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Abstract We propose a large displacement optical flow method that introduces a new strategy
to compute a good local minimum of any optical flow energy functional. The method requires
a given set of discrete matches, which can be extremely sparse, and an energy functional which
locally guides the interpolation from those matches. In particular, the matches are used to guide
a structured coordinate-descent of the energy functional around these keypoints. It results in a
two-step minimization method at the finest scale which is very robust to the inevitable outliers
of the sparse matcher and able to capture large displacements of small objects. Its benefits over
other variational methods that also rely on a set of sparse matches are its robustness against very
few matches, high levels of noise and outliers. We validate our proposal using several optical flow
variational models. The results consistently outperform the coarse-to-fine approaches and achieve
good qualitative and quantitative performance on the standard optical flow benchmarks.

Keywords Optical flow - Variational methods - Coordinate descent - Sparse matches

1 Introduction

Optical flow is the apparent motion field between two consecutive frames of a video. More generally,
it can be defined as a dense correspondence field between an arbitrary pair of images. There are
two large families of methods for computing image correspondences: local and global methods.
Local methods establish a point correspondence by minimizing a distance measure between the
matching neighborhoods [11,60]. They provide a sparse correspondence field since not all the image
points are discriminative enough to guarantee a single correspondence. On the other hand, global
or variational methods [24,2,9,62,64,50] provide a dense solution by minimizing a global energy.
Recent work on optical flow estimation [4,14,18,27,35,59,43,30] is mostly focused on solving the
major challenges that appear in realistic scenarios and outdoor scenes, such as large displacements,
motion discontinuities, illumination changes, and occlusions.

In this article we introduce a new strategy to compute good local minima of any optical flow
energy functional which allows to capture large displacements. The method relies on a discrete
set of matches between the two input images, which can be extremely sparse and contaminated
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(a) First frame and 4 initial seeds (in red) (b) C. coding (c) Second frame

(d) Ground truth (e) Our result

Fig. 1: Example illustrating that it is enough to have a single matching seed per each region with
an expected smooth motion; 4 seeds in this case, which have been computed using SIFT. The
first row shows the original pair of frames I; and I; 1, where in I; we have superimposed in red
the position of the 4 seeds (head, arm, dress and background). Last row shows our result and the
ground truth. The energy functional used is the classical T'V,-L1.

by outliers, and is used as a guide to find a local minimum of the chosen energy functional. The
novelties include how these matches are used in the optimization problem. The proposed method is
a two-step minimization process of the optical flow energy. The first step computes a good and dense
local minimum by propagating the initial matches with a region growing strategy. The propagation
is driven by the minimization of the energy on patches and the order of update is established by
the value of the local version of the energy, i.e. the energy restricted to a square patch of the
image domain. It can be thought as a grouped coordinate descent of the target functional, where
the variables are defined by the optical flow values in a patch, and the functional is minimized on
the patch while fixing the rest of flow values. Coordinate descent methods provide efficient and
fast optimization schemes even for huge-scale problems [39]. The basic idea is to minimize a multi-
variable objective function by optimizing over a single coordinate while holding others fixed. The
sweep pattern is the name used to define how the alternating minimization process moves along
all the coordinates. In order to obtain a good minimum and accelerate convergence, we follow an
adaptive choice of the sweep pattern driven by a seed growing algorithm based on the value of
the energy after local minimization in a patch centered at that coordinate. This information is
stored in a priority queue from which the coordinate is selected and the adaptive sweep pattern
is iteratively created. The result of the first step is a dense optical flow which is further refined in
the second step: A global minimization of the energy taking as initial condition the flow obtained
in the first stage. Both minimization steps work with the full resolution of the image directly.
Our method allows to choose the energy functional. For instance, by choosing it with desirable
properties such as robustness to illumination changes, occlusions and motion discontinuities, those
properties are inherited by our method. We can compare our method to the common coarse-to-
fine (also called multi-scale) approach or to the strategy of including the information of sparse
matches by incorporating an extra term in the energy that penalizes deviations from the flows
given by the matches [10,49,55]; both of them also find local minima of arbitrary optical flow
energy functionals. We find that we consistently outperform the multi-scale strategy for a variety
of input sparse matches and energy functionals. We present qualitative and quantitative results on
several datasets such as Middlebury [5], MPI-Sintel [12], KITTT 2012 [21], and KITTI 2015 [34]
datasets. The performance is better than LDOF [10] and comparable to DeepFlow [55] while being
more robust, less dependent on the density of seeds and based only on a single energy with two
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terms (no need of extra parameters). In our case, the ability to find large displacements requires
only that at least one match is correctly given for each object in motion, as shown in the experiment
of Figure 1. Moreover, we find that our minimization strategy is very robust to the presence of
many incorrect keypoints in the input, as illustrated in Figure 3, where there are only 2 correct
matches and 508 outliers. In contrast, the alternative strategy of including sparse matches in the
energy functional with an additional term is not robust to a small number of matches (see Figure
10) nor to a large percentage of wrong matches or high levels of noise (see Table 6).

The remainder of the paper is organized as follows. In Section 2 we revise previous work on
optical flow estimation. Section 3 presents our large displacement optical flow method (which we
denote by FALDOI, as an acronym made of the first letter of the words ”large displacement optical
flow method by an astute initialization”). Section 4 presents results from several energy functionals
and an analysis of the properties and performance of our strategy depending on the density of the
initial set of discrete matches. Finally, the conclusions are summarized in Section 5.

2 Related work

The seminal work of Horn and Schunk [24] has inspired many subsequent works also based on
an energy-based formulation of the optical flow problem and focused on different kind of limita-
tions and their improvements. Initial progress was devoted to the use of more robust data terms
and Total-Variation-based regularizers in order to obtain sharper solutions [9,8,51,62]. The cor-
rect preservation of motion discontinuities is a key issue that has motivated many proposals in
the smoothness term: Starting from the use of decreasing functions of the image gradients [14,
45,58], diffusion tensors [38,57,63], coupled regularization of the flow channels [50,41] or second-
order regularization [42], to the more recent non-local regularization terms [28,52,56]. The classical
hypothesis for defining the data term has been the brightness constancy assumption but this is
very limiting in realistic scenarios where illumination changes as well as occlusions may appear.
Robustness against additive illumination changes can be obtained by using the gradient constancy
assumption [40]; while advanced data terms based on patch measures present more general invari-
ances, in particular, the Normalized Cross Correlation [47,54,56] is invariant to linear brightness
changes and the Census transform is invariant under monotonically increasing rescalings [23,37,
46]. Patch-based data terms are used in the state-of-the-art methods, including stereo and opti-
cal flow problems. As they are more informative and allow to better characterise the local image
structure they result in more accurate flow estimations. On the other hand, occlusions represent an
important problem for optical flow estimation methods and some works include a characterization
of the occlusion areas in the energy, [1,3,6,18], while others estimate the occlusion areas based on
a triangulation of the image [27].

Energy-based methods are called global methods since they find correspondences by minimiz-
ing an energy defined on the whole image. Traditionally, global methods include a linearization of
the warped image in the data term to make the optimization problem more tractable. The linear
approximation is only valid for small displacements, that is why these methods are usually embed-
ded in a coarse-to-fine warping scheme in order to better capture large displacements. However,
they still fail to correctly handle large motions of small objects (not present at coarser scales). On
the other hand, local methods are much better adapted to capture large movements. The work of
Alvarez et al. [2] was probably the first to note that the standard coarse-to-fine approach may not
be enough and proposed to modify it by using a linear scale-space focusing strategy from coarse to
fine scales in order to avoid convergence to incorrect local minima. More recently, Steinbriicker et
al. [48] proposed an algorithm that does not require the coarse-to-fine warping strategy. It was one
of the first attempts to capture large motions with variational methods, where the data term and
the regularizer are decoupled by a quadratic relaxation technique and the optimization problem
is directly solved at the finest scale by alternating two global minimizations while decreasing the
decoupling parameter. One of the minimization problems is convex; the other one is non-convex
but it is a point-wise optimization problem, so its solution is found using an exhaustive search for
every pixel, which can be performed in parallel. Another early work is the proposal by Brox and
Malik [10], that incorporates sparse matches into the variational model by adding an extra term
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(a) First frame (b) Second frame (¢) Ground truth

(d) 30% estimated (e) 70% estimated (f) 80% estimated

(g) 95% estimated (h) 100% estimated (i) Final

Fig. 2: Example of a sparse-to-dense evolution of the estimated optical flow during the local step,
starting from a set of initial seeds provided by SIFT (shown in red in (a)). The final estimate (after
the global minimization step) is also shown. The optical flow values are represented using the color
coding scheme shown in Fig. 1. The energy functional used is the classical T'V,,-L1.

that penalizes deviations of the estimated optical flow from the flow given by the matches obtained
by HOG descriptors [15] at some sparse locations. The extended variational method is solved with
a coarse-to-fine strategy as usual. DeepFlow [55] and SparseFlow [53] follow the same strategy as
proposed by Brox and Malik [10], the difference among them lying in the way they find the matches
that define the matching term in the variational approach. The descriptor matching proposed by
Weinzaepfel et al. [55] is inspired by non-rigid 2D warping and deep convolutional networks and
permits a more dense and deformable matching compared to the popular HOG /SIFT-like descrip-
tors [15,33]. The matching algorithm proposed by Timofte et al. [53] is also robust to non-rigid
deformations and is based on the compressed sensing theory. The proposal by Xu et al. [58] also
uses a coarse-to-fine approach but the initial flow in each level of the pyramid is modified. At each
level, different candidate flows are considered: the flow propagated from the previous level, sparse
feature matching (computed by SIFT), and dense nearest neighbor patch matching. Then, for each
pixel, the optimal flow is selected among the different candidates by solving a discrete optimization
problem.

Other works that do not use a coarse-to-fine strategy are based on correspondences obtained
by a nearest neighbor algorithm; one is based on a purely local method [7] while another [14]
refines the initial dense (and noisy) correspondence field using a motion segmentation and the
minimization of a global energy. Some recent methods are based on a sparse-to-dense approach;
they start from a sparse set of correspondences that capture large displacements and these are
densified by edge-aware interpolation techniques [30,43]. Later, the densified flow is refined by
minimizing a global energy at the finest scale. Other works [35,59] also include a final refinement
of the flow by minimizing a global continuous energy in the original image scale directly; either
using a discrete inference problem in a conditional random field as a first step [35], or a piecewise
adaptive parametric model embedded in an energy function that combines both continuous and
discrete variables [59]. The recent proposal of Fortun et al. [18] solves a discrete optimization of a
global energy in the original scale where the different flow candidates are obtained in a previous
step by patch-based parametric motion estimation; this method also makes a special treatment of
occlusions. On the other hand, an almost purely data-based dense optical flow is indeed possible,



FALDOI: a new minimization strategy for large displacement variational optical flow 5

by working with approximate nearest neighbor fields with a hierarchical search strategy and an
advanced outlier filtering [4].

Here, we also propose to get rid of the coarse-to-fine strategy and directly minimize the energy
at the finest scale with the help of some sparse correspondences that capture the large displacement
motions. The main difference with respect to the previous works [30,43] is the way of combining the
sparse matches with the variational approach: the initial matches are densified by a region growing
process driven by the minimization of a local version of the target energy functional. Thus, the
same variational tool is used both for the densification step and for the final global optimization
problem. In contrast, the sparse-to-dense interpolation of the sparse matches in [30,43] is based on
a regularity measure that takes into account occlusion and boundary constraints. In this way, since
in our case we are always taking into account a data term and a regularizer, together with a smart
local minimization of the energy guided by the best matches, our sparse-to-dense intermediate
step is more robust to outliers in the initial set of sparse correspondences and is able to correctly
recover a dense smooth motion in a certain region with just a single correspondence in it and
without the need of using edge information (see Figures 2 and 3). The outliers in this experiment
were randomly introduced to test our claim against a huge percentage of them. Nevertheless, the
robustness of our iterated algorithm to usual outliers is shown in Figure 4, the different Tables and
remaining experiments and it relies on pruning strategies based on saliency and forward-backward
optical flow consistency.

3 Proposed minimization strategy

In this section we present a minimization strategy that can be applied to any optical flow energy
functional and which is founded on estimating a good local minimum with the help of a discrete
set of matches. It is able to benefit both from the sparse techniques, which handle arbitrarily large
displacements, and from the continuous optimization of a variational formulation, which yields
dense flow fields with subpixel accuracy. The basic idea of the method is to assume that at least
some matches are correct, and propagate the correct information from those seeds driven by the
minimimization of the energy around them. This is ilustrated in Figure 1, where each region of
smooth movement has at least one correct seed.

The sparse set of initial correspondences (we will refer to them as seeds) is used as a reference or
guide to recover a dense flow field. This is done by iteratively growing the seeds by a local (patch-
based) minimization of the functional in a proper order (detailed in Sect. 3.1.1 and Sect. 3.1.2).
This dense optical flow is then refined by a global minimization of the energy. The algorithm
always works at the finest scale of the image. A pseudo-code of the whole strategy is presented in
Algorithm 1 while Algorithm 3 presents a slightly modified version which is explained in Sect. 3.1.2.

In order to detail the proposed approach, we introduce some notation and assumptions. Let us
denote two consecutive image frames of a video sequence as Iy, I;11 : 2 — R. As usual, we assume
that the image domain 2 is a rectangle in R2. In order to compute the optical flow u : 2 — R?
between I; and Iy;, we use a discrete set of matches M = {(x;,y:)}, 7 = 1,...,N, and an
energy E(u), defined from I; and I;4,. Minimizing E on an appropriate set, a minimum u of E
represents an optical flow between I; and I;;1. We assume that the discrete matches in M have
been computed with a sparse matching algorithm in such a way that x; is thought as belonging
to the image domain of I; and y; as belonging to the image domain of I; ;. From these discrete
matches, we compute the initial set of seeds, denoted here by S, by defining u(x;) = y; — x;,
t=1,...,N. Each seed p in the finite set of initial seeds S stores the corresponding pixel xP, its
related optical flow uP and the local energy of the functional around it (see Algorithm 1).

3.1 Computing a good local minimum
This step can be interpreted as an adaptive grouped coordinated descent approach driven by the

lowest local values of the energy on patches centered at pixels. It is inspired from the match
propagation principle [31], where a set of initial sparse matches, the seeds, are propagated to
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(a) First frame (b) Second frame ) Ground truth

(d) 10% estimated (e) 30% estimated (f) 50% estimated

(g) 70% estimated ) 100% estimated (i) Final

Fig. 3: Sparse-to-dense evolution of the fixed coordinates for a toy sequence made of the compo-
sition of a a large displacement (moving the Baboon small image) and a smooth movement of the
background. The initial set of sparse matches contains only 2 correct matches (obtained by SIFT
and shown in green) and 508 outliers (shown in blue). Even in the presence of a huge number
of outliers, the method recovers the correct motion in all the image with the exception of the
occluded region since the chosen functional (T'Vy,-L1) does not take into account occlusions. For
visualization purposes and better observe the sweep pattern in the optical flow estimation, in this
figure we have increased the color contrast. The optical flow values are represented using the color
coding scheme shown in Fig. 1.

neighboring pixels using a similar technique to the region growing strategy. This principle was
used in the work of [26] in order to obtain a quasi-dense disparity map, assuming that the seeds
and their neighboring pixels may present similar disparity values. Moreover, it shares ideas with
the coordinate descent methods, which are optimization techniques in multi-variable functions.
They minimize the objective function solving a sequence of one variable minimization problems.
Each subproblem improves the estimate of the solution by minimizing along a selected coordinate
while all other coordinates are fixed. Generally, each coordinate is visited several times to reach a
minimum. The sweep pattern is the name used to define how the alternating minimization process
moves along all the coordinates. If there is a fixed order to visit the coordinates, this is called path-
wise coordinate descent [19] or cyclic coordinate. In our case, the election of the sweep pattern
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has a fundamental role during the minimization process; we will follow an adaptive choice of the
sweep pattern driven by a seed growing algorithm based on the value of the local minimization
of the energy in a patch centered at that coordinate (or pixel in our case). The sweep process is
managed through a priority queue where the potential candidates (optical flow) for each coordinate
are inserted. Each candidate presents a related energy that is used to determine its position in the
queue: Candidates with less associated local energy will be at the top of the priority queue. The
initial seeds are inserted with zero energy.

In the following we will first present the baseline algorithm for the local minimization step,
where every pixel is visited just once. Then we explain how it is iterated in order to revisit the
pixels several times and gain more robustness against occlusions and resistant outliers of the sparse
matcher.

8.1.1 Baseline algorithm: faldoi

Initially, the seeds are inserted to the priority queue (containing, as said before, the value of the
optical flow and the energy on a local patch centered at the pixels) with zero energy. Along the
minimization process, new candidates will be added to the queue. This collection of potential
candidates for each coordinate will be sorted based on their local energies. Whenever an element
is removed from the queue to fix a coordinate, we are selecting the candidate with the lowest
associated local energy. The aforementioned process is repeated until the priority queue is empty
and a dense optical flow is obtained from the initial seeds. There may be several candidates for the
same pixel in the queue; when a candidate is extracted from the queue to fix it, if its corresponding
pixel has already been fixed (by a candidate with lowest energy) nothing is done. Once, all the
pixels have been fixed, the rejected candidates are extracted from the queue until it is emptied.

Fach time that a coordinate is extracted from the queue to fix it, a local minimization of the
energy FE(u) is solved on a square patch centered around the pixel previously fixed. Then, the
estimated optical flow values of its neighbors are inserted as potential candidates into the priority
queue with the energy (after local minimization) of the patch centered at the fixed coordinate.

Whenever the energy is minimized in a local patch P centered at the coordinate that has been
fixed we need to provide an initial flow in the unknown values in P N W (where W is the set of
locations where the optical flow has not been fixed yet). The initialization is just an interpolation
of the already fixed optical flow values in the patch through the Laplace equation resulting from
the minimization of the following Dirichlet energy

min [, [Vug|®dx  st. u; =udin PNWC
u;

where i = 1,2, u = (u1,uz2), and u’ = (uf,u9) contains the optical flow of the already fixed

coordinates in P N WY (W¢ denotes the complementary set of ). The Euler-Lagrange equation
derived from the previous energy is the Laplace equation, which is solved by gradient descent with
Neumann boundary conditions. Other intra-patch interpolations are allowed (e.g., based on the
bilateral filter or even a constant interpolation based on the flow values on P N W),

The details of the energy minimization process are given in Appendix A and Algorithm 4. In
practice, we consider patches of 11 x 11 pixels (although bigger patches can be used, it increases
the computational cost which is proportional to the size of the patch) and we perform 10 iterations
of the minimization process, in every local patch (line 7 of Algorithm 2 ), of a version of E(u)
where the warped image has been linearized with a single warping.
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Algorithm 1: faldoi (large displacement optical flow with astute initialization)

Input : Images A, B
Input : Functional F
Input : Image matcher M
Input : Patch size w
Output: Flow u

1u+ NULL // initialize flow field with empty data
2 Q<+ 0 // initialize an empty priority queue
3 (X4,¥i)i=1,..N — M(A, B) // compute discrete matches
4 fori=1,...N do // add the matches as seeds with zero energy
5 L Q.push(0,x;,y; — X;)

6 u < basic-faldoi-growing(4, B,u, FE,Q,w) // basic faldoi growing
7 u < flow-refinement(A4, B, 2, E,u) // Minimize E4 p(u) over (2 (Algorithm 4)

Algorithm 2: basic-faldoi-growing (densify an incomplete flow)

Input : Images A, B
Input : Flow ug

Input : Functional F
Input : Priority queue Q
Input : Patch size w
Output: Flow u

1 while Q.num_elements() > 0 do
2 e,x,v < Q.pop() // get the candidate with lowest energy
3 if u(x) = NULL then
4 L u(x) < v // fix the field for this candidate
5 Py < extract-patch({2,x, w) // extract patch of size w X w around
6 u < interpolate(u,Py) // £ill-in missing values
7 u + flow-refinement(A4, B, Px, &, u) // Minimize FE4 p(u) over Py (Algorithm
4)
e+ E4p(u,Px) // compute the energy of the solution
9 for y € N(x) do // traverse the neighbors of x
10 if u(y) = NULL then
11 L L Q.push(e,y,u(y)) // push this candidate value

3.1.2 Iterated faldoi

Given the fact that, generally, in coordinate descent methods each coordinate has to be visited
several times in order to reach a minimum, we propose to revisit the coordinates and thus perform
several iterations of the baseline algorithm presented in Sect. 3.1.1 with a forward-backward pruning
of the flow values between two consecutive iterations in order to gain more robustness against
resistant outliers.

More precisely, between two consecutive iterations of the coordinate descent completing a sweep
pattern, we perform a pruning based on a forward-backward consistency check. The goal is to
remove wrong matches, specially in occlusion areas and also due to self-similarity. The latter may
appear due to outliers in the initial seeds that have expanded by the region growing scheme. Our
algorithm computes both the forward, u”, and the backward, u?, optical flows between any two
frames I; and I;11. Then, a forward-backward consistency check of these flows is performed and
the forward flow values at points x € {2 not verifying [|u’ (x) + u?(x + u’’(x))|| < € are removed,
where € > 0 is a small constant (it is set to 2 in our experiments). In the same way, the backward
flow at points x € £2 not verifying ||[u?(x) + uf (x + u?(x))|| < € are removed.

In the iterated faldoi, the sweeps following the first one are slightly different from the baseline
sweep of Sect. 3.1.1 because they start not from a sparse set of optical flow values but from a dense
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Fig. 4: Tterated faldoi strategy applied to the NLTV-CSAD energy corresponding to MAX_IT=6
in Algorithm 3. The evolution of the optical flow estimate is shown from left to right and top
to bottom. The first line shows the two frames with the initial seeds superimposed in red in the
first frame. The second and third lines display the six iterations of the sweep pattern in the local
minimization step. The last line shows the final estimate (global minimization) and the ground
truth. Let us notice how the motion boundaries are progressively refined, the piecewise constant
appearance disappears, and the outlier is considerably reduced, thus adding robustness to outliers.
In this experiment the seeds have been computed using Deep Matching, which gives more outliers
than SIFT (used for the experiment with the same pair of images in Figure 2).

motion field with holes that arise after the forward-backward pruning. The two main differences
with respect to the main sweep are:

1. Initialization of the queue. The seeds that survive to the forward-backward consistency check
are inserted into a new priority queue with zero local energy. The rest of optical flow values that
also survive to the forward-backward pruning are added with its associated local energy.

2. Initialization of the optical flow of a patch before local minimization. Every time a local patch
is minimized an initial flow in the patch is needed. We make a distinction between the pixels that
passed the forward-backward consistency test and those that did not. In the pixels that passed the
test the initial flow is the most updated flow value by the last local minimization in that pixel. For
that, we use an auxiliary flow which is updated after every local minimization. On the other hand,
in the pixels that did not pass the test we fill-in the initial flow by iterating a bilateral filtering
in the local patch. This intra-patch initialization could be also used in the first baseline sweep of
Sect. 3.1.1. Nevetherless, in that very first interpolation, for efficiency reasons we opted for the
rougher Laplace interpolation explained above.

A pseudo-code of the iterated faldoi strategy is presented in Algorithm 3. Figure 4 shows the
importance of the iterations of the sweep pattern in the local minimization step. The optical
flow is improved from one iteration to the following, in particular, the motion boundaries are
progressively better recovered and the effect of the piecewise constant flow is lost. Moreover, this
iterated faldoi strategy adds robustness to outliers present in the initial seeds due to the forward-
backward consistency check between two consecutive iterations. The initial outlier regions are
reduced, after six iterations to a single region, which is completely lost after the global iteration
step. In this experiment the seeds have been computed using Deep Matching, which gives more
outliers than SIFT (which was used for the experiment with the same pair of images in Figure 2).
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Let us remark that in this example, we did not include the initial pruning of seeds based on the
low saliency of patches that is used, e.g., in [43].

3.2 Global Minimization

The last step is a global minimization of F(u), taking as initial condition the dense solution
provided by the previous step, the local minimization guided by the initial set of matches. Let us
remark that we only minimize the global energy at the finest scale, that is, we avoid the multi-scale
approach. During both steps, local and global, we minimize the same energy functional following
the same numerical scheme, which is detailed in Algorithm 4 and Appendix A. For the global
minimization we perform 4 warpings of the energy.

Algorithm 3: iterated-faldoi (iterated version of faldoi 4+ pruning of wrong matches)

Input : Images A, B
Input : Functional E
Input : Image matcher M
Input : Patch size w
Output: Flow u

1 uf « NULL // initialize forward flow field with empty data
2 u? « NULL // initialize backward flow field with empty data
3QF 0,08 «+ 0 // initialize empty priority queues
a (xFyF)iz1  ~v < M(A B) // compute discrete forward matches
5 (xB,yP)iz1. v+ M(B,A) // compute discrete backward matches
6 (xI',yF)i—1. .~ + saliency-pruning(4, (xI,yf)iz1 . ~) // remove matches in
7 (xB,yB)iz1. . v < saliency-pruning(B, (xZ,y5)i—1,. M) // flat areas
g fori=1,...N' do // add the matches as seeds with zero energy
o | QF.push(0,x],yf —x[)

10 fori=1,...M " do // add the matches as seeds with zero energy
1 | QF.push(0,xP,yf —xP)

12 n « MAX-IT // pre-specified number of iterations
13 while n > 0 do

14 u!” < basic-faldoi-growing(A, B,u, E, Q¥ w) // basic faldoi growing
15 u? « basic-faldoi-growing(B, A,u”, E, QP w) // basic faldoi growing
16 (uf,uP) + fo-pruning(u’’, u?) // forward-backward consistency check
17 for each uf” € u’’ do // add the forward canditates with their energies

18 L e+ Eap(ul,Per)
19

QF push(e, x]",u]")
20 for each u” € u” do // add the backward canditates with their energies
21 e+ Eap(ul, Ps)

QP push(e.xf, uf)

23 n<n—1

24 u < flow-refinement(A4, B, 2, E,ul) // Minimize E4 p(u) over {2 (Algorithm 4)

22

4 Results

Our proposal assumes that two ingredients are given: a discrete set of correspondences between
two frames of a video (the seeds) and an optical flow energy functional, namely, E(u). Section 4.1
presents the different energies we have used in this paper and Section 4.2 briefly discusses several
possibilities for the initial sparse correspondences. Later on, in Sect. 4.3 we provide a quantitative
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and qualitative comparison among the several possibilities for the energy terms, as well as a com-
parison between our method and several state-of-the-art methods, including methods based on the
combination of sparse matches and variational techniques [10,30,43,55].

4.1 Different possibilities for the energy

The proposed framework is independent from the energy functional E(u) and we validate it by
using several energies. Following most of the optical flow variational approaches in the literature,
the different possibilities will share the common feature of being made of two terms: a data fidelity
term Fp(u), and a regularization term Eg(u),

E(u) = Ep(u) + fER(u), (1)

where u : 2 — R?, (2 is the image domain, Iy, I;;; : 2 — R% are two consecutive frames (d = 1
for gray level images and d = 3 for color images), and u = (u1,us) represents the motion field
between them.

Let us also remark that our method allows the inclusion of other terms as, e.g., a third term
dealing with the occlusions, as in [6,3], which will not be considered here for the sake of simplicity
in the presentation.

With the aim of having a robust data cost, specially under illumination changes, we use a
convex and continuous approximation of the data cost based on the Census transform [23,46,61],
approximated by a sum of centralized absolute differences, denoted as CSAD [54], and defined as:

Eh(u) = /Q /Q (%) — Iu(y) — Topr(x +w) + Lopa (v + w)|x(x — y)dydx, (2)

where x denotes the characteristic function of a square of size P x P centered at the origin (P =7
in our experiments, as in [54]).

On the other hand, we also consider the classical point-wise L' data term that imposes the
well-known brightness constancy assumption, namely,

B2 (u) = /Q Tyor(x + ) — I,(x)] dx. (3)

It is important to correctly preserve the motion boundaries in order to obtain an accurate optical
flow. Motion boundaries are usually aligned with image boundaries, this aspect has motivated the
use of edge detectors (e.g. [17,29]) in previous optical flow methods [30,35,43]. Instead, we opt
for using the Non-Local Total Variation (NLTV') regularizer. NLTV was used for optical flow
estimation in [56], where the authors show its ability to better recover motion boundaries, in
particular in low-textured areas, occluded regions, and in small objects (when used in a coarse-to-
fine scheme). In our case, a non-local regularizer which better captures motion discontinuities is
also very useful in the local minimization step where the initial correspondences are densified. We
apply the NLTV regularizer to each flow channel independently:

El(u) = /Q /Q w(x,) (Ju1 (%) — ur (y)] + lua(x) — ua(y)]) dydsx, (4)

—Ac(xy) —As(xy) . .
where w(x,y) = ﬁe e , Ac(x,y) denotes the Euclidean distance between the color

values at x and y in the Lab space, As(x,y) is the Euclidean distance between points x and y,
W(x) = [,w(x,y)dy is a normalizing constant, and o., o, > 0 are constant parameters (set to
o.=2and o; = 2).

As before, with the purpose of testing the proposed minimization procedure against different
energies, we consider other regularization terms such as the classical coupled Total Variation (called
TV, (u) in [50]), namely,

Bh(w = [ [Valads = [ VIV GO+ [FuaiPi. (5)
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Appendix A details the optimization algorithms for all the energies. Let us now just say that
the data and the regularization terms are decoupled and standard methods such as primal-dual,
thresholding or median schemes are used.

4.2 Different possibilities for the initial set of seeds

In this work, the initial seeds are computed from one of the sparse matchers in the literature. There
are several methods that provide a set of sparse matches between two different images containing
common objects, representing two views of a scene or, as in our case, two frames of a video. Some
of them are based in the estimation of distinctive point location and matching [33,36]. Being
based on local properties, they can be used to estimate arbitrarily large displacements. In our
experiments, we will use SIFT [33] or Deep Matching [55]. Although SIFT is very effective, it has
some disadvantages when dealing with small textureless objects or with non rigid deformations.
The recent Deep Matching algorithm handles these problems and generates a more dense set of
matchings. We have compared these two different methods, SIFT and Deep Matching, to compute
the initial set of matches (the seeds). The first column of Figures 5 and 6 show some examples of the
set of seeds obtained by the SIFT and Deep Matching algorithms. We use the SIFT implementation
of [44], with its default parameters. Also, we use the Deep Matching implementation with the
default parameters presented in [55].

With the aim of avoiding outliers in homogeneous areas, we initially remove the seeds having a
low local saliency, which is determined by the minimum eigenvalue of the autocorrelation matrix
computed locally. If the saliency is below a threshold (set to 0.045 in our experiments), these seeds
are removed. This pruning is also used by other authors (see, e.g., [43]).

In any case, we claim that our optical flow strategy is able to recover the dense motion regardless
of the number of initial seeds; the only condition is to have at least one correct seed in every region
£2; C {2 where the motion is smooth. As a proof of concept, in Fig. 1 we use a single seed per
£2;, which has been extracted from the ground truth flow. The estimated optical flow compares
favourably to the ground truth even in these cases where the initial set of matches is extremely
sparse. In contrast, other sparse-to-dense methods like [43] that produce state-of-the-art results are
not capable to estimate the optical flow in this challenging situation. Another example is shown in
Fig. 5 where similar optical flow results are obtained independently of the cardinality of the set of
seeds, which have been computed using either the SIFT (Fig. 5, second row) or DeepMatching [55]
(Fig. 5, third row) algorithms. Let us notice that DeepMatching produces in general more matches
than SIFT. On the other hand, Fig. 6 shows a situation where the lack of seeds in some regions
£2; (second row, seeds provided by SIFT matches) produces an incorrect flow estimation in these
areas. A much better estimation is obtained when there is at least one seed in these regions, as it
happens when we use as seeds the matches provided by DeepMatching (Fig. 6, third row).

4.3 Experimental results

The proposed method has been tested on several publicly available databases: Middlebury [5],
MPI-Sintel [12], KITTT 2012 [21], and KITTI 2015 [34], as well as on proof of concept examples,
chosen in order to obtain a better understanding of the fundamental parts of the proposed strategy.
Let us remark that all results have been obtained by using the grayscale versions of the original
color frames. The color version is only used to compute the seeds in case they come from the
Deep Matching algorithm and to compute the local regularization weights in case of the Non-Local
Total Variation as regularization term. All the results in this section have been obtained with the
iterated faldoi minimization strategy presented in Sect. 3.1.2. We have fixed the parameters for all
the experiments, more details are given in Appendix B.

First, we present a comparison of our strategy against the multi-scale approach using different
functionals. In order to assure that the proposed framework is a real alternative to the coarse-to-
fine warping strategy and, therefore, also valid for sequences that do not have large displacements
of small objects, experiments on the Middlebury optical flow data set [5] have been performed for
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(b) Second frame (¢) Ground truth

(e) Local (f) Global
(g) DeepMatching seeds (h) Local (i) Global

Fig. 5: Sequences with enough initial seeds at both trackers to recover a correct dense flow. The
energy functional used is the classical T'Vp,-L1.

(a) First frame (b) Second frame (¢) Ground truth

(e) Local (f) Global

(g) DeepMatching seeds (h) Local (i) Global

Fig. 6: Sequence where only the second tracker (Deep Matching [55]) gets enough seeds to estimate
a correct flow. The energy functional used is the classical T'V,,-L1.

both approaches. Table 1 shows how our framework achieves better results in all the samples in
the dataset and for both energy functionals, TVy,-L1 and NLTV-CSAD, even if the difference
is slight is some cases. Some qualitative results are shown for images of the MPI Sintel database
that contain large displacements in Figure 8 where the initial seeds have been computed using
DeepMatching. The first row shows, from left to right, two consecutive frames and the optical flow
ground truth (color coded). The image (d) of the second row shows the ground truth occlusion map
(the occluded points are shown in white). The multi-scale results obtained using the TV,-L1 and
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[ Middlebury Dim. Hyd. Rub. Gro2 Gro3 Urb2 Urb3 Ven ]
TVy,-L1, multi-scale 0.1537 0.2286 0.1916 0.1496 0.6808 0.3709 0.6034 0.3563
TVy,-L1, our min. 0.1243 0.2078 0.1876 0.1397 0.5945 0.3599 0.4354 0.3109
NLTV-CSAD, multi-scale  0.1286 0.2003 0.1509 0.1405 0.5652 0.4315 0.5763 0.3647
NLTV-CSAD, our min. 0.1075 0.1984 0.1477 0.1389 0.5414 0.4028 0.5521 0.2961

Table 1: Error measures in the Middlebury dataset with public ground truth. The first two lines
correspond to the T'Vy,-L1 energy functional while the last two lines are based on the NLTV-
CSAD functional. The results obtained minimizing with the classical coarse-to-fine scheme are
shown in the first and third line and the ones obtained minimizing with our proposal are shown in
the second and fourth line.

[ Functional, minimization EPE all EPE mat. EPE unmat. s0-10 s10-40 s40+ ]
TVy,-L1, multi-scale 6.6453 5.1181 15.8828 2.9261  8.0172 45.3955
NLTV-CSAD, multi-scale 8.4243 7.0860 16.8037 2.8129  9.3389 50.4899
TV,,-L1, our min. (SIFT) 6.7307 5.4784 14.8439 3.2928 8.3336 47.2940
NLTV-CSAD, our min. (SIFT) 7.3337 6.1058 14.7972 4.4182  10.1687  49.8888
TVy,-L1, our min. (Deep) 4.7688 3.5043 13.5503 2.3861  6.4305 32.3350
TVy,-CSAD, our min. (Deep) 4.0158 2.7901 12.5350 2.0757  5.4551 31.5814
NLTV-CSAD, our min. (Deep)  4.0060 2.7845 12.2698 2.3115  5.2989 30.8537

Table 2: Results for several methods (coarse-to-fine and our proposal), several energies (T'Vy,-L1
and NLTV-CSAD) and several initial sets of seeds (SIFT seeds and Deep Matching seeds) on a
randomly selected subset of the MPI-Sintel Final training set.

the NLTV-CSAD energies are shown in (e) and (f), respectively, while the corresponding results
obtained by our minimization strategy (iterated faldoi) are shown in (h) and (i), respectively.
Finally, image (g) displays the result of our minimization faldoi strategy applied to the TV,,-
CSAD energy functional. As it can be observed, the use of an advanced data term based on
patches reduces the outlier area and better recovers the human shape. After adding the non-local
regularizer the motion boundaries are more accurate and the outlier is removed.

Table 2 provides a quantitative comparison of different estimations of the optical flow obtained
with different energy functionals (T'Vy,-L1 and NLTV-CSAD) and different set of seeds (SIFT
seeds and Deep Matching seeds). We use a subset of 10% of frames randomly selected from the
final training set of the MPI Sintel database. Let us notice that the energy based on the non-local
Total Variation and a smooth approximation of the Census transform (CSAD) is the one which
achieves the best results, both quantitative and qualitatively. On the other hand, Figure 7 shows
the energy values using both approaches, multi-scale and our proposal (with Deep Matching seeds)
over the same functionals. Notice how in general our method gives a lower or similar energy than
the multi-scale method.

Table 3 and Figure 9 show a quantitative and a qualitative comparison, respectively, among
our method and several state-of-the-art methods, including methods based on the combination of
sparse matches and variational techniques [10,55] via an extra coupling term and that can also be
adapted to any energy. Our approach outperforms LDOF [10] in both Clean and Final versions of
the MPI-Sintel dataset. Compared to DeepFlow [55] we get better results in the Clean version and
in the Final version we get an EPE which is only a tenth worse, thus we can say that the results
are comparable in the Sintel database. Our approach gives better results than S2D-Matching [30],
which is another sparse-to-dense technique that uses edge information and occlusion estimation
in the densification process. The images in Fig. 9 have been taken from the MPI-Sintel webpage.
Compared to [10,35,55] and EpicFlow [43] (also a sparse-to-dense technique that achieves good
positions in the Sintel table) our result better recovers the silhouettes of the girl (elbows, armpit,
right hip and lower part of the legs) and the birds without using precomputed edge information as
[43], although it produces some halos around the birds and the top-left corner of the image.

Table 4 shows a quantitative comparison among our method and several methods on the KITTI
2012 database [21]. As expected, the performance of our approach is better than LDOF [10], and
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Fig. 7: Energy results for TV,,-L1 and NLTV-CSAD using the multi-scale approach and our
proposal on a randomly selected subset of the MPI-Sintel Final training set. It is the standard
boxplot representation. Red dots are outliers, each box shows the first, second and third quartiles
and the whiskers length corresponds to 1.5 interquartile range (IQR).

) First frame ) Second frame ) Ground truth

(d) Occlusion map ) Multi-scale T'V;,-L1 (f) Multi-scale NLTV-CSAD

) Faldoi:TV,,-CSAD ) Faldoi:TVy,-L1 (i) Faldoi:NLTV-CSAD

Fig. 8: Comparison of our strategy against the multi-scale approach using different functionals.
The initial seeds have been computed using DeepMatching.

comparable to CRTflow [16], EpicFlow [43] and DeepFlow [55]. KITTI 2015 [34] can be used
to evaluate optical flow and scene flow algorithms. Table 5 only contains results for optical flow
methods.

In the approach of Brox et al. [10] or Weinzaepfel et al. [55] the matches are precomputed and
then added as a constraint to the energy term. Thanks to these matches the motion of small objects
that disappear at the coarser scales is recovered. However, these approaches need a minimum
density of sparse matches over the area of the small object in order to correctly capture large
displacements, even if the matches are weighted strong enough and enough iterations are performed.
By contrast, our proposal only needs one single seed per area motion to recover the whole motion
field. This is illustrated in Figure 10 were our proposal is able to recover the four large displacements
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[ EPE all EPE mat. EPE unmat. s0-10 s10-40 s40+ ]

Final
FlowFields! [4] 5.810 2.621 31.799 1.157 3.739  33.890
Discrete Flow!®! [35] 6.077 2.937 31.685 1.074 3.832  36.339
EpicFlow10 [43] 6.285 3.060 32.564 1.135 3.727  38.021
DeepFlow!'®! [55] 7.212 3.336 38.781 1.284 4107  44.118
Our approach!21] 7.337 3.580 37.904 1.487 4.355  43.526
52D — Matchingl2™ [30]  7.872 3.918 40.093 1172 4.695  48.782
LDOF™ [10] 9.116 5.037 42.344 1.485 4.839  57.296
l Clean
DiscreteFlow!! [35] 3.567 1.108 23.626 0.703  2.277  20.906
FlowFields!®) [4] 3.748 1.056 25.700 0.546 2.110  23.602
EpicFlow!8] [43] 4.115 1.360 26.595 0.712 2117  25.859
Our approach!14] 4.927 1.542 32.535 1.047 2.647  29.719
DeepFlow!29 [55] 5.377 1.771 34.751 0.960 2.730  33.701
S52D-Matching!3®] [30] 6.510 2.792 36.785 0.622 3.012  44.187
LDOF [10] 7.563 3.432 41.170 0.936  2.908  51.696

Table 3: Results on MPI-Sintel test set (9th of Jun. of 2016). The first and second set of results
correspond, respectively, to the Final and Clean frames. For our results we used the NLTV-CSAD
energy.

a A
LDOF [10], EPE = 1.460 Discrete Flow [35], EPE = 0.788
DeepFlow [55], EPE = 1.230 EpicFlow [43], EPE = 0.818
)
L
Our proposal, EPE = 1.095 Ground truth

Fig. 9: Qualitative and quantitative comparison of different optical flow methods in a frame of
the MPI-Sintel database (clean test). In our proposal we use the NLTV-CSAD energy with Deep
Matching seeds.
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[ EPE-noc EPE-all Out-Noc3  Out-All 3 ]

FlowFields??] [4] 1.4 3.5 5.77 14.01
DiscreteFlow? [35] 1.3 3.6 6.23 16.63
DeepFlow[ [55] 1.5 5.8 7.22 17.79
EpicFlow3?] [43] 1.5 3.8 7.88 17.08
Our approach!39] 1.7 5 8.81 19.93
CRT flow!37! [16] 2.7 6.5 9.43 18.72
LDOFB [10] 5.6 12.4 21.93 31.39

Table 4: Results on Kitti 2012 test (14th of Sep. of 2016). Out-Noc3 (resp. Out-all3) refers to
the percentage of pixels where the estimated optical flow presents an error above 3 pixels in non-
occluded areas(resp. all pixels). EPE-noc is the EPE over non-occluede areas and EPE-all is over
all the image. For our results we used the NLTV-CSAD energy.

| Fl-bg FIbf Flall |

PatchBatchl14] [20]  19.98  30.24 21.69
DiscreteFlow'™ [35]  21.53  26.68 22.38
CPM — Flow™ [25]  22.32 27.79 23.23

EpicFlow(23 [43] 25.81 33.56 27.10
Our approach[24] 27.08 3151 27.81
DeepFlow!26] [55] 27.96 35.28  29.18
HSBY [52] 39.90 53.59 42.18

Table 5: Results on Kitti 2015 test (14th of Sep. of 2016). Fl refers the percentage of optical flow
outliers. bg (resp. fg) refers of percentage of outliers only over bakground regions (resp. foreground
regions) and all means over all ground truth pixels. For our results we used the NLTV-CSAD
energy.

(o 10 20 30 o]
DeepFlow without matches (pure multi-scale)  0.7468 1.0353  1.3832  1.4808
DeepFlow [55] 0.7766  1.5796  2.6128  4.3918
EpicFlow [43] 1.1418 1.6654 2.3386  3.2328
Ours (TVy,-L1) with SIFT matches 0.9486 1.5634 2.1090 2.9830

Table 6: Results over a set of five samples from the MPI-Sintel clean dataset with different standard
deviation (o) levels of Gaussian noise.

with just a single seed in each region while DeepFlow does not succeed. We also include the result
obtained with LDOF [10], but in this case it has been obtained with their own seeds (using their
originally binary code).

Recent optical flow datasets as MPI-Sintel [12] contain different and challenging effects, such as
illumination changes, large displacements, blur, etc. In MPI-Sintel these effects have been artificially
created to provide naturalistic video sequences. However, the evaluation on these datasets does not
take into account the robustness to the shot noise that appears in any real sequence, being noise
one of the main limitations to any imaging system. Thus, we evaluate the robustness of several
approaches to noise. To this goal, we corrupt the clean images from [12] with additive white
Gaussian noise of standard deviation o, for several values of o. Sparse-to-dense techniques are
very dependent of the initial seeds that are used to obtain a dense optical flow. It is important
to note that our proposal works even with an extremely sparse set of initial seeds. This fact
allows us to choose the best matching method according to the image peculiarities, without caring
that much about the density of the correspondences. In particular, for highly noisy images SIFT
correspondences are more robust than DeepMatching ones. Table 6 shows a comparative of our
method with different optical flow estimation methods for different levels of Gaussian noise. We use
the TV-L; functional with SIFT matches. As shown in the table, the multi-scale method provides
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(a) First frame (b) Second frame ) Ground truth

) Multi-scale with TV-L1 energy ) Ours with TV-L1 energy

f) DeepFlow [55] ) LDOF [10]

Fig. 10: Large displacement on a composition made of the images Barbara, Baboon, Cameraman,
Lena and Peppers. It contains large diagonal translations and a slight deformation of the back-
ground. Five initial seeds have been manually selected and are shown in (a). The figures show
the differences among Deepflow [55] which is a multi-scale strategy using seeds similar to LDOF
approach, the multi-scale approach for the TV-L1 energy, and our proposal for minimizing the
same energy. The last image shows the LDOF [10] result computed with its own seeds.

the best optical flow estimation in noisy images. For noise levels of standard deviation greater or
equal to 10 and 20 respectively, our method produces better results than EpicFlow and DeepFlow.

5 Conclusions

We have proposed and provided an in-depth analysis of a method based on a variational formulation
of the optical flow problem. The method works at the original scale of the image and finds a good
local minimum of any energy functional using an adaptive coordinate descent strategy guided
by a sparse set of initial matches. This is a general technique that consistently outperforms the
multi-scale strategy for the same energy functional. With respect to alternative techniques that
also include sparse matches in any energy functional, our performance is comparable to DeepFlow
[55] and superior to LDOF [10] while being more robust to a low density of matches, high levels of
noise and outliers in the matches. The only requirement is that at least one correct match is given
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for each object in motion. For best overall results, we propose to use an energy with advanced
data and regularization terms. Namely, we chose a smooth variant of the Census transform with
a non-local T'V regularization, providing robustness to illumination changes and occlusions while
handling motion discontinuities. We present accurate quantitative and qualitative results that are
comparable with state-of-the-art methods. As future work we plan to model the occlusions in the
functional to reduce the halo effect in occluded regions.

A Minimizing the energy

The numerical minimization algorithm for the general energy (1) is obtained in this paper by
decoupling both terms. We linearize the image I;11 near a given optical flow ug = (ug 1,u0,2) and
make the following approximation ;41 (x + u(z)) ~ I (x + u(x)), where

L (x A+ (x)) = Teea (x+ uo(x)) + Iy (3 4+ 10 (%)) (w1 — u0,1) (%) + Iy (x + 1o (%)) (uz — uo,2) (),

and IF,,, I} "1 denote the partial derivatives of Iy, 1 with respect to x and y respectively. Let us recall
that the two data terms Ep that we have considered in Sect. 4.1 depend on I;(x) and ;14 (x+u(x));
we will denote as Ep i, the same data term but depending on I;(x) and I}i" (x +u(x)). In order
to decouple the fidelity term Ep j;,(u) and the regularization term Eg(u) in (1), we introduce an
auxiliary variable v representing the optical flow and we penalize its deviation from u. Thus, the
energy to minimize is

H,v) = Tp n) + Br(0) + 55 [ = v (©

depending on the two variables u,v, where § > 0. The decoupled energy (6) can be minimized
by an alternating minimization procedure; alternatively fixing one variable and minimizing with
respect to the other one. Sect. 4.1 presents the different possibilities for the energy.

1. For v fixed, let us consider each of the two different regularization terms, J}(u) and J3(u),
presented in Sect. 4.1.
1.1. In the case of Jj(u), we reformulate the problem as a min-max problem incorporating the
dual variables. Then, our minimization problem can be solved as a saddle-point problem.
Following the notation of Osher et al. [22], for v = (v1,v2) fixed, we solve

/ / w(x,y)(ui(x) — ui(y))p(x,y)dydx + 1 (u; — v;)” dx, (7)
2Jo 20 Jqo

for ¢ = 1,2, and p is the dual variable defined on {2 x (2. Let us explain it in detail. First,
it is necessary to extend the notion of derivatives to a non-local framework. The non-local
derivative can be written as

~ui(x) = wi(y)
Iyui(x) = W (8)

where d(x,y) is a positive measure between two points x,y. By taking d(x,y) such that
w(x,y) = d(x,y) "2, the non-local gradient V,,u;(x,y) is defined as the vector of all partial
derivatives:

uni(x7 y) = (UZ(X) - ul(y)) ’LU(X,y) X,y € . (9)

Now, by writing p := p(x,y) for (x,y) € 2 x {2, the non-local divergence div,p(x) is
defined as the adjoint of the non-local gradient:

divyp(x) = /Q (v(x,¥) — (¥, %)) Vo, y)dy. (10)
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Proposition 1 The solution of (7) is given by the following iterative scheme

n p(x,y)" + 70} (x) —up (y)Vw(x,y
syt DoY)+ T ) T y) /) )
1 + T|uni(xv Y)|
u;L-{-l (X) — uf(x) . ((Uz (X) 9_ Ui(X)) _ diva(X)> (12)
a; T (x) = 20 (x) - uf (x) (13)
where u; is the primal variable and p is the dual variable.

1.2. In the case of J%(u) we use the primal-dual algorithm that Chambolle proposed to mini-

mize the ROF model [13] and which is based on a dual formulation of the T'V. Then, our
minimization problem can be solved as a saddle-point problem. For v fixed, we solve

minmax/(Du,@dx—F/ i||u—v||)2dx (14)
u ¢ Jg 020

where the dual variables are £ = <§11 ?2) and satisty ||¢]|F < 1.
21 §22

Proposition 2 The solution of (14) is given by the following iterative scheme

n fn1 + Tﬂ?x n+1 5’72 + Tﬂ?y
Gitt= e, gt = e (15)
! max(L, [[]|2) 2 max(L[[¢]]2)
n__ .
artt = o (V2 v (16)
aptt = 2uftt — (17)

where 1 =1, 2.

2. For u fixed, let us consider each of the two different data terms, J,(v) and J%(v), presented
in Sect. 4.1.

2.1.

Case J}(v), Li and Osher [32] present a simple algorithm to find the optimal value of the
function E(z) = > w;|z — a;| + F(x) when the w; are non-negative and F is strictly convex.

K3
If F is also differentiable and F’ is bijective, it is possible to obtain an explicit formula in
terms of the median. For u fixed, we solve

1
/C(v,x)dx+—/ |u — v|*dx. (18)
17 20 Jo

Following the ideas of [54], we solve the discrete version of this problem. Due to the isotropy
of the quadratic term, the optimal solution of C(v,x) can be obtained solving a one di-

mensional problem. In particular, setting v =v 4§ ‘gﬁzizog‘ + (ﬂgxgiizogl being V*1I an

orthogonal vector to the gradient, where § is our new variable. Then, we minimize over §

1
0% ) / IV Lis (x 4+ 90)| [G(¥) + 6| dy (19)
0

I(x) = Ie(y) = Tepa (x + Vo) + L1 (y + Vo) + (V= Vo) T VI (x + V)
Vi1 (x+ V)|

Gy(v) =
Proposition 3 The minimum of (19) with respect to § is
6" = median{by, ..., by, ag, ...an } (20)

where b; = —G;(V) and a; = (n — 20)A|VIip1(x + v,)| for all the discrete neighbors i
(corresponding to 'y above), where n is the number of points in the discrete neighborhood.
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2.2. Case J3(v). Notice that this term is a particular case of the previous data term. The
functional to minimize

1
| Ao+ 55 [ = viPax (1)
w w

where p(v) = I111(x,V,) + (VIij1(x + Vo), (Vv — v,)) — I(x), does not depend on spatial
derivatives on v. Then, a simple thresholding step gives an explicit solution [62].

Proposition 4 The minimum of (21) with respect to v is

NOVI; if p(u) < —\O|VI;q|?
v=u-+ 7)\0VL§$_11 if p(u) > AG‘VLH_HQ (22)
—p(W)gr e i |p(w)] < M|V ?

Algorithm 4: Global Minimization to compute the final optical flow.

Input : Two consecutive frames I1, I2, and an initial optical flow ug
Output: Flow field u

1 Initialize £ = v = 0;

2 Initialize u = uyp;

3 for w < 1 to Nyarps do

4 Compute It41(x + vo(x)), IF, (x + vo(x)), IZJ-H (x 4+ vo(x)), using bicubic interpolation;

5 while n < Npyax or tol < error do

6 Compute v via Prop. 3 or Prop. 4 ; // for CSAD or L1
7 Compute £ or p and u via Prop. 1 or Prop. 2 ; // for NLTV or TV,,-L1
8 end

9 end

B Implementation details

Our code is written in C. The numerical scheme to solve the functional E(u), in both steps, is
based on the implementation of [41]. Image warpings use bicubic interpolation. The image gradient
is computed using centered-derivatives. Input images have been normalized between [0,1]. The
algorithm parameters are initialized with the same default setting for all the experiments. Both
time steps are set to 7 = ¢ = 0.125 to ensure convergence. As stopping criterion, the optical flow
method uses the infinite-norm between two consecutive values of v with a threshold of 0.01. The
coupling parameter 6 is set to 0.3. The smoothness term weight 3 is set to 1/40 for the T'V,-L1
functional and 8 = % for the NLTV-CSAD one, as suggested by [54], where N is the cardinality
of the neighborhood considered in the C'SAD term (we use a neighborhood of 7 x 7 in the data
term and then N = 49) and we fixed o, = 2 and o, = 2 for the spatial an color domain of the
NLTV term. For the iterated faldoi strategy we set M AX _IT to 3. The size of the patch P in
the local minimization is 11 x 11. The complexity of our algorithm is O(n), where n is the number
of pixels of the image frame. The basic faldoi algorithm takes around 20 seconds for TV,-L1
energy and around 10 minutes for NLTV-CSAD over an M PI — Sintel image. Notice that our
algorithm using NLTV-CSAD energy is very slow, especially because our implementation does
not use parallized code. As NLTV-CSAD can be easily parallelized, it should take the same time
for both functionals using a GPU implementation.
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