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Abstract Sparse modeling can be used to character-
ize outlier type noise. Thanks to sparse recovery the-

ory, it was shown that 1-norm super-resolution is ro-

bust to outliers if enough images are captured. More-

over, sparse modeling of signals is a way to overcome

ill-posedness of under-determined problems. This nat-
urally leads to the question: does an added sparsity

assumption on the signal will improve the robustness

to outliers of the 1-norm super-resolution, and if yes,

how strong should this assumption be? In this article,
we review and extend results of the literature to the

robustness to outliers of overdetermined signal recov-

ery problems under sparse regularization, with a convex

variational formulation. We then apply them to general

random matrices, and show how the regularization pa-
rameter acts on the robustness to outliers. Finally, we

show that in the case of multi-image processing, the

structure of the support of signal and noise must be

studied precisely. We show that the sparsity assump-
tion improves robustness if outliers do not overlap with

signal jumps, and determine how the regularization pa-

rameter can be chosen.

Keywords multi-image processing, super-resolution,

outliers, sparse signal, regularization parameter

1 Introduction

Sparse signal approximation is a well known tool to deal

with ill-conditioned inverse problems. A wide range of
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applications benefit from this tool. From compressive
sensing (Candes et al. 2006) to image denoising (Elad

and Aharon. 2006; Yu et al. 2012) and texture synthe-

sis (Tartavel et al. 2013), the added knowledge that a

signal is sparse allows for the recovery of said signal

when the recovery of a non-sparse signal would have
been impossible. It was shown that natural images can

have sparse reprensations in some dictionaries (Mairal

et al. 2009; Mallat and Yu. 2010; Benoit et al. 2011).

The sparse approximation has mainly been made on

signals. It was shown that if an under-determined ob-
servation matrix has the required property (Null Space

Property, Restricted Isometry Property), then perfect

recovery from these observations is possible by solving

a convex L1 norm minimization problem. Candes and
Tao (2005) show that the underdetermined sparse re-

covery problem is equivalent to an overdetermined out-

lier robustness problem. In this setting, the sparsity as-

sumption is made on the noise which contaminates the

data. Such noise is often consider as outlier, as it can
represent observations unrelated to the signal. This was

used to estimate the robustness to outliers of L1 multi-

image super-resolution (SR) in Traonmilin et al (2013).

It was shown that, if enough images are available, then
L1-super-resolution can forgive a fraction of contami-

nated images in the acquired low resolution images. In

Mitra et al (2013), similar theoretical developments are

used and applied to the robustness to outliers of ran-

dom uniform observations.

Knowing the benefits of sparsity priors, the question

of imposing it on both the signal and the noise comes

naturally. In this article, we will study the following

problem: given an overdetermined outlier robustness
problem, does sparse regularization improve the num-

ber of outliers that can be removed? This question has

been studied in (Studer et al. 2012; Kuppinger et al.
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2012; Studer and Baraniuk. 2013) with a different (and

underdetermined) observation model. It was shown that

a compromise between signal and noise sparsity must

be made to guarantee recovery for particular algorithms

(approximate L0, basis pursuit and L1 − L2) and ob-
servation matrices. However, in the variational formu-

lation, the question of determining the optimal regular-

ization parameter is not treated. Moreover the effect of

such methods on multi-image processing is not studied.

Multi-image processing is a recent trend in compu-
tational photography. The use of information redun-

dancy permits the design of image processing algorithms

that produce images of higher quality. Multi-image de-

noising (or burst denoising) aims at lowering the noise

in the final image. Super-resolution is the process of
recovering a high resolution (HR) image from low reso-

lution (LR) versions of it (Farsiu et al. 2004a;b; Milan-

far. 2010; Tian and Ma. 2011). The L1 super-resolution

problem is already in use and recognized for its robust-
ness (He et al. 2007; Yap et al. 2009). Moreover, sparse

regularization is already in use for mono-image (Ning

et al. 2013) super resolution. Even popular regulariza-

tion methods such as total variation (TV ) regulariza-

tion (Marquina and Osher. 2008) can be interpreted as
the convex version of a sparse gradient regularization.

By extending results of sparse recovery theory to the

case of multi-image processing, this work will give a

better understanding of how these methods behave.

1.1 Outline and contributions

In this article, we begin with the introduction of the

multi-image acquisition model in Section 2. This model

is the justification for the more generic set-up that we

use for the theoretical content of the paper. We recall

the L1 convex variational framework used to recover the
higher quality image. In Section 3, we study the prob-

lem of outlier robustness (which we call forgiveness)

using convex programming with sparse convex regular-

ization. We show that forgiveness on sparse solutions
is equivalent to an extension of a Non Concentration

Property highlighting the distinct role of the supports

of the outliers and the signal. In Studer et al (2012);

Kuppinger et al (2012); Studer and Baraniuk (2013),

coherency based sufficient conditions of convergence are
given for variations of basis pursuit algorithm. We also

show an extension of the popular Restricted Isometry

Property (RIP) which respects the different roles of sig-

nal and noise sparsity. In Section 4, we apply our re-
sults to Gaussian random observation matrices, with

2 different regularization schemes. We show that the

simplest case can be studied with existing results on

compressive sensing. When the regularization parame-

ter varies, checking our extended RIP gives a good tool

to predict the qualitative behaviour of forgiveness with

respect to sparse regularization. We also point out that

the choice of the matrix on which we check the RIP is
important, and illustrate that remark by using 2 differ-

ent constructions. Finally, in Section 5, we study the

benefits of sparse regularization for forgiveness in the

area of multi-image processing. While the RIP was a
good tool to study random matrices, we observe in two

image processing problems (multi-image denoising and

super resolution), that the convex sparse prior (the TV

in our case) adds some benefits only if precise require-

ments on the structure of the support of outliers and
signal are met: signal jumps and outliers should not

overlap. The structure of sparsity supports has been

studied before (Jenatton et al. 2011; Bach et al. 2012)

and has led to the creation of dedicated measures of
sparsity (mixed L1, Lq norms) or dedicated algorithms

(Yu et al. 2012). In this article, we show that, under

a non-structured norm (L1 norm), when the observa-

tion operator and sparsifying transform are structured,

perfect recovery is possible for some structured spar-
sity supports. Such requirements can only be studied

with characterizations more precise than the RIP such

as the non concentration property. In the case of super-

resolution, these requirements can be met only for par-
ticular acquisition models (finite support of the transla-

tion operator). These theoretical results are illustrated

by experiments.

2 Multi-image acquisition Model

2.1 Forward model

We introduce an image generation model to describe
the acquisition of a burst of images using a hand-held

camera. In a finite-dimensional context, we suppose that

images are generated by a linear map A:

A : RMl×Ml →
(

R
l×l
)N

u → (Aiu)i=1,N = (SQiu)i=1,N

(1)

whereM is the super-resolution factor,N is the number

of acquired images, l× l is the size of acquired images,

u is a HR image of size Ml × Ml, the Ai are linear
maps generating LR images, S is the sub-sampling op-

erator by a factor M and Qi are the deformations asso-

ciated with each image. SR is the process of recovering

u0 from w = Au0 + n (n is the observation noise). In
this paper, we suppose that the Qi are known. In this

setting, for M > 1, the inversion of A is called super-

resolution interpolation. When M = 1, we will simply
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talk of multi-image denoising.

It has been shown in Traonmilin et al (2012) that A is

almost surely full rank when motions are random com-

positions of translations and rotations and N ≥ M2.

2.2 Variational Formulation and previous results

When A is full rank and M2 ≤ N , L2-norm minimiza-

tion guarantees that the energy of the reconstruction

noise is bounded by the energy of observation noise

times the operator norm of the pseudo-inverse A† of

A. This leads to useful results when observation noise
has bounded energy. In the case of outliers, no assump-

tion is made on the power of the noise and L2 recon-

struction does not guarantee a good result (unbounded

reconstruction noise). It was shown that L1-norm mini-
mization removes outliers if the ratio of images contam-

inated by outliers is small enough. We write L1-norm

minimization of the data-fit :

argminu‖Au− w‖1 (2)

with w = Au0 + n0. The problem is to find conditions

on A ensuring that u0 is the unique solution of (2)
when n0 is an outlying noise. Outliers have the form :

n0 = n.T with T a vector of 0 and 1 representing the

support of the noise (the . represents the component-

by-component vector product). We do not make any
hypothesis on n. (Traonmilin et al. 2013) showed that

if the number of noisy images Nc fulfills the condition

Nc/N < C with C a constant, then u0 is the unique

solution of Equation (2).

In Section 3, matrix A will be a general full rank
matrix of an over-determined system. In other sections,

A will be an over-determined full rank acquisition op-

erator of size Nl2 × (Ml)2 with N > M2.

2.3 Sparse priors on natural images

Given an image u, we say that u is sparse for the par-
ticular sparsifying transform Ψ if Ψu is sparse. A wide

category of sparse priors (Ψ) have been considered for

natural images. Some of these are wavelet decomposi-

tions, projection in a dictionary of patches (Geiger et al.
1999; Elad and Aharon. 2006). Another frequent as-

sumption on images is that they minimize the L1-norm

of the gradient (the total variation). Under the light of

the sparse recovery theory, minimizing this L1-norm is

equivalent to imposing some sparsity on the gradient.
In the part on super-resolution, we will use this prior

as a practical example. We will study the minimization

argminu‖Au− w‖1 + λ‖Ψu‖1 (3)

where Ψ is the sparsifying transform.

3 Forgiving Matrices and Sparse Regularization

3.1 Definitions

Let T be a family of supports, A a N×M full rank ma-
trix. From Traonmilin et al (2013), we define forgiving

matrices :

Definition 1 (Forgiving Matrix.) Let T be a set

of supports in R
N (subset of {0, 1}N).The matrix A is

T -forgiving if for all T ∈ T , n ∈ R
N , u0 ∈ R

M , we have:

u0 = argminu‖Au− (Au0 + n.T )‖1 (4)

and u0 is the unique minimizer. We say that A forgives

T errors.

Most of the time, in the literature, T is the set of sup-

ports with a certain cardinal K. They then describe
K-sparse outliers. However, preserving arbitrary sets of

supports will be crucial to the image processing part of

this article. We extend this definition of forgiving ma-

trix to the regularized case. Let the sparsifying trans-
form Ψ be a matrix of size N ′ ×M . We want to study

the case when A is T -forgiving on regular solutions u0

where Ψu0 is L-sparse for some supports of signal spar-

sity L. Ideally, we would like to extend the concept as

Definition 2 ((L1, L0) Forgiving Matrix Under a

Sparse Hypothesis) Let T be a set of supports in

R
N and L a set of supports in R

N ′

. The matrix A is T -

forgiving on Ψ,L-sparse solutions if for all T ∈ T , n ∈
R

N , u0 ∈ R
M such that Ψu0 = α0 ∈ L.RN ′

, we have:

u0 = argminu‖Au− (Au0+n.T )‖1 s.t. Ψu ∈ L.RN ′

(5)

and u0 is the unique minimizer.

However, the lack of practical algorithm to solve

exactly such a problem drives us to study a convexified

version of it. In this paper we will consider the L1, L1

sparse regularization.

Definition 3 ((L1, L1) Forgiving Matrix Under a

Sparse Hypothesis.) Let λ ∈ R. Let T be a set of

supports in R
N and L a set of supports in R

N ′

. We

say that A is T -forgiving on λΨ,L-sparse solutions by
convex programming if for all T ∈ T , n ∈ R

N , u0 ∈ R
M

such that Ψu0 = α0 ∈ L.RN ′

, we have:

u0 = argminu‖Au− (Au0 + n.T )‖1 + λ‖Ψu‖1 (6)

and u0 is the unique minimizer.

Remark 1 When performing, minimization (6). We call
λ, the regularization parameter. Usually, this parame-

ter is considered as the level of regularization, i.e. the

amount of regularity we want to impose the on the im-

age.



4 Yann Traonmilin et al.

Remark 2 Equation (6) is equivalent to: u0 is the unique

minimizer of

minu‖Aλ
ru− wr‖1 (7)

where Aλ
r =

(

A

λΨ

)

and wr =

(

Au0

λΨu0

)

+

(

n.T

−λΨu0

)

=
(

Au0 + n.T

0

)

Remark 3 From the previous remark, if there is a λ,
such that Aλ

r is forgiving outliers with supports in T ′ =
{(

τ1
τ2

)

, τ1 ∈ T , τ2 ∈ L
}

(We say then that Aλ
r is T ′-

forgiving or T ,L-forgiving), then A is T -forgiving on

λΨ,L sparse solutions. In the next section, we will see

that the converse is true.

Definition 4 (Non-Concentration Property.)

Let T be a set of supports in R
N and V a subspace

of RN . We say that V has the T -Non-Concentration

Property (NCP) if for all v ∈ V \{0} and all T ∈ T ,

‖v.T ‖1 < ‖v.T c‖1 (8)

where T c stands for the complement support of T .

We say that a matrix has the T -Null Space Property
(T -NSP) if its null space has the T -NCP.

Notice that, given the finite-dimensional setting, the

NCP property implies the existence of a constant γ < 1

such that for all v ∈ V and all T ∈ T :

‖v.T ‖1 ≤ γ‖v.T c‖1 . (9)

This constant is called the NSP constant in the area of
sparse recovery.

When T and L are families of supports of cardinal

K and S respectively. We talk about K,S-forgiveness

and K,S-NCP. As explained in Candes and Tao (2005),
forgiveness of a matrix A is equivalent to the sparse

recovery property of matrices B anihilating A.

Definition 5 (Annihilating matrix.) Let A be a

N ×M matrix. We say that B is an annihilator of A or
annihilates A if B has size (N −M)×N , is full rank

and BA = 0.

Definition 6 (Sparse Recovery Property.) Let T
be a set of supports in R

N (subset of {0, 1}N).The ma-

trix B has the T -sparse recovery property if for all
T ∈ T , x0 ∈ R

N , we have:

x0 = argminx‖x‖1 s.t. Bx = Bx0 (10)

and x0 is the unique minimizer. We say that B is T -

sparse capable.

Moreocer forgiveness of a is equivalent to the NCP

of the space spanned by A. The NCP of a set is also

equivalent to the sparse recovery property of matrices

B having this set for kernel:

Theorem 1 For λ = 0, the forgiveness of A is equiv-
alent to the sparse recovery propery of the annihilators

of A.

Proof See Candes and Tao (2005) or use Theorem 3. ⊓⊔

3.2 Exact Recovery Property

This property can be found in Candes and Tao (2006).

It is useful to study a particular instance of a forgiveness

problem. For completeness of the paper, we produce a

direct proof for the forgiveness problem

Theorem 2 Exact Reconstruction Property (ERP)

Let A, T , n, u0 be an instance of the problem (2). A
sufficient condition for u0 to be the unique minimizer

is the existence of a vector v ∈ R
N such that :

1. v ∈ kerAH (kernel of AH)
2. v.T = sign(n.T ), ‖v.T c‖∞ < 1

Proof Because we can always make the change of vari-

ables u′ = u− u0, it suffices to verify that:

‖Au− n.T ‖1 ≥ ‖n.T ‖1 (11)

Using the properties of the infinity norm of v, we have:

‖Au− n.T ‖1 ≥< v, n.T −Au > (12)

which we can decompose:

‖Au− n.T ‖1 ≥< v, n.T > − < v,Au > (13)

‖Au− n.T ‖1 ≥ ‖n.T ‖1− < AHv, u > (14)

with AHv = 0 which leads to the desired result. ⊓⊔

3.3 Characterization of Forgiveness by the

Non-Concentration Property

We will extend the following theorem, (a direct demon-

stration can be found in Traonmilin et al (2013)).

Theorem 3 The two following propositions are equiv-

alent:

1. A is T -forgiving

2. ImA (the image of A) has the T -Non Concentration

Property.

Theorem 4 If N ′ = M and Ψ is invertible, the three
following propositions are equivalent (recall that T ′ is
set of the concatenations of the supports from T and

L):
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1. A is T -forgiving on λΨ,L-sparse solutions.

2. Aλ
r is the T ′-forgiving.

3. ImAλ
r has the T ′-Non Concentration Property (or

T ,L-NCP).

Proof 2 ⇔ 3: We use directly Theorem 3.

3 ⇒ 1: Using Theorem 3, ImAλ
r has the T ′-NCP

implies that Aλ
r is T ′-forgiving. In particular, for every

wr =

(

Au0 + n.T
0

)

defined as in Remark 2. Conse-

quently, problem (6) has u0 as a unique solution for

each u0,T ′ which is equivalent to the forgiveness on

λΨ,L-sparse solutions.

1 ⇒ 2: Let A be T -forgiving on λΨ,L-sparse so-

lutions , L ∈ L and T ∈ T . Let u0 ∈ R
N , let n1 ∈

R
N , n2 ∈ R

N ′

. Let u1 = Ψ−1(n2.L). Using the forgive-

ness of A on λΨ,L-sparse solutions, u1 is the unique

minimizer of

u1 = argminu‖Au− (Au1 + n1.T )‖1 + λ‖Ψu‖1. (15)

We make the change of variable u = v + u1 − u0. Then

u0 is the unique minimizer:

u0 =

argminv‖Av − (Au0 + n1.T )‖1 + λ‖Ψ(v + u1 − u0)‖1
u0 =

argminv‖Av − (Au0 + n1.T )‖1 + λ‖Ψv − Ψu0 − n2.L‖1
(16)

Consequently, Aλ
r is T ′-forgiving. ⊓⊔

Remark 4 If Ψ is a generic decomposition in an overde-

termined dictionary, only the sufficient condition 3 ⇔
2 ⇒ 1 holds.

Remark 5 From this theorem, the forgiveness of Aλ
r is

guaranteed when A is T -forgiving and Ψ is L-forgiving.

A simple application of this theorem is the behaviour

of the regularization when λ → 0.

Proposition 1 Let us suppose that A is K-forgiving.
Then for λ sufficiently small Aλ

r is K forgiving on sparse

solutions for any sparsity.

Proof Let T ′ =

(

T

L

)

∈ T ′. Let λ > 0 and u with

‖u‖1 = 1 . Because ImA has the K-NCP with constant

γ, we have:

‖(Au).T ‖1 + λ‖(Ψu).L‖1 < γ‖(Au).T c‖1 + λ‖(Ψu).L‖1
‖(Aλ

ru).T
′‖1 <γ‖(Au).T c‖1 + λ(‖(Ψu).L‖1

− ‖(Ψu).Lc‖1) + λ‖(Ψu).Lc‖1
(17)

If (‖(Ψu).L‖1 − ‖(Ψu).Lc‖1) < 0, ImAλ
r has the T, L-

NCP. If not, for λ sufficiently small and independent

from u (Ψ is a finite dimensional linear operator), we

have

γ‖(Au).T c‖1+λ(‖(Ψu).L‖1−‖(Ψu).Lc‖1) < ‖(Au).T c‖1
(18)

and ImAλ
r has the T, L-NCP. The conclusion follows

from Theorem 4. ⊓⊔

With the non concentration property, we can reject

cases where sparse regularization will not improve for-

giveness.

Proposition 2 If Ψ does not have the S-NCP. Then

for λ large enough, Aλ
r does not have the K,S-NCP.

Proof Let T , L be supports of cardinalK and S respec-

tively. There is a u such that ‖(Ψu).L‖1 > ‖Ψu.Lc‖1.
Let 0 < a < ‖(Ψu).L‖1 − ‖Ψu.Lc‖1. Then,

‖(Au).T ‖1 + λ‖(Ψu).L‖1 >‖(Au).T ‖1 + λa

+ λ‖(Ψu).Lc‖1.
(19)

For λ large enough, ‖(Au).T ‖1 + λa > ‖(Au).T c‖1 and

‖(Au).T ‖1 + λ‖(Ψu).L‖1 > ‖(Au).T c‖1 + λ‖Ψu.Lc‖1
(20)

and Aλ
r does not have the K,S-NCP. ⊓⊔

3.4 A sufficient condition of forgiveness: the Restricted

Isometry Property

The Restricted Isometry Property introduced by (Can-

des and Tao. 2005; Candès. 2008) can be a convenient

way to ensure forgiveness of some matrices. This suffi-
cient property can be verified for a matrix B annihilat-

ing A. It will then guarantee that B is sparse capable,

and give the forgiveness of A with Theorem 1 The RIP

is designed for supports with a particular cardinality.

In order to study the regularized problem and its ro-
bustness to outliers, we need the RIP property for sup-

ports of the form T =

(

τ1
τ2

)

with cardinality |τ1| = K

on the first N coordinates and |τ2| = S on the last N ′

coordinates. We say that such T has cardinal K,S. Fol-

lowing definition 5, the matrix B (annihilating A) has
size N × (N +N ′). We will write BT the restriction of

any matrix B to the columns matching the support T

(BTx = B(xT )) where xT is x zeroed outside of T .
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3.4.1 Extension of the RIP to the regularized case

Definition 7 B has the restricted isometry property

of order K,S and constant δ > 0 if for all x ∈ R
N+N ′

,

for all supports T with cardinal K,S

(1− δ)‖xT ‖2 ≤ ‖B(xT )‖2 ≤ (1 + δ)‖xT ‖2 . (21)

The usual demonstration (Candes and Tao. 2005; Co-

hen et al. 2009) proves that the RIP implies the non

concentration property, which implies the forgiveness.

Here, we show that it is important to distinguish the
sparsity of the signal and of the outliers. We kept the

simplest demonstration to obtain the qualitative re-

sult. Better constant can be obtained with slightly more

complicated arguments.

Theorem 5 Let B be an annihilator of A. If B has

RIP of order 3K, 3S with constant δ ≤
√
2−1√
2+1

, then kerB
has NCP of order K,S and A is K,S forgiving.

Proof We adapt the proof from Cohen et al (2009).

We prove the NCP of kerB. Let x ∈ kerB. Let T0 be

the support with cardinal K,S selecting the K biggest

absolute values of x on the first N coordinates and
S biggest absolute values of x on the last N ′ coordi-
nates. Let T1...Tr be the sequence of support of cardi-

nal 2K, 2S having the next biggest elements. Let x0 =

xT0
+ xT1

, then Bx0 = −B(
∑r

i=2 xTi
) because x ∈

kerB. It is sufficient to verify the NCP for T = T0

because it concentrates the most energy of x. Using

Cauchy-Schwartz inequality (or norm equivalence) ‖xT ‖1 ≤
K1/2‖xT,1‖2+S1/2‖xT,2‖2 where xT,1 is x restricted to

first N coordinates, and xT,2 is x restricted to the last
N ′ coordinates

Because x0,1 and x0,2 are 3K, 3S-sparse, we use the

definition of x0 followed by the RIP hypothesis and the

triangle inequality :

‖xT ‖2 ≤ K1/2‖xT,1‖2 + S1/2‖xT,2‖2
≤ K1/2‖x0,1‖2 + S1/2‖x0,2‖2
≤ (1 − δ)−1(K1/2‖Bx0,1‖2 + S1/2‖Bx0,2‖2)

≤ (1 − δ)−1

(

K1/2‖B
(

r
∑

i=2

xTi,1

)

‖2

+ S1/2‖B
(

r
∑

i=2

xTi,2

)

‖2
)

≤ (1 − δ)−1

(

r
∑

i=2

(K1/2‖BxTi,1‖2 + S1/2‖BxTi,2‖2)
)

(22)

We use the RIP again:

‖xT ‖2 ≤ 1 + δ

1− δ

(

r
∑

i=2

(K1/2‖xTi,1‖2 + S1/2‖xTi,2‖2)
)

(23)

Now, we bound the right side with ‖x‖1. Let j ≥ 1
and y (respectively y′) be one of the first N coordinate

of xTj+1
(respectively xTj

). Then |y| ≤ |y′|. Let z (re-

spectively z′) be one of the last N ′ coordinate of xTj+1

(respectively xTj
). Then |z| ≤ |z′|. From this observa-

tion,

2Ky ≤ ‖xTj ,1‖1
2Sz ≤ ‖xTj ,2‖1.

(24)

We square and sum over y and z :

2K‖xTj+1,1‖22 ≤ ‖xTj ,1‖21
2S‖xTj+1,2‖22 ≤ ‖xTj ,2‖21

(25)

We take the square root and add these inequalities:
√
2(K1/2‖xTj+1,1‖2 + S1/2‖xTj+1,2‖2) ≤ ‖xTj

‖1 (26)

We use this result with equation (23) :

‖xT ‖1 ≤ 1 + δ

1− δ

1√
2
‖xT c‖1 (27)

which is the NCP if 1√
2
1+δ
1−δ ≤ 1. This is equivalent to

δ ≤
√
2−1

1+
√
2
. ⊓⊔

Remark 6 This theorem could be easily extended to

matrices B having more than 2 blocks, i.e. for signal
corrupted by sparse noise in a union of dictionaries Ar.

3.4.2 The choice of the annihilating matrix

The quality of the RIP is driven by the conditioning of

sub-matrices of B. To our knowledge, the choice of the

B such that kerB = ImA and B has the RIP with best

constant and/or order, is an open problem. This leads
to some other questions. Given a matrix C, C might

not be the best candidate to verify the RIP for its own

sparse recovery property. However, we can easily con-

struct a B from A by taking the orthogonal projection

on the orthogonal of the image of A (P(ImA)⊥) and re-
stricting it to its image. Then B is an annihilator of A.

Also, we can construct a family of annihilators of Ar

using an annihilator of A.

Proposition 3 Let ǫ => 0. Let Φ = (ΨHΨ)−1Ψ . Let

Br =
(

B1, −λ−1AΦ
)

, with B1 = ǫP(ImA)⊥ +I (I is the

identity matrix). Then Br is an annihilator of Aλ
r .

Proof First, we remark that B2 = −λ−1B1AΦ implies

BrA
λ
r = 0. Thus Br =

(

B1, −λ−1B1AΦ
)

is sufficient.

Moreover B1 is full rank and B1A = A. ⊓⊔
Remark 7 We wanted to construct Br from P(ImA)⊥ .

We added I to ensure that B1 is full rank.

In Section 4.3, we show with an example that dif-

ferent classes of annihilating matrices lead to different

RIP constants.
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3.4.3 A sufficient condition for the RIP of the

annihilating matrices

Here we show that, with our particular construction of

annihilating matrices, we can find sufficient conditions

for theK,S-RIP of Aλ
r . Let Br =

(

B1 B2

)

annihilating

Aλ
r , with B1 a N ×N matrix and B2 a N ×N ′ matrix.

We ask ourselves when Br has RIP.

Definition 8 (Operator bounds on sparse vec-

tors.) B is bounded by σm, σM on K sparse vectors
if :

σM = supx,|T |≤K

‖BxT ‖2
‖xT ‖2

(28)

σm = infx,|T |≤K
‖BxT ‖2
‖xT ‖2

(29)

Proposition 4 (Normalization.) If σm < ‖Bx‖2

‖x‖2
<

σM for x K,S sparse, there is an η such that ηB has
RIP with constant δ = σM−σm

σM+σm
. We call ηB normalized

B.

Proof If we let η = 2/(σM +σm) and δ = σM−σm

σM+σm
, then

ησm = 1− δ and ησM = 1 + δ. ⊓⊔
The mutual coherence between B1 and B2 (Simi-

larly as in Candès and Romberg (2007)) is useful to
produce a deterministic sufficient condition.

Proposition 5 (Sufficient condition for the RIP

of the annihilator of Aλ
r .) Let B1 bounded by σm1

, σM1

on K-sparse vectors and B2 bounded by σm2
, σM2

on

S-sparse vectors. Let σm = min(σm1
, σm2

) and σM =

max(σM1
, σM2

). Let µ = sup|T |≤K,|L|≤S‖BH
1,TB2,L‖op.

If µ < σ2
m, then normalized Br has RIP of order K,S

and constant δ′ =
√

σ2
M

+µ−
√

σ2
m−µ√

σ2
M

+µ+
√

σ2
m−µ

< 1.

Proof Let x =

(

x1

x2

)

(x1 has size N) be a vector sup-

ported on T with cardinal K,S.

‖Bx‖22 = ‖B1x1 +B2x2‖22
= ‖B1x1‖22 + ‖B2x2‖22 + 2 < B1x1, B2x2 >

(30)

The mutual coherence µ between B1 and B2 plays an

important role in this equation:

| < B1x1, B2x2 > | ≤ µ‖x1‖2‖x2‖2 ≤ µ

2
‖x‖22 (31)

because ab ≤ (a2 + b2)/2. The first two terms are con-

trolled by the bounds of B1 and B2. We have :

min(σm1
, σm2

)2 − µ ≤‖Bx‖22
‖x‖22

≤ max(σM1
, σM2

)2 + µ

√

σ2
m − µ ≤‖Bx‖2

‖x‖2
≤
√

σ2
M + µ

(32)

The conclusion follows from proposition 4. ⊓⊔

3.4.4 On the choice of λ

The parameter λ represents the level of a priori knowl-

edge on the signal that we want to use in the minimiza-

tion of the considered problem. The question of chosing
λ in different settings (e.g. L2, L2 minimization L2, L1

minimization) is studied intensively in the area of im-

age processing. A way to perform this choice is to set an

objective function (generally a risk function) and find

the λ which minimize the risk (Vaiter et al. 2012). Here,
the case of noiseless recovery is studied. Consequently,

two questions come naturally:

– Given λ , which couples K,S lead to to a perfect
recovery.

– Given K,S, can we find λ leading to a perfect re-

covery (i.e. the problem is K,S-forgiving for some

λ).

Ideally, we would need to choose λ to optimize the

NCP constant or to guarantee the ERP. Because the

NCP is an equivalent characterization of forgiveness,
this would associate each couple K,S with an optimal

NCP constant (when λ varies). If this constant is lower

than 1 then recovery would be possible. However, this

is difficult to determine in general as L1 conditioning
of sub-matrices of Aλ

r will intervene. In specific image

processing problems, it might be possible to estimate

directly this constant. In some simple set-up, we can

study exactly the NCP and ERP with respect to λ (Sec-

tion 5).

A first step is to try to optimize the RIP, which will

give a sufficient conditioning for K,S forgiveness. We

show that we can guarantee the RIP for some λ with

our construction of annihilating matrix for a certain
class of Aλ

r . However, as said before, because we do

not know the optimal annihilator (in terms of RIP),

this result has limited practical use, but highlights how

blocks of B interact. Later experiments will show that
testing directly the RIP of some annihilators lead to the

qualitative behaviour of some random matrices.

Next, we study how, from Aλ
r we can calculate the

RIP constant δ′ for a particular Br. Which in turn,
permits to derive sufficient condition on λ to guarantee

the K,S-forgiveness of Aλ
r .

Theorem 6 We consider a regularized Aλ
r and the cor-

responding Br (constructed as in Proposition 3) with
ǫ = 0: Br = (I,−λ−1AΦ). Let A′ = AΦ. We suppose

that A′ is bounded by σm(A′), σM (A′) on S-sparse vec-

tors. Let µ1 = sup|T |<K,|L|<S‖IHT A′
L‖2.
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If µ2
1 < σm(A′)2, then we can find λ sucht that

µ1

σm(A′)2 < λ−1 < 1
µ1
. With such λ, matrix Br (nor-

malized) has RIP of order K,S and constant δ′ < 1.

In particular for λ−1 = 1/σm(A′), we have δ′ ≤√
κ2+µ1−

√
1−µ1√

κ2+µ1+
√
1−µ1

where κ = σM (A′)/σm(A′)

Proof Let σm = min(σm1
, σm2

), σM = max(σM1
, σM2

)

as defined in Proposition 5. Because B1 = I, σm1
=

σM1
= 1 :

σm = min(1, λ−1σm(A′)) (33)

and

σM = max(1, λ−1σM (A′)) (34)

To meet the hypothesis of Proposition 5, we need µ =

λ−1µ1 < σ2
m. This is true if the following inequalities

are true :

λ−1µ1 < 1

λ−1µ1 < λ−2σm(A′)2
(35)

which are equivalent to

λ−1 <
1

µ1

µ1

σm(A′)2
< λ−1

(36)

Such λ−1 exist if:

µ2
1 < σm(A′)2 (37)

Then , with Proposition 5, Br has RIP of order K,S

and constant δ′ < 1.

If λ−1 = 1/σm(A′) , we have σm = 1 , σM = κ and

µ. Using these values :

δ′ ≤
√

κ2 + µ1 −
√
1− µ1

√

κ2 + µ1 +
√
1− µ1

(38)

⊓⊔

Remark 8 We showed that given a particular family of
Br, we can sometimes determine which one gives a RIP.

Remark 9 The condition µ2
1 < σm(A′)2 is strong. Some

matrices verify this : take for example the matrix B2 =
(

I

I

)

.

Using the explicit value of λ from this theorem. Its
hypotheses require that A′ has a well conditioned sub-

matrices, and small norm (i.e. small mutual coherence

between A and Φ ) if κ = 1.25 and µ1 = 0.1, δ′ ≤
√
2−1√
2+1

.

4 The case of random matrices

We study the case of convex sparse regularization and

robustness for random matrices. First, we suppose that

Aλ
r =

(

A

λΨ

)

where A and Ψ are a N ×M and N ′×M

Gaussian random matrices. Let T be the set of supports

T ⊂ R
N with |T | = K and L ⊂ R

N ′

the set of supports

L with |L| = S. In Section 4.3, the regularization part

Ψ will be identity.

4.1 Review of existing bounds for λ = 1

Let Br be an annihilator of Aλ
r In Candes and Tao

(2005), Candes and Tao argue that we can think of

B as a random Gaussian matrix. Matrix B has size

N −M ×N (dimImA = dimkerB = M). Then B has
the K-sparse recovery capability and A is K-forgiving

with overwhelming probability if :

K < C
N −M

log N
N−M

(39)

with C a constant. We want to see how this condition

evolves when we add regularization. We use the follow-

ing proposition:

Proposition 6 If Aλ
r is K + S-forgiving for any spar-

sity, then A is T -forgiving on λΨ,L-sparse vectors.

Proof We show the NCP. ImAλ
r has the K + S-NCP.

Moreover the set of supports of size K + S contains

(T ,L). Consequently, ImAλ
r has the (T ,L)-NCP and A

is T -forgiving on λΨ,L-sparse vectors. ⊓⊔.

Aλ
r has size N + N ′ × M . We see how the bound for

random matrix is changed by convex sparse regulariza-

tion.

Proposition 7 A is T -forgiving on λΨ,L-sparse vec-
tors (or Aλ

r is K,S forgiving) with overwhelming prob-

ability if:

K + S < C
N +N ′ −M

log N+N ′

N+N ′−M

(40)

Proof We use equation (39) with the dimensions of Aλ
r

and apply Proposition 6. ⊓⊔

This study is only theoretical as taking the same kind
of basis for observation and regularization is not real-

istic. However, it shows an example where adding reg-

ularization adds forgiveness power. The main point is

that K + S is what drives the forgiveness power, i.e.
when there is more outliers, the signal needs to be the

more sparse according to this bound. This is confirmed

by the experiment from Figure 1, where we generated
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Fig. 1 A random, Ψ random. Worst reconstruction PSNR
when Aλ

r has size N = 100, M = 50 w.r.t to signal and noise
sparsity K,S for (a) λ = 0.1, (b) λ = 1 and (c) λ = 2.

random forgiveness experiments for different values of

K,S. We show the worst reconstruction Peak Signal to

Noise Ratio (PSNR) in decibels (dB) of the result of

the minimization of problem (7) (using ℓ1 −MAGIC ,
the software used in Candes and Tao (2006)).

This review showed that K+S is the limiting factor

for λ = 1. However, each line of Aλ
r in this case has the

same energy. Thus checking K + S in this non-uniform

RIP leads to the same result as checking the K,S RIP.

4.2 K,S-forgiveness with respect to λ

We generate K,S-forgiveness in Figure 1. 100 random

forgiveness experiments using for each experiment a
Gaussian random matrix A of size 100×50 and a Gaus-

sian random matrix Ψ of size 50×50. The PSNR of the

worst experiment for each K,S is displayed. We ob-

serve that for each λ, we have a constraint of the type
K + c(λ)S < C0 where c(λ) is a constant depending on

λ. Qualitatively, for large λ much more outliers are re-

moved, but this works for very sparse signals. For small

λ, improvement with respect to the non regularized case

is less strong but works for signals that are less sparse.

This is confirmed by our theoretical analysis with

the K,S-RIP. We show experimentally that the K,S-

RIP gives a qualitative way to check if the matrix is
K,S-forgiving. Let A and Ψ be Gaussian random ma-

trices. We show an estimation of the RIP of P(ImAλ
r )

⊥ . In

Figure 2, we generate the same number of experiments,

and check if the worst conditioning of one sub-matrix
per experiment has the required RIP constant. We show

when the RIP is verified for different λ. The union of

all the couple K,S shows where we can have a perfect

reconstruction with sparse regularization (provided we

can find λ). The shape of the zone of the K,S couples
leading to a perfect reconstruction follows the same be-

haviour as in Figure 1. As expected, a quantitative gap

exists between the characterization by the RIP and the

recovery experiments.

We studied the case of purely random matrices to

make a link with results from the literature. Next, we
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Fig. 2 A random, Ψ random. Signal and noise sparsity
K,S leading to the RIP when Aλ

r is a random observation
with random regularization matrix with N = 100, M = 50
for (a) λ = 0.1, (b) λ = 1 and (c) λ = 2.
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Fig. 3 A random, Ψ = I. Signal and noise sparsity K,S
leading to the K,S-RIP of Br = (I,−λ−1A) with N = 100,

M = 50 for (a) λ = 0.1
√

M ,(a)λ =
√

M and (c) λ = 2
√

M .
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Fig. 4 A random, Ψ = I. Same experiment as Figure 3
using a different annihilator. Signal and noise sparsity K,S
leading to the K,S-RIP with N = 100, M = 50 for (a) λ =

0.1
√

M , (a) λ =
√

M and (c) λ = 2
√

M .

study another type of random matrices where only the

sparsifying transform of the signal is random.

4.3 The case of random observation from a sparse

regularization space

Here we consider Aλ
r =

(

A

λI

)

. We perform the same

experiments as in the previous section. Using the con-

struction of Br from Section 3.4.3 for ǫ = 0, we have

B1 = I and B2 = −λ−1A. For each λ, we check the
couples, K,S, for which, Br has RIP in Figure 3. In

Figure 4, we make the same experiment using P(ImAλ
r )

⊥ .

It illustrates the fact that different matrices having the

same kernel lead to different RIP. In conclusion, the
RIP should only be used as a qualitative measure of

how the recovery behaves, and the annihilator should

be chosen carefully.
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Fig. 5 A random, Ψ = I. Worst PSNR of the recon-
struction w.r.t. signal and noise sparsity K,S, for Aλ

r with

N = 100, M = 50 for (a) λ = 0.1
√

M ,(a)λ =
√

M (c)

λ = 2
√

M

In Figure 5, the perfect recovery experiment is made

using Aλ
r . Variations of λ give the same behaviour of the

shape of the zone leading to K,S-forgiveness.

5 Application to multi-image processing

In this section, we first show in the case of multi-image

processing (multi image denoising), that for supports

having a fixed value of sparsity K,L, TV regularization
does not improve forgiveness. However, if we make the

assumption that supports of signal gradient and outliers

are disjoint, we show that forgiveness is improved. We

use this result to show that some particular SR prob-
lems can be better solved using L1−TV minimization.

These consideration lead to the determination of the

value of the optimal regularization parameter for 1D

L1 − TV multi-signal denoising and super-resolution

problem.

5.1 Multi-image denoising

Multi-image denoising (also called burst denoising) is

the process of using several images of the same scene

to produce an image with reduced noise. We consider
here the very simple problem of removing outliers from

a collection of registered images. Using the multi-image

acquisition model from Section 2 with sub-sampling fac-

tor M = 1 and no motion (Qi = Id). The L1 minimiza-
tion from Equation 2 will lead to the selection of the

median of the observations of each pixel. In this case,

we can directly study the non-concentration property

of A and Aλ
r . Because it is a particular case of super-

resolution (with M = 1), it will allow us to draw some
limits for the behaviour of L1 − TV SR.

Let N be odd. In 1D, A is of size Nl × l and made

of l × l diagonal blocks of 1. Let T inT ,

Proposition 8 A is T forgiving if and only if each

pixel is contaminated at most N/2 times

Proof We check the equivalent T NCP for A. First, if

a pixel i is contaminated K = ⌊N/2⌋ + 1 times. We

consider the problem where only this pixel is not 0.

Then

‖(Au).T ‖1 = K|ui| > ⌊N/2⌋|ui| = ‖(Au).T c‖1 (41)

and the NCP is not verified. It is necessary that any
pixel is not contaminated more than ⌊N/2⌋ times for A

to be T forgiving.

Conversely, if every pixel is not contaminated more
than ⌊N/2⌋, we look at the worst case when every pixel

is contaminated exactly K = ⌊N/2⌋ times. We have

‖(Au).T ‖1 =
K
∑

i

|ui| < (⌊N/2⌋+ 1)
∑

i

|ui| = ‖(Au).T c‖1 (42)

Then ImA has the T -NCP. ⊓⊔

We now consider Ψ the discrete gradient function :

(Ψu)1 = u1, (Ψu)i = ui− ui−1. Because Ψ is invertible,

for any support of sparsity L, we can find u such that :

‖(Ψu).L‖1 > ‖(Ψu).Lc‖1 (43)

If we consider the worst case for the NCP of Aλ
r ,

we find that Ψ cannot improve it. Given a support of

sparsity L, we can always find a signal u such that

‖(Ψu).L‖1 − ‖(Ψu).Lc‖1 > 0. With such u, we would

need to ensure the NCP :

‖(Au).T ‖1 + λ‖(Ψu).L‖1 = K
∑

i=1,S

|ui|+ λ‖(Ψu).L‖1

< (N −K)
∑

i=1,S

|ui|+ λ‖(Ψu).Lc‖1

(44)

which is equivalent to

K
∑

i=1,S

|ui|+ λ(‖(Ψu).L‖1 − ‖(Ψu).Lc‖1)

< (N −K)
∑

i=1,S

|ui|
(45)

The left side is minimized for λ = 0. This is the weak-
est inequality that we can obtain. Consequently, in the

worst case, it is better to avoid TV regularization. In

practice, outliers might not contaminate jumps in the

signal. Using the ERP, we can show that the system be-
comes very forgiving, we can even determine an optimal

λ.

Let us suppose that no support of outlier coincides
with jumps in the signal, i.e. if the gradient at a some

position is non 0, the 2 samples used for its calculation

are never contaminated by outliers.
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Fig. 6 A multi-image observation, Ψ gradient, over-

lap. Worst PSNR of the reconstruction w.r.t. signal and noise
sparsity K,S when outliers can overlap with signal jumps
with N = 7 and l = 50 for (a) λ = 0 ,(b)λ = 0.95N/2

Proposition 9 Let T ′ be the sparsity support of out-
liers and signal, such that outliers and signal jumps be

disjoint. Then T ′ is not a concatenation of two sets

of supports of signal and noise. Let us suppose that at

most K outliers contaminate each pixel and λ > 0. If

(2K −N)/2 < λ < N/2, Aλ
r is T ′-forgiving.

Proof We look for a vector v ∈ R
(N+1)l which verifies

properties of Theorem 2. We index the values of v by

indices (vj,k)j=1..l,k=1..N+1. Index j represents the pixel

number. Index k represents the acquired image number

for k ≤ N and the image gradient for k = N + 1. Let

T ′ = (T, L) be a support in T ′. Let v such that v.T =
sign(n).T v.L = sign(Ψu0).L. We need (Aλ

r )
Hv = 0

which translates for each pixel (values indexed by j of

(Aλ
r )

Hv):

∑

k=0,N−1

vj,k + λ(vj,N+1 − vj+1,N+1) = 0 (46)

Given a pixel, we can distinguish two cases :

– pixel j is not contaminated by outliers. Then, for

k = 1..N each variable vj,k is free and we can choose
vj,k = −λ(vj,N+1− vj+1,N+1)/N . Because the max-

imum L1 norm of the right side is 2, we guarantee

that ‖v.T ′c‖∞ < 1 if λ < N/2.

– pixel j is contaminated by outliers. Then we need
∑

k∈T vj,k = −∑k∈T c vi,k − λ(vj,N+1 − vj+1,N+1),

with the right side having free variables. Because the

maximum L1 norm of the left side is K, we can find

the right v with ‖v.T ′c‖∞ < 1 if K < N −K + 2λ,

which is rewritten λ > (2K −N)/2.

⊓⊔

The same proposition is true in 2D with (2K −
N)/4 < λ < N/4.

The result of experiments with overlapping outliers
and signal jumps are displayed in Figure 6. They show

that when we allow outliers and signal jumps to overlap,

multi-image denoising with L1 − TV is not forgiving.
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Fig. 7 A = multi-image observation, Ψ = gradient. No

overlap Worst PSNR of the reconstruction w.r.t. signal and
noise sparsity K,S when outliers do not overlap with signal
jumps with N = 7 and l = 50 for (a) λ = 0 ,(b)λ = 0.95N/2

In Figure 7, we show that with no overlap between
jumps and outliers and (N − 2)/2 < λ < N/2, Aλ

r is

N − 1-forgiving., for N = 7. In other words, only one

clean observation of each pixel is needed when there is

no overlap.

5.2 Super-Resolution

5.2.1 The limits of L1 − TV super-resolution for

outlier removal

We now consider A as a 1D translational SR matrix
and Ψ is the same discrete gradient calculation as in the

previous section. The study in the worst case scenario

for multi-image denoising shows that without a precise

hypothesis on the support of signal and outliers, sparse

L1 regularization does not enhance forgiveness.

For large number of images, L1 norm super-resolution

is forgiving Nc contaminated images if the number of

total images N is greater than CN with C a constant.
In Figure 8, we show experiments of the forgiveness of

A and Aλ
r for an acquisition setting having poor for-

giveness. We observe the trade-off between the number

of outliers and the sparsity of the signal for a perfect
reconstruction.

The main conclusion that we can draw from this

experiment is that enforcing a regularity condition on
the image allows to be robust to more outliers, but that

the improvement is limited compared to the strength of

the assumption on the signal.

Similarly to the multi-image denoising case, we would

like to know if outliers not coinciding with signal jumps

would be removed with TV regularization. The main

problem with exact super-resolution is that the lines of
A are sine cardinal. Consequently, the contamination

by one outlier will concern all pixels in the desired HR

image.
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Fig. 8 A = 1D SR operator, Ψ = gradient. Worst PSNR
of the reconstrucion for TV regularized 1D super-resolution
w.r.t to signal and noise sparsity with N = 10, M = 2 and
l = 25 for (a) λ = 0,(b)λ = 1 and (c)λ = 10

5.2.2 Finite impulse response L1 SR algorithm benefits

from TV regularization

In practice, some SR methods make the approximation

that the shift operator is of finite length, such model

can be found in Champagnat et al (2009). We propose

to replace the shift by convolution by a sine cardinal by
the convolution by a truncated Gaussian. Such model

can be justified by the knowledge of real Point Spread

Function estimation (which can be found in Delbracio

et al (2012)). Here, for 1D SR , A is defined by

A : RMl →
(

R
l
)N

u → (Aiu)i=1,N = (SGiu)i=1,N

(47)

whereGi is the convolution by a shifted truncated Gaus-

sian (gq)q=−p,p of size 2p+ 1. We choose the Gaussian
parameter a such that |gp| is small. We consequently

suppose that Gi is 0 outside of the first p + 3 diago-

nals (the amplitude of translations in SR can be kept

less than M = 2 without loss of generality). We keep

the same definition for Ψ . To avoid complicated calcula-
tions, we also suppose that signal jumps are separated

by the length of the filter.

Proposition 10 Let T ′ be the supports of sparsity such
that outliers and signal jumps are separated by p+1 and

that jumps are separated by at least 2p + 1 pixel. Let

us suppose that at most K outliers contaminate each
pixel. let G+ = maxi,j‖Gi,j‖1 and G− = mini,j‖Gi,j‖1
where Gi,j is the jth column of SGi. If (K(G++G−)−
NG−)/2 < λ < NG−/2 , Aλ

r is K-forgiving.

Proof We look for a vector v ∈ R
Nl+Ml which veri-

fies properties of theorem 2. Let T ′ = (T, L) be a sup-

port in T ′. Let v such that v.T = sign(n).T v.L =

sign(Ψu0).L. We write v =

(

v1
v2

)

where v1 has size Nl

and v2 has size Ml. We need (Aλ
r )

Hv = 0 which, for

each HR pixel (each column j of Aλ
r ), translates to:

AH
j v1 + λΨH

j v2 = 0, (48)

with Aj the jth column of A and Ψj the jth column of

Ψ . Given a pixel, we can distinguish two cases :

– pixel j is not contaminated by outliers. Then each

variable in v1 is free. We need AH
j v1 > 2λ because

the maximum value of ΨH
j v2 is 2. The restriction

|v1|∞ < 1 imposes that λ < ‖AH
j ‖1/2.

– pixel j is contaminated by outliers. Then we need

AH
j (v1.T ) = −AH

j (v2.T
c)− λΨH

j v2 (49)

with the right side being free variables. Similarly as

before, it is necessary that ‖AH
T,j‖1 < ‖AH

T c,j‖1+2λ,

which is equivalent to λ > (‖AH
T,j‖1 − ‖AH

T c,j‖)/2.
These two conditions are sufficient, and using the def-

inition of G+ and G−, the condition (K(G+ + G−) −
NG−)/2 < λ < NG−/2 is sufficient for the ERP. ⊓⊔

Remark 10 We can find a λ if K < Kmax = N/(1 +

G+/G−)/2. Typically,G+/G− ∼ 2.If consecutive jumps
were allowed in the signal, the constants would change

and would require the use of the L1 norm of inverse

matrices of restrictions of A. Because estimating the

extremum of these norms is difficult, we restrict our-
selves to this simplified version of the problem.

Experiments for 1D super-resolution. In Figure 9, we

show the influence of TV regularization on 1D finite

length SR with zoom M = 2. The HR image has size

l = 210. For each K,S, we generated 100 experiments
meeting hypotheses of Proposition 10, contaminating

the same pixel in the 10 LR images, in an area without

jumps. We solved the regularized SR problem using our

calculation of λ. We see that after regularization, the

number of contaminated pixels can be greater than half
the number of images.

Experiments for 2D super-resolution. We use the same

model for 2D super-resolution (a 2D Gaussian is used

instead). We use the image Shepp Logan phantom which

is sparse in the gradient domain. Ψ is the 2D discrete
gradient. We perform a 2D L1 super-resolution with to-

tal variation regularization with M = 2. We use an iter-

atively reweighted least squares algorithm (Daubechies

et al. 2010). We contaminate the same region of the im-
age on the different LR images. In Figure 10, we show

the ideal image, the sparsity level of the image, a clean

low resolution image and a contaminated low resolution

image.

From Proposition 10, we can infer that a range of λ
will make the 2D L1 − TV SR problem forgiving. We

show in Figure 11, the result of 2D L1 SR without reg-

ularization, and with TV regularization. The SR was

performed using 6 LR images, with 2 contaminated im-
ages (recall that the minimum number of images for

a perfect reconstruction is 4 for M = 2). While SR

without regularization fails TV regularization gives a
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Fig. 9 A = finite length 1D SR operator, Ψ = gra-

dient. Worst reconstruction PSNR for different signal and
noise sparsity K,S with no overlap (N = 10,M = 2, l = 20).
(a) Example of an HR image, (b) example of a contaminated
LR image, (c) SR without regularization (d) SR with TV
regularization with optimal λ.
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Fig. 10 2D SR problem. (a) HR image, (b) sorted values
of the 2D discrete gradient (HR image gradient sparsity), (c)
one clean LR image and (d) one contaminated LR image
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Fig. 11 2D SR results, experiment 1 (a) reconstruction
without regularization, PSNR=25.49dB, (b) reconstruction
with regularization PSNR=88.27dB, (c) PSNR with respect
to λ .

perfect reconstruction. We also show how the PSNR

behaves with respect to λ. A range of λ values lead to a

perfect reconstruction (from 0.1 to 0.8), outside of the
range the effect of oversmooting (from 0.8 to 4) and

failure (small λ) can be observed.

In Figure 12, we show another experiment with N =

10 andM = 6. Solving the unregularized problem is not
forgiving the outliers and fails completely. TV regular-

ization leads to a perfect reconstruction. In this experi-

ment, only the critical number of imagesM = 4 (for the

system to be invertible) is necessary to recover the HR
image and there is less clean images than contaminated

images. The behaviour of the reconstruction with re-

spect to λ shows a similar behaviour as before. A range

of λ (from 0.9 to 1.05) yields a perfect reconstruction.

Remark 11 In this article, we supposed that only sparse

outlier noise was corrupting the signal. This hypothesis
was made to keep the exposition of the main concepts

clear. However, because the theoretical concepts are di-

rect extensions of sparse recovery theory, stability with

respect to additive noise (e.g. Gaussian noise) should
be obtained by extending the corresponding results in

the literature (Candès et al. 2006; Cohen et al. 2009).
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Fig. 12 2D SR results, experiment 2 (a) HR image,
(b) one contaminated LR image, (c) reconstruction without
regularization, PSNR=-46.84dB, (d) reconstruction with reg-
ularization PSNR=93.31dB, (e) PSNR with respect to λ .

5.2.3 Other regularization schemes, L0 and outlier

detection

As previously noticed, the precise sinc SR method does

not benefit a lot from the L1−TV method. Two possible

ways could be explored.

First, a way to ensure the robustness of the problem
using sparse regularization is to make sure the overde-

termined matrix Ψ is L-forgiving with good NCP con-

stant. Popular dictionary based or non-local approaches

for image modeling can lead to a Ψ being a projection
of the signal into a high dimensional space where the

signal is sparse. If this projection has the right NCP

with respect to signal sparsity supports, outlier removal

power will be increased with any type of observation

(universal encoding).

Secondly, we can make the following observation :

very energetic and concentrated outliers are easy to de-
tect. While L1−TV minimization will not be able to re-

move them in critical cases (e.g. for 2D super-resolution

N = M2+1 ). Then detecting the outlier by threshold-

ing, and removing contaminated equations will lead to
an invertible system and the right solution. In this case

this, process can be thought as an L0 minimization, be-

cause the (informed) outlier suppression is a way to try

to maximize the number of equations which are met by

the data.

6 Conclusion

In this article, we showed how the theory of sparse re-

covery can be used and extended to the case of out-

lier robustness with sparsity priors on the signal for

multi-image processing. We illustrated how some tools
are more adapted to study matrices without too much

structure (random matrices and the RIP) and others

to the multi-image problems (Exact Recovery Property,

Non Concentration Property). We showed that consid-

ering particular classes of supports allows for an un-
derstanding of how the L1 − TV scheme behaves with

outliers. In simple cases, we could determine the reg-

ularization parameter leading to the best robustness.

The intuition gained was verified experimentally in the
more theoretically challenging 2D SR case.
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