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Abstract

Mumford-Shah and Potts functionals are powerful variational models
for regularization which are widely used in signal and image processing;
typical applications are edge-preserving denoising and segmentation. Be-
ing both non-smooth and non-convex, they are computationally challeng-
ing even for scalar data. For manifold-valued data, the problem becomes
even more involved since typical features of vector spaces are not available.
In this paper, we propose algorithms for Mumford-Shah and for Potts
regularization of manifold-valued signals and images. For the univariate
problems, we derive solvers based on dynamic programming combined
with (convex) optimization techniques for manifold-valued data. For the
class of Cartan-Hadamard manifolds (which includes the data space in
diffusion tensor imaging), we show that our algorithms compute global
minimizers for any starting point. For the multivariate Mumford-Shah
and Potts problems (for image regularization) we propose a splitting into
suitable subproblems which we can solve exactly using the techniques de-
veloped for the corresponding univariate problems. Our method does not
require any a priori restrictions on the edge set and we do not have to
discretize the data space. We apply our method to diffusion tensor imag-
ing (DTI) as well as Q-ball imaging. Using the DTI model, we obtain a
segmentation of the corpus callosum.
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1 Introduction

In their seminal works [1, 2] Mumford and Shah introduced a powerful varia-
tional approach for image regularization. It consists of the minimization of an
energy functional given by

i @ a 1 u(x z))Pdx
rggw|0|+q/mc|m<x>| dw+p/9d< (2), f(x))Pda. (1)

Here, f represents the data and u is the target variable to optimize for. In the
scalar case, v and f are real-valued functions on a domain Q C R2, d is the Eu-
clidean metric, and Du denotes the gradient (in the weak sense). In contrast to
Tikhonov-type priors, the Mumford-Shah prior penalizes the variation only on
the complement of a discontinuity set C. Furthermore, the “length” |C| (i.e., the
outer one-dimensional Hausdorff measure) of this discontinuity set is penalized.
The parameters v > 0 and a > 0 control the balance between the penalties.
Basically, the resulting regularization is a smooth approximation to the image
f which, at the same time, allows for sharp variations (“edges”) at the disconti-
nuity set. The piecewise constant variant of (1) — often called Potts functional
— corresponds to the degenerate case o = oo which amounts to removing the
second term in (1). Typical applications of these functionals are edge-preserving
smoothing and image segmentation. For further information considering these
problems from various perspectives (calculus of variation, stochastics, inverse
problems) we exemplarily refer the reader to [3-12] and the references therein.
These references also deal with theoretical questions such as, e.g., the existence
of minimizers. Mumford-Shah and Potts problems are computationally challeng-
ing since one has to deal with non-smooth and non-convex functionals. Even for
scalar data, both problems are NP-hard in dimensions higher than one [13-15].
This makes finding a (global) minimizer infeasible. However, due to its impor-
tance in image processing, many approximative strategies have been proposed
for scalar- and vector valued data. Among these are graduated non-convexity
[4], approximation by elliptic functionals [6], graph cuts [14], active contours
[16], convex relaxations [17], and iterative thresholding approaches [10].

In recent years, regularization of manifold-valued data has gained a lot of in-
terest. For example, sphere-valued data have been considered for SAR imaging
[18] and non-flat models for color image processing [19-22]. Further examples
are SO(3) data expressing vehicle headings, aircraft orientations or camera po-
sitions [23|, and motion group-valued data [24]. Related work dealing with
the processing of manifold-valued data are wavelet-type multiscale transforms
[23, 25, 26] and manifold-valued partial differential equations [27-29]; statistics
on Riemannian manifolds are the topic of [30-36]. In medical imaging, a promi-
nent example with manifold-valued data is diffusion tensor imaging (DTT). DTI
allows to quantify the diffusional characteristics of a specimen non-invasively
[37, 38]; see also the overview in [39]. DTI is helpful in the context of neurode-
generative pathologies such as schizophrenia [40, 41|, autism [42] or Hunting-
ton’s disease [43]. In DTI, the data can be viewed as living in the Riemannian
manifold of positive (definite) matrices; see, e.g., [44]. The underlying distance



corresponds to the Fisher-Rao metric [45] which is statistically motivated since
the positive matrices (called diffusion tensors) represent covariance matrices.
These tensors model the diffusivity of water molecules. Oriented diffusivity
along fiber structures is reflected by the anisotropy of the corresponding ten-
sors; typically, there is one large eigenvalue and the corresponding eigenvector
yields the orientation of the fiber. In DTI, potential problems arise in areas
where two or more fiber bundles are crossing because the tensors are not de-
signed for the representation of multiple directions. In order to overcome this,
the Q-ball imaging (QBI) approach [46-48] uses higher angular information to
allow for multiple directional peaks at each voxel; it has been applied to diffusion
tractography [49]. The Q-ball imaging data can be modeled by a probability
density on the 3D-unit sphere called orientation distribution function (ODF).
The corresponding space of ODFs can be endowed with a Riemannian manifold
structure [50].

In the context of DTI, Wang and Vemuri consider a Chan-Vese model for
manifold-valued data (which is a variant of the Potts model for the case of two
segments) and a piecewise smooth analogue [51, 52]. Their method is based on a
level-set active-contour approach which iteratively evolves the jump set followed
by an update of the mean values (or a smoothing step for the piecewise smooth
analogue) on each of the two segments. In order to reduce the computational
load in their algorithms (caused by Riemannian mean computations for a very
large amount of points) the authors resort to non-Riemannian distance measures
in [51, 52]. Recently, a fast recursive strategy for computing the Riemannian
mean has been proposed and applied to the piecewise constant Chan-Vese model
in [53]. Related segmentation methods are K-means clustering [54], geometric
flows [55] or level set methods [56, 57].

In this work, we propose algorithms for Mumford-Shah and Potts regulariza-
tion for Riemannian manifolds (which includes DTI with the Fisher-Rao metric)
for both signals and images. For manifold-valued data, the distance d in (1) be-
comes the Riemannian distance and the differential D can be understood in
the sense of metric differentials [58]. For univariate Mumford-Shah and Potts
problems, we derive solvers based on a combination of dynamic programming
techniques developed in [2, 7, 59, 60] and proximal point splitting algorithms
for manifold-valued data developed by the authors in [61]. Our algorithms are
applicable for manifolds whose Riemannian exponential mapping and its inverse
can be evaluated in reasonable time. For Cartan-Hadamard manifolds (which
includes the manifold in DTT) our algorithms compute global minimizers for all
input data. (We note that the univariate problems are not NP hard.) These
results actually generalize to the more general class of Hadamard spaces. For
Mumford-Shah and Potts problems for manifold-valued images (where the prob-
lems become NP-hard), we propose a novel splitting approach. Starting from
a finite difference discretization of (1) we use a penalty method to split the
problems into computationally tractable subproblems. These subproblems are
closely related to univariate Mumford-Shah and Potts problems and can also
be solved using the methods we developed for these problems in this paper.
We note that our methods neither require a priori knowledge on the number of



segments nor a discretization of the manifold. We demonstrate the capabilities
of our methods by applying them to two medical imaging modalities: DTI and
Q-ball imaging. For DTI, we first consider several synthetic examples corrupted
by Rician noise and show our algorithms potential for edge-preserving denois-
ing. As specific medical imaging application, we obtain a segmentation of the
corpus callosum for real human brain data. We conclude with experiments for
Q-ball imaging.

1.1 Organization of the article

Section 2 deals with algorithms for the univariate Potts and Mumford-Shah
problems for manifold-valued data. We start by presenting a dynamic pro-
gramming approach for the univariate Potts and Mumford-Shah problem in
Section 2.1. Then we use this approach to derive an algorithm for univariate
Potts functionals for manifold-valued data in Section 2.2 and to derive an algo-
rithm for the univariate Mumford-Shah problem in Section 2.3. An analysis of
the derived algorithms is given in Section 2.4. In Section 3, we derive algorithms
for the Potts and Mumford-Shah problems for manifold-valued images. We first
deal with proper discretizations and then propose a suitable splitting into sub-
problems that we solve using similar techniques as in the univariate case. We
apply our algorithm to DTI data in Section 4 and to Q-ball data in Section 5.

2 Univariate Mumford-Shah and Potts function-
als for manifold-valued data

In this section, we present solvers for Mumford-Shah and Potts problems for
univariate manifold-valued data. These are not only important in their own
right; variants of the derived solvers are also used as a basic building block for
the proposed algorithm for the multivariate problems.

We first deal with some general issues; then, we derive the announced al-
gorithms — first for the univariate Potts problem and then for the univariate
Mumford-Shah problem; we conclude with an analysis of both algorithms.

In the univariate case, the discretization of the Mumford-Shah functional (1)
and the Potts functional (o« = 0o in (1)) is straightforward. The (equidistantly
sampled) discrete Mumford-Shah functional reads

1 n
Baﬂ(a:):};Zd(xi,fi)u% Y d(wiwinn)? +41T ()], 2)
i=1 i¢J ()

where d is the distance with respect to the Riemannian metric in the manifold
M, f € M" is the data, and J is the jump set of x. The jump set is given by
J(@)={i:1<i<nandd(z;z;y1) > s} where the jump height s is related
to the parameter v via v = as?/q. Using a truncated power function we may



rewrite (2) in the Blake-Zisserman type form
n n—1
1
Bq s(z) = » Z d(zi, fi)? + % Z min(s?, d(z;, ziy1)?), (3)
i=1 i=1

where s is the argument the power function ¢ — ¢ is truncated at.
The discrete univariate Potts functional for manifold-valued data reads

Py (x) = ;;dm,m” + T (@), (4)

where d is the distance in the manifold and ¢ belongs to the jump set of z if
xT; 7£ Lit1-

We first of all show that the problems (2) and (4) have a minimizer. (We re-
call that certain variants of the continuous Mumford-Shah and Potts functional
do not have a minimizer without additional assumptions; see, e.g., [11].)

Theorem 1. In a complete Riemannian manifold the discrete Mumford-Shah
functional (2) and the discrete Potts functional (4) have a minimizer.

The proof is given in Appendix A. We note that the data spaces in applica-
tions are typically complete Riemannian manifolds.

2.1 The basic dynamic program for univariate Mumford-
Shah and Potts problems

In order to find a minimizer of the Mumford-Shah problem (2) and the Potts
problem (4), we use a general dynamic programming principle which was con-
sidered for the corresponding scalar and vectorial problems in various contexts;
see, e.g., [2, 7, 59, 60, 62, 63]. We briefly recall the basic idea starting with the
Mumford-Shah problem. It is convenient to use the notation

Tpp = (‘rla B3] ‘TT)'

Assume that we have already computed minimizers x! of the functional B
associated with the partial data fi., = (f1,..., fi) for each { = 1,...,r — 1 and
some r < n. Then we compute x” associated to data fi., as follows. With each
2!~ of length [ — 1, we associate a candidate of the form /" = (z!=1, hb") € M"
which is the concatenation of z!~! with a vector " of length » — [ + 1. This
vector hb" is a minimizer of the problem

r—1 r
_ . Qoan. g 1 P(h. f
U = i, 2 hesn) 0 3k o), (5)

and €, is the error of a best approximation on the (discrete) interval (I, ..., 7).
Then we calculate the quantity

in ‘{Baﬂ(xl_l) +v+ent, (6)
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which we will see to coincide with the minimal functional value of B, - for
data f1. (cf. Theorem 2 and Theorem 3). Then, we set " = z'" where 1*
is a minimizing argument in (6). We successively compute z” for each r =
1,...,n until we end up with full data f. Actually, only the {* and the ¢,
and not the vectors x” have to be computed in this selection process; in a
postprocessing step, the solution can be reconstructed from this information; see
Algorithm 1 and [60] for further details. With these improvements, the dynamic
programming skeleton (without the cost for computing the approximation errors
€1,») has quadratic cost with respect to time and linear cost with respect to
space. In practice, the computation can be accelerated significantly by pruning
the search space [64, 65].

In order to adapt the dynamic program for the Potts problem (4) the only
modification required is that the approximation errors on the intervals ¢; , read

€1, = min dep (h, 1), (7)

heM p 4

and the candidates are of the form x'" = (z!=1 Ab7), where ht" € M™~+1 is
constant and componentwise equals a minimizer h* of (7) on the interval I, ... r.
We next deal with the computation of these minimizers.

2.2 An algorithm for univariate Potts functionals for mani-
fold-valued data

In order to make the dynamic program from Section (2.1) work for the Potts
problem for manifold-valued data, we see from Section (2.1) that we have to
compute the approximation errors ¢, given in (7) in the Riemannian manifold
M. This means we are faced with the problem of computing a minimizer for the
manifold-valued data f;.. = (fi,..., fr) and then to calculate the corresponding
approximation error.

We first consider the case p = 2 which amounts to the “mean-variance”
situation. Since our data live in a Riemannian manifold, the usual vector space
operations to define the arithmetic mean are not available. However, it is well
known (cf. [31, 44, 66, 67]) that a minimizer

z* € arg mand 2, 2;)? (8)

is the appropriate definition of a mean z* € mean(zy, ..., zy) of the N elements
z; on the manifold M. A mean is in general not uniquely defined since the
minimization problem has no unique solution in general. If the z; are contained
in a sufficiently small ball, however, the solution is unique. We then replace the
“€” symbol by an “=" symbol and call z* the mean. The actual size of the ball
where minimizers are unique depends on the sectional curvature of the manifold
M; for details and for further information we refer to [66, 67].



In contrast to the Euclidean case there is no closed form expression of the
intrinsic mean defined by (8) in Riemannian manifolds. A widespread method
for computing the intrinsic mean is the gradient descent approach (already men-
tioned in [66]) given by

N
2+ = exp_ ) Z + expz_(,lc) 2. (9)
i=1
(Recall that the points z1,. .., zx are the points for which the intrinsic mean is

computed.) Information on convergence related and other issues can, e.g., be
found in the papers [31, 68] and the references therin. Newton’s method was
also applied to this problem in the literature; see, e.g., [69]. It is reported in
the literature and also confirmed by the authors’ experience that the gradient
descent converges rather fast; in most cases, 5-10 iterations are enough. This
might explain why this relatively simple method is widely used.

For general p # 1, the gradient descent approach works as well. The case
p = 1 amounts to considering the intrinsic median and the intrinsic absolute
deviation. In this case, the gradient descent (9) is replaced by a subgradient
descent which in the differentiable part amounts to rescaling the tangent vector
given on the right-hand side of (9) to length 1 and considering variable step
sizes which are square-integrable but not integrable; see, e.g., [70].

A speedup using the structure of the dynamic program is obtained by ini-
tializing with previous output. More precisely, when starting the iteration of
the mean for data f;11.., we can use the already computed mean for the data
fi.r as an initial guess. We notice that this guess typically becomes even better
the more data items we have to compute the mean for, i.e., the bigger r — [ is.
This is important since this case is the computational more expensive part and
a good initial guess reduces the number of iterations needed.

A possible way to reduce the computation time further is to approximate the
mean by a certain iterated two-point averaging construction (known as geodesic
analogues in the subdivision context) as explained in [71]. Alternatively, one
could use a “log —exp” construction (also known from subdivision; see [23])
which amounts to stopping the iteration (9) after one step.

The proposed algorithm for univariate Potts functionals for manifold-valued
data is summarized in Algorithm 1.

2.3 An algorithm for univariate Mumford-Shah functio-
nals for manifold-valued data

In order to make the dynamic program from Section 2.1 work for the Mumford-
Shah problem with manifold-valued data, we have to compute the approxima-
tion errors €, in (5). To this end, we compute minimizers of the problem

Valas f) = %Zd%xi,m +aéqu<xi,xi+1>. (10)
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Figure 1: (a) Synthetic piecewise constant signal; (b) noisy data (Rician noise with k = 85);
(c) Potts regularization (p,q = 1) using Algorithm 1 with parameter v = 84.5. The signal is
reconstructed almost perfectly; the exact jump locations are obtained.

Here x is the target variable and f is the data. These are LP-V? type problems:
the data term is a manifold ¢P distance and the second term is a qth variation;
in particular, ¢ = 1 corresponds to manifold-valued total variation. Solvers for
these problems have been developed in the authors’ paper [61]. We briefly recall
the approach concentrating on the univariate case; for details we refer to [61].
We decompose the functional (10) into the sum V,, = F+a ), G;, where we let
Gi(x) = ;d%(x;,xi41) and F(z) = 37, dP(z;, f;). For each of these summands,
we can explicitly compute their proximal mappings defined by

1
Prox, g, = argmin ()\Gi(y) + §d2(a:, y)) . (11)
Y

They are given in terms of points on certain geodesics. In detail, we get

(proxyg, )i = [Ti; Tiv1lt,

(12)
(proxyg,®)it1 = [Tiv1, it

where [z,y]; denotes the point reached after time ¢ on the unit speed geodesic
which is starting in « and going to y. For the practically relevant cases ¢ = 1, 2
the parameter ¢ has an explicit representation: for ¢ = 1, we have t = A, if
A< %d(xi,xiﬂ), and d(x;,2,41)/2 else; for ¢ = 2 we get t = ﬁd(.’ﬂi,.’fi.},.]_).
Similarly, the proximal mapping of F is given by

(proxyp)i(@) = [z, fils- (13)

For p = 1, we have s = X if A < d(ay, f;), and d(z;, f;) else; for p = 2, we
obtain that s = H%d(a:i, fi). We notice that the above proximal operators are
uniquely defined if there is precisely one shortest geodesic joining the two points
involved. Otherwise, one has to resort to set-valued mappings. Uniqueness is



given for the class of Cartan-Hadamard manifolds which includes the data space
in DTT considered in Section 4.

Equipped with these proximal mappings we apply a cyclic proximal point
algorithm for manifold-valued data [72]: we apply the proximal mappings of
F,aG,,...,aG; (with parameter \) and iterate this procedure. During the
iteration, we decrease the parameter \j in the kth iteration in a way such that
YAk =o0cand Y, A2 < ooc.

A speedup using the structure of the dynamic program is obtained by initial-
izing with previous output as explained for the Potts problem in Section 2.2. The
proposed algorithm for univariate Mumford-Shah functionals with manifold-
valued data is summarized in Algorithm 1.

Algorithm 1: Algorithm for the Mumford-Shah problem (2) and the Potts
problem (4) for univariate manifold-valued data

begin
// Find optimal partition
By < —v;

forr < 1,...n do

forl«+ 1,...,7 do

// Mumford-Shah case (Sec. 2.3):

€ < mingcprr—1+1 Vo (b f1or) // use Alg. of Sec. 2.3
// Potts case (Sec. 2.2):

€ < minpenr .., dP(h, fi) // use Alg. of Sec. 2.2
b« Bi_1+7v+e¢€

if b < B, then

B, +b;
pr—1l—1;
end
end
end

// Reconstruct solution from partition

r < n;l < py;

while [ >0 do

// Mumford-Shah case (Sec. 2.3):

h* < argmingcprr—1+1 Vo (s fiy1.) // use Alg. of Sec. 2.8
// Potts case (Sec. 2.2):

W argminpens iy, dP(h, fi) // use Alg. of Sec. 2.2
h* <« (h,...,h);

z7+1:r — h*7

r< U1l <+ pr;

end

return z*
end
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Figure 2: (a) Synthetic piecewise smooth signal; (b) noisy data (Rician noise with k = 70);
(¢) Mumford-Shah regularization (p,q = 1) using Algorithm 1 with parameters o = 1.45 and
v = 1.5. The noise is removed while preserving the jump.

2.4 Analysis of the univariate Potts and Mumford-Shah
algorithms

We first obtain that our algorithms yield global minimizers for data in the
class of Cartan-Hadamard manifolds which includes many symmetric spaces.
Prominent examples are the spaces of positive matrices (which are the data
space in diffusion tensor imaging) and the hyperbolic spaces. These are complete
simply-connected Riemannian manifolds of nonpositive sectional curvature. For
details we refer to [73] or to [74]. In particular, in these manifolds, geodesics
always exist and are unique shortest paths.

Theorem 2. In a Cartan-Hadamard manifold, Algorithm 1 produces a global
minimizer for the univariate Mumford-Shah problem (2) (and the discrete Potts
problem (4), accordingly).

The proof is given in Appendix B.

We notice that this result generalizes to the more general class of (locally
compact) Hadamard spaces. These are certain metric spaces generalizing the
concept of Cartan-Hadamard manifolds; see, e.g., [75]. Examples of Hadamard
spaces which are not Cartan-Hadamard manifolds are the metric trees in [75].
The validity of Theorem 2 for (locally compact) Hadamard spaces may be seen
by inspecting the proof noticing that all steps rely only on features of these
spaces.

For analysis of general complete Riemannian manifolds, we first notice that,
in this case we have to deal with questions of well-definedness. We consider
the Potts functional and data fi,..., f,. For each (discrete) subinterval [l, ],
a corresponding mean h'" is defined as a minimizer of (8) for data fi,..., fn.
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Although such a minimizer exists by the coercivity and continuity of the func-
tional, it might not be unique. Furthermore, an algorithm such as gradient
descent only computes a local minimizer for general input data. For data not
too far apart, however, the gradient descent produces a global minimizer of (8)
(since then the corresponding functional is convex). If data are so far apart that
the operations in the manifold are not even well-defined it might be likely that
they do not belong to the same segment. Hence, let us consider a constant Cx
such that, if points belong to a Ck-ball with center in the compact set K, then
their mean is uniquely defined and obtained by converging gradient descent.
Assuming that the data lie in K, we call a partition of [1,n] admissible if for
any interval [/, r] in this partition the corresponding data f;.. are centered in a
common C'i-ball. We get the following result.

Theorem 3. Let M be a complete Riemannian manifold. Then the univariate
Potts problem given in Algorithm 1 with p = 2 produces a minimizer of the
discrete Potts problem (4) when restricting the search space to candidates whose
jump sets correspond to admissible partitions.

The proof can be found in Appendix B. This result can be easily generalized
to the general case p > 1.

3 Mumford-Shah and Potts problems for mani-
fold-valued images

We now consider Mumford-Shah and Potts regularization for manifold-valued
images. In contrast to the univariate case, finding global minimizers is not
tractable anymore in general. In fact, the Mumford-Shah problem and the
Potts problem are known to be NP hard in dimensions higher than one even for
scalar data [13, 15]. Therefore, the goal is to derive approximative strategies
that perform well in practice.

In the following it is convenient to use the notation dP(z, y) for the p-distance
of two manifold-valued images x,y € M™*" i.e.

dP(z,y) = de(xijvyij)'
4,J
We further define the penalty function

Wo(z) = ZUJ(I(LJ‘)M@@)

0]

with respect to some finite difference vector a € Z?2 \ {0}. Here, we instantiate
the potential function ¢ in the Mumford-Shah case by

wlw,2) =~ min(s", dw, 2)). (14)

11



and in the Potts case by

1, %f w # 2, (15)
0, ifw=z,
for w,z € M.

In higher dimensions, the discretization of the Mumford-Shah and Potts
problem is not as straightforward as in the univariate case. A simple finite
difference discretization with respect to the coordinate directions is known to
produce undesired block artifacts in the reconstruction [76]. The results im-
prove significantly when including further finite differences such as the diagonal
directions [65, 76, 77]. We here use a discretization of the general form

R
1
min —-dP(z, f) + « g wsV,, (), 16
rxEMmMXn p ( ) = h ( ) ( )

where the finite difference vectors a5 € Z? \ {0} belong to a neighborhood
system N. The values wi,...,wr are non-negative weights. We focus on the
neighborhood system

N =A{(1,0);(0,1); (1,1); (1, -1)}

with the weights w; = ws = V2 —1 and wy = wy = 1 — % as in [65]. For
further neighborhood systems and weights we refer to [65, 76]. We next show
the existence of minimizers of the discrete functional (16).

Theorem 4. Let M be a complete Riemannian manifold. Then the discrete
Mumford-Shah and Potts problems (16) both have a minimizer.

The proof is given in Appendix A.
We next propose a splitting approach for the discrete Mumford-Shah and
Potts problems. To this end, we rewrite (16) as the constrained problem

R
1
min Z 7de(msa f) + awS\IJaS (I‘?)

L1,y..3 TR
yeees Szlp

(17)
subject to s = zs4q forall 1 <s < R.

Here, we use the convention g1 = x1. (Note that 21, ..., 2g are m x n images.)
We use a penalty method (see e.g. [78]) to include the constraints into the target
functional and get the problem

R
min ZwspRa\I/as (xs) + dP(zs, f) + prd? (zs, Tsy1).
s=1

T1,.-;TR

We use an increasing coupling sequence (ug)r which fulfills the summability
condition ), /z,zl/ P'< o0o. Optimization with respect to all variables simulta-

neously is still not tractable, but our specific splitting allows us to minimize

12



the functional blockwise, that is, with respect variables x1, ..., xr separately.
Performing the blockwise minimization we get the algorithm

2! € argminpRwiaWy, (z) + d”(x, f) + ppd? (z, o),

23! € argmin pRws W, () + P (z, ) + pd(z, 27), "

x’;_£+1 € argmin pRwraW¥, () + d?(z, f) + /“Lkdp(x7$%t11)-

We notice that each line of (18) decomposes into univariate subproblems of
Mumford-Shah and Potts type, respectively. For example, we obtain

(21).; € arg min pRuwia¥(2) +d(z, f.5) + ued”(z, (z}).)  (19)

for the direction a; = (1,0).

The subproblems are almost identical with the univariate problems of Section
2. Therefore, we can use the algorithms developed in Section 2 with the following
minor modification. For the Potts problem, the approximation errors are now
instantiated by

T
. k
€lr = }ILIEIINI} — dp(hv fu) + /f'kdp(ha (xR)ij)ﬂ
i=
for the subproblems with respect to direction a; (and analogously for the other
directions as, ...,ar.) This quantity can be computed by the gradient descent

explained in Section 2.2. In the Mumford-Shah case, we have

r—1

Cr = heﬁllgl#»l Z_;prladq(h“ hiv1) + z_:l d”(h;, fw) + Z_;:ukdp(hw (xR)ZJ)'

The only difference to (5) is the extra “data term”
T
F'(h) =) d”(hi, ()s5).
i=l

Its proximal mapping has the same form as the proximal mapping of F' in Sec-
tion 2.3. Thus, we only need to complement the cyclic proximal point algorithm
for the LP-V'7 problem of Section 2.3 by an evaluation of the proximal mapping
with respect to F”.

We eventually show convergence.

Theorem 5. For Cartan-Hadamard manifold-valued images the algorithm (18)
for both the Mumford-Shah and the Potts problem converge.

The proof is given in Appendix C.
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Figure 3: (a) Synthetic DT image, (b) noisy data (Rician noise of level 75), (c¢) L'-TV
reconstruction (using TV parameter a = 0.65), (d) Potts reconstruction (p,qg = 1) with
parameter v = 3.75. While the L1-T'V reconstruction decreases the contrast significantly, the
Potts method yields an almost perfect reconstruction.

4 Application to Diffusion Tensor Images

The first application of our method is edge preserving denoising and segmenta-
tion of diffusion tensor images. Diffusion tensor imaging (DTI) is a non-invasive
modality for medical imaging quantifying diffusional characteristics of a speci-
men. It is based on nuclear magnetic resonance [37, 38]. Prominent applications
are the determination of fiber tract orientations [37], the detection of brain is-
chemia [79], and studies on autism [42], to mention only a few. Regularization
of DT images is important in its own right and, in particular, serves as a pro-
cessing step in many applications. It has been studied in a number of papers;
we exemplarily mention [44, 51, 80, 81].

In DTI, the diffusivity of water molecules is encoded into a so-called dif-
fusion tensor. This means that the data sitting in each pixel (or voxel) of a
diffusion tensor image is a positive (definite symmetric) 3 x 3 matrix D. The
space of positive matrices Posg is a Riemannian manifold when equipped with
the Riemannian metric

1 1
gp(W, V) = trace(D"2WD VD~ 2); (20)

for details, see, e.g., [44]. Here the symmetric matrices W,V represent tangent
vectors in the point D. Besides its mathematical properties, the practical ad-
vantage of the Riemannian metric (20) in comparison to the Euclidean metric
is that it reduces the swelling effect ([27, 82]). On the flipside, the algorithms
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and the corresponding theory become more involved.

4.1 Implementation of our algorithms for DTI

We now implement our algorithms for Mumford-Shah and Potts regularization
for DTT data. Due to the generality of our algorithms, we only need an im-
plementation of the Riemannian exponential mapping and its inverse to make
them work on the concrete manifold. For the space of positive matrices, the
Riemannian exponential mapping expp, is given by

expp (W) = D7 exp(D"2WD™2)D3.

Here D is a positive matrix and the symmetric matrix W represents a tangent
vector in D. The mapping exp is the matrix exponential. The inverse of the
Riemannian exponential mapping is given by

expp!(E) = D? log(D™2 ED™2)D3.

for positive matrices D, E. The matrix logarithm log is well-defined since the
argument is a positive matrix. The matrix exponential and logarithm can be
efficiently computed by diagonalizing the symmetric matrix under consideration
and then applying the scalar exponential and logarithm functions to the eigen-
values. The distance between D and E is just the length of the tangent vector
expp' (F) which can be explicitly calculated by d(D, E) = (Zle log(k1)?)2,
where ; is the [*® eigenvalue of the matrix D=2 ED~ 3.

The space of positive matrices becomes a Cartan-Hadamard manifold with
the above Riemannian metric (20). Hence the theory developed in this paper
fully applies; in particular, the univariate algorithms for DTI data produce
global minimizers for all input data (see Theorem 2); furthermore, the algorithm
(18) converges, and all its subproblems are solved exactly.

4.2 Synthetic data

The data measured in DTT are so-called diffusion weighted images (DWIs) D,
which capture the directional diffusivity in the direction v. The relation between
the diffusion tensor image f and the DWIs D, at some pixel p is given by the
Stejskal-Tanner equation

T
v = A0 P )
Dy(p) = Age~? V7S (21)

where b, Ag > 0 are empirical parameters. For our simulation, we used b = 800
and Ag = 1000. The tensor S(p) is commonly derived from the DWIs via a
least square fit using (21). In our experiments we visualize the diffusion tensors
by the isosurfaces of the corresponding quadratic forms. More precisely, the
ellipse representing the diffusion tensor S(p) at pixel p are the points z fulfilling
(x —p)T'S(p)(x — p) = c, for some ¢ > 0.
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Figure 4: (a) Synthetic DT image, (b) noisy data (Rician noise of level 65), (c) L-TV
reconstruction (TV parameter a = 0.5), (d) Mumford-Shah reconstruction (p,q = 1) using
parameters v = 0.8 and o = 5. The noise is removed and the segments of the original image
are recovered reliably.

We simulate noisy data using a Rician noise model [81, 84]. This means that
we generate a noisy DWI D! (p) by

D,(p) = V(X + Dy(p))? + Y2,

with clean data D, (p) and Gaussian variables X,Y ~ N(0,0%). In our exam-
ples, we impose Rician noise to 15 diffusion weighted images and then compute
the diffusion tensors according to the Stejskal-Tanner equation (21) using a least
squares fit. We compare our results with LP-V? regularization, i.e., with mini-
mizers of the two-dimensional analogue of (10) using the (globally convergent)
cyclic proximal point algorithm of [61]. We optimized the model parameter with
respect to the error to the groundtruth.

The univariate situation is illustrated in Fig. 1 for Potts and in Fig. 2 for
Mumford-Shah regularization. Fig. 3 shows the effect of Potts regularization
on a simple diffusion tensor image. The noise is removed and the segment
boundaries are correctly recovered. The image in Fig. 4 possesses a certain
variation within the segments. Therefore the (piecewise smooth) Mumford-Shah
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Figure 5: (a) Corpus callosum of a human brain from the Camino project [83]. (b) Mumford-
Shah regularization (p,q = 1) using parameters a = 4.3 and v = 2.9. The noise is reduced
significantly while the edges are preserved. In particular, the reconstruction induces a seg-
mentation of the corpus callosum and its adjacent structures (red lines).

regularization is the proper method. As result, we obtain a piecewise smooth
denoised image with preserved sharp edges.

4.3 Application to real data — segmentation of the corpus
callosum

DTTI is frequently used to study characteristics of the corpus callosum. The
corpus callosum connects the right and the left hemisphere of the human brain.
Typically, the first step of an analysis is the localization of the corpus callosum
[42, 51]. We use our Mumford-Shah method for the segmentation of the corpus
callosum of a human brain. This real data set stems from the Camino project
[83]. In Fig. 5, we observe that our Mumford-Shah approach removes noise and
preserves sharp boundaries between the oriented structures. In particular, the
jump set yields an accurate segmentation of the corpus callosum.

5 Application to Q-Balls

In DTT the diffusion at each pixel/voxel is modeled via a single tensor. Typi-
cally, this tensor has one dominant eigenvalue with corresponding eigenvector
pointing to the direction with maximal diffusivity. This direction is directly
related with pathways of, e.g., neural fibers. DTI encounters difficulties for
modeling voxels with intravoxel directional heterogeneity which, for example,
occur at crossings of fiber bundles [85, 86]. In order to overcome these limita-
tions, several approaches have been proposed [47, 85, 87, 88]. One of the most
popular among these approaches is Q-ball imaging [86]. Here the tensor (seen as
an ellipsoid parametrized over a ball) is replaced by a more general orientation
distribution function (ODF) ¢ : S? — R where ¢(s) essentially corresponds to
the diffusivity in direction s. Since the method allows for more flexibility, high
angular resolution diffusion imaging (HARDI) data (see [46, 86]) are needed.
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Further information can be found in the latter references.

5.1 The Q-ball manifold and the implementation of our
algorithm for Q-ball imaging

In order to derive a Riemannian structure on the Q-ball manifold we follow the
approach of [50]. The points in the (discrete) Q-ball manifold are “square-root
parametrized” (discrete) ODFs which are a kind of samples of continuous ODFs
¢ : S? — R on a finite subset S of the sphere S? with a preferably almost
equidistant sampling. To be precise, a discrete ODF is a positive function
¢ : S — Rsuch that Y- _c¢?(s) = 1 (as proposed in [50]). Hence, a discrete
ODF can be identified with a point on the sphere S*~!. Then the set ® of all
discrete ODFs is the intersection of the positive quadrant with the unit sphere
in R", and thus can be endowed with the Riemannian structure inherited from
S*~!. Then the corresponding metric for the Q-ball manifold is given by

d(p1,p2) = arccos (Z Lpl(s)gog(s)> , Tor @1, @0 € ®.

ses

The basic Riemannian operations have simple closed expressions. For a point
¢ on the unit sphere S*~! in R” and a non-zero tangent vector v to the sphere
at ¢, the exponential mapping is given by

v - sin |||
engp(U) = @ Co8 ||U|| + Wa
where || - || denotes the Euclidean norm in R™. The inverse of the exponential

mapping is defined for any pair of points ¢, s € ® by

P2 — <<P1,992><P1
o2 — (@1, 02) w1l

expg, (pa2) = d(p1, ¢2) -

These explicit formulas for the Riemannian exp mapping and its inverse enable
us to directly apply our algorithms for the regularization of Q-ball data.

5.2 Numerical experiments

We apply our algorithm to synthetic Q-ball data. Our examples simulate situa-
tions where two fiber bundles intersect. In the examples the size of the sampling
set on the 2-sphere is n = 181 directions. In order to simulate noisy data, we
use the method based on the so-called “soft equator approximation” [46]. We
visualize a discrete ODF as a spherical polar plot. We compare our results with
classical L2-Sobolev regularization (L2-V2) using the cyclic proximal point al-
gorithm of [61].

Our first example is a univariate signal (Fig. 6). It contains two kinds of
Q-balls: one “tensor-like” with a single peak and another one with two peaks.
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Figure 6: (a) Synthetic piecewise smooth Q-ball signal, (b) noisy data, (c) the manifold
analogue of classical Sobolev regularization (L2-V? with a = 50), (d) Mumford-Shah regular-
ization (p,q = 2) with parameters o = 25,y = 0.5. Classical Sobolev regularization removes
the noise, but it smoothes out the jump; in contrast, the Mumford-Shah regularization removes
the noise and preserves the jumps.

This illustrative example shows that, also in the Q-ball case, our regularization
method removes the noise while preserving the jump and its location.

Our second experiment is a Q-ball valued image which simulates the crossing
of two fiber bundles (Fig. 7). Here, we observe that our method removes the
noise while preserving the fiber crossing and the directional structures encoded
in the Q-balls as well as the edge structure in the image.

6 Conclusion and future research

In this paper, we proposed algorithms for the non-smooth and non-convex
Mumford-Shah and Potts functionals for manifold-valued signals and images.
We have shown the potential of our method by applying it to DTI and Q-ball
imaging. Using the DTI model, we obtained a segmentation of the corpus cal-
losum. For signals with values in Cartan-Hadamard manifolds (which includes
the data space in diffusion tensor imaging), we have seen that our algorithms
for univariate data produce global minimizers for any starting point. For the
Mumford-Shah and Potts problems for image regularization (which is a NP hard
problem) we have obtained convergence of the proposed splitting approach.
Topics of future research are the application of our algorithms to further
nonlinear data spaces relevant for imaging. Another issue is to build a seg-
mentation pipeline based on our method. Finally, from a theoretical side, it
is interesting to further investigate convergence related questions for general
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Figure 7: (a) Synthetic Q-Ball image, (b) noisy data, (c¢) the manifold analogue of classical
Sobolev regularization (L2-V? with parameter a = 1), (d) Mumford-Shah regularization

(p,q = 2) with parameters a = 32,7 = 0.03. The Sobolev regularization smoothes out the
edges and the crossing structures. The Mumford-Shah method recovers the edges as well as
the crossings of the original image reliably.

Riemannian manifolds.

A Existence of minimizers

We supply the proofs of Theorem 4 and Theorem 1 which are statements on the
existence of minimizers.

Proof of Theorem 4. We first show that the Mumford-Shah version of the dis-
cretization (16) has a minimizer. In the Mumford-Shah case, 1 is the truncated
power function given by (14). Since ¢ is continuous, so is ¥, for all s and
therefore the whole functional given by (16) is continuous. On the other hand,
the data term dP(z, f) is obviously coercive with respect to the Riemannian
distance. This makes the overall functional coercive and confines points with
small functional value to a bounded set. Since the manifold under consideration
is complete, points with small functional value are confined to a compact set.
Hence, the continuous functional takes its minimal value on this compact set
and the corresponding point is a minimizer.

We come to the discrete Potts functional. Here we consider the discretization
(16) where ¢ is implemented by (15). With the same argument as for the
Mumford-Shah functional above, the Potts functional is coercive with respect
to the Riemannian distance. We show its lower semicontinuity. We have a
look at ¥, , which can be written as a sum of univariate jump functionals for
manifold-valued data of the form S : w — |7 (u)| from the Riemannian manifold
M7 to the nonnegative integers (where j is the varying length of the data under
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consideration.) If these functionals S were not lower semicontinuous, there
would be a convergent sequence u”™ — u with each u™ € M7 such that |J(u)| >
|J(u™)| for sufficiently high indices n. Since u"™ — u componentwise (with respect
to the distance induced by the Riemannian metric), we get, using the triangle
inequality, that

d(ug;up_1) = d(ug; ug—1).

This contradicts u having more jumps than u™. Hence, the functionals S and,
as a consequence, the functionals ¥, are lower semicontinuous. Using the
continuity of the data term the discretization (16) of the Potts functional is
lower semicontinuous. By its coercivity and the completeness of the manifold
M, arguments with a small Potts value are located in a compact set. Hence, in
the Potts case, (16) has a minimizer. This completes the proof. O

Proof of Theorem 1. The assertion is a consequence of Theorem 4 when spec-
ifying to data defined on {1,...,n} x {1} choosing as single direction a; =
(1,0). O

B Univariate Mumford-Shah and Potts algorithms

We supply the proof of Theorem 2 which states that the algorithms proposed
for the univariate problems produce global minimizers when the data live in a
Cartan-Hadamard manifold.

Proof of Theorem 2. We start with the Mumford-Shah problem for manifold-
valued data. For [ = 1,...,r, we consider the first [ — 1 data items fy.,;, 1 =
(fi,---, fi—1). We let 2!~! be a minimizer of the corresponding functional Blo;}
for the truncated data fi.;,_1. Moreover, we let RY" € M7+ be the result
computed by our algorithm for the minimization of V,, according to Section 2.3
for data f;.,. Since we are in a Cartan-Hadamard manifold, hb" is a global
minimizer of V,, by Theorem 2 in [61]. With each | we associate the candidate
ob" = (2!=1,hbT). On the other hand we consider an index [* minimizing (6).
We claim that the candidate z!"" is a minimizer of By, . To see this, consider
an arbitrary x € M" and let k be its rightmost jump point k. If there is no such
k, then x has no jumps and

r _ 1,7 r *r
Ba,'y(‘r) - Va(CL') Z Va(l' ) Z Ba,’y(x )

The penultimate inequality is due to the fact that 2" is a global minimizer of

Vq in a Cartan-Hadamard manifold. The last inequality follows from (6). If &
is the rightmost jump point of x, we have

By, () = By, (2) + 7+ Val(a™") = B ()

by (6). This shows the assertion of the theorem in the Mumford-Shah case using
induction on r.
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In the Potts functional case, we let z'~! be a minimizer of the Potts func-
tionals Pé_l for the truncated data f1;_;. Then we let A" € M7=+ be the
result of the gradient (resp. subgradient) descent (9). Since we are in a Cartan-
Hadamard manifold, h"" agrees with the constant function on [l,r] which is
pointwise equal to the mean (p = 2), median (p = 1) or, in general, the min-
imizer of the right hand side of (7). Now we may proceed analogous to the
Mumford-Shah case to conclude the assertion and complete the proof. O

We proceed showing Theorem 3 which states that our algorithm yields a
minimizer for the Potts problem when considering general complete Riemannian
manifolds and candidates with admissible partitions.

Proof of Theorem 3. We use the notation of the proof of Theorem 2. Then, the
z!~1 are minimizer of the corresponding Potts functionals P,ly’1 for the truncated
data f1.,—1. (We notice that such a minimizer exists, since an interval consisting
of one member is always admissible.) Furthermore, for admissible intervals
[I,7], K" € M"~'*! is pointwise equal to the computed Riemannian mean as
explained in Section 2.2. The Riemannian mean minimizes the right hand side
of (7). The candidates " = (z!~1, Al") and the minimizing index [* are given
as in the proof of Theorem 2 above. In order to show that ! *" is a minimizer,
we consider an arbitrary x € M" with an admissible partition. If x has no
jump, then Py (z) = 33, d(z, f;)? > Py(ab") > P,(2""7). Otherwise, let k be
the rightmost jump point of = (which, by assumption, comes with an admissible
partition). Then,

r _ pk-1 I,r 4
Pi(z)=P;  (z) + v+ Va(z"") > Py(z" 7).

which shows that 2!™" is a minimizer. Now induction completes the proof. [

C Mumford-Shah and Potts algorithms for im-
ages

We supply the proof of Theorem 5 stating that the algorithm in (18) converges
in a Cartan-Hadamard manifold.

Proof of Theorem 5. We show that all iterates x* converge to the same limit for
all s € {1,..., R}. Since we are in a Cartan-Hadamard manifold, z’f“ is a global
minimizer of the functional Hi(z) = pRwia¥,, (z) + dP(z, f) + urdP(z,z%)
which is the first problem in (18). This follows by an argument similar to the
proof of Theorem 2.

We have Hy(z¥*1) < Hy (%) which means that
dP (i )+ pad? (277 w) < pRunaWa, (oh) + dP(a, ). (22)

k+1

o+l s =2,..., R, using the other functionals in (18)

In analogy, we get for the x
that

dP (5L ) 4 pdP (25 2k ) < pRwiaW, (a5 + dP (8L ). (23)

S
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For both the Mumford-Shah and the Potts problem, the terms a¥,, (z%) and
W, (")) with s = 2,..., R, are uniformly bounded by a constant C' which
does not depend on k and s. This is because, for any input, a¥,, is bounded
by amn with the regularizing parameter « for the jump term of the functional
under consideration, and m and n are the height and width of the image. Hence
we can use (22) and (23) to get

@k 2l < € 4 L@ (e, ) - d (25 ),
Pk ah ) < C o L@@t f) - dr @b ). (24)

Now we may apply the inverse triangle inequality to the second summand on
the right-hand side and get d?(2f, f) — dP(z§*h, f) < dP(a%, 24). Then, a
simple manipulation shows that

k k k k
P ak) < Co bt ek ) < (25)

As a consequence, there is a constant D and an index k¢ such that, for all
k Z kOa

1

d(xlzc;lvx%) < Dpy,”

Hence,
k+1 l
d( k+1 ko < D Z lj’l P oo,
I=ko+1

and so the sequence :EII?'I converges. By (24), the iterates z¥ converge to the
same limit for all s =1,..., R — 1. This completes the proof. O
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