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Abstract

The reconstruction of a 3D object or a scene is a classical inverse
problem in Computer Vision. In the case of a single image this is
called the Shape–from–Shading (SfS) problem and it is known to be
ill-posed even in a simplified version like the vertical light source case.
A huge number of works deals with the orthographic SfS problem based
on the Lambertian reflectance model, the most common and simplest
model which leads to an eikonal type equation when the light source is
on the vertical axis. In this paper we want to study non-Lambertian
models since they are more realistic and suitable whenever one has
to deal with different kind of surfaces, rough or specular. We will
present a unified mathematical formulation of some popular ortho-
graphic non-Lambertian models, considering vertical and oblique light
directions as well as different viewer positions. These models lead to
more complex stationary nonlinear partial differential equations of Ha-
milton-Jacobi type which can be regarded as the generalization of the
classical eikonal equation corresponding to the Lambertian case. How-
ever, all the equations corresponding to the models considered here
(Oren-Nayar and Phong) have a similar structure so we can look for
weak solutions to this class in the viscosity solution framework. Via
this unified approach, we are able to develop a semi-Lagrangian ap-
proximation scheme for the Oren-Nayar and the Phong model and to
prove a general convergence result. Numerical simulations on synthetic
and real images will illustrate the effectiveness of this approach and the
main features of the scheme, also comparing the results with previous
results in the literature.
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1 Introduction

The 3D reconstruction of an object starting from one or more images is a
very interesting inverse problem with many applications. In fact, this prob-
lem appears in various fields which range from the digitization of curved
documents [15] to the reconstruction of archaeological artifacts [24]. More
recently, other applications have been considered in astronomy to obtain
a characterization of properties of planets and other astronomical entities
[66, 27, 41] and in security where the same problem has been applied to the
facial recognition of individuals.
In real applications, several light sources can appear in the environment
and the object surfaces represented in the scene can have different reflection
properties because they are made by different materials, so it would be hard
to imagine a scene which can satisfy the classical assumptions of the 3D
reconstruction models. In particular, the typical Lambertian assumption
often used in the literature has to be weakened. Moreover, despite the fact
that the formulation of the Shape-from-Shading problem is rather simple
for a single light source and under Lambertian assumptions, its solution is
hard and requires rather technical mathematical tools as the use of weak
solutions to nonlinear partial differential equations (PDEs). From the nu-
merical point of view the accurate approximation of non regular solutions to
these nonlinear PDEs is still a challenging problem. In this paper we want
to make a step forward in the direction of a mathematical formulation of
non-Lambertian models in the case of orthographic projection with a sin-
gle light source located far from the surface. In this simplified framework,
we present a unified approach to two popular models for non-Lambertian
surfaces proposed by Oren-Nayar [48, 49, 47, 50] and by Phong [51]. We
will consider light sources placed in oblique directions with respect to the
surface and we will use that unified formulation to develop a general numeri-
cal approximation scheme which is able to solve the corresponding nonlinear
partial differential equations arising in the mathematical description of these
models.
To better understand the contribution of this paper, let us start from the
classical SfS problem where the goal is to reconstruct the surface from a sin-
gle image. In mathematical terms, given the shading informations contained
in a single two-dimensional gray level digital image I(x), where x := (x, y),
we look for a surface z = u(x) that corresponds to its shape (hence the
name Shape from Shading). This problem is described in general by the
image irradiance equation introduced by Bruss [8]

I(x) = R(N(x)), (1)

where the normalized brightness of the given grey-value image I(x) is put
in relation with the function R(N(x)) that represents the reflectance map
giving the value of the light reflection on the surface as a function of its
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orientation (i.e., of the normal N(x)) at each point (x, u(x)). Depending on
how we describe the function R, different reflection models are determined.
In the literature, the most common representation of R is based on the
Lambertian model (the L–model in the sequel) which takes into account
only the angle between the outgoing normal to the surface N(x) and the
light source ω, that is

I(x) = γD(x)N(x) · ω, (2)

where · denotes the standard scalar product between vectors and γD(x) in-
dicates the diffuse albedo, i.e. the diffuse reflectivity or reflecting power of a
surface. It is the ratio of reflected radiation from the surface to incident ra-
diance upon it. Its dimensionless nature is expressed as a percentage and it
is measured on a scale from zero for no reflection of a perfectly black surface
to 1 for perfect reflection of a white surface. The data are the grey-value
image I(x), the direction of the light source represented by the unit vector
ω and the albedo γD(x). The light source ω is a unit vector, hence |ω| = 1.
In the simple case of a vertical light source, that is when the light source is
in the direction of the vertical axis, this gives rise to an eikonal equation.
Several questions arise, even in the simple case: is a single image sufficient
to determine the surface? If not, which set of additional informations is nec-
essary to have uniqueness? How can we compute an approximate solution?
Is the approximation accurate? It is well known that for Lambertian sur-
faces there is no uniqueness and other informations are necessary to select
a unique surface (e.g. the height at each point of local maximum for I(x)).
However, rather accurate schemes for the classical eikonal equation are now
available for the approximation. Despite its simplicity, the Lambertian as-
sumption is very strong and does not match with many real situations that
is why we consider in this paper some non-Lambertian models trying to give
a unified mathematical formulation for these models.
In order to set this paper into a mathematical perspective, we should men-
tion that the pioneering work of Horn [28, 29] and his activity with his
collaborators at MIT [30, 31] produced the first formulation of the Shape
from Shading (SfS) problem via a partial differential equation (PDE) and
a variational problem. These works have inspired many other contributions
in this research area as one can see looking at the extensive list of refer-
ences in the two surveys [85, 19]. Several approaches have been proposed,
we can group them in two big classes (see the surveys [85, 19]): methods
based on the resolution of PDEs and optimization methods based on a vari-
ational approximation. In the first group the unknown is directly the height
of the surface z = u(x), one can find here rather old papers based on the
method of characteristics [17, 60, 29, 46, 45, 6, 38] where one typically looks
for classical solutions. More recently, other contributions were developed
in the framework of weak solutions in the viscosity sense starting from the
seminal paper by Rouy and Tourin [61] and, one year later, by Lions-Rouy
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and Tourin [40] (see e.g. [33, 9, 11, 22, 10, 56, 4, 62, 36, 23, 53]). The
second group contains the contribution based on minimization methods for
the variational problem where the unknown are the partial derivatives of
the surface, p = ux and q = uy (the so-called normal vector field. See
e.g. [30, 16, 67, 26, 68, 32, 7, 82]). It is important to note that in this
approach one has to couple the minimization step to compute the normal
field with a local reconstruction for u which is based usually on a path in-
tegration. This necessary step has also been addressed by several authors
(see [18] and references therein). We should also mention that a continuous
effort has been made by the scientific community to take into account more
realistic reflectance models [3, 1, 59, 76, 77], different scenarios including
perspective camera projection [44, 70, 54, 2, 75, 14] and/or multiple im-
ages of the same object [83, 84]. The images can be taken from the same
point of view but with different light sources as in the photometric stereo
method [81, 37, 42, 69, 43] or from different points of view but with the
same light source as in stereo vision [13]. Recent works have considered
more complicated scenarios, e.g. the case when light source is not at the
optical center under perspective camera projection [35]. It is possible to
consider in addition other supplementary issues, as the estimation of the
albedo [86, 5, 65, 64] or of the direction of the light source that are usu-
ally considered known quantities for the model but in practice are hardly
available for real images. The role of boundary conditions which have to be
coupled with the PDE is also a hard task. Depending on what we know, the
model has to be adapted leading to a calibrated or uncalibrated problem
(see [84, 83, 25, 57] for more details). In this work we will assume that the
albedo and the light source direction are given.
Regarding the modeling of non-Lambertian surfaces we also want to men-
tion the important contribution of Ahmed and Farag [2]. These authors have
adopted the modeling for SfS proposed by Prados and Faugeras [55, 52] us-
ing a perspective projection where the light source is assumed to be located
at the optical center of the camera instead at infinity and the light illumi-
nation is attenuated by a term 1/r2 (r represents here the distance between
the light source and the surface). They have derived the Hamilton-Jacobi
(HJ) equation corresponding to the Oren-Nayar model, developed an ap-
proximation via the Lax-Friedrichs sweeping method. They gave there an
experimental evidence that the non-Lambertian model seems to resolve the
classical concave/convex ambiguity in the perspective case if one includes
the attenuation term 1/r2. In [1] they extended their approach for various
image conditions under orthographic and perspective projection, comparing
their results for the orthographic L–model shown in [63] and in [85]. Finally,
we also want to mention the paper by Ragheb and Hancock [58] where they
treat a non-Lambertian model via a variational approach, investigating the
reflectance models described by Wolff and by Oren and Nayar [80, 79, 50].
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Our Contribution.
In this paper we will adopt the PDE approach in the framework of weak
solutions for Hamilton-Jacobi equations. As we said, we will focus our at-
tention on a couple of non-Lambertian reflectance models: the Oren-Nayar
and the Phong models [48, 49, 47, 50, 51]. Both models are considered for
an orthographic projection and a single light source at infinity, so no atten-
uation term is considered here. We are able to write the Hamilton-Jacobi
equations in the same fixed point form useful for their analysis and approxi-
mation and, using the exponential change of variable introduced by Kružkov
in [39], we obtain natural upper bound for the solution. Moreover, we pro-
pose a semi-Lagrangian approximation scheme which can be applied to both
the models, prove a convergence result for our scheme that can be applied
to this class of Hamilton-Jacobi equations, hence to both non-Lambertian
models. Numerical comparisons will show that our approach is more accu-
rate also for the 3D reconstructions of non-smooth surfaces.
A similar formulation for the Lambertian SfS problem with oblique light
direction has been studied in [23] and here is extended to non-Lambertian
models. We have reported some preliminary results just for the Oren-Nayar
model in [73].

Organization of the paper.
The paper is organized as follows. After a formulation of the general model
presented in Section 2, we present the SfS models starting from the classi-
cal Lambertian model (Section 3). In Sections 4 and 5 we will give details
on the construction of the nonlinear partial differential equation which cor-
responds respectively to the Oren-Nayar and the Phong models. Despite
the differences appearing in these non-Lambertian models, we will be able
to present them in a unified framework showing that the Hamilton-Jacobi
equations for all the above models share a common structure. Moreover, the
Hamiltonian appearing in these equations will always be convex in the gra-
dient ∇u. Then, in Section 6, we will introduce our general approximation
scheme which can be applied to solve this class of problems. In Section 7 we
will apply our approximation to a series of benchmarks based on synthetic
and real images. We will discuss some issue like accuracy, efficiency and the
capability to obtain the maximal solution showing that the semi-Lagrangian
approximation is rather effective even for real images where several param-
eters are unknown. Finally, in the last section we will give a summary of
the contributions of this work with some final comments and future research
directions.

2 Formulation of the general model

We fix a camera in a three-dimensional coordinate system (Oxyz ) in such a
way that Oxy coincides with the image plane and Oz with the optical axis.
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Let ω = (ω1, ω2, ω3) = (ω̃, ω3) ∈ R3 (with ω3 > 0) be the unit vector that
represents the direction of the light source (the vector points from the object
surface to the light source); let I(x) be the function that measures the gray-
level of the input image at the point x := (x, y). I(x) is the datum in the
model since it is measured at each pixel of the image, for example in terms
of a greylevel (from 0 to 255). In order to construct a continuous model,
we will assume that I(x) takes real values in the interval [0, 1], defined in a
compact domain Ω called “reconstruction domain” (with Ω ⊂ R2 open set),
I : Ω→ [0, 1], where the points with a value of 0 are the dark point (blacks),
while those with a value of 1 correspond to a completely reflection of the
light (white dots, with a maximum reflection).
We consider the following assumptions:

A1. there is a single light source placed at infinity in the direction ω (the
light rays are, therefore, parallel to each other);

A2. the observer’s eye is placed at an infinite distance from the object you
are looking at (i.e. there is no perspective deformation);

A3. there are no autoreflections on the surface.

In addition to these assumptions, there are other hypothesis that depend on
the different reflectance models (we will see them in the description of the
individual models).
Being valid the assumption (A2) of orthographic projection, the visible part
of the scene is a graph z = u(x) and the unit normal to the regular surface
at the point corresponding to x is given by:

N(x) =
n(x)

|n(x)|
=

(−∇u(x), 1)√
1 + |∇u(x)|2

, (3)

where n(x) is the outgoing normal vector.
We assume that the surface is standing on a flat background so the height
function, which is the unknown of the problem, will be non negative, u :
Ω → [0,∞). We will denote by Ω the region inside the silhouette and we
will assume (just for technical reasons) that Ω is an open and bounded sub-
set of R2 (see Fig. 1). It is well known that the SfS problem is described
by the image irradiance equation (1) and depending on how we describe the
function R different reflection models are determined. We describe below
some of them. To this end, it would be useful to introduce a representation
of the brightness function I(x) where we can distinguish different terms rep-
resenting the contribution of ambient, diffuse reflected and specular reflected
light. We will write then

I(x) = kAIA(x) + kDID(x) + kSIS(x), (4)
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Figure 1: An object on a flat background: Ω indicates the region inside the
silhouette, ∂Ω the boundary of it.

where IA(x), ID(x) and IS(x) are respectively the above mentioned compo-
nents and kA, kD and kS indicate the percentages of these components such
that their sum is equal to 1 (we do not consider absorption phenomena).
Note that the diffuse or specular albedo is inside the definition of ID(x) or
IS(x), respectively. In the sequel, we will always consider I(x) normalized in
[0, 1]. This will allow to switch on and off the different contributions depend-
ing on the model. Let us note that the ambient light term IA(x) represents
light everywhere in a given scene. In the whole paper we will consider it
as a constant and we will neglect its contribution fixing kA = 0. Moreover,
for all the models presented below we will suppose uniform diffuse and/or
specular albedo and we will put them equal to 1, that is all the points of
the surface reflect completely the light that hits them. We will omit them
in what follows. As we will see in the following sections, the intensity of
diffusely reflected light in each direction is proportional to the cosine of the
angle θi between surface normal and light source direction, without taking
into account the point of view of the observer, but another diffuse model
(the Oren–Nayar model) will consider it in addition. The amount of specu-
lar reflected light towards the viewer is proportional to (cos θs)

α, where θs
is the angle between the ideal (mirror) reflection direction of the incoming
light and the viewer direction, α being a constant modelling the specularity
of the material. In this way we have a more general model and, dropping
the ambient and specular component, we retrieve the Lambertian reflection
as a special case.

3 The Lambertian model (L–model)

For a Lambertian surface, which generates a purely diffuse model, the specu-
lar component does not exist, then in (4) we have just the diffuse component
ID on the right side. Lambertian shading is view independent, hence the
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irradiance equation (1) becomes

I(x) = N(x) · ω. (5)

Under these assumptions, the orthographic SfS problem consists in deter-
mining the function u : Ω → R that satisfies the equation (5). The unit
vector ω and the function I(x) are the only quantities known.
For Lambertian surfaces [30, 31], just considering an orthographic projection
of the scene, it is possible to model the SfS problem via a nonlinear PDE
of the first order which describes the relation between the surface u(x) (our
unknown) and the brightness function I(x). In fact, recalling the definition
of the unit normal to a graph given in (3), we can write (5) as

I(x)
√

1 + |∇u(x)|2 + ω̃ · ∇u(x)− ω3 = 0, in Ω (6)

where ω̃ = (ω1, ω2). This is an Hamilton-Jacobi type equation which does
not admit in general a regular solution. It is known that the mathematical
framework to describe its weak solutions is the theory of viscosity solutions
as in [40].

The vertical light case.
If we choose ω = (0, 0, 1), the equation (6) becomes the so-called “eikonal
equation”:

|∇u(x)| = f(x) for x ∈ Ω, (7)

where

f(x) =

√
1

I(x)2
− 1. (8)

The points x ∈ Ω where I(x) assumes maximum value correspond to the
case in which ω and N(x) have the same direction: these points are usually
called “singular points”.
In order to make the problem well-posed, we need to add boundary condi-
tions to the equations (6) or (7): they can require the value of the solution
u (Dirichlet boundary conditions type), or the value of its normal derivative
(Neumann boundary conditions), or an equation that must be satisfied on
the boundary (the so-called boundary conditions “state constraint”). In this
paper, we consider Dirichlet boundary conditions equal to zero assuming a
surface on a flat background

u(x) = 0, for x ∈ ∂Ω, (9)

but a second possibility of the same type occurs when it is known the value
of u on the boundary, which leads to the more general condition

u(x) = g(x), for x ∈ ∂Ω. (10)
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Unfortunately, adding a boundary condition to the PDE that describes the
SfS model is not enough to obtain a unique solution because of the con-
cave/convex ambiguity. In fact, the Dirichlet problem (6)-(10) can have
several weak solutions in the viscosity sense and also several classical so-
lutions due to this ambiguity (see [29]). As an example, all the surfaces
represented in Fig. 2 are viscosity solutions of the same problem (7)-(9)
which is a particular case of (6)-(10) (in fact the equation is |u′| = −2x
with homogenous Dirichlet boundary condition). The solution represented
in Fig. 2-a is the maximal solution and is smooth. All the non-smooth a.e.
solutions, which can be obtained by a reflection with respect to a horizontal
axis, are still admissible weak solutions (see Fig. 2-b). In this example,
the lack of uniqueness of the viscosity solution is due to the existence of
a singular point where the right hand side of (7) vanishes. An additional
effort is then needed to define which is the preferable solution since the lack
of uniqueness is also a big drawback when trying to compute a numerical
solution. In order to circumvent these difficulties, the problem is usually
solved by adding some information such as height at each singular point
[40].

Figure 2: Illustration of the concave/convex ambiguity: (a) maximal solu-
tion and (b) a.e. solutions giving the same image. Figure adapted from
[19].

For analytical and numerical reasons it is useful to introduce the expo-
nential Kružkov change of variable [39] µv(x) = 1− e−µu(x). In fact, setting
the problem in the new variable v we will have values in [0, 1/µ] instead of
[0,∞) as the original variable u so an upper bound will be easy to find. Note
that µ is a free positive parameter which does not have a specific physical
meaning in the SfS problem. However, it can play an important role also
in our convergence proof as we will see later (see the remark following the
end of Theorem 6.1). Assuming that the surface is standing on a flat back-
ground and following [23], we can write (6) and (9) in a fixed point form in
the new variable v. To this end let us define bL : Ω × ∂B3(0, 1) → R2 and
fL : Ω× ∂B3(0, 1)× [0, 1]→ R as

bL(x, a) :=
1

ω3
(I(x)a1 − ω1, I(x)a2 − ω2) , (11)
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fL(x, a, v(x)) := −I(x)a3
ω3

(1− µv(x)) + 1 (12)

and let B3 denote the unit ball in R3. We obtain

Lambertian Model{
µv(x) = TL(x, v(x),∇v) for x ∈ Ω,
v(x) = 0 for x ∈ ∂Ω,

(13)

where

TL(·) := min
a∈∂B3

{bL(x, a) · ∇v(x) + fL(x, a, v(x))}.

It is important to note for the sequel that the structure of the above first
order Hamilton-Jacobi equation is similar to that related to the dynamic
programming approach in control theory where b is a vector field describing
the dynamics of the system and f is a running cost. In that framework the
meaning of v is that of a value function which allows to characterize the
optimal trajectories (here they play the role of characteristic curves). The
interested reader can find more details on this interpretation in [21].

4 The Oren-Nayar model (ON–model)

The diffuse reflectance ON–model [48, 49, 47, 50] is an extension of the
previous L–model which explicitly allows to handle rough surfaces. The
idea of this model is to represent a rough surface as an aggregation of V-
shaped cavities, each with Lambertian reflectance properties (see Fig. 3).
In [48] and, with more details, in [50], Oren and Nayar derive a reflectance
model for several type of surfaces with different slope-area distributions. In
this paper we will refer to the model called by the authors the “Qualitative
Model”, a simpler version obtained by ignoring interreflections (see Section
4.4 of [48] for more details).

V-cavity

facet

dA

Figure 3: Facet model for surface patch dA consisting of many V-shaped
Lambertian cavities. Figure adapted from [34].

Assuming that there is a linear relation between the irradiance of the image
and the image intensity, the ID brightness equation for the ON–model is

10



given by
ID(x) = cos(θi)(A+B sin(α) tan(β)M(ϕi, ϕr)) (14)

where A = 1− 0.5σ2(σ2 + 0.33)−1 (15)

B = 0.45σ2(σ2 + 0.09)−1 (16)

M(ϕi, ϕr) = max{0, cos(ϕr − ϕi)}. (17)

Note that A and B are two non negative constants depending on the statis-
tics of the cavities via the roughness parameter σ. We set σ ∈ [0, π/2),
interpreting σ as the slope of the cavities. In this model (see Fig. 4), θi
represents the angle between the unit normal to the surface N(x) and the
light source direction ω, θr stands for the angle between N(x) and the ob-
server direction V, ϕi is the angle between the projection of the light source
direction ω and the x1 axis onto the (x1, x2)-plane, ϕr denotes the angle
between the projection of the observer direction V and the x1 axis onto the
(x1, x2)-plane and the two variables α and β are given by

α = max {θi, θr} and β = min {θi, θr} . (18)

Since the vectors ω and V are fixed and given, their projection on the
incident plane is obtained considering their first two components over three
(see Eq. (21)). In this way, the quantity max{0, cos(ϕr − ϕi)} is computed
only once for a whole image.

Surface
normal

Camera:
ref ected light (V)

Point light source:
incident light ( )

φr

−φi

θrθi

Reference direction on the surface

dA

ω
l

Figure 4: Diffuse reflectance for the ON–model. Figure adapted from [34].
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We define (see Fig. 4):

cos(θi) = N · ω =
−ω̃ · ∇u(x) + ω3√

1 + |∇u(x)|2
(19)

cos(θr) = N ·V =
−ṽ · ∇u(x) + v3√

1 + |∇u(x)|2
(20)

cos(ϕr − ϕi) = (ω1, ω2) · (v1, v2) = ω̃ · ṽ (21)

sin(θi) =
√

1− (cos(θi))2 =
gω(∇u(x))√
1 + |∇u(x)|2

(22)

sin(θr) =
√

1− (cos(θr))2 =
gv(∇u(x))√
1 + |∇u(x)|2

(23)

where

gω(∇u(x)) :=
√

1 + |∇u(x)|2 − (−ω̃ · ∇u(x) + ω3)2

gv(∇u(x)) :=
√

1 + |∇u(x)|2 − (−ṽ · ∇u(x) + v3)2.

For smooth surfaces, we have σ = 0 and in this case the ON–model
reduces to the L–model. In the particular case ω = V = (0, 0, 1), or, more
precisely, when cos(ϕr −ϕi) ≤ 0 (e.g. the case when the unit vectors ω and
V are perpendicular we get cos(ϕr − ϕi) = −1) the equation (14) simplifies
and reduces to a L–model scaled by the coefficient A. This means that the
model is more general and flexible than the L–model. This happens when
only one of the two unit vectors is zero or, more in general, when the dot
product between the normalized projections onto the (x1, x2)-plane of ω and
V is equal to zero.

Also for this diffuse model we neglect the ambient component, setting
kD = 1. As a consequence, in the general equation (4) the total light
intensity I(x) is equal to the diffuse component ID(x) (described by the
equation (14)). This is why we write I(x) instead of ID(x) in what follows.

To deal with this equation one has to compute the min and max opera-
tors which appear in (14) and (18). Hence, we must consider several cases
described in detail in what follows. For each case we will derive a partial
differential equation that is always a first order nonlinear HJ equation:

Case 1: θi ≥ θr and (ϕr − ϕi) ∈ [0, π2 ) ∪ (32π, 2π]

The brightness equation (14) becomes

I(x) = cos(θi)

(
A+B sin(θi)

sin(θr)

cos(θr)
cos(ϕr − ϕi)

)
(24)
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and by using the formulas (19)-(23) we arrive to the following HJ equation

I(x)(
√

1 + |∇u(x)|2) +A(ω̃ · ∇u(x)− ω3)

−B (ω̃ · ṽ) gω(∇u(x)) gv(∇u(x))(−ω̃ · ∇u(x) + ω3)√
1 + |∇u(x)|2 (−ṽ · ∇u(x) + v3)

= 0,
(25)

where ω̃ := (ω1, ω2) and ṽ := (v1, v2).

Case 2: θi < θr and (ϕr − ϕi) ∈ [0, π2 ) ∪ (32π, 2π]

In this case the brightness equation (14) becomes

I(x) = cos(θi)

(
A+B sin(θr)

sin(θi)

cos(θi)
cos(ϕr − ϕi)

)
(26)

and by using again the formulas (19)-(23) we get

I(x) (1 + |∇u(x)|2)

+A(ω̃ · ∇u(x)− ω3)
√

1 + |∇u(x)|2

−B(ω̃ · ṽ) gω(∇u(x)) gv(∇u(x)) = 0.

(27)

Case 3: ∀ θi, θr and (ϕr − ϕi) ∈ [π2 ,
3
2π]

In this case we have the implication max{0, cos(ϕr − ϕi)} = 0. The bright-
ness equation (14) simplifies in

I(x) = A cos(θi) (28)

and the HJ equation associated to it becomes consequentially

I(x)(
√

1 + |∇u(x)|2) +A(ω̃ · ∇u(x)− ω3) = 0, (29)

that is equal to the L–model scaled by the coefficient A.

Case 4: θi = θr and ϕr = ϕi

This is a particular case when the position of the light source ω coincides
with the observer direction V but there are not on the vertical axis. This
choice implies max{0, cos(ϕi−ϕr)} = 1, then defining θ := θi = θr = α = β,
the equation (14) simplifies to

I(x) = cos(θ)
(
A+B sin(θ)2 cos(θ)−1

)
(30)

and we arrive to the following HJ equation

(I(x) −B)(
√

1 + |∇u(x)|2) +A(ω̃ · ∇u(x)− ω3)

+B
(−ω̃ · ∇u(x) + ω3)

2√
1 + |∇u(x)|2

= 0.
(31)
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Note that this four cases are exactly the same cases reported and analyzed in
[35]. This is not surprising since the reflectance model used there is always
the same one proposed by Oren and Nayar. However, here we get differ-
ent HJ equations since we consider an orthographic camera projection and
cartesian coordinates whereas in [35] the HJ equations are derived in spheri-
cal coordinates under a generalized perspective camera projection. Another
major difference is that in that paper the light source is close to the camera
but is not located at the optical center of the camera.
The vertical light case.
If ω = (0, 0, 1), independently of the position of V, the analysis is more
simple. In fact, the first three cases considered above reduce to a single case
corresponding to the following simplified PDE for the brightness equation
(14)

I(x) =
A√

1 + |∇u(x)|2
. (32)

In this way we can put it in the following eikonal type equation, analogous
to the Lambertian eikonal equation (7):

|∇u(x)| = f(x) for x ∈ Ω, (33)

where

f(x) =

√
A2

I(x)2
− 1. (34)

Following [73], we write the surface as S(x, z) = z−u(x) = 0, for x ∈ Ω,
z ∈ R, and ∇S(x, z) = (−∇u(x), 1), so (31) becomes

(I(x)−B) |∇S(x, z)|

+A(−∇S(x, z) · ω)

+B
(
∇S(x,z)
|∇S(x,z)| · ω

)2
|∇S(x, z)| = 0.

(35)

Defining
d(x, z) := ∇S(x, z)/|∇S(x, z)| (36)

and
c(x, z) := I(x)−B +B(d(x, z) · ω)2, (37)

using the equivalence

|∇S(x, z)| ≡ max
a∈∂B3

{a · ∇S(x, z)} (38)

we get
max
a∈∂B3

{c(x, z) a · ∇S(x, z)−Aω · ∇S(x, z)} = 0. (39)

14



Let us define the vector field for the ON-model

bON (x, a) :=
(c(x, z)a1 −Aω1, c(x, z)a2 −Aω2)

Aω3
, (40)

and

fON (x, z, a, v(x)) := −c(x, z)a3
Aω3

(1− µv(x)) + 1. (41)

Then, introducing the exponential Kružkov change of variable µv(x) = 1−
e−µu(x) as already done for the L–model, we can finally write the fixed point
problem in the new variable v obtaining the

Oren-Nayar Model{
µv(x) = TON (x, v(x),∇v), x ∈ Ω,
v(x) = 0, x ∈ ∂Ω.

(42)

where

TON (·) := min
a∈∂B3

{bON (x, a) · ∇v(x) + fON (x, z, a, v(x))}

Note that the simple homogeneous Dirichlet boundary condition is due to
the flat background behind the object but a condition like u(x) = g(x) can
also be considered if necessary. Moreover, the structure is similar to the
previous Lambertian model although the definition of the vector field and
of the cost are different.
In the particular case when cos(ϕr − ϕi) = 0, the equation (14) simply
reduces to

I(x) = A cos(θ) (43)

and, as a consequence, the Dirichlet problem in the variable v is equal to
(42) with c(x, z) = I(x).

5 The Phong model (PH–model)

The PH–model is an empirical model that was developed by Phong [51] in
1975. This model introduces a specular component to the brightness func-
tion I(x), representing the diffuse component ID(x) in (4) as the Lambertian
reflectance model.
A simple specular model is obtained putting the incidence angle equal to
the reflection one and ω, N(x) and R(x) belong to the same plane.
This model describes the specular light component IS(x) as a power of the
cosine of the angle between the unit vectors V and R(x) (it is the vector rep-
resenting the reflection of the light ω on the surface). Hence, the brightness
equation for the PH–model is

I(x) = kD(N(x) · ω) + kS(R(x) ·V)α, (44)
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where the parameter α ∈ [1, 10] is used to express the specular reflection
properties of a material and kD and kS indicate the percentages of diffuse
and specular components, respectively. Note that the contribution of the
specular part decreases as the value of α increases.

Starting to see in details the PH–model in the case of oblique light source
ω and oblique observer V.
Assuming that N(x) is the bisector of the angle between ω and R(x) (see
Fig. 5), we obtain

N(x) =
ω + R(x)

||ω + R(x)||
(45)

which implies
R(x) = ||ω + R(x)||N(x)− ω. (46)

From the parallelogram law, taking into account that ω,R(x) and N(x) are
unit vectors, we can write ||ω + R(x)|| = 2(N(x) · ω), then we can derive
the unit vector R(x) as follow:

R(x) = 2(N(x) · ω)N(x)− ω

= 2

(
−ω̃ · ∇u(x) + ω3√

1 + |∇u(x)|2

)
N(x)− (ω1, ω2, ω3) (47)

=

(
−2ω̃ · ∇u(x) + 2ω3

1 + |∇u(x)|2

)
(−∇u(x), 1)− (ω1, ω2, ω3).

Figure 5: Geometry of the Phong reflection model.

With this definition of the unit vector R(x) we have

R(x) ·V = (48)(
−2ω̃ · ∇u(x) + 2ω3

1 + |∇u(x)|2

)
(−∇u(x) · ṽ + v3)− ω ·V.
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Then, setting α = 1, that represents the worst case, equation (44) becomes

I(x)(1 + |∇u(x)|2)
−kD(−∇u(x) · ω̃ + ω3)(

√
1 + |∇u(x)|2) (49)

−2kS(−∇u(x) · ω̃ + ω3) (−ṽ · ∇u(x) + v3)

+kS(ω ·V)(1 + |∇u(x)|2) = 0,

to which we add a Dirichlet boundary condition equal to zero, assuming
that the surface is standind on a flat blackground. Note that the cosine in
the specular term is usually replaced by zero if R(x) ·V < 0 (and in that
case we get back to the L–model).
As we have done for the previous models, we write the surface as S(x, z) =
z− u(x) = 0, for x ∈ Ω, z ∈ R, and ∇S(x, z) = (−∇u(x), 1), so (49) will be
written as

(I(x) + kS(ω ·V))|∇S(x, z)|2

−kD(∇S(x, z) · ω)(|∇S(x, z)|) (50)

−2kS(∇S(x, z) · ω)(∇S(x, z) ·V) = 0.

Dividing by |∇S(x, z)|, defining d(x, z) as in (36) and c(x) := I(x) + kS(ω ·
V), we get

c(x)|∇S(x, z)| − kD(∇S(x, z) · ω) (51)

−2kS(∇S(x, z) · ω)(d(x, z) ·V) = 0.

By the equivalence |∇S(x, z)| ≡ max
a∈∂B3

{a · ∇S(x, z)} we obtain

max
a∈∂B3

{c(x) a · ∇S(x, z)− kD(∇S(x, z) · ω) (52)

−2kS(∇S(x, z) · ω)(d(x, z) ·V)} = 0.

Let us define the vector field

bPH(x, a) :=
1

QPH(x, z)
MPH(x, z) (53)

where
QPH(x, z) := 2kSω3(d(x, z) ·V) + kDω3, (54)

and

MPH
i (x, z) := (c(x)ai − kDωi

−2kS ωi(d(x, z) ·V)) , i = 1, 2. (55)

Let us also define

fPH(x, z, a, v(x)) := − c(x)a3
QPH(x, z)

(1− µv(x)) + 1. (56)
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Again, using the exponential Kružkov change of variable µv(x) = 1−e−µu(x)
as done for the previous models, we can finally write the nonlinear fixed point
problem

Phong Model {
µv(x) = TPH(x, v(x),∇v), x ∈ Ω,
v(x) = 0, x ∈ ∂Ω.

(57)

where

TPH(·) := min
a∈∂B3

{bPH(x, a) · ∇v(x) + fPH(x, z, a, v(x))}

A. Oblique light source and vertical position of the observer.
In the case of oblique light source ω and vertical observer V = (0, 0, 1), the
dot product R(x) ·V becomes

R(x) ·V =
−2ω̃ · ∇u(x) + 2ω3

1 + |∇u(x)|2
− ω3

=
−2ω̃ · ∇u(x) + ω3(1− |∇u(x)|2)

1 + |∇u(x)|2
.

(58)

The fixed point problem in v will be equal to (57) with the following choices

c(x) := I(x) + ω3kS ,

QPH(x, z) := 2kS(d(x, z) · ω) + kDω3,

bPH(x, a) := (c(x)a1−kDω1,c(x)a2−kDω2)
QPH(x,z)

(59)

B. Vertical light source and oblique position of the observer.
When ω = (0, 0, 1) the definition of the vector R(x) reported in (47) becomes

R(x) =

(
−2∇u(x)

1 + |∇u(x)|2
,

2

1 + |∇u(x)|2
− 1

)
(60)

and, as a consequence, the dot product R(x) ·V with general V is

R(x) ·V =
−2ṽ · ∇u(x) + v3(1− |∇u(x)|2)

1 + |∇u(x)|2
. (61)

Hence, the fixed point problem in v is equal to (57) with

c(x) := I(x) + v3kS ,

QPH(x, z) := 2kS(d(x, z) ·V) + kD,

bPH(x, a) := 1
QPH(x,z)

(c(x)a1, c(x)a2) .

(62)
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C. Vertical light source and vertical position of the observer.
If we choose ω ≡ V = (0, 0, 1) the equation (49) simplifies in

I(x)(1 + |∇u(x)|2)− kS(1− |∇u(x)|2) (63)

−kD(
√

1 + |∇u(x)|2) = 0.

Working on this equation one can put it in the following eikonal type form,
which is analogous to the Lambertian eikonal equation (7):

|∇u(x)| = f(x) for x ∈ Ω, (64)

where now

f(x) =

√√√√√√k2D − 2I+(x)I−(x) + k2D
√
Q(x)

2

(
I(x) + kS

)2 , (65)

with

I+(x) := I(x) + kS , (66)

I−(x) := I(x)− kS , (67)

Q(x) := k2D + 8k2S + 8 I(x) kS . (68)

Remark on the control interpretation. The above analysis has shown
that all the cases corresponding to the models proposed by Oren-Nayar and
by Phong lead to a stationary Hamilton-Jacobi equation of the same form,
namely

µv(x) = min
a∈∂B3

{b(x, a) · ∇v(x) + f(x, z, a, v(x))}

where the vector field b and the cost f can vary according to the model
and to the case. This gives to these models a control theoretical interpre-
tation which can be seen as a generalization of the control interpretation
for the original Lambertian model (which was related to the minimum time
problem). In this framework, v is the value function of a rescaled (by the
Kružkov change of variable) control problem in which one wants to drive
the controlled system governed by

ẏ(t) = b(y(t), a(t))

(a(·) here is the control function taking values in ∂B3) from the initial po-
sition x to the target (the silhouette of the object) minimizing the cost
associated to the trajectory. The running cost associated to the position
and the choice of the control will be given by f . More informations on this
interpretation, which is not crucial to understand the application to the SfS
problem presented in this paper, can be found in [21].
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6 Semi-Lagrangian Approximation

Now, let us state a general convergence theorem suitable for the class of
differential operators appearing in the models described in the previous sec-
tions. As we noticed, the unified approach presented in this paper has the
big advantage to give a unique formulation for the three models in the form
of a fixed point problem

µv(x) = TM (x, v,∇v), for x ∈ Ω, (69)

where M indicates the model, i.e. M = L,ON,PH.
We will see that the discrete operators of the ON–model and the PH–

model described in the previous sections satisfy the properties listed here.
In order to obtain the fully discrete approximation we will adopt the semi-
Lagrangian approach described in the book by Falcone and Ferretti [21]. The
reader can also refer to [12] for a similar approach to various image processing
problems (including nonlinear diffusions models and segmentation).

Let Wi = w(xi) so that W will be the vector solution giving the ap-
proximation of the height u at every node xi of the grid. Note that in one
dimension the index i is an integer number, in two dimensions i denotes a
multi-index, i = (i1, i2). We consider a semi-Lagrangian scheme written in
a fixed point form, so we will write the fully discrete scheme as

Wi = T̂i(W ). (70)

Denoting by G the global number of nodes in the grid, the operator cor-
responding to the oblique light source is T̂ : RG → RG that is defined
componentwise by

T̂i(W ) := min
a∈∂B3

{e−µhI[W ](x+i )− τF (xi, z, a)}+ τ (71)

where I[W ] represents an interpolation operator based on the values at the
grid nodes and

x+i := xi + hb(xi, a) (72)

τ := (1− e−µh)/µ (73)

F (xi, z, a) := P (xi, z)a3(1− µWi) (74)

P : Ω× R→ R is continuous and nonnegative. (75)

Since w(xi + hb(xi, a)) is approximated via I[W ] by interpolation on W
(which is defined on the grid G), it is important to use a monotone interpo-
lation in order to preserve the properties of the continuous operator T in the
discretization. To this end, the typical choice is to apply a piecewise linear
(or bilinear) interpolation operator I1[W ] : Ω→ R which allows to define a
function defined for every x ∈ Ω (and not only on the nodes)

w(x) = I1[W ](x) =
∑
j

λij(a)Wj (76)
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where ∑
j

λij(a) = 1 for x =
∑
j

λij(a)xj . (77)

A simple explanation for (76)-(77) is that the coefficients λij(a) represent
the local coordinates of the point x with respect to the grid nodes (see [21]
for more details and other choices of interpolation operators). Clearly, in
(71) we will apply the interpolation operator to the point x+i = xi+hb(xi, a)
and we will denote by w the function defined by I1[W ].
Comparing (71) with its analogue for the vertical light case we can immedi-
ately note that the former has the additional term τF (xi, z, a) which requires
analysis.

Theorem 6.1 Let T̂i(W ) the i-th component of the operator defined as in
(71). Then, the following properties hold true:

1. Let
a3 ≡ arg min

a∈∂B3

{e−µhw(xi + hb(xi, a))− τF (xi, z, a)} and assume

P (xi, z)a3 ≤ 1. (78)

Then 0 ≤W ≤ 1
µ implies 0 ≤ T̂ (W ) ≤ 1

µ .

2. T̂ is a monotone operator, i.e., W ≤W implies T̂ (W ) ≤ T̂ (W ).

3. T̂ is a contraction mapping in L∞([0, 1/µ)G) if

P (xi, z) a3 < µ.

Proof.

1. To prove that W ≤ 1
µ implies T (W ) ≤ 1

µ we just note that

T̂ (W ) ≤ e−µh

µ
+ τ =

1

µ
. (79)

Let W ≥ 0; then

T̂ (W ) ≥ −τP (xi, z) a3(1− µWi) + τ

= τ (1− P (xi, z) a3(1− µWi)) .
(80)

This implies that T̂ (W ) ≥ 0 if P (xi, z) a3 ≤ 1 since 0 ≤ 1− µWi ≤ 1.
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2. In order to prove that T̂ is monotone, let us observe first that for each
couple of functions w1 and w2 such that w1(x) ≤ w2(x) for every x ∈ Ω
implies

e−µh[w1(x+ hb(x, a∗))− w2(x+ hb(x, a))] (81)

−τP (x, z)(a∗3(1− µw1(x))− a3(1− µw2(x)))

≤ e−µh[w1(x+ hb(x, a))− w2(x+ hb(x, a))]

+τP (x, z)a3(w1(x)− w2(x))

where a∗ and a are the two arguments corresponding to the minimum
on a of the expression

e−µhw(x+ hb(x, a))− τP (x, z)a3(1− µw(x)) (82)

respectively for w = w1, w2. Hence, if we take now two vectors W
and W such that W ≤W and we denote respectively by w and w the
corresponding functions defined by interpolation, we will have w(x) =
I1[W ](x) ≤ I1[W ](x) = w(x), for every x ∈ Ω, because the linear
interpolation operator I1 is monotone. Then, by (71), setting x+i =
xi + hb(xi, a) we get

T̂i(W )− T̂i(W ) ≤ e−µh[I1[W ](x+i ))− I1[W ](x+i ))]

+τP (xi, z)a3(Wi −W i) ≤ 0 (83)

where the last inequality follows from P ≥ 0. So we can conclude that
T̂ (W )− T̂ (W ) ≤ 0. Note that this property does not require condition
(78) to be satisfied.

3. Let us consider now two vectors W and W (dropping the condition
W ≤W ) and assuming

P (xi, z)a3 < µ. (84)

To prove that T is a contraction mapping note that following the
same argument used to prove the second statement we can obtain
(83). Then, by applying the definition of I1, we get

T̂ (W )− T̂ (W ) ≤
(
e−µh + τP (xi, z)a3

)
||W −W ||∞.

Reversing the role of W and W , one can also obtain

T̂ (W )− T̂ (W ) ≤
(
e−µh + τP (xi, z)a3

)
||W −W ||∞

and conclude then that T̂ is a contraction mapping in L∞ if and only
if

e−µh + τP (xi, z)a3 < 1 (85)

and this holds true if the bound (84) is satisfied.
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Remark on the role of µ. The parameter µ can be tuned to satisfy the
inequality which guarantees the contraction map property for T̂ . This pa-
rameter adds a degree of freedom in the Kružkov change of variable and
modifies the slope of v. However, in the practical applications we have done
in our tests, this parameter has been always set to 1 so in our experience
this parameter does not seem to require a fine tuning.

Remark on the choice of the interpolation operator. Although I1 can
be replaced by a high-order interpolation operator (e.g. a cubic local La-
grange interpolation), the monotonicity of the interpolation operator plays
a crucial role in the proof because we have to guarantee that the extrema
of interpolation polynomial stay bounded by the minimum and maximum
of the values at the nodes. This property is not satisfied by quadratic or
cubic local interpolation operators and the result is that this choice intro-
duces spurious oscillations in the numerical approximation. A cure could
be to adopt Essentially Non Oscillatory (ENO) interpolations. A detailed
discussion on this point is contained in [21].

Remark on the minimization. In the definition of the fixed point operator
T̂ there is a minimization over a ∈ ∂B3. A simple way to solve it is to
build a discretization of ∂B3 based on a finite number of points and get the
minimum by comparison. One way to do it is to discretize the unit sphere
by spherical coordinates, even a small number of nodes will be sufficient
to get convergence. A detailed discussion on other methods to solve the
minimization problem is contained in [21].

Let us consider now the algorithm based on the fixed-point iteration{
Wn = T̂ (Wn−1),
W 0 given.

(86)

We can state the following convergence result

Theorem 6.2 Let W k be the sequence generated by (86). Then the follow-
ing results hold:
1. Let W 0 ∈ S = {W ∈ RG : W ≥ T̂ (W )}, then the W k converges mono-
tonically decreasing to a fixed point W ∗ of the T̂ operator;
2. Let us choose µ > 0 so that the condition P (xi, z)a3 ≤ µ is satisfied.
Then, W k converges to the unique fixed point W ∗ of the T̂ . Moreover, if
W 0 ∈ S the convergence is monotone decreasing.

Proof.
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1. Starting from a point in the set of super-solutions S, the sequence is
non increasing and lives in S which is a closed set bounded from below
(by 0). Then, W k converges and the limit is necessarily a fixed point
for T̂ .

2. The assumptions guaranteed by Theorem 6.1 are satisfied and T̂ is
a contraction mapping in [0, 1/µ], so the fixed point is unique. The
monotonicity of T̂ implies that starting from W 0 ∈ S the convergence
is monotone decreasing.

�

It is important to note that the change of variable allows for an easy choice
of the initial guess W 0 ∈ S for which we have the natural choice W 0 =
(1/µ, 1/µ, . . . , 1/µ) and monotonicity can be rather useful to accelerate con-
vergence as shown in [20]. A different way to improve convergence is to
apply Fast Sweeping or Fast Marching methods as illustrated in [71, 72]. A
crucial role is played by boundary conditions on the boundary of Ω, where
usually we impose the homogeneous Dirichlet boundary condition, v = 0.
This condition implies that the shadows must not cross the boundary of Ω,
so the choice ω3 = 0 corresponding to an infinite shadow behind the surface
is not admissible. However, other choices are possible: to impose the height
of the surface on ∂Ω we can set v = g or to use a more neutral boundary
condition we can impose v = 1 (state constraint boundary condition). More
informations on the use of boundary conditions for these type of problems
can be found in [21].

6.1 Properties of the discrete operators T̂ON and T̂ PH

We consider a semi-Lagrangian (SL) discretization of (42) written in a fixed
point form, so we will write the SL fully discrete scheme for the ON–model
as

Wi = T̂ONi (W ), (87)

where ON is the acronym identifying the ON–model. Using the same nota-
tions of the previous section, the operator corresponding to the oblique light
source is T̂ON : RG → RG that with linear interpolation can be written as

T̂ONi (W ) := min
a∈∂B3

{e−µhI1[W ](x+i )− τFON (xi, z, a)}+ τ,
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where

τ :=
1− e−µh

µ

bON (xi, a) :=
1

Aω3
(c(xi, z)a1 −Aω1, c(xi, z)a2 −Aω2)

c(xi, z) := I(xi)−B +B(d(xi, z) · ω)2

d(xi, z) := ∇S(xi, z)/|∇S(xi, z)|
FON (xi, z, a) := PON (xi, z)a3(1− µWi))

PON (xi, z) :=
c(xi, z)

Aω3
.

Note that, in general, PON will not be positive but that condition can be
obtained tuning the parameter σ since the coefficients A and B depend on
σ. This explains why in some tests we will not be able to get convergence for
every value of σ ∈ [0, π/2). Once the non negativity of PON is guaranteed,
we can follow the same arguments of Theorem 6.1 to check that the discrete
operator T̂ON satisfies the three properties which are necessary to guarantee
convergence as in Theorem 6.2 provided we set P = PON in that statement.

For the Phong model, the semi-Lagrangian discretization of (57) written
in a fixed point form gives

Wi = T̂PHi (W ), (88)

where T̂PH : RG → RG, that is defined componentwise by

T̂PHi (W ) := min
a∈∂B3

{e−µhI1[W ](x+i )− τFPH(xi, z, a)}+ τ,

where, in the case of oblique light source and vertical position of the observer,

τ :=
1− e−µh

µ

bPH(xi, a) :=
(c(xi)a1 − kDω1, c(xi)a2 − kDω2)

QPH(xi, z)

c(xi) := I(xi) + ω3kS

d(xi, z) := ∇S(xi, z)/|∇S(xi, z)|
QPH(xi, z) := 2kS(d(xi, z) · ω) + kDω3

FPH(xi, z, a) := PPH(xi, z)a3(1− µWi))

PPH(xi, z) :=
c(xi)

QPH(xi, z)
.

Here the model has less parameters and PPH will always be nonnegative.
Again, following the same arguments of Theorem 6.1, we can check that the
discrete operator T̂PH satisfies the three properties which are necessary to
guarantee convergence as in Theorem 6.2 provided we set P = PPH in that
statement.
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7 Numerical Simulations

In this section we show some numerical experiments on synthetic and real
images in order to analyze the behavior of the parameters involved in the
ON–model and the PH–model and to compare the performances of these
models with respect to the classical L–model and with other numerical meth-
ods too. All the numerical tests in this section have been implemented in
language C++. The computer used for the simulations is a MacBook Pro
13” Intel Core 2 Duo with speed of 2.66 GHz and 4GB of RAM (so the CPU
times in the tables refer to this specific architecture).

We denote by G the discrete grid in the plane getting back to the double
index notation xij , G := card(G) = n ×m. We define Gin := {xij : xij ∈
Ω} as the set of grid points inside Ω; Gout := G \ Gin. The boundary
∂Ω will be then approximated by the nodes such that at least one of the
neighboring points belongs to Gin. For each image we define a map, called
mask, representing the pixels xij ∈ Gin in white and the pixels xij ∈ Gout
in black. In this way it is easy to distinguish the nodes that we have to use
for the reconstruction (the nodes inside Ω) and the nodes on the boundary
∂Ω (see e.g. Fig. 6(b)).

Regarding the minimization over a ∈ ∂B3 that appears in the definition
of the fixed point operators associated to the models, in all the tests we
discretize the unit sphere by spherical coordinates, considering 12 steps in
θ and 8 in φ, where θ is the zenith angle and φ is the azimuth angle.

7.1 Synthetic tests

If not otherwise specified, all the synthetic images are defined on the same
rectangular domain containing the support of the image, Ω ≡ [−1, 1] ×
[−1, 1]. We can easily modify the number of the pixels choosing different
values for the steps in space ∆x and ∆ y. The size used for the synthetic
images is 256 × 256 pixels, unless otherwise specified. X and Y represent
the real size (e.g. for Ω ≡ [−1, 1] × [−1, 1], X = 2, Y = 2). For all the
synthetic tests, since we know the algebraic expression of the surfaces, the
input image rendering in gray-levels is obtained using the corresponding
reflectance model. This means that for each model and each value of pa-
rameter involved in it, the reconstruction will start from a different input
image. Clearly, this is not possible for real images, so for these tests the
input image will be always the same for all the models, independently of the
values of the parameters. Moreover, we fix µ = 1 and we choose the value
of the tolerance η for the iterative process equal to 10−8 for the tests on
synthetic images, using as stopping rule |W k+1 −W k|max ≤ η, where k + 1
denotes the current iteration. We will see that dealing with real images,
sometimes we will need to increase η.
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Test 1: Sphere. For this first test we will use the semisphere defined as{
u(x, y) =

√
r2 − x2 − y2 (x, y) ∈ Gin,

u(x, y) = 0 (x, y) ∈ Gout,
(89)

where

Gin := {(x, y) : x2 + y2 ≤ r2}, (90)

r :=
min{X,Y }

2
+ 2 δ̃, (91)

and δ̃ := max{∆x,∆y}.
As example, we can see in Fig. 6 the input image, the corresponding

mask and the surface reconstructed by the L–model. The values of the

(a) Sphere Input (b) Sphere Mask (c) Sphere surface

Figure 6: Sphere via the L–model: (a) Input image; (b) Mask; (c) surface.

parameters used in the simulations are indicated in Table 1. Note (in Table
3) that when the specular component is zero for the PH–model, we just have
the contribution of the diffuse component so we have exactly the same error
values of the L–model, as expected. By increasing the value of the coefficient
kS and, as a consequence, decreasing the value of kD, in the PH–model the
L2(I) and L∞(I) errors on the image grow albeit slightly and still remain of
the same order of magnitude, whereas the errors on the surface decrease. For
the ON–model, the same phenomenon appears when we set the roughness
parameter σ to zero: we bring back to the L–model and, hence, we obtain
the same errors on the image and the surface. Note that the errors in L2(I)
and L∞(I) norm for the image and the surface, decrease by increasing the
value of σ. This seem to imply that the model and the approximation work
better for increasing roughness values.

We point out that the errors computed on the images I in the different
norms are over integer between the input image and the image computed a
posteriori using the value of u just obtained by the methods. This is why
small errors becomes bigger since can jump from an integer to the other one,
as for the Phong case.

In Table 2 we reported the number of iterations and the CPU time (in
seconds) referred to the three models with the parameter indicated in Table
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Table 1: Sphere: parameter values used in the models.

Model σ kD kS α

LAM
ON-00 0
ON-04 0.4
ON-08 0.8
PH-s00 1 0 1
PH-s04 0.6 0.4 1
PH-s08 0.2 0.8 1

1. For all the models, also varying the parameters involved, the number
of iterations is always about 2000 e the CPU time slightly greater than 2
seconds, so the computation is really fast.

Table 2: Synthetic sphere: iterations and CPU time in seconds for the
models with vertical light source ω = (0, 0, 1).

SL–Schemes Iter. [sec.]

LAM 2001 2.14
ON-00 2001 2.06
ON-04 2020 2.24
ON-08 2016 2.24
PH-s00 2001 2.11
PH-s04 2008 2.45
PH-s08 2056 2.27

Table 3: Synthetic sphere: L2, L∞ errors with vertical light source ω =
(0, 0, 1).

SL–Schemes L2(I) L∞(I) L2(S) L∞(S)

LAM 0.0046 0.0431 0.0529 0.0910
ON-00 0.0046 0.0431 0.0529 0.0910
ON-04 0.0039 0.0353 0.0513 0.0882
ON-08 0.0035 0.0314 0.0506 0.0881
PH-s00 0.0046 0.0431 0.0529 0.0910
PH-s04 0.0064 0.0471 0.0511 0.0896
PH-s08 0.0090 0.0706 0.0386 0.0752

Test 2: Ridge tent. In tests on synthetic images, the relevance of the
choice of a model depends on which model was used to compute the images.
In the previous test, the parameters that are used for the 3D reconstruction
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are identical to those used to compute the synthetic sphere input images,
so there is a perfect match. However, for real applications, it is relevant to
examine the influence of an error in the parameter values. To this end we
can produce an input image with the Oren-Nayar model using σ = 0.1 and
then process this image with the same model using a different value of σ to
see how the results are affected by this error. This is what we are going to
do for the ridge tent. Let us consider the ridge tent defined by the following
equation 

u(x, y) = min
{
−2 |x|+ 4

5 X,−|y|+
2
5 Y
}

(x, y) ∈ Gin,
u(x, y) = 0 (x, y) ∈ Gout,

(92)

where

Gin :=

{
(x, y) :

x

X
,
y

Y
<

2

5

}
.

In Fig. 7 we can see an example of reconstruction obtained by using the ON–
model with σ = 0.3, under a vertical light source ω = (0, 0, 1). A first remark

(a) Tent Input (b) Tent surface

Figure 7: Tent via the ON–model with σ = 0.3: (a) Input image; (b) 3D
reconstruction.

is that the surface reconstruction is good even if in this case the surface is not
differentiable. Moreover, note that there are no oscillations near the kinks
where there is jump in the gradient direction. Let us examine the stability
with respect to the parameters. We have produced seven input images for
the ridge tent, all of size 256×256, with the following combinations of models
and parameters:

LAM Lambertian model;

ON1 Oren-Nayar model with σ = 0.1;

ON3 Oren-Nayar model with σ = 0.3;

ON5 Oren-Nayar model with σ = 0.5;
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PH1 Phong model with α = 1 and kS = 0.1;

PH3 Phong model with α = 1 and kS = 0.3;

PH5 Phong model with α = 1 and kS = 0.5.

Then we have computed the surfaces corresponding to all the parameter
choices (i.e. matching and not matching the first choice). The results ob-
tained in this way have been compared in terms of L2 and L∞ norm errors
with respect to the original surface. The errors obtained by the ON–model
are shown in Table 4 and in Table 5 for the PH–model.

Table 4: Ridge tent, ON–model: L2, L∞ errors for the surface. In each
column the model used to produce the input image, in the row the model
used for the 3D reconstruction.

L2 LAM ON1 ON3 ON5

LAM 0.0067 0.0172 0.0933 0.1920
ON1 0.0082 0.0068 0.0821 0.1801
ON3 0.0832 0.0700 0.0086 0.1033
ON5 0.1946 0.1784 0.0923 0.0067

L∞ LAM ON1 ON3 ON5

LAM 0.0094 0.0315 0.1942 0.4060
ON1 0.0199 0.0093 0.1701 0.3805
ON3 0.1784 0.1507 0.0118 0.2156
ON5 0.4104 0.3769 0.1976 0.0094

Table 5: Ridge tent, PH-model: L2, L∞ errors for the surface. In each
column the model used to produce the input image, on the row the model
used for the 3D reconstruction.

L2 LAM PH1 PH3 PH5

LAM 0.0067 0.0841 0.2867 0.6146
PH1 0.0586 0.0067 0.1996 0.5031
PH3 0.1403 0.0955 0.0073 0.2687
PH5 0.1915 0.1664 0.0976 0.0060

L∞ LAM PH1 PH3 PH5

LAM 0.0094 0.1740 0.6068 1.3123
PH1 0.1243 0.0108 0.4202 1.0741
PH3 0.3167 0.2245 0.0149 0.5718
PH5 0.4503 0.4241 0.2907 0.0093
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Analyzing the errors in Table 4 and Table 5, we can observe that using
the same model to generate the input image and to reconstruct the surface
is clearly the optimal choice. The errors on the surface grow more as we
consider a parameter σ other than the one used to generate the input image
as data for the 3D reconstruction. For the ON–model we loose one or two
order of magnitude, depending on the “distance” of the parameter from the
source model. For the PH–model we can observe that the L2 and L∞ errors
grow more as we consider a different kS for the generation of the image and
for the reconstruction, loosing one or two order of magnitude. However,
the two models seems to be rather stable with respect to a variation of
the parameters since the errors do not increase dramatically varying the
parameters.

Test 3: Concave/convex ambiguity for the ON–model. We consider
this test in order to show that the ON–model is not able to overcome the
concave/convex ambiguity typical of the SfS problem although it is a model
more realistic than the classical L–model. Let consider the following function

u(x, y) =


−(1− (x2 − y2))2 + 1,

if (x2 + y2) < 2,
0 otherwise.

(93)

(a) (b) (c)

Figure 8: Example of concave/convex ambiguity for the ON–model with
σ = 0.5 and ω = (0, 0, 1): (a) Original Surface; (b) Maximal Solution;
(c) Approximated surface with value in the origin equal to zero.

We discretize the domain Ω = [−1.5, 1.5]× [−1.5, 1.5] with 151× 151 nodes.
The fixed point has been computed with an accuracy of η = 10−4 and the
stopping rule for the algorithm based on the fixed point iteration defined in
(86) is |W k+1−W k|max ≤ η, where k+ 1 denotes the current iteration. The
iterative process starts with W 0 = 0 on the boundary and W 0 = 1 inside in
order to proceed from the boundary to the internal constructing a monotone
sequence (see [7, 23] for details on the approximation of maximal solutions).
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Looking at Fig. 8 we can note that the scheme chooses the maximal viscosity
solution stopping after 105 iterations, which does not coincide with the
original surface. In order to obtain a reconstruction closer to the original
surface, we fix the value in the origin at zero. In this way we forced the
scheme to converge to a solution different from the maximal solution (see
Fig. 8(c)). We obtained this different solution shown in Fig. 8(c) after 82
iterations.

Test 4: Concave/convex ambiguity for the PH–model. The fourth
synthetic numerical experiment is related to the sinusoidal function defined
as follow 

u(x, y) = 0.5 + 0.5 sin(
π x

∆x
) sin(

π y

∆y
),

(x, y) ∈ Gin,
u(x, y) = 0, (x, y) ∈ Gout.

(94)

With this test we want to show that also the PH–model is not able to
overcome the concave/convex ambiguity typical of the SfS problem.

in out reconstruction

Figure 9: Synthetic sinusoidal function: example of concave/convex ambi-
guity for the PH–model with kS = 0, 0.5, 0.8 for each row from the top to
the bottom, respectively.

Fig. 9 shows the results related to the PH–model with kS = 0, 0.5, 0.8.
In the first column one can see the input images generated by the PH–model
using the values of the parameter before mentioned. In the second column
we can see the output images computed a posteriori using the depth just
computed and approximating the gradient via finite difference solver. What
we can note is that even if the reconstructed a posteriori images match

32



with the corresponding input images, the SL method always chooses the
maximal solution even varying the parameters kD and kS . By adding some
informations as shown in the previous test it is possible to achieve a better
result, but these additional informations are not available for real images.

Test 5: Role of the boundary conditions. With this fifth test we want
to point out the role of the boundary condition (BC), showing how good BC
can significantly improve the results on the 3D reconstruction. We will use
the synthetic vase defined as follow{

u(x, y) =
√
P (ȳ)2 − x2 (x, y) ∈ Gin

u(x, y) = g(x, y) (x, y) ∈ Gout,
(95)

where ȳ := y/Y ,

P (ȳ) := (−10.8 ȳ6 + 7.2 ȳ5 + 6.6 ȳ4 − 3.8 ȳ3 (96)

−1.375 ȳ2 + 0.5 ȳ + 0.25)X

and
Gin := {(x, y)|P (ȳ)2 > x2}.

In Fig. 10 one can see on the first row the input images (size 256 × 256)
generated by the L–model, ON–model and the PH–model, from left to right
respectively. On the second row we reported the 3D reconstruction with
homogeneous Dirichlet BC (g(x, y) = 0). As we can see, there is a con-
cave/convex ambiguity in the reconstruction of the surface. If we consider
the correct boundary condition, that is the height of the surface at the
boundary of the silhouette that we can easily derive in this case being the
object a solid of rotation, what we obtain is visible in the third row of the
same Fig. 10.

In Tables 6 and 7 we can see the number of iterations, the CPU time
and the error measures in L2 and L∞ norm for the method used with homo-
geneous and not homogeneous Dirichlet BC respectively. Looking at these
errors we can note that in each table the values are almost the same for the
different models. Comparing the values of the two tables one can see that
we earn an order of magnitude using good BC, that confirms what we noted
looking at Fig. 10.

Test 6: Comparison with other numerical approximations. In this
sixth and last test of this section dedicated to synthetic tests we will compare
the performance of our semi-Lagrangian approach with other methods used
in the literature. For this reason, we will use a very common image used in
the literature, that is the vase, defined in the previous test through the (95).
More in details, we will compare the performance of our semi-Lagrangian
method with the Lax-Friedrichs Sweeping (LFS) scheme adopted by Ahmed
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L–model ON–model PH–model

Figure 10: Synthetic vase under vertical light source (ω = (0, 0, 1)): ex-
ample of concave/convex ambiguity solved by using correct Dirichlet BC.
On the first row from left to right: input images generated by L–model,
ON–model with σ = 0.2 and PH–model with kS = 0.4. On the second row:
3D reconstruction with homogeneous Dirichlet BC. On the last row: 3D
reconstruction with Dirichlet BC u(x, y) = g(x, y).

Table 6: Synthetic Vase: Number of iterations, CPU time in seconds and
L2, L∞ errors on the surface with vertical light source ω = (0, 0, 1) using
homogeneous Drichlet BC.

SL–Schemes Iter. [sec.] L2(S) L∞(S)

LAM 1010 0.54 0.1614 0.3015
ON-02 1011 0.53 0.1613 0.3015
ON-04 1008 0.54 0.1610 0.3015
PH-s02 1007 0.54 0.1619 0.3015
PH-s04 1009 0.55 0.1621 0.3015
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Table 7: Synthetic Vase: Number of iterations, CPU time in seconds and
L2, L∞ errors on the surface with vertical light source ω = (0, 0, 1) using
not homogeneous Drichlet BC.

SL–Schemes Iter. [sec.] L2(S) L∞(S)

LAM 1337 0.70 0.0286 0.0569
ON-02 1335 0.70 0.0284 0.0558
ON-04 1341 0.70 0.0282 0.0562
PH-s02 1330 0.70 0.0284 0.0560
PH-s04 1330 0.70 0.0280 0.0558

and Farag [1] under vertical and oblique light source. Also these authors
derive some similar HJ equations for the L–model in [2], and generalize this
approach for various image conditions in [1], comparing their results on the
only L–model with the results shown in [63] and the algorithms reported in
[85]. Unfortunately, we cannot compare our semi-Lagrangian approximation
for the PH–model with no other schemes since, to our knowledge, there are
no table of errors for the PH–model under orthographic projection in the
literature. In order to do the comparison, we will consider the vase image
of size 128× 128 as used in the other papers. We start to remind the error
estimations used: given a vector A representing the reference depth map on
the grid and a vector Ã representing its approximation, we define the error
vector as e = A− Ã and

err1 := ||e||L1 =
1

N

∑
i

|ei|

err2 := ||e||L2 =

{
1

N

∑
i

|ei|2
}1/2

where N is the total number of grid points used for the computation, i.e. the
grid points belonging to Gin. These estimators are called mean and standard
deviation of the absolute error. In Table 8 we compare the error measures
for the different SfS algorithms under the L–model with ω = (0, 0, 1). What
we can note is that our semi-Lagrangian method is better than the other
ones also if we consider Dirichlet boundary condition equal to zero (as used
by Ahmed and Farag in their work [1]), but the better result is with correct
BC, shown in bold in the last row. In Table 9 we can see the same methods
applied to the L–model but under a different light source, that is (1, 0, 1).
Also in this case, our approach obtains always the smallest errors and the
best is with not homogeneous Dirichlet BC, as noted before.

Only with respect to the LFS used by Ahmed and Farag, we can com-
pare the performance of our semi-Lagrangian scheme under the ON–model
as well, since the other authors only consider the L–model. In this con-
text, we show in Table 10 the error measures for the two SfS algorithms
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Table 8: Synthetic vase: error measures related to the different methods
for the L–model with vertical light source ω = (0, 0, 1). In bold the best
performances.

Methods err1 err2
Best [85] 8.1 11.1
[63] 2.8 2.0
[1] 0.22 0.4
Our proposed (BC = 0) 0.1570 0.1717
Our proposed (BC 6= 0) 0.0349 0.0385

Table 9: Synthetic vase: error measures related to the different methods
for the L–model with oblique light source (1, 0, 1). In bold the best perfor-
mances.

Methods err1 err2
Best [85] 7.9 13.9
[63] 4.1 2.6
[1] 1.2 2.2
Our proposed (BC = 0) 0.0683 0.1061
Our proposed (BC 6= 0) 0.0218 0.0242

with σ = 0.2, under vertical position of light source and viewer (ω =
(0, 0, 1),V = (0, 0, 1)). As before, the best result is obtained using the

Table 10: Synthetic vase: error measures related to the SL and LFS methods
for the ON–model with σ = 0.2 under vertical light source (ω = (0, 0, 1))
and vertical viewer V = (0, 0, 1). In bold the best performances.

Methods err1 err2
[1] 0.6 1.0
Our proposed (BC = 0) 0.1568 0.1715
Our proposed (BC 6= 0) 0.0348 0.0384

semi-Lagrangian scheme with not homogeneous Dirichlet BC. The recon-
structions corresponding to the error measures shown in the three last Ta-
bles 8, 9, 10 obtained applying our scheme and compared to [1] are shown in
Fig. 11. The reconstruction obtained by the two methods are comparable.
In particular, in the second column regarding the oblique light source case
we can note that our scheme reconstructs a surface that incorporates the
black shadow part (see [23] for more details on this technique), avoiding
the effects of “dent” present in the reconstruction obtained by Ahmed and
Farag visible in the last row, second column.

Finally, in Table 11 we reported the number of iterations and the CPU
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L–model L–model ON–model
vertical oblique vertical

Figure 11: Synthetic vase: From top to bottom, Input images, recovered
shapes by our approach with homogeneous Dirichlet BC and with not homo-
geneous BC, recovered shape by [1]. First column: L–model with vertical
light source (0,0,1). Second column: L–model with oblique light source
(1,0,1). Third column: ON–model with σ = 0.2, ω = (0, 0, 1), V = (0, 0, 1).
Input images size: 128× 128.

time in seconds with the comparison with respect to [1]. This shows that the
SL-scheme is competitive also in terms of CPU time. Of course, in the case
of oblique light source the number of iterations, and hence the CPU time
needed is much more bigger. Just think that for the reconstruction under
the L–model with oblique light source (1, 0, 1) and BC 6= 0 visible in the
second column of the third row of Fig. 11, we need 15513 iterations (CPU
time: 147.40 seconds). If we double the size of the input image, considering
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Table 11: Synthetic vase: iterations and CPU time in seconds for the L–
model and the ON–model with vertical light source ω = (0, 0, 1). Image
size: 128× 128.

Schemes Model Iter. [sec.]

[1] L–model - 0.5
Our approach (BC = 0) L–model 611 0.09
Our approach (BC 6= 0) L–model 792 0.11

[1] ON–model - 1.5
Our approach (BC = 0) ON–model 612 0.09
Our approach (BC 6= 0) ON–model 791 0.12

the vase 256 × 256 visible in Fig. 10, for the reconstruction visible in the
third row, first column of the same Fig. 10, we need 30458 iterations to get
convergence, that we obtain in 1163 seconds.

Since it is difficult to compare the performance of our approach based
on the PH–model with other schemes based on the same reflectance model
under orthographic projection for the consideration made before, we report
in Fig. 12 the performances obtained by our method based on the PH–model
compared to the approximate Ward’s method on the vase test (Cf. Fig. 7 in
[1]). What we can see is that both the two methods reconstruct the surface
in a quite good way, without particular distinctions in the goodness of the
reconstructions. In order to analyze the results not only in a qualitative
way but also in a quantitative one, we report the mean and the standard
deviation of the absolute errors in Table 12. Looking at this table, we can
note that our approach seems to be superior, obtaining the reconstruction
with errors smaller of one order with respect to the other model.

Table 12: Synthetic vase: error measures related to the cases shown in Fig.
12. In bold the best performances.

Methods err1 err2
Ward in [1] 0.8 1.3
PH–model 0.03 0.04

7.2 Real tests

In this subsection we consider real input images. We start considering the
golden mask of Agamemnon taken from [78] and then modified in order to
get a picture in gray tones. The size of the modified image really used is
507×512. The input image is visible in Fig. 13(a), the associated mask used
for the 3D reconstruction in Fig. 13(b). The second real test is concerning
the real vase (RV in the following) visible in Fig. 16, taken from [19]. The
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Input reconstruction

Figure 12: Synthetic vase: The first row shows the input image and the
recovered shape by our approach with not homogeneous BC based on the
PH–model with kS = 0.2, ω = (0, 0, 1) and V = (0, 0, 1). The second row
shows the input image and the recovered shape by the approximate Ward’s
method illustrated in [1] with σ = 0.2, ρd = 0.67, ρs = 0.075, ω = (0, 0, 1),
V = (0, 0, 1). Input images size: 128× 128.

size of the input image shown in Fig. 16(a) is 256×256. The reconstruction
domain ΩRV , shown in Fig. 16(b), is constituted by the pixels situated on
the vase. For the real cases, the input image is the same for all the models
and we can compute only errors on the images since we do not know the
height of the original surface. For the real tests we will use the same stopping
criterion for the iterative method before defined for the synthetic tests, i.e.
|W k+1 −W k|max ≤ η.

Test 7: Agamennon mask. For this test we will compare the results
regarding 3D reconstruction of the surface obtained with a vertical light
source ωvert = (0, 0, 1) and an oblique light source ωobl = (0, 0.0995, 0.9950).
The values of the parameters used in this test are reported in Table 13. For
a vertical light source, we refer to Table 14 for the number of iterations and
the CPU time (in seconds) and to Table 15 for the errors obtained with a
tolerance η = 10−8 for the stopping rule of the iterative process. Clearly, the
number of iteration and the errors of the two non-Lambertian models are
the same of the classical Lambertian model when σ for the ON–model and
kS for the PH–model are equal to zero (and for this reason we do not report
them in the tables). In all the other cases, the non-Lambertian models are
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(a) Agamemnon Input (b) Agamemnon Mask

Figure 13: Agamemnon images (size 507×512): (a) Input image; (b) Mask.

Table 13: Real Agamemnon mask: parameter values used in the models
with vertical light source ω = (0, 0, 1).

Model σ kD kS α

LAM
ON-04 0.4
ON-08 0.8
ON-10 1
PH-s04 0.6 0.4 1
PH-s08 0.2 0.8 1
PH-s10 0 1 1

faster in terms of CPU time and need a lower number of iterations with
respect to the L–model.

Table 14: Real Agamemnon mask: iterations and CPU time in seconds for
the models with vertical light source ω = (0, 0, 1).

SL–Schemes Iter. [sec.]

LAM 3921 24.48
ON-04 2751 12.48
ON-08 1943 11.41
ON-10 1818 8.79
PH-s04 2127 9.89
PH-s08 1476 6.90
PH-s10 1325 6.33

In Table 15 we can observe that the L2 errors produced by the ON–model
increase by increasing the value of σ. However, the L∞ errors are lower than
the error obtained with the Lambertian model. With respect to the PH–
model, all the errors increase by increasing the value of the parameter kS ,
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as observed for synthetic images.

Table 15: Real Agamemnon mask: L2, L∞ errors with vertical light source
ω = (0, 0, 1).

SL–Schemes L2(I) L∞(I)

LAM 0.0371 0.4745
ON-04 0.0375 0.4627
ON-08 0.0440 0.4627
ON-10 0.0501 0.4627
PH-s04 0.0383 0.4824
PH-s08 0.0391 0.4941
PH-s10 0.0393 0.5098

In Fig. 14 we can see the output image and the 3D reconstruction in a
single case for each models. What we can note is that no big improvements
we can obtain visually.

LAM ON4 PH4

Figure 14: Agamennon mask: results with vertical light source. On the
first row the output images, on the second row the 3D reconstruction with
vertical view, on the third row the 3D reconstruction with oblique view.
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For the oblique light case, we consider the values for the parameters
reported in Table 16.

Table 16: Real Agamemnon mask: parameter values used in the models
with an oblique light source ωobl = (0, 0.0995, 0.9950).

Model σ kD kS α

LAM
ON-01 0.1
ON-02 0.2
ON-03 0.3
PH-s02 0.8 0.2 1
PH-s03 0.7 0.3 1
PH-s04 0.6 0.4 1

Looking at Table 17 we can note that the oblique cases require higher
CPU time with respect to the vertical cases due to the fact that the equations
are more complex because of additional terms involved. Because of these
additional terms involved in the oblique case, in Table 18 we have reported
the results obtained using the parameters shown in Table 16 with a value of
the tolerance η for the stopping rule of the iterative method equal to 10−3.
This is the maximum accuracy achieved by the non-Lambertian models since
roundoff errors coming from several terms occur and limit the accuracy.

Table 17: Real Agamemnon mask: number of iterations and CPU time
in seconds for the different models with oblique light source ωobl =
(0, 0.0995, 0.9950).

SL–Schemes Iter. [sec.]

LAM 321 117.9
ON-01 315 246.0
ON-02 361 281.5
ON-03 396 264.6
PH-s02 427 285.2
PH-s03 564 373.6
PH-s04 680 484.1

In Fig. 15 we can see the output image and the 3D reconstruction in
a single case for each models. What we can note is that also using more
realistic illumination models as the two non-Lambertian considered, we do
not obtain a so better approximation of the ground truth solution. This is
due to the missing important informations (e.g. the correct oblique light
source direction, the values of the parameter involved that are known for
the models but not available in the real cases) and also due to the fact that
we are using a first order method of approximation.
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Table 18: Real Agamemnon mask: L2, L∞ errors with oblique light source
ωobl = (0, 0.0995, 0.9950).

SL–Schemes L2(I) L∞(I)

LAM 0.0585 0.4863
ON-01 0.0663 0.4588
ON-02 0.0670 0.4471
ON-03 0.0708 0.5451
PH-s02 0.1141 0.5725
PH-s03 0.1580 0.6196
PH-s04 0.2063 0.6706

LAM ON4 PH4

Figure 15: Agamennon mask: results with oblique light source ωobl =
(0, 0.0995, 0.9950). On the first row the output images, on the second row
the 3D reconstruction with vertical view, on the third row the 3D recon-
struction with oblique view.

Test 8: Real Vase. With this test we want to investigate the stability
of our method with respect to the presence of noise. In fact, looking at the
Fig. 16(a) we can consider that RV is a noisy version of the synthetic vase
used in the Tests 5 and 6. The test was performed using a vertical light
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(a) Real Vase Input (b) Real Vase Mask

Figure 16: Real Vase images (size 256× 256): (a) Input image; (b) Mask.

source ω = (0, 0, 1). The output images, computed a posteriori by using
the gradient of u approximated via centered finite differences starting from
the values of u just computed by the numerical scheme, are visible in Fig.
17, first column. The reconstruction obtained with the three models are
visible in the same Fig. 17, second column. What we can note is that all
the reconstructions, obtained using homogeneous Dirichlet BC, suffer for a
concave/convex ambiguity, as already noted for the synthetic vase (SV in
the following). Since it is visible looking at the SV and the RV tests that
we obtain results with errors of the same order of magnitude around 10−2,
considering that RV is a noisy version of SV, this shows that the method is
stable in the presence of noise in the image.

Table 19: Real Vase: L2, L∞ errors with vertical light source ω = (0, 0, 1).

SL–Schemes L2(I) L∞(I)

LAM 0.0093 0.0784
ON-02 0.0094 0.0784
ON-04 0.0111 0.0824
PH-s02 0.0095 0.0824
PH-s04 0.0098 0.0824

Finally, in Fig. 18 one can note the behavior of the ON–model by varying
the value of the parameter σ. Since in real situations we do not know it (as
other parameters like the light source direction) we can only vary it in order
to see the one which gives the best fit with the image. Looking at Fig. 18
what we can observe is that increasing the value of σ the reconstruction
shows a wider concave/convex ambiguity, which affects more pixels. But
this holds only in this specific case, not in general for all the real images as
a rule.
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Out 3D reconstruction

Figure 17: Real Vase: Output images and 3D reconstructions. On the first
row the L–model, on the second row the ON–model with σ = 0.2, on the
third row the PH–model with kS = 0.2.

ON σ = 0.2 ON σ = 0.4 ON σ = 0.6

Figure 18: Real Vase: 3D reconstructions related to the ON–model, varying
σ. From left to right σ = 0.2, 0.4, 0.6.

Test 9: Corridor. As illustrative example, let us consider a real image of
a corridor (see Fig. 19) as a typical example of a scene which can be useful for
a robot navigation problem. The test has been added as illustrative example
to show that even for a real scene which does not satisfies all the assumptions
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and for which several informations are missing (e.g. boundary conditions)
the method is able to compute a reasonable accurate reconstruction in the
central part of the corridor (clearly the boundaries are wrong due to a lack
of information). The size of this image is 600 × 383. Note that for this
picture we do not know the parameters and the light direction in the scene.
It seems that there is a diffused light and more than one light source. So this
picture does not satisfy many assumptions we used in the theoretical part.
In order to apply our numerical scheme we considered a Dirichlet boundary
condition equal to zero at the wall located at the bottom of the corridor. In
this way we have a better perception of the depth of the scene. In Fig. 20 we
can see the output images (on the first column) and the 3D reconstructions
(on the second column) obtained by L–model, ON–model with σ = 0.1 and
PH–model with kS = 0.2. In this example the PH–model seems to recognize
the scene better than the ON–model. In some sense this is probably due to
the fact that it has less parameters so it is easier to tune to a real situation
where the information on the parameters is not available. We point out that
this test is just an illustration of the fact that coupling SfS with additional
informations (e.g. coming from distance sensors to fix boundary conditions)
can be useful to describe a scene.

Figure 19: Image of a real scene (size 600× 383).

Test 10: Other tests on real images. In order to demonstrate the
applicability of our proposed approach for real data, we added here other
experiments conducted on a real urn, real rabbit and real Beethoven’s bust.
The input images and the related recovered shapes obtained by the three
models studied under different light directions and parameters are shown
in Fig. 21. As visible from Fig. 21, the results are quite good, even for
pictures like the rabbit or the bust of Beethoven, which have many details,
even if they still suffer for the concave/convex ambiguity typical of the SfS
problem.
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Out 3D reconstruction

Figure 20: Output images and 3D reconstructions of a scene for a robot
path planning application. On the first row the L–model, on the second row
the ON–model with σ = 0.1, on the third row the PH–model with kS = 0.2.

8 Conclusions

In this paper we derived nonlinear partial differential equations of first or-
der, i.e. Hamilton-Jacobi equations, associated to the non-Lambertian re-
flectance models ON–model and PH–model. We have obtained the model
equations for all the possible cases, coupling vertical or oblique light source
with vertical or oblique position of the observer. This exhaustive description
has shown that these models lead to stationary Hamilton-Jacobi equations
with a same structure and this allows for a unified mathematical formula-
tion in terms of fixed point problem. This general formulation is interesting
because we can switch on and off the different terms related to ambient,
diffuse and specular reflection in a very simple way. As a result, this gen-
eral model is very flexible to treat the various situations with vertical and
oblique light sources. Unfortunately, we have observed that none of these
models is able to overcome the typical concave/convex ambiguity known
for the classical Lambertian model. Despite this limitations, the approach
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Input reconstruction

Figure 21: Experiments on real images: input images and the recovered
shapes obtained by our approach. On the first row: urn reconstructed by
the L–model with ω = (0, 0, 1). On the second row: rabbit reconstructed by
the ON–model with σ = 0.2, ω = (0, 0, 1), V = (0, 0, 1). On the third row:
Beethoven reconstructed by the PH–model with ω = (0.0168, 1.198, 0.9801),
kS = 0.2.

presented in this paper is able to improve the Lambertian model that is
not suitable to deal with realistic images coming from medical or security
application. The numerical methods presented here can be applied to solve
the equations corresponding to the ON–model and the PH–model in all the
situations although they suffer for the presence of several parameters re-
lated to the roughness or to the specular effect. Nonetheless, looking at the
comparisons with other methods or models shown in this paper, one can
see that the Semi-Lagrangian approach is competitive with respect to other
techniques used, both in terms of CPU time and accuracy. As we have seen,
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in the complex nonlinear PDEs associated to non-Lambertian models the
parameters play a crucial role to obtain accurate results. In fact, varying
the value of the parameters it is possible to improve the approximation with
respect to the classical L–model. We can also say that for real images the
PH–model seems easier to tune, perhaps because we need to manage less
parameters.
Focusing the attention on the tests performed with an oblique light source,
we have to do some comments that are common to the PH–model and the
ON–model. Several terms appear in these models and each of them gives
a contribution to the roundoff error. Note that the accumulation of these
roundoff errors makes difficult in the oblique case to obtain a great accu-
racy. A possible improvement could be the use of second order schemes,
that release the link between the space and the time steps which charac-
terizes and limits the accuracy for first order schemes. Another interesting
direction would be to extend this formulation to other reflectance models
(like e.g. the Ward’s model) and/or to consider perspective projection also
including an attenuation term which can help to resolve the concave/convex
ambiguity or considering more than one input image with non-Lambertian
models, that solves the well-known ambiguity (see [74] for a first step in this
last direction considering the Blinn-Phong model). These directions will be
explored in future works.
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DEMs based on reflectance modelling. Advances in Space Research,
53(12):1735 –1767, 2014.

[28] B.K.P. Horn. Shape from Shading: A Method for Obtaining the Shape
of a Smooth Opaque Object From One View. PhD thesis, Massachusetts
Institute of Technology, 1970.

[29] B.K.P. Horn. Obtaining Shape from Shading information. In P.H. Win-
ston (Ed.), editor, The Psychology of Computer Vision, chapter 4, pages
115–155. McGraw-Hill, 1975.

[30] B.K.P. Horn and M.J. Brooks. The variational approach to Shape from
Shading. Computer Vision, Graphics and Image Processing, 33(2):174–
208, 1986.

[31] B.K.P. Horn and M.J. Brooks. Shape from Shading (Artificial Intelli-
gence). The MIT Press, 1989.

[32] Katsushi Ikeuchi and Berthold K.P. Horn. Numerical Shape from Shad-
ing and occluding boundaries. Artificial Intelligence, 17(1–3):141–184,
1981.

[33] H. Ishii and M. Ramaswamy. Uniqueness results for a class of Hamilton-
Jacobi equations with singular coefficients. Communications in Partial
Differential Equations, 20:2187–2213, 1995.

[34] Y.-C. Ju, M. Breuß, A. Bruhn, and S. Galliani. Shape from Shading for
rough surfaces: Analysis of the Oren-Nayar model. In Proc. British Ma-
chine Vision Conference (BMVC), pages 104.1–104.11. BMVA Press,
2012.

[35] Y.-C. Ju, S. Tozza, M. Breuß, A. Bruhn, and A. Kleefeld. Generalised
Perspective Shape from Shading with Oren-Nayar Reflectance. In Pro-
ceedings of the 24th British Machine Vision Conference (BMVC 2013),
pages 42.1–42.11, Bristol, UK, 2013. BMVA Press.

[36] J. Kain and D.N. Ostrov. Numerical Shape from Shading for discontin-
uous photographic images. International Journal of Computer Vision,
44(3):163–173, 2001.

[37] R. Kozera. Existence and uniqueness in photometric stereo. Appl.
Math. Comput., 44(1):103, 1991.

52



[38] R. Kozera. Uniqueness in Shape from Shading revisited. Journal of
Mathematical Imaging and Vision, 7(2):123–138, 1997.

[39] S. N. Kruzkov. The generalized solution of the hamilton-jacobi equa-
tions of eikonal type i. Math. USSR Sbornik, 27:406–446, 1975.

[40] P.L. Lions, E. Rouy, and A. Tourin. Shape-from-Shading, viscosity
solutions and edges. Numerische Mathematik, 64(3):323–353, 1993.

[41] V. Lohse, C. Heipke, and R. L. Kirk. Derivation of planetary topogra-
phy using multi-image shape-from-shading. Planetary and Space Sci-
ence, 54(7):661–674, 2006.

[42] R. Mecca and M. Falcone. Uniqueness and approximation of a pho-
tometric Shape-from-Shading model. SIAM J. Imaging Sciences,
6(1):616–659, 2013.

[43] R. Mecca and S. Tozza. Shape reconstruction of symmetric surfaces
using photometric stereo. In Michael Breuss, Alfred Bruckstein, and
Petros Maragos, editors, Innovations for Shape Analysis: Models and
Algorithms, pages 219–243. Ed. Springer, 2013. ISBN: 978-3-642-34140-
3.

[44] T. Okatani and K. Deguchi. Shape reconstruction from an endoscope
image by Shape from Shading technique for a point light source at
the projection center. Computer Vision and Image Understanding,
66(2):119–131, 1997.

[45] J. Oliensis. Shape from Shading as a partially well-constrained problem.
Computer Vision, Graphics and Image Processing: Image Understand-
ing, 54(2):163–183, 1991.

[46] J. Oliensis. Uniqueness in Shape from Shading. International Journal
of Computer Vision, 6(2):75–104, 1991.

[47] M. Oren and S.K. Nayar. Diffuse reflectance from rough surfaces. In
Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 763–764, 1993.

[48] M. Oren and S.K. Nayar. Generalization of Lambert’s reflectance
model. In Proc. International Conference and Exhibition on Com-
puter Graphics and Interactive Techniques (SIGGRAPH), pages 239–
246, 1994.

[49] M. Oren and S.K. Nayar. Seeing beyond Lambert’s law. In Proc. Eu-
ropean Conference on Computer Vision (ECCV), pages 269–280, 1994.

53



[50] M. Oren and S.K. Nayar. Generalization of the Lambertian model and
implications for machine vision. International Journal of Computer
Vision, 14(3):227–251, 1995.

[51] B. T. Phong. Illumination for computer generated pictures. Commu-
nications of the ACM, 18(6):311–317, 1975.

[52] E. Prados, F. Camilli, and O. Faugeras. A viscosity solution method
for Shape-from-Shading without image boundary data. ESAIM: Math-
ematical Modelling and Numerical Analysis, 40(2):393–412, 2006.

[53] E. Prados and O. Faugeras. A mathematical and algorithmic study of
the lambertian sfs problem for orthographic and pinhole cameras. Rap-
port de recherche 5005, Institut National de Recherche en Informatique
et en Automatique, Sophia Antipolis, France, November 2003.

[54] E. Prados and O. Faugeras. Perspective Shape from Shading and vis-
cosity solutions. In Proc. IEEE International Conference on Computer
Vision (ICCV), pages 826–831, 2003.

[55] E. Prados and O. Faugeras. Shape from Shading: a well-posed problem?
In Proc. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 2, pages 870–877, 2005.

[56] E. Prados, O. Faugeras, and E. Rouy. Shape from Shading and viscosity
solutions. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter
Johansen, editors, Computer Vision

’
ECCV 2002, volume 2351 of

Lecture Notes in Computer Science, pages 790–804. Springer Berlin
Heidelberg, 2002.
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