ε)T−1 ≥ (1−αk)
2

2 D,∥∥∥((1− 3αk − ε)Σ−1 − (1−αk)
2

2 E
)− 1

2

K(
(1− 3αk − ε)T−1 − (1−αk)

2

2 D
)− 1

2
∥∥∥ ≤ 1

(1−3αk−ε) .

(34)

Proof We start by setting

C =

[
D 0

0 E

]
.



10 D. Lorenz, T. Pock

and by Theorem 1 we only need to check if S = M − 1
2C

is positive. Obviously, the diagonal blocks of S are positive,
by (31) and (32).

Now we use Lemma 8 to see that (31), (32) and (33)
imply that S is positive definite. For the second claim, we
employ Theorem 2 and only need to show that R = (1 −
3αk)M − (1−αk)

2

2 C ≥ εM which is equivalent to showing
that

(1− 3αk − ε)
[
T−1 −K∗
−K Σ−1

]
− (1−αk)

2

2

[
D 0

0 E

]
≥ 0.

Again using Lemma 8 we obtain that (34) ensures this. ut

3.3 Diagonal Preconditioning

In this section, we show how we can choose pointwise step
sizes for both the primal and the dual variables that will en-
sure the convergence of the algorithm. The next result is an
adaption of the preconditioner proposed in [42].

Lemma 10 Assume that∇Q and∇P ∗ are co-coercive with
respect to diagonal matrices D−1 and E−1, where D =

diag(d1, . . . , dn) andE = diag(e1, . . . , en). Fix γ, δ ∈ (0, 2),
r > 0, s ∈ [0, 2] and let T = diag(τ1, ...τn) and Σ =

diag(σ1, ..., σm) with

τj =
1

dj
γ + r

∑m
i=1 |Ki,j |2−s

, σi =
1

ei
δ + 1

r

∑n
j=1 |Ki,j |s

(35)

then it holds that

Σ−1 − 1
2E > 0 , T−1 − 1

2D > 0 , (36)

‖(Σ−1 − 1
2E)−

1
2K(T−1 − 1

2D)−
1
2 ‖ ≤ 1 . (37)

Furthermore, equation (34) is fulfilled if (25) is fulfilled.

Proof The first two conditions follow from the fact that for
diagonal matrices, the (36) can be written pointwise. By the
definition of τj , and σi it follows that for any s ∈ [0, 2] and
using the convention that 00 = 0,

1

τi
− di

2
>

1

τi
− di
γ

= r

m∑
i=1

|Ki,j |2−s ≥ 0 ,

and

1

σi
− ei

2
>

1

σi
− ei
δ

= 1
r

n∑
j=1

|Ki,j |s ≥ 0 .

For the third condition, we have that for any s ∈ [0, 2]

‖(Σ−1 − 1
2E)−

1
2K(T−1 − 1

2D)−
1
2x‖2

=

m∑
i=1

 n∑
j=1

1√
1
σi
− ei

2

Ki,j
1√

1
τj
− dj

2

xj

2

=

m∑
i=1

1
1
σi
− ei

2

 n∑
j=1

Ki,j
1√

1
τj
− dj

2

xj

2

<

m∑
i=1

1
1
σi
− ei

δ

 n∑
j=1

|Ki,j |
s
2 |Ki,j |1−

s
2

1√
1
τj
− dj

γ

xj

2

≤
m∑
i=1

1
1
σi
− ei

δ

 n∑
j=1

|Ki,j |s
 n∑

j=1

|Ki,j |2−s
1

1
τj
− dj

γ

x2j

 ,

(38)

where the second line follows fromKi,j ≤ |Ki,j | and γ, δ <
2 and the last line follows from the Cauchy-Schwarz in-
equality. By definition of σi and τj , and introducing r > 0,
the above estimate can be simplified to

m∑
i=1

1/r
1
σi
− ei

δ

 n∑
j=1

|Ki,j |s
 n∑

j=1

|Ki,j |2−s
r

1
τj
− dj

γ

x2j


=

m∑
i=1

n∑
j=1

|Ki,j |2−s
r

1
τj
− dj

γ

x2j

=

n∑
j=1

(
m∑
i=1

|Ki,j |2−s
)

r
1
τj
− dj

γ

x2j = ‖x‖2 . (39)

Using the above estimate in the definition of the operator
norm, we obtain the desired result

‖(Σ−1 − 1
2E)−

1
2K(T−1 − 1

2D)−
1
2 ‖2

= sup
x 6=0

‖(Σ−1 − 1
2E)−

1
2K(T−1 − 1

2D)−
1
2x‖2

‖x‖2
≤ 1 .

(40)

If we now assume that (25) is fulfilled, we especially obtain
that

1− 3αk − ε
δ

≥ (1− αk)2

2
and

1− 3αk − ε
γ

≥ (1− αk)2

2

and consequently, by using the definition of τj and σi from (35),
that

1/r

1−3αk−ε
σi

− (1−αk)
2

2 ei

∑
j

|Kij |s ≤
1

1− 3αk − ε

and
r

1−3αk−ε
τi

− (1−αk)
2

2 di

∑
i

|Kij |2−s ≤
1

1− 3αk − ε
.

Now one can use the same arguments as in inequalities (38)
and (39) to derive that (34) is fulfilled. ut
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4 Numerical experiments

In this section, we provide several numerical results based
on simple convex image processing problems to investigate
the numerical properties of the proposed algorithm.

4.1 TV-`2 denoising

Let us investigate the well-known total variation denoising
model:

min
u
‖∇u‖2,1 +

λ

2
‖u− f‖22 , (41)

where f ∈ RMN is a given noisy image of size M × N

pixels, u ∈ RMN is the restored image, ∇ ∈ R2MN×MN

is a sparse matrix implementing the discretized image gradi-
ent based on simple forward differences. The operator norm
of ∇ is computed as

√
8. The parameter λ > 0 is used to

control the trade-off between smoothness and data fidelity.
For more information we refer to [10]. Figure 2 shows an
exemplary denoising result, where we used the noisy image
on the left hand side as input image and set λ = 10.

The dual problem associated to (41) is given by the fol-
lowing optimization problem

min
p

1

2
‖λf −∇T p‖22 + IP (p) , (42)

where p ∈ R2MN is the dual variable and IP is the indicator
function for the set P = {p ∈ R2MN : ‖p‖2,∞ ≤ 1}.
This problem can easily cast into the problem class (19), by
setting Q(p) = 1

2‖λf − ∇
T p‖22, G = IP (p), and K =

F ∗ = P ∗ = 0.
In our first experiment of this section, we study the be-

havior of the error ek = αk‖xk − xk−1‖22, which plays a
central role in showing convergence of the algorithm. Fig-
ure 3 shows the convergence of the sequence {ek} gener-
ated by the FISTA algorithm by additionally using (27) for
different choices of the constant c. The left figure depicts a
case where c is not chosen large enough and hence the save
guard shrinks the extrapolation factor αk such that the error
ek still converges with rate 1/k2. The right figure shows a
case where c is chosen sufficiently large and hence the save
guard does not apply. In this case, the algorithm produces
the same sequence of iterates as the original FISTA algo-
rithm. From our numerical results, it seems that the asymp-
totic convergence of ek is actually faster that 1/k2 which
suggest that the iterates of FISTA are indeed convergent.

In the second experiment we consider a saddle-point for-
mulation of (41)

min
u

max
p
〈∇u, p〉+

λ

2
‖u− f‖22 − IP (p) , (43)
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Fig. 5 Comparison between inertial forces and overrelaxation. Both
techniques show similar performance improvement but overrelaxation
appears numerical less stable.

Casting this problem in the general from (19), the most sim-
ple choice is K = ∇, F ∗(p) = IP (p), G(u) = ‖u − f‖22,
Q = P ∗ = 0. Hence, algorithm 21 reduces to an iner-
tial variant of the primal-dual algorithm of [10]. According
to (22) the step sizes τ and σ need to satisfy τσ < 1/‖K‖2,
but the ratio τ/σ can be chosen arbitrarily.

Figure 4 shows the convergence of the primal dual gap
for different choices for αk and the ratio τ/σ. In general,
one can see that the convergence becomes faster for larger
values of αk. According to (24), we can guarantee conver-
gence for αk < 1/3 but we cannot guarantee convergence
for larger values of αk. In fact, it turns out that the feasi-
ble range of αk depends on the ratio τ/σ. For τ/σ = 0.1,
fastest convergence is obtained by choosing αk dynamically
as αk = (k − 1)/(k + 2) → 1. In this case, the primal-
dual shows a very similar performance to the FISTA algo-
rithm. For τ/σ = 0.01, the algorithm converges for up to
αk = 1/2, but diverges for the dynamic choice. This behav-
ior can be explained by the fact that the ratio τ/σ directly
influences the M -metric (20) which in turn leads to a diver-
gence of the error term

∑∞
k=1 αk‖xk − xk−1‖2M .

Next, we provide an experiment, where we compare the
effect of the inertial force with the effect of overrelaxation
that has already been considered in [16,49]. Figure 5 com-
pares the primal-dual gap of the plain primal-dual (i.e. αk =

0) algorithm [10] with the performance of its variants us-
ing either inertial forces using αk = 1/2 or overrelaxation
(see (28)) using ρk = 1.9. For all methods we used τ/σ =

0.01. Both variants improve the convergence of the plain
primal-dual algorithm but we observed that overrelaxation
leads to some numerical oscillations, in particular for values
of ρk close to 2.
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(a) Noisy image (b) Restored image

Fig. 2 Application to total variation based image denoising with `2 fitting term. (a) shows the noisy input image containing Gaussian noise with a
standard deviation of σ = 0.1, (b) shows the restored image using λ = 10.
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Fig. 3 Convergence of the error sequence in the FISTA algorithm.

4.2 TV-`2 deconvolution

Our next example incorporates an additional linear operator
in the data fidelity. The problem is given by

min
u
‖∇u‖2,1 +

λ

2
‖Hu− f‖22 , (44)

where H ∈ RMN×MN is a linear operator, for example H
can be such thatHu is equivalent to the 2D convolution h∗u,
where h is a convolution kernel. We again consider a saddle-
point formulation

min
u

max
p
〈∇u, p〉+

λ

2
‖Hu− f‖22 − IP (p) . (45)

Casting this problem into the general class of problems (19),
one has different possibilities. If we would choose K = ∇,
F ∗(p) = IP (p), G(u) = λ

2 ‖Hu − f‖22, Q,P ∗ = 0, we
would have to compute the proximal map with respect to
G in each iteration of the algorithm, which can be com-
putationally very expensive. Instead, if we choose G = 0,
Q(u) = λ

2 ‖Hu− f‖
2
2, we only need to compute ∇Q(u) =

λHT (Hu − f) which is obviously much cheaper. We call
this variant the explicit variant. Alternatively, we can addi-
tionally dualize the data term, which leads to the extended
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(a) τ/σ = 0.1
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(b) τ/σ = 0.01

Fig. 4 Convergence of the inertial primal-dual forward-backward algorithm (21) for different choices of τ/σ and αk.

(a) Noisy and blurry image (b) Restored image

Fig. 6 Application to total variation based image deconvolution with `2 fitting term. (a) shows the noisy (σ = 0.01) and blurry input image
together with the known point spread function, and (b) shows the restored image using λ = 1000.

saddle-point problem

min
u

max
p,q
〈∇u, p〉+ 〈Hu, q〉+ 〈f, q〉 − 1

2λ
‖q‖22 − IP (p) .

where q ∈ RMN is the new dual variable vector. Casting

now this problem into (19), we identify K =

(
∇
H

)
, G =

0, Q = 0, F ∗(p, q) = IP (p) + 1
2λ‖q‖

2
2 − 〈f, q〉, which

eventually leads to proximal maps that are easy to compute.
We call this variant the split-dual variant.

Figure 7 shows a comparison of the convergence be-
tween the explicit and the split-dual variants with and with-

out inertial forces. For the explicit variant, the maximal value
of the inertial force was computed using formula (25), where
we set LK =

√
8, LQ = λ, γ = 1 and r = 100. This results

in a theoretically maximal value of αk = 0.236 but the algo-
rithm also converges for αk = 1/3 (see Remark 4). For the
split-dual variant, the formulation does not involve any ex-
plicit terms and hence the maximal feasible value for αk is
1/3. The primal and dual step sizes were computed accord-
ing to the preconditioning rules (35) (skipping the explicit
terms), where we again used r = 100.

The figure shows the primal energy gap, where the opti-
mal primal energy value has been computed by running the
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Fig. 7 Convergence of the primal dual algorithms with and without
inertial forces.

explicit variant for 10000 iterations. The algorithms were
stopped, after the primal energy-gap was below a threshold
of 10−2. From the figure, one can see that for both variants,
the inertial force leads to a faster convergence. One can also
see that in the early stage of the iterations, the explicit vari-
ant seems to converge faster than the split-dual variant. Fi-
nally, we point out that the asymptotic convergence of both
variants is considerably faster than O(1/k2).

5 Conclusion

In this paper we considered an inertial forward-backward al-
gorithm for solving monotone inclusions given by the sum
of a monotone operator with an easy-to-compute resolvent
operator and another monotone operator which is co-coercive.
We have proven convergence of the algorithm in a general
Hilbert space setting. It turns out that the proposed algo-
rithm generalizes several recently proposed algorithms for
example the FISTA algorithm of Beck and Teboulle [4] and
the primal-dual algorithm of Chambolle and Pock [10]. This
gives rise to new inertial primal-dual algorithms for convex-
concave programming. In several numerical experiments we
demonstrated that the inertial term leads to faster conver-
gence while keeping the complexity of each iteration basi-
cally unchanged.

Future work will mainly concentrate on trying to find
worst-case convergence rates for particular problem classes.
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