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ABSTRACT. The randomized Kaczmarz method is an iterative algorithm that solves systems of linear equa-
tions. Recently, the randomized method was extended to systems of equalities and inequalities by Leventhal
and Lewis. Even more recently, Needell and Tropp provided an analysis of a block version of this randomized
method for systems of linear equations. This paper considers the use of a block type method for systems
of mixed equalities and inequalities, bridging these two bodies of work. We show that utilizing a matrix
paving over the equalities of the system can lead to significantly improved convergence, and prove a linear
convergence rate as in the standard block method. We also demonstrate that using blocks of inequalities
offers similar improvement only when the system satisfies a certain geometric property. We support the
theoretical analysis with several experimental results.

1. INTRODUCTION

The Kaczmarz method [18] is an iterative algorithm for solving linear systems of equations. It is usu-
ally applied to large-scale overdetermined systems because of its simplicity and speed (but also con-
verges in the underdetermined case to the least-norm solution under appropriate initial conditions).
Each iteration projects onto the solution space corresponding to one row in the system, in a sequential
fashion. Strohmer and Vershynin prove that when the rows are selected from a certain random distribu-
tion rather than sequentially, that the randomized method converges to the solution at a linear rate [31].
The method has been applied to fields including image reconstruction, digital signal processing, and
computer tomography [30, 10, 21, 11]. Leventhal and Lewis modify the randomized Kaczmarz method
to apply to systems of linear equalities and inequalities [19], thereby extending results on the standard
method in this setting (see e.g. [5] and references therein). Unlike the traditional randomized algorithm
which enforces a single constraint at each iteration, the block Kaczmarz approach recently analyzed
by Needell and Tropp [24] enforces multiple constraints simultaneously and thus offers computational
advantages. Here we demonstrate convergence for a system of linear equalities and inequalities by com-
bining a randomized block Kaczmarz method for the equalities with a randomized Kaczmarz algorithm
for the inequalities. These results indicate that the block Kaczmarz method can be used for a system
of equalities and inequalities, and in some cases may quicken convergence. We also consider the case
of utilizing blocking in both the equalities and inequalities, although this can be detrimental unless the
geometry of the system meets certain conditions.

1.1. Model and Notation. We consider a linear system

Ax = b, (1.1)

where A is a real (or complex) n ×d matrix, typically with n À d .
The `p vector norm for p ∈ [1,∞] is denoted ‖·‖p , while ‖·‖ is the spectral norm and ‖·‖F refers to the

Frobenius norm. For an n×d matrix A, the singular values are arranged in decreasing order and we write

σmax(A)
def= σ1(A) ≥σ2(A) ≥ ·· · ≥σd (A)

def= σmin(A).

We define the eigenvalues λmin(A), . . . ,λmax(A) of a matrix analogously. For convenience we will assume
that each row ai of A has unit norm, ‖ai‖2 = 1, and we call such matrices standardized.
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2 J. BRISKMAN AND D. NEEDELL

We define the usual condition number

κ(A)
def= σmax(A)/σmin(A),

and write the Moore-Penrose pseudoinverse of matrix A by A†. Recall that for a matrix A with full row

rank, the pseudoinverse is obtained by A† def= A∗(A A∗)−1.
Now we consider a system of linear equalities and inequalities and denote by S its non-empty set of

feasible solutions. We thus consider the matrix A whose rows can be arranged such that

A =
[

A=
A≤

]
, (1.2)

and we will write I= and I≤ to denote the row indices of A= and A≤, respectively. Therefore, we ask that

〈ai , x〉 ≤ bi (i ∈ I≤) and 〈ai , x〉 = bi (i ∈ I=) (1.3)

We will assume that the set of rows {1,2, ...,n} is partitioned such that the first ne rows correspond to
equalities, and the remaining ni = n −ne rows to inequalities. Thus A= is an ne ×d matrix and A≤ is
ni ×d .

The error bound for this system of linear inequalities uses the function e : Rn → Rn defined as in [19]
by

e(y)i =
{

y+
i for i ∈ I≤

yi for i ∈ I=
where the positive part is defined as x+ def= max(x,0).

1.2. Details of Kaczmarz. The simple Kaczmarz method is an iterative algorithm that approximates a
least-squares minimizer x? to the problem in (1.1). It takes an arbitrary initial approximation x0, and at
each iteration j the current iterate is projected orthogonally onto the solution hyperplane {〈ai , x〉 = bi },
using the update rule

x j+1 = x j +
bi −

〈
ai , x j

〉
‖ai‖2

2

ai (1.4)

where i = j mod n+1 [18]. With an unfortunate ordering of the rows, this method as-is can produce very
slow convergence. However, it has been well known that using randomized selection often eliminates
this effect [13, 15]. The randomized Kaczmarz method put forth by Strohmer and Vershynin [31] uses a
random selection method for the selection of row i such that each row i is selected with probability pro-
portional to ‖ai‖2

2. This randomization provides an algorithm that is both simple to analyze and enforce
in many cases. In this paper we assume each row has unit norm, so each row is selected uniformly at
random from {1,...,n} in the simple randomized Kaczmarz approach.1 Strohmer and Vershynin prove a
linear rate of convergence for consistent systems that depends on the scaled condition number of A, and
not on the number of equations n [31],

E‖x j −x?‖2
2 ≤

[
1− 1

K

] j

‖x0 −x‖2
2, (1.5)

where x? is the solution to the consistent system (1.1) and K = ‖A‖2
F /σ2

min(A) denotes the scaled condi-
tion number. Needell extended this work to the inconsistent case and proves linear convergence to the
least-squares solution within some fixed radius [22],

E‖x j −x?‖2
2 ≤

[
1− 1

K

] j

‖x0 −x‖2
2 +K ‖e‖2

∞,

1This assumption is both for notational convenience, and because the use of matrix pavings discussed below only hold for
standardized matrices. In practice, one can employ pre-conditioning on non-standardized systems, or extend the construction
of matrix pavings to non-standardized systems [37].
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where e = Ax?−b denotes the residual vector. Because the Kaczmarz method projects directly onto each
solution hyperplane, such a convergence radius is unavoidable without adding a relaxation parameter.

The randomized Kaczmarz method can be adapted to the case of a linear system of equalities and in-
equalities described in (1.3). Leventhal and Lewis [19] apply the Kaczmarz method to a consistent system
of linear equalities and inequalities (here consistent simply means the feasible set S is non-empty). At
each iteration j , the previous iterate only projects onto the solution hyperplane if the inequality is not al-
ready satisfied. If the inequality is satisfied for row i selected at iteration j (aT

i x ≤ bi ), the approximation
x j is set as x j−1 [19]. The update rule for this algorithm is thus

x j+1 = x j −
e(aT

i x j −bi )

‖ai‖2
2

ai . (1.6)

This algorithm converges linearly in expectation [19], with

E
[
d(x j ,S)2 | x j−1

]≤ d(x j−1,S)2 − ‖e(Ax j−1 −b)‖2
2

‖A‖2
F

.

In order to bound the right hand side of this expression, the authors rely on a lemma due to Hoffman
[17, 19]. This result states that for any system (1.3) with non-empty solution set S, there exists a constant
L independent of b such that for all x ,

d(x ,S) ≤ L‖e(Ax −b)‖2. (1.7)

When A= = A is full column rank, the Hoffman constant is the inverse of the smallest singular value,
L =σ−1

min(A).
Using this their result becomes

E
[
d(x j ,S)2] ≤

[
1− 1

L2‖A‖2
F

] j

·d(x0,S)2, (1.8)

which coincides with (1.5) for consistent systems of equalities.

1.3. Block Kaczmarz. A block variant of the randomized Kaczmarz method due to Elfving [9] has been
recently analyzed by Needell and Tropp [24] and can improve the convergence rate in certain cases. The
block Kaczmarz method first partitions the rows {1, ...,n} into m blocks, denoted τ1, . . .τm . Instead of se-
lecting one row per iteration as done with the simple Kaczmarz method, the block Kaczmarz algorithm
chooses a block uniformly at random at each iteration. Thus the block Kaczmarz method enforces multi-
ple constraints simultaneously. At each iteration, the previous iterate x j−1 is projected onto the solution
space to Aτx = bτ, which enforces the set of equations in block τ [24]. Aτ and bτ are written as the row
submatrix of A and the subvector of b indexed by τ respectively, yielding an iterative rule of

x j = x j−1 + (Aτ)†(bτ− Aτx j−1). (1.9)

The pseudoinverse used in (1.9) returns the solution to the underdetermined least squares problem for
a wide or square row submatrix Aτ.

Depending on the characteristics of the submatrix Aτ, the block method can provide better conver-
gence than the simple method. If we assume that the submatrices Aτ are well conditioned, the additional
cost of computing their pseudo-inverse can be overcome by the gain in utilizing block multiplications
(see our experiments in Section 4). In fact, if the blocks admit a fast multiply (for example if the matrix
is built of DFT or circulant blocks), then the computational cost of the block iteration (1.9) is similar to
the cost of the simple update rule in (1.4). Since the convergence depends heavily on the conditioning
of each submatrix, one seeks partitions of the rows into blocks for which each block is well-conditioned.
The notion of a row-paving allows one to do precisely that.
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Definition 1.1. We define an (m,β) row paving2 of matrix A as a partition T = {τ1, ...τm} of the row indices
such that

λmax(AτA∗
τ ) ≤β for each τ ∈ T .

The size of the paving, or number of blocks, is m. The value of β is the upper paving bound, which
controls the spectral norms of the submatrices. Needell and Tropp [24] show that these parameters de-
termine the performance of the algorithm, with convergence for a consistent system admitting an (m,β)
paving given by

E‖x j −x?‖2
2 ≤

[
1− σ2

min(A)

βm

] j

‖x0 −x?‖2
2. (1.10)

Therefore the convergence rate depends on the size m and upper bound β; the algorithm’s performance
improves with low values of m and β, and large σ2

min(A). The authors also prove convergence for in-
consistent systems, with the same convergence rate and convergence radius which depends also on the
minimum of all λmin(AτA∗

τ ), see [24] for details.
Surprisingly, every standardized matrix admits a good row paving. The following result is due to [38,

34] which builds off the foundational work of [1, 2].

Proposition 1.2 (Existence of Good Row Pavings). For any δ ∈ (0,1) and standardized n ×d matrix A,
there is a row paving satisfying

m ≤ C ·δ−2‖A‖2 log(1+n) and 1−δ≤β≤ 1+δ.

where C is an absolute constant.

Although this is an existential result, there are constructive methods to obtain such pavings, and for
certain classes of matrices, they can even be obtained by a random partitioning of the rows [33, 7, 24].

With such a paving in tow, the convergence of (1.10) becomes

E‖x j −x?‖2 ≤
[

1− 1

Cκ2(A) log(1+n)

] j

‖x0 −x?‖2
2

Although often comparable to the convergence rate for the simple method (1.5), numerical results
confirm that the block method offers significant reduction in computation time due to the speed of
matrix–vector multiplication (see e.g. [24]).

1.4. Contribution. This paper analyzes the system with matrix described in (1.2) using an algorithm
with the block Kaczmarz approach for the equalities given by A= and the simple method for the inequal-
ities given by A≤. A paving is created for A=, with the inequalities excluded. At each iteration, we select
from A= with a fixed probability p and from A≤ with probability 1− p. In the former case, we select a
block τ from paving T uniformly at random, and in the latter case we select a row i of A≤ uniformly
at random. In the case of a block of equalities being selected, the algorithm proceeds by updating x j

using (1.9). When an inequality row is selected, x j is updated using the rule (1.6). We prove that this
method yields linear convergence to the solution set S. We also include a discussion about paving both
A= and A≤, which identifies a geometric property of the system which allows for improved convergence
by utilizing two pavings. We show that when this property is not satisfied, utilizing both pavings can be
detrimental to convergence.

1.5. Organization. Section 2 lays out our main result, Theorem 2.1, and provides a proof. We discuss
blocking the full matrix in Section 3 and Section 4 explains numerical experiments and results. We con-
clude with discussion and related work in Section 5.

2The standard definition of a row paving also includes a constant α which serves as a lower bound to the smallest singular
value. We ignore that parameter here since it will not be utilized.
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2. ANALYSIS OF THE BLOCK KACZMARZ ALGORITHM FOR A SYSTEM OF INEQUALITIES

In this section we analyze the convergence of the described method, which is detailed in Algorithm 2.1.

Algorithm 2.1 Block Kaczmarz Method for a System of Inequalities

Input:

• Matrix A with dimension n ×d
• Right-hand side b with dimension n
• Number of rows representing equalities, ne , and inequalities, ni = n −ne

• Partition T = {τ1, . . . ,τm} of the row indices {1, . . . ,ne } and paving constant β
• Initial iterate x0 with dimension d
• Convergence tolerance ε> 0

Output: An estimate x̂ to the solution of the system (1.3)

j ← 0
repeat

j ← j +1
Draw uniformly at random q from [0,1]

if q ≤ βm
ni+βm

Choose a block τ uniformly at random from T
x j ← x j−1 + (Aτ)†(bτ− Aτx j−1)

else
Choose a row i uniformly at random from {ne +1, . . . ,n}

x j ← x j−1 − e(aT
i x j−1−bi )

‖ai ‖2
2

ai

until ‖e(Ax j −b)‖2
2 ≤ ε2

x̂ ← x j

Notice that the probability of selecting a block of A= is βm
ni+βm . This quantity corresponds to the relative

size of A= in the system, where the size is measured in terms of the paving quantities βm. This value
may be difficult to compute precisely, and the simpler threshold of ne /n appears to also work well in
practice. We provide no evidence that our selection of this threshold is most efficient, nor any more
efficient than using one proportional to the number of equality rows ne . We find that this algorithm
yields linear convergence in expectation with a rate that only depends on the number of inequalities ni ,
paving size m, and upper bound β.

Our main result is described in Theorem 2.1.

Theorem 2.1 (Convergence). Let the standardized matrix A ∈Rn×d and b ∈Rn correspond to a system as
in (1.2) with the first ne rows being equalities and the remaining ni = n−ne rows being inequalities. Let T
be an (m,β) row paving of A=. Let x0 be an arbitrary initial estimate and S the non-empty feasible region.
Then Algorithm 2.1 satisfies for each iteration j = 1,2,3,...,

E
[
d(x j ,S)2] ≤

(
1− 1

L2(ni +βm)

) j

·d(x0,S)2,

where L is the Hoffman constant (1.7).

Remarks.
1. Note that when there are no block projections, no inequalities, or neither, Theorem 2.1 recovers the
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results of the standard randomized Kaczmarz for inequalities [19], the standard randomized block Kacz-
marz method [24] or the standard randomized Kaczmarz method [31], respectively. We thus view this
result as a completely generalized convergence bound.
2. If we let ρs and ρb be the convergence rates of the simple and block methods for mixed systems,
respectively, then by (1.8) and Theorem 2.1,

ρs ≥ 1

L2n
and ρb ≥ 1

L2(ni +βm)
.

It is evident that our expected convergence rate will be faster per iteration than the simple method when
ni +βm < n. Since β can be chosen close to 1 and m < ne is then number of rows in A=, this holds quite
easily.
3. Since a single iteration using a block Aτ in general may cost more than an iteration utilizing a single
row, it is more fair to compare per epoch, rather than per iteration. An epoch is typically the minimum
number of iterations needed to visit each row of the matrix. When there are inequalities present that
are already satisfied in a given iteration, that iteration may make no contribution and cost very little
computationally. Thus the notion of epoch may be slightly skewed here, but if we ignore this subtlety the
simple method will have approximately n iterations per epoch, compared to ni +m iterations per epoch
with the block method. The approximate per epoch convergence rates can thus be compared as

n ·ρs ≥ 1

L2 and (ni +m) ·ρb ≥ ni +m

L2(ni +βm)
.

This result is similar to that found by Needell and Tropp [24], with the block convergence rate at best
equal to that of the simple convergence rate when β= 1. However, as already noted, the block method is
quite advantageous computationally.

Combining the paving result of Prop. 1.2 with Theorem 2.1 yields the following corollary.

Corollary 2.2. Instate the assumptions and notation of Theorem 2.1 and let A= be equipped with an (m,β)
row-paving as in Proposition 1.2. Then the iterates of Algorithm 2.1 satisfy

E
[
d(x j ,S)2] ≤ γ j ·d(x0,S)2,

where γ=
(
1− 1

L2(ni+C‖A=‖2 log(1+n))

)
and C is some absolute constant.

of Theorem 2.1. Fix an iteration j of Algorithm 2.1. We proceed as in [24] and [19]. First, we suppose that

q ≤ βm
ni+βm , so that a block τ of equalities is selected this iteration. Then writing PS as the orthogonal

projection onto S, we have bτ = AτPS x j−1 since PS x j−1 ∈ S. We then have

x j = x j−1 + A†
τ(bτ− Aτx j−1)

= x j−1 + A†
τ(AτPS x j−1 − Aτx j−1)

= x j−1 + A†
τAτ(PS x j−1 −x j−1).

Thus,

‖x j −PS x j−1‖2

= ‖x j−1 −PS x j−1 − A†
τAτ(x j−1 −PS x j−1)‖2

2

= ‖(I− A†
τAτ)(x j−1 −PS x j−1)‖2

2.

Taking expectation (over the choice of the block τ, conditioned on previous choices), and using the
fact that A†

τAτ is an orthogonal projector, along with the properties of the paving yields
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E‖x j −PS x j−1‖2

= E‖(I − A†
τAτ)(x j−1 −PS x j−1)‖2

2

= ‖x j−1 −PS x j−1‖2
2 −E‖A†

τAτ(x j−1 −PS x j−1)‖2
2

≤ ‖x j−1 −PS x j−1‖2
2 −

1

β
E‖Aτ(x j−1 −PS x j−1)‖2

2.

Since d(x j−1,S) = ‖x j−1 −PS x j−1‖2 and d(x j ,S) ≤ ‖x j −PS x j−1‖2, this means that

E
[
d(x j ,S)2]≤ d(x j−1,S)2 − 1

β
E‖Aτ(x j−1 −PS x j−1)‖2

2

= d(x j−1,S)2 − 1

βm

∑
τ∈T

‖Aτx j−1 −bτ‖2
2

= d(x j−1,S)2 − 1

βm

∑
i∈I=

e(A=x j−1 −b=)2
i . (2.1)

Next suppose that instead i ∈ I≤ is selected. Then since each row ai has unit norm,

d(x j ,S)2 ≤ ‖x j −PS x j−1‖2
2

= ‖x j−1 −e(Ax j−1 −b)i ai −PS x j−1‖2
2

= ‖x j−1 −PS x j−1‖2
2 +e(Ax j−1 −b)2

i

−2e(Ax j−1 −b)i 〈ai , x j−1 −PS x j−1〉
≤ d(x j−1,S)2 −e(Ax j−1 −b)2

i ,

where the last line follows from the fact that 〈ai ,PS x j−1〉 ≤ bi and e(Ax j−1 − b)i ≥ 0. Now taking
expectation again we have

E
[
d(x j ,S)2]≤ d(x j−1,S)2 −E(e(Ax j−1 −b)2

i )

= d(x j−1,S)2 − 1

ni

∑
i∈I≤

e(A≤x j−1 −b≤)2
i .

Combining these results and letting E= and E≤ denote the events that a block from T and a row from
I≤ is selected, respectively, we have

E
[
d(x j ,S)2]= p ·E[d(x j ,S)2|E=]+ (1−p) ·E[d(x j ,S)2|E≤]

≤ p

[
d(x j−1,S)2 − 1

βm

∑
i∈I=

e(A=x j−1 −b=)2
i

]

+ (1−p)

[
d(x j−1,S)2 − 1

ni

∑
i∈I≤

e(A≤x j−1 −b≤)2
i

]

= d(x j−1,S)2 −p · 1

βm

∑
i∈I=

e(A=x j−1 −b=)2
i

− (1−p) · 1

ni

∑
i∈I≤

e(A≤x j−1 −b≤)2
i .
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Since p = βm
ni+βm , we have 1−p

ni
= 1

ni+βm and we can simplify

E
[
d(x j ,S)2]≤ d(x j−1,S)2 − 1

ni +βm

[ ∑
i∈I=

e(A=x j−1 −b=)2
i

+ ∑
i∈I≤

e(A≤x j−1 −b≤)2
i

]
= d(x j−1,S)2 − 1

ni +βm
‖e(Ax j−1 −b)‖2

2

≤ d(x j−1,S)2 − 1

L2(ni +βm)
·d(x j−1,S)2

=
[

1− 1

L2(ni +βm)

]
d(x j−1,S)2,

where we have utilized the Hoffman bound (1.7) in the second inequality.
Utilizing independence of the random selections and recursing on this relation yields the desired re-

sult. �

3. A DISCUSSION ABOUT BLOCKING INEQUALITIES

It is natural to ask whether one can benefit by blocking both the equalities as above and also the
inequalities, as described by Algorithm 3.2. Indeed, Section 4 will show dramatic improvements in com-
putational time when the rows of A= are paved and block projections as in Algorithm 2.1 are used. So
can one benefit even more by paving also the rows of A≤? The answer to this question heavily depends
on the structure of the matrix A.

If we only consider A=, a block projection as in (1.9) enforces all the equations indexed by τ to be
satisfied. This is of course desirable when the rows indexed by τ correspond to equalities. Also, if a single
inequality corresponding to row i in A≤ is not satisfied and we perform a single projection as in (1.4), we
are again enforcing that inequality to hold with equality. However, this improves the estimation since in
this case we know the solution set S lies on the opposite side of the hyperplane {x : 〈x , ai 〉 = bi } as the
current estimation (see Figure 1 (a)). On the other hand, if we employ a block projection as in (1.9) to a

(a) (b) (c)

Figure 1 Possible geometries of the system. S denotes solution space (or solution point). Yellow shading
denotes regions where inequalities i1 and i2 are both satisfied. (a) A single projection onto hyperplane Hi =
{x : 〈ai , x〉 = bi } provides improved estimation. (b) Block projection onto intersection of hyperplanes also may
provide improved estimation. (c) Block projection onto intersection of hyperplanes may provide improved
estimation.

set of inequalities indexed by τwhich are not satisfied by the current estimation x j−1 then we enforce all
of them to hold with equality simultaneously. Depending on the geometry of the involved rows, this may
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result in an improved estimation or actually one much farther from the solution set. Of course, one might
alternatively want to solve the convex program to project onto the intersection of the corresponding half-
spaces, but we would like to maintain the efficiency and simplicity of the block Kaczmarz method.

As an illustrative example, Figure 1 (b) and (c) demonstrate two possible scenarios in two dimensions.
Here, the solution space is a single point marked S, and we draw two hyperplanes Hi1 and Hi2 where
Hi = {x : 〈ai , x〉 = bi } . The yellow shaded regions denote areas where both inequalities hold true: {x :
〈ai1 , x〉 ≤ bi1 and 〈ai2 , x〉 ≤ bi2 }. Notice that in (b), when the angle between x j−1 − x j and s − x j is obtuse,
the orthogonal projection of estimation x j−1 onto their intersection is guaranteed to be closer to the
solution set S. On the other hand, when that angle is acute we see exactly the opposite, as in (c). We can
quantify this notion by the following definition.

Definition 3.1. For an r ×d matrix A and b ∈ Rr , for row i denote by H̃i and Hi the half-space H̃i =
{〈ai , x〉 ≤ bi } and hyperplane Hi = {〈ai , x〉 = bi }, respectively, and write PS as the orthogonal projection
onto a convex set S. An obtuse (m,β) row paving of the matrix A is an (m,β) row paving T = {τ1, . . . ,τm}
that also satisfies the following. Let τ ∈ T and let s ∈∩i∈τH̃i , w ∈∩i∈τH̃ c

i , and z = P∩i∈τHi w . Then

〈w − z , s〉 < 0.

In other words, the angle between w − z and s (and thus s − z) is obtuse.

We will see that performing block projections on the inequalities in the system only makes sense when
one can obtain an obtuse row paving. We will use w = x j−1, z = x j , and s ∈ S. Notice that if i1, i2 ∈ τ ∈ T ,
then the partition used in the system depicted in Figure 1 (c) does not constitute an obtuse row paving.

We conduct two simple experiments to demonstrate the different behavior of the algorithm. In all
cases the matrix A is a 300×100 matrix with standard normal entries, 100 rows correspond to inequalities,

Algorithm 3.2 Double Block Kaczmarz Method for a System of Inequalities

Input:

• Matrix A with dimension n ×d
• Right-hand side b with dimension n
• Partition T ′ = {τ′1, . . . ,τ′m′} of the row indices {1, . . . ,ni }
• Partition T = {τ1, . . . ,τm} of the row indices {1, . . . ,ne }
• Initial iterate x0 with dimension d
• Convergence tolerance ε> 0

Output: An estimate x̂ to the solution of the system (1.3)

j ← 0
repeat

j ← j +1
Draw uniformly at random q from [0,1]

if q ≤ βm
β′m′+βm

Choose a block τ uniformly at random from T
x j ← x j−1 + (Aτ)†(bτ− Aτx j−1) (Solve least-squares approximation)

else
Choose a block τ′ uniformly at random from T ′

Set σ= {i ∈ τ′ : 〈ai , x j−1〉 > bi } ⊂ τ′ (Select unsatisfied subset)
x j ← x j−1 + (Aσ)†(bσ− Aσx j−1) (Solve least-squares approximation)

until ‖e(Ax j −b)‖2
2 ≤ ε2

x̂ ← x j
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and b is generated so that the solution set S is non-empty. We measure the residual error which we define
as ‖e(Ax j −b)‖2. Figure 2 (a) shows the behavior of the block method with this matrix and a row paving
obtained via a random row partition of 30 blocks (10 rows per block). This generation will create a matrix
with paving that with very high probability is not an obtuse row paving. As Figure 2 demonstrates, the
block method does not converge to a solution in this case. However, as Figure 2 (c) shows, the simple
Kaczmarz method succeeds in identifying a point in the solution space. Next, we create a matrix in
the exact same way, and create the same random row paving. Then, however, we iterate through every
block in the paving corresponding to inequalities and if two rows i and k in a block satisfy 〈ai , ak〉 > 0,
we replace row ai with −ai and entry bi with −bi . This guarantees every block in the paving yields
a geometry like that shown in Figure 1 (b), and gives an obtuse row paving. Note that of course this
changes the solution space as well so one cannot employ this strategy in general. We then add positive
values to the entries in b corresponding to inequalities to ensure the solution set S is non-empty. With
this new system and paving, we again run the block method and see that the method now converges to
a point in the solution set, as seen in Figure 2 (b).

(a) (b) (c)

Figure 2 Residual error of the Kaczmarz Method per epoch: a) Median residual error of block method over 40
trials for matrix A not having an obtuse row paving, b) Median residual error of block method over 40 trials for
matrix A using an obtuse row paving, c) Median residual error of simple method over 40 trials for same matrix
as in a). Shaded region spans across minimum and maximum values over all trials and solid line denotes
median value.

With this definition we obtain the following result, whose proof can be found in the appendix.

Theorem 3.2. Let A satisfy the assumptions of Theorem 2.1 and in addition have an obtuse (m′,β′) row
paving of A≤. Let x1, . . . denote the iterates of Algorithm 3.2. Then using the notation of Theorem 2.1,

E[d(x j ,S)2] ≤
[

1− 1

L2(β′m′+βm)

] j

d(x0,S)2.

Note that row pavings of standardized matrices can be obtained readily, often by random partitions
[35, 36, 24], whereas obtuse row pavings may be much more challenging to obtain in general. Of course,
by default the trivial paving which assigns each set τ to a single row always admits an obtuse row paving.
We focus on Algorithm 2.1 which paves only A=, and leave further analysis of Algorithm 3.2 and con-
structions of obtuse row pavings for future work.

4. EXPERIMENTS

We use MATLAB to run some experiments using random matrices to test the convergence of the block
Kaczmarz method applied to a system of equalities and inequalities. In each experiment, we create a
random 500 by 100 matrix A where each element is an independent standard normal random variable.
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Each entry is then divided by the norm of its row so that the matrix is standardized. The first 400 rows of
matrix A compose A=, and the remaining 100 rows are set as inequalities of A≤ in the method described
by (1.3). The experiments are run using the following procedure. For each of 100 trials,

(1) Create matrix A in the manner described above.
(2) Create x? where each entry is selected independently from a standard normal distribution. Set

b = Ax?.
(3) Pave submatrix A= into 16 blocks with 25 equalities per block by a random partitioning of the

rows.
(4) Set initial approximations xblock

0 = xsimp
0 = A∗b.

(5) Draw q uniformly at random from [0,1].
(a) If q ≤ ne

n , choose block {1, ...,m} uniformly at random and update iterate xblock
j using (1.9).

(Note that the threshold ne
n is different than that given in the main algorithm and theorem,

but it is easier to calculate and seems to work fine in practice.)
(b) Else, choose a row uniformly at random from {401, ...,500} and update iterate xblock

j us-
ing (1.6).

(c) Update iterate xsimp
j using (1.6).

For both the simple and block algorithms, the median, minimum, and maximum values of the residual
‖e(Ax j −b)‖2

2 of the 100 trials are recorded for each iteration j .
Figure 3 compares the performance of the block Kaczmarz method used in this paper and the standard

Kaczmarz method described by Leventhal and Lewis [19]. The plot in Figure 3 (a) compares convergence
per iteration. As the block Kaczmarz method enforces multiple equalities per iteration, it is unsurprising
that it performs better in this experiment. Figure 3 (b) displays the convergence of the two methods per
epoch. The block Kaczmarz algorithm has an epoch of m +ni iterations, and the standard Kaczmarz
method has an epoch of size n. Here, to be fair we only count an iteration towards an epoch if the es-
timated solution x j 6= x j−1. Thus in the case where a chosen inequality is already satisfied for iteration
j , this iteration does not count towards an epoch since no computation is being performed. We no-
ticed, however, that whether or not we modified the count in this way, the behavior still produces results
very similar to Figure 3. Once again the experiments yielded faster convergence with the block Kaczmarz
approach. It is interesting to compare the results of Figure 3 (b) and those of Figure 2 (b) and (c). The per-
epoch convergence of the methods and whether the block or standard appears faster varies slightly and
depends on both the number of rows and columns. In general, the per-epoch convergence rates are rea-
sonably comparable, as the analysis suggests. However, Figure 3 (c) compares the rate of convergence of
the two algorithms by plotting the residual against the CPU time expended in the simulation. We believe
that the ability to utilize efficient matrix–vector multiplication gives the method significantly improved
convergence per second relative to the standard Kaczmarz algorithm, although other mechanisms may
certainly be at work as well.

5. CONCLUSION AND RELATED WORK

The Kaczmarz algorithm was first proposed in [18]. Kaczmarz demonstrated that the method con-
verged to the solution of linear system Ax = b for square, non-singular matrix A. Since then, the method
has been utilized in the context of computer tomography as the Algebraic Reconstruction Technique
(ART) [12, 3, 21, 16]. Empirical results suggested that randomized selection offered improved conver-
gence over the cyclic scheme [13, 15]. Strohmer and Vershynin [31] were the first to prove an expected
linear convergence rate using a randomized Kaczmarz algorithm with specific random control. This re-
sult was extended by Needell [22] to apply to inconsistent systems, which shows a linear convergence rate
to within a fixed radius around the least-squares solution. Almost-sure convergence guarantees were re-
cently proved by Chen and Powell [6]. Zouzias and Freris [41] analyze a modified version of the method
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(a) (b) (c)

Figure 3 Residual error of the Block Kaczmarz Method (solid red) vs. Simple Kaczmarz Method (dashed blue)
as a function of (a) Iterations, (b) Epochs, (c) CPU time. Shaded region spans from minimum to maximum
value over 100 trials; lines denote the median value.

in the inconsistent case, using a variant motivated by Popa [26] to reduce the residual and thereby con-
verge to the least squares solution. Relaxation parameters can also be introduced to obtain convergence
to the least squares solution, see e.g. [39, 4, 32, 14], and partially weighted sampling can lead to a tradeoff
between convergence rate and radius [23]. Liu, Wright, and Sridhar [20] discuss applying a parallelized
variant of the randomized Kaczmarz method, demonstrating that the convergence rate can be increased
almost linearly by bounding the number of processors by a multiple of the number of rows of A.

The block Kaczmarz updating method was introduced by Elfving [9] as a special case of the more gen-
eral framework by Eggermont et.al. [8]. The notion of using blocking in projection methods is certainly
not new, and there is a large amount of literature on these types of methods, see e.g. [40, 3] and references
therein. Needell and Tropp [24] provide the first analysis showing an expected linear convergence rate
which depends on the properties of the matrix A and of the submatrices Aτ resulting from the paving,
connecting pavings and the block Kaczmarz scheme. The use of specialized blocks appears elsewhere, in
particular, the works of Popa use blocks with orthogonal rows that are beneficial for the block Kaczmarz
method [26, 27, 28]. Needell, Zhao, and Zouzias [25] expand on the results from [24] and [41] to demon-
strate convergence to the least-squares solution for an inconsistent system using the block Kaczmarz
method. Again the block approach can yield faster convergence than the simple method.

The Kaczmarz method was first applied to a system of equalities and inequalities by Leventhal and
Lewis [19], who also consider polynomial constraints with the method. They give a linear convergence
rate to the feasible solution space S, using ‖A‖2

F and the Hoffman constant [17]. We apply the block
Kaczmarz scheme to the system described in [19], combining their result with that of Needell and Tropp
[24] to acquire a completely generalized result. We highlight several important complications which arise
when attempting to apply the block scheme to inequalities. Nonetheless, whether a paving is used only
partially or for the complete system, significant reduction in computational time can be achieved.

5.1. Future Work. There are many interesting open problems related to the block Kazcmarz method and
linear systems with inequalities. It has been well observed in the literature that selecting rows (or blocks)
without replacement rather than with replacement as in the theoretical results leads to faster a conver-
gence rate empirically [29, 24]. When selecting without replacement, independence between iterations
vanishes, making a theoretical analysis more challenging. Secondly, it would be interesting to further
investigate the use of obtuse row pavings. In systems with a large number of inequalities, the ability to
pave the submatrix A≤ with an obtuse row paving would lead to significantly faster convergence. In that
case, one may like to identify a more general geometric property about the system that permits such
pavings or an alternative formulation that offers convergence of the full block method.
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t

Figure 4 Geometry of system.

APPENDIX A. PROOF OF THEOREM 3.2

Proof. Fix an iteration j of Algorithm 3.2. As in the proof of Theorem 2.1, if a block of equalities is selected
this iteration, then we again have (2.1). So we next instead consider the case when a block of inequalities
is selected, and call this block τ′, and its pruned subset σ. Set s = PS x j−1, where again PS denotes the
orthogonal projection onto the solution set S. If we write H̃i = {x : 〈ai , x〉 ≤ bi } and Hi = {x : 〈ai , x〉 = bi },
then by their definitions we have

s ∈∩i∈σH̃i , x j−1 ∈∩i∈σH̃ c
i , and x j = P∩i∈σHi x j−1.

Then since σ is part of an obtuse paving, the angle between x j −x j−1 and s−x j−1 must be obtuse. There
thus exists a point t on the line segment L = {γx j−1+ (1−γ)s : 0 ≤ γ≤ 1} such that x j−1−x j and t −x j are
orthogonal (see Figure 4).

Now since t ∈ L, we have ‖t −x j−1‖2 ≤ ‖x j−1 − s‖2, and thus letting θ denote the angle between x j −
x j−1 and t −x j−1 (see Figure 4), we have

‖x j −x j−1‖2 ≤ ‖x j−1 − s‖2 ·
‖x j −x j−1‖2

‖t −x j−1‖2

= ‖x j−1 − s‖2 ·cosθ

= ‖x j −x j−1‖2 · ‖s −x j−1‖2 ·cosθ

‖x j −x j−1‖2

= 〈s −x j−1, x j −x j−1〉
‖x j −x j−1‖2

= −〈x j−1 − s, x j −x j−1〉
‖x j −x j−1‖2

.

Thus, we have that

〈x j−1 − s, x j −x j−1〉 ≤−‖x j −x j−1‖2
2.

By the definition of x j , this means that

〈x j−1 − s, A†
σ(bσ− Aσx j−1)〉 ≤−‖A†

σ(bσ− Aσx j−1)‖2
2. (A.1)
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Using this along with the paving properties we see that

‖x j − s‖2
2 = ‖x j−1 − s + A†

σ(bσ− Aσx j−1)‖2
2

= ‖x j−1 − s‖2
2 +2〈x j−1 − s, A†

σ(bσ− Aσx j−1)〉
+‖A†

σ(bσ− Aσx j−1)‖2
2

≤ ‖x j−1 − s‖2
2 −‖A†

σ(bσ− Aσx j−1)‖2
2

= d(x j−1,S)2 −‖A†
σ(bσ− Aσx j−1)‖2

2

≤ d(x j−1,S)2 − 1

β′ ‖bσ− Aσx j−1‖2
2.

Thus, taking expectation (over the choice of τ′, conditioned on previous choices), yields

E[d(x j ,S)2] ≤ E‖x j − s‖2
2

≤ d(x j−1,S)2 − 1

β′ E‖bσ− Aσx j−1‖2
2

= d(x j−1,S)2 − 1

β′ E‖e(bτ′ − Aτ′x j−1)‖2
2

= d(x j−1,S)2 − 1

m′β′
∑
τ′∈T ′

‖e(bτ′ − Aτ′x j−1)‖2
2

= d(x j−1,S)2 − 1

m′β′ ‖e(b≤− A≤x j−1)‖2
2.

Combining this with (2.1) and letting E= and E≤ denote the events that a block from T and a block
from T ′ is selected, respectively, we have

E
[
(d(x j ,S)2]= p ·E[d(x j ,S)2|E=]+ (1−p) ·E[d(x j ,S)2|E≤]

≤ p

[
d(x j−1,S)2 − 1

βm

∑
i∈I=

e(A=x j−1 −b=)2
i

]

+ (1−p)

[
d(x j−1,S)2 − 1

m′β′ ‖e(b≤− A≤x j−1)‖2
2

]
= d(x j−1,S)2 −p · 1

βm

∑
i∈I=

e(A=x j−1 −b=)2
i

− (1−p) · 1

m′β′ ‖e(b≤− A≤x j−1)‖2
2

Since p = βm
β′m′+βm , we have 1−p

β′m′ = 1
β′m′+βm and we can simplify
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E
[
d(x j ,S)2]≤ d(x j−1,S)2 − 1

β′m′+βm

[ ∑
i∈I=

e(A=x j−1 −b=)2
i

+‖e(b≤− A≤x j−1)‖2
2

]
= d(x j−1,S)2 − 1

β′m′+βm
‖e(Ax j−1 −b)‖2

2

≤ d(x j−1,S)2 − 1

L2(β′m′+βm)
·d(x j−1,S)2

=
[

1− 1

L2(β′m′+βm)

]
d(x j−1,S)2,

where we have utilized the Hoffman bound (1.7) in the second inequality.
Iterating this relation along with independence of the random control completes the proof.

�
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