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Abstract This paper is the third in a series devoted to

orders on partial partitions in the framework of image

analysis; the first two (with a view to image filtering and

segmentation) identified 4 basic operations on blocks
involved in such orders: merging, apportioning, creating

and inflating blocks.

Here we consider orders where growing a partial par-

tition decreases its support and diminishes the number

of blocks. This can be done by a combination of merg-
ing (or apportioning) blocks with removing or deflating

blocks (the opposite of creating or inflating blocks). We

also introduce related operations on blocks: partial ap-

portioning and partial merging.

The new orders that we obtain can be useful in re-

lation to skeletonization, image simplification, for pro-
cessing segmentation markers or to describe the evolu-

tion of object boundaries in hierarchies. There are also

possible applications in geographic information process-
ing.

1 Introduction

A partition of a set E is a set of mutually disjoint non-

empty subsets of E, whose union gives E; a partial par-
tition of E is a partition of any subset of E, in other

words, a set of mutually disjoint non-empty subsets of

E; the subsets of E belonging to a (partial) partition
are called blocks. The union of all blocks of a partial
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Sébastien Brant, CS 10413, 67412 Illkirch Cedex, France —
E-mail: cronse@unistra.fr, URL: http://icube-miv.unistra.fr/

partition is called its support, and the complement of

its support is called its background.

Partitions (or partial partitions) intervene routinely

in image analysis. For instance image segmentation ex-

tracts from an image a partial partition whose blocks

correspond to meaningful objects seen in the image.
Now image filtering considers that a digital image is

not simply made of pixels, but can be divided into zones

(which are “homogeneous” in some sense), and filtering
should improve the partition of zones by strenghtening

meaningful zones at the expense of those considered as

parasitic or irrelevant. Thus a partition-based approach
to image filtering could be: (a) partition the image; (b)

improve the partition; (c) modify the pixel values with

the help of the context given by the improved partial

partition. This is more precise than the older way of
devising a filter independently of partitions, then ex-

perimentally watching its effect on partitions. Such a

partition-based approach could be applied to other op-
erations in image processing: noise cleaning, enhance-

ment, skeletonization, etc.

The improvement relation “is at least better than”

between partitions (or partial partitions) is obviously

reflexive and transitive (it is a quasi-order). We will
suppose that it is also antisymmetric, so that it is a

partial order relation, in brief, an order. Hence we in-

vestigate orders on partial partitions.

For a long time, beside the identity, the only known

order on partitions has been the classical refinement or-
der [11]. It has been extended to partial partitions [6,7,

12], we call it the standard order [14]. Then Serra [20,

21] defined the building order on partial partitions; it

also induces an order on partitions. In [15,16] we intro-
duced eight new orders on partial partitions: the merg-

ing, inflating, inclusion, merging-inflating, inclusion-in-

flating, apportioning, apportioning-inflating and exten-
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ded orders; we will describe them briefly in Subsec-

tion 2.2.

1.1 Basic operations on partial partitions

In [15,16] we showed how the growth of a partial parti-

tion could be expressed by a combination of elementary

operations, namely:

– Creating new blocks (from background points); the

opposite operation is removing blocks.

– Inflating individual blocks (adding to them back-
ground points); the opposite operation is deflating

blocks (removing some but not all of their points).

– Merging blocks; the opposite operation is splitting

blocks.
– Apportioning blocks [16]: some blocks can be split

into parts, and each part is merged with another

block; this operation generalizes merging, it was im-
plicitly considered by Serra [20,21].

Each operation has an effect on the number of blocks,

their size and the support:

– Creating new blocks increases the number of blocks
and the support, but does not modify the size of

existing blocks.

– Inflating blocks increases the size of blocks and the

support, but does not modify the number of blocks.
– Merging or apportioning blocks increases the size of

blocks, decreases the number of blocks, but does not

modify the support.

In [15,16], as our aim was to obtain larger blocks and a

larger support, each of these 4 operations increased (or

improved) the partial partition. We will now see that

for some problems, this is not always the case.

1.2 Image simplification

There are several situations where the partial partition

corresponding to an image is improved when the num-

ber of blocks and the support decrease. This is partic-
ular the case for operations aiming at image simplifica-

tion.

Consider first the skeletonization of a binary image.

Homotopic thinning decreases each connected compo-
nent of the figure, in other words it deflates the blocks of

the partial partition of connected components. Now the

skeleton can contain spurious branches due to irregu-

larities in the original figure, which must be removed [2,
4]. We reproduce in Figure 1 an example from [4]. In an

iterative 3D thinning process based on the topological

notion of an “isthmus” voxel, to each potential skeleton

voxel one associates the range of time during which it

is an isthmus, and by increasing the minimum length
of this range, the skeleton is reduced, indeed spurious

branches progressively disappear. This range length is

called “persistence”, and this notion is analoguous to
the “saliency” of edges in hierarchical watershed seg-

mentation [9,10].

In a partition-based approach, the skeleton is seg-
mented into branches and junction points, forming thus

a partial partition. Then by analysing the blocks, some

branches are marked as “spurious” and are removed;

this can for instance be done on the basis of a param-
eter similar to the above persistence, for instance by

comparison of the length of all branches. Thus here the

skeleton is improved by removing blocks of the parti-
tion.

Now in practice, the segmentation of the skeleton

can lead to oversegmentation: curved or irregular por-
tions can be decomposed into several small branches,

which must be merged. Thus the partition is improved

by merging blocks.

A second example is given by the selection and pro-
cessing of markers for region growing [1] or watershed

segmentation [9]. One starts from an initial partial par-

tition of markers, each one initiating a region, then the
partial partition grows in order to reach the final seg-

mentation. But before, it is necessary to process the

markers in order to avoid some defects:

– When the marker for a region extends to a neigh-

bouring region, the final segmentation will include

in the main region part of the neighbouring one; to
correct that defect, the marker must be reduced.

– Watershed segmentation tends to produce an over-

segmentation; merging markers will merge the cor-
responding regions, thus diminishing the number of

segmentation classes.

– When the region is “parasitic”, i.e., it lies in the
transition between two or more objects, it must be

removed, and its contents should be apportioned be-

tween neighbouring regions; this can be achieved by

removing the marker corresponding to that region.

Thus the partial partition made of all markers will be

improved by deflating, merging or removing blocks.
Third, in the case of hierarchies [9,10], to a growth

of (partial) partitions corresponds an evolution of their

boundaries, which can be modeled by an order relation.
In particular when blocks are merged, the block bound-

aries are simplified: some boundary portions disappear,

while others are merged. This will be discussed further

in Subsection 3.3, see in particular Figure 9.
A fourth domain of application could be in geo-

graphic information processing, for instance in describ-

ing the relation between administrative subdivisions,
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Fig. 1 From [4]: two examples of skeletons evolving by increasing the persistence threshold for isthmus voxels, leading to a
progressive pruning of spurious branches.

the placement of resources and their allocation, see for

instance in Section 4 the discussion around Figure 10.
For such problems we see that the operations of

merging or apportioning blocks, by reducing the num-

ber of blocks while preserving the support, will improve

the partial partition; on the other hand creating or in-
flating blocks will increase the support, and creating

blocks will increase their numbers, thus they worsen

the partial partition; hence the opposite operations, re-
moving or deflating blocks, will improve the partial par-

tition. Therefore we will define orders on partial parti-

tions, where they grow by merging, apportioning, re-
moving or deflating blocks.

1.3 Our new orders

Let us write Π(E) for the set of all partitions of E,

and Π∗(E) for the set of all partial partitions of E.
The union of all blocks of a partial partition π is the

support of π, written supp(π); thus π is a partition of

supp(π); the background of π is the complement of the
support, back(π) = E \ supp(π).

Important note: In order to ease understanding, in

all our illustrations we show partial partitions with con-

nected blocks. However no topological condition such as
connectedness is required in our theory.

Our first order will be the regional order on Π∗(E),

where a partial partition grows by merging or remov-
ing blocks. In fact, all orders on Π∗(E) that we have

investigated contain the regional order. Now removing

blocks can be seen as merging them with the back-
ground; hence, by adding to the space E a point ℘ /∈ E

marking the background as a block, Π∗(E) with the re-

gional order turns out to be a complete lattice isomor-

phic to Π(E∪{℘}) ordered by refinement. See Figure 2.
We will show that in a hierarchy of partitions of

E (that is, a chain of partitions for the refinement or-

der), the partial partition of block boundaries evolves

2π1π

1π 2π

E E

E p E p

Fig. 2 Regional order. Top row: the background is in white,
the blocks in colour; π2 is obtained by merging some blocks
of π1 and removing some other blocks. Bottom row: we add
to the space E a point ℘ and transform each partial partition
πi of E (i = 1, 2) into a partition π̂i of E ∪ {℘} by adding
to it a block made of the background and ℘; then π̂2 can be
obtained from π̂1 by merging blocks only.

according to the regional order. See Figure 9. One can

also consider hierarchies of partial partitions for the re-
gional order and describe the correponding evolution of

block boundaries.

Our next order on Π∗(E) is the linking order, where

a partial partition grows by merging or deflating blocks;
in particular, one can remove blocks by merging them

with another then deflating the resulting block. Equiv-

alently, the support of the partial partition decreases,
and each block of the “smaller” partial partition over-

laps at most one block of the “larger” (improved) one.

See Figure 3.

We will see that the linking order can be used in
geographic information processing (see Figure 10) and

also to characterize the improvement of segmentation

markers.
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Fig. 3 Linking order. Top row: supp(π1) ⊇ supp(π2), and each
block of π1 overlaps at most one block of π2; we use the same
hatching (but not the same colour) for overlapping blocks of
π1 and π2, while a block of π1 overlapping no block of π2

has no hatching. Bottom row: π2 can be obtained from π1 by
merging blocks, then by deflating blocks.
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Fig. 4 Partial apportioning order. Left: in π1 the blocks to
be partially apportioned are in grey, while the preserved ones
are in colour and hatched. Right: in the apportioned blocks,
the discarded parts are shown dashed; the other parts are
merged with preserved blocks, leading to π2. Then supp(π1) ⊇
supp(π2), and each hatched block of π2 contains the block of
π1 with the same hatching.

Next, we generalize block apportioning into partial

apportioning : some blocks can be split into parts, some
of the parts can be discarded (removed), and each re-

maining part is merged with another block; in partic-

ular, whole blocks can be merged or removed. Another
view is that for the blocks split into parts, each part is

merged either with the background or with a remaining

block, so the block is apportioned in Π(E ∪ {℘}). An
equivalent mathematical formulation is that the sup-

port of the partial partition decreases, and each block

of the “larger” (improved) partial partition contains at

least one block of the “smaller” one. See Figure 4. This
gives the partial apportioning order on Π∗(E).

In the same way as block apportioning was proposed

in order to eliminate “parasitic” classes in an image

segmentation partition [20,21], partial apportioning can
be used for this purpose when the segmentation is a

partial partition of objects against a background and

some “parasitic” classes neighbour the background.
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Fig. 5 Partial merging order. Left: in π1 the blocks to be
partially merged are in grey, while the preserved ones are
in colour and hatched. Right: in the merged blocks, the dis-
carded parts are shown dashed; the other parts are merged
with preserved blocks, leading to π2.

The above three orders are the most interesting.

More orders on Π∗(E) can be built by combining them,

but their relevance is still tentative. The partial merging
order on Π∗(E) is the intersection of the linking and

partial apportioning orders. It relies on the operation

of partial merging, a generalization of block merging:
some blocks are merged with others, or have only a

part merged, the other part being discarded, or even

are completely removed. See Figure 5. The difference

with partial apportioning is the restriction that in an
apportioned blocks, the part that does not go to the

background must as a whole merge with a single block,

we cannot have two or more parts merging with two or
more blocks, as in Figure 4.

Finally, the linking and partial apportioning orders

generate together the joining order, where a partial par-
tition grows by apportioning or deflating blocks. Equiv-

alently, given two partial partitions π1 and π2, π1 is

smaller than π2 if supp(π1) ⊇ supp(π2) and there is an
injection f : π2 → π1 such that for any block A ∈ π2,

f(A) overlaps no other block of π2 than A, that is,

f(A) ∩ supp(π2) ⊆ A. See Figure 6.

We have investigated other combinations, that of
block apportioning with block removal or with partial

merging. However this gives only special cases of par-

tial apportioning, characterized by bizarre conditions,
which seem useless in practice. Therefore we have not

included them in this paper.

As the orders of [15,16], each of our new orders will
be defined in two ways: in terms of the operations on

blocks that grow a partial partition, and by a predicate

describing the relation between the blocks and supports
of the two partial partitions.

As we did in [15,16], for each order we will describe

the covering relation, then show that these orders are
graded and have a height function. This is important,

since it means that progressively growing a partial par-

tition, which can be done in several ways, always in-

volves a fixed number of elementary steps. We will see
that the regional, partial merging and partial appor-

tioning orders have a simple covering relation and a sim-

ple grading, while the linking and joining orders have a
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f

Fig. 6 Joining order. Top row: supp(π1) ⊇ supp(π2), and ar-
rows indicate the injection f : π2 → π1 associating to each
A ∈ π2 some f(A) ∈ π1 such that f(A) ∩ supp(π2) ⊆ A; each
f(A) is shown with the same hatching as A (but without
colour), while other blocks of π1 are shown without hatching.
Bottom row: first we apportion to the f(A) (A ∈ π2) all other
blocks of π1, then deflating blocks leads to π2.

double covering and a double grading, as their growth
involves two distinct elementary steps.

The present paper essentially terminates our inves-

tigation of orders on partial partitions initiated in [14]
and developed in [15,16]. All our orders are built from

operations on partial partitions that are meaningful in

image analysis.

Paper organization

Section 2 recalls from [15,16] the order-theoretic con-

cepts needed, in particular grading, multi-grading and
height, then the definitions of the orders studied there,

both in terms of inclusion relations between blocks and

operations on blocks. Section 3 is devoted to the re-

gional order, which will be fundamental in the sequel.
Then Section 4 studies the linking order, which relies

for its definition on block overlap instead of block inclu-

sion. Section 5 introduces the partial apportioning and
partial merging orders, obtained through an extension

of the operation of block apportioning. Section 6 con-

siders the joining order, which is the most complicated
of all. Finally, Section 7 discusses our results and con-

cludes. Appendix A develops further the block overlap

properties used in Section 3.

Table 1 lists the basic operations on blocks of par-
tial partitions. Table 2 summarizes the definition and

notation of all relations and orders on partial partitions

considered in this paper.

2 Mathematical preliminaries

We summarize here the main concepts and results from

[15,16], with a few new facts. Subsection 2.1 describes
combinations of orders, grading, height functions and

multiple grading. Subsection 2.2 recalls the definition

of the known orders on partial partitions.

We follow the notation and terminology from [15,

16]. In mathematical formulas, we will write “&” for
the logical “and”. For a set A, we will write P(A) for

the set of parts of A, and |A| for the cardinal of A.

Given two subsets A and B of a set E, we say that A
and B overlap and write A ≬ B, if A ∩B 6= ∅.

Every binary relation R is identified with the set of

ordered pairs (a, b) such that a R b; thus the inclusion
R ⊆ S means that (a R b) ⇒ (a S b), and the union

R∪S is given by a (R ∪ S) b ⇔ (a R b) or (a S b). The

composition R · S of two relations is defined by a R · S
b ⇔ ∃ c, (a R c) & (c S b). The transitive closure of R

(least transitive relation containing R) is given by the

union of all Rn, n ≥ 1 (defined by recursion: R1 = R
and Rn+1 = R ·Rn).

2.1 Orders, grading and height

We will consider several distinct (partial) order rela-

tions, they will be identified by a superscript on the

usual order symbol, thus we write
x

≤,
x
<,

x

≥ and
x
> for

“less than or equal to”, “strictly less than”, “greater

than or equal to” and “strictly greater than” respec-

tively. The only exception will be for the building order
on partial partitions, where we use ⋐ for “less than or

equal to” and ⋑ for “greater than or equal to”, without

any specific symbol for “strictly less than” and “strictly
greater than”. The covering relation associated to an

order
x

≤ will generally be written
x
≺.

The set of all partial order relations on a set is closed

under non-void intersection, but it is not a lattice. A

quasi-order is a reflexive and transitive binary relation.
An intersection of quasi-orders and the transitive clo-

sure of a union of quasi-orders, are quasi-orders, thus

the set of all quasi-orders on a set constitutes a lattice.
Also the intersection of an order and a quasi-order is

an order.

Lemma 1 Let
ı

≤ (ı ∈ I) be partial orders on a set

P , and let ≤ be the transitive closure of their union.

Then ≤ is a quasi-order. Furthermore, there is a partial

order on P containing all
ı

≤ (ı ∈ I) if and only if ≤ is

antisymmetric, and then ≤ is the least partial order on

P containing all
ı

≤ (ı ∈ I); given the covering relations
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Table 1 Basic operations on blocks of partial partitions. Top: those defined in [15,16]; bottom: new ones defined in this paper.

Name Definition

creating new blocks are made from background points

removing some blocks are removed, their points go into the background

inflating some background points are added to some blocks, growing them

deflating some (but not all) points are removed from some blocks and go into the background

merging blocks are partitioned into groups, and in each group the blocks join together to make a new
block

apportioning some blocks are marked “apportioned”, the others (at least one) are marked “remaining”;
the “apportioned” blocks are split into one or several parts, and each part is merged with a
“remaining” block

partial apportioning some blocks are marked “apportioned”, the others (at least one) are marked “remaining”; the
“apportioned” blocks are split into one or several parts, and each part is either merged with a
“remaining” block or removed (going into the background)

partial merging some blocks are marked “merged”, the others (at least one) are marked “remaining”; the
“merged” blocks either are merged with a “remaining” block, or removed (going into the back-
ground), or split into two parts, one merged with a “remaining” block, the other removed

ı
≺ and ≺ corresponding to

ı

≤ (ı ∈ I) and ≤, for any

x, y ∈ P with x ≺ y, there is some ı ∈ I with x
ı
≺ y.

Proof The reflexivity of the
ı

≤ is preserved by union

and transitive closure, and by definition the transitive
closure is transitive; thus ≤ is a quasi-order. If there is

an order
∗
≤ containing all

ı

≤ (ı ∈ I), it contains their

union, and being transitive, it must contain the transi-
tive closure of that union, that is, ≤; then for x, y ∈ P ,

if x ≤ y and y ≤ x, we deduce that x
∗
≤ y and y

∗
≤ x,

hence x = y by the antisymmetry of
∗
≤; thus ≤ is anti-

symmetric. Conversely, if ≤ is antisymmetric, then it is

a partial order containing all
ı

≤, and as seen above, any

other partial order
∗
≤ containing all

ı

≤ must contain ≤;

therefore ≤ must be the least partial order containing

all
ı

≤.

Let x ≺ y; by definition we have x = z0
ı1
≤ z1 · · ·

zn−1

ın
≤ zn = y, with ı1, . . . , ın ∈ I. As x ≺ y, we

may not have x < z < y, thus there is exactly one

j ∈ {1, . . . , n} with zj−1

ıj
< zj , so x = . . . = zj−1

ıj
< zj =

. . . = y, that is, x
ıj
< y; if we did not have x

ıj
≺ y, we

would have x
ıj
< z

ıj
< y, hence x < z < y, contradicting

x ≺ y. ⊓⊔

Lemma 2 Let
α

≤ and
β

≤ be two partial orders on a set
P , and let ≤ be the transitive closure of their union.

Let ⊑ be a partial order on a set Q and consider a map

f : P → Q such that for any x, y ∈ P we have

and
x

α
< y =⇒ f(x) = f(y)

x
β
< y =⇒ f(x) ⊏ f(y) .

Then ≤ is a partial order on P and for any x, y ∈ P ,

and
x ≤ y =⇒ f(x) ⊑ f(y)

x
α

≤ y ⇐⇒
[
x ≤ y & f(x) = f(y)

]
.

Given the covering relations
α
≺ and ≺ corresponding to

α

≤ and ≤, for any x, y ∈ P , x
α
≺ y ⇒ x ≺ y.

Proof Let x ≤ y; by definition we have x = z0
ı1
≤ z1 · · ·

zn−1

ın
≤ zn = y, with ı1, . . . , ın ∈ {α, β}; each case

zj−1

α

≤ zj and zj−1

β

≤ zj gives f(zj−1) ⊑ f(zj) for j =
1, . . . , n, hence f(x) ⊑ f(y). If x ≤ y and f(x) = f(y),

then for j = 1, . . . , n we have f(zj−1) = f(zj), hence

we cannot have zj−1

β
< zj , so zj−1

α

≤ zj , thus x
α

≤ y. If
x ≤ y and y ≤ x, then f(x) ⊑ f(y) and f(y) ⊑ f(x),

that is, f(x) = f(y), so the above gives x
α

≤ y and

y
α

≤ x, thus x = y. Therefore ≤ is antisymmetric, it is
a partial order.

If x
α
≺ y but x 6≺ y, then we have x < z < y, so

f(x) = f(y) and f(x) ⊑ f(z) ⊑ f(y), thus f(x) =

f(z) = f(y), hence x
α

≤ z
α

≤ y, and as x < z < y, x
α
<

z
α
< y, contradicting x

α
≺ y. Therefore x

α
≺ y ⇒ x ≺ y.

⊓⊔

Let ≤ be a partial order relation on a set P . Given

x, y ∈ P with x ≤ y, the length of the interval [x, y] =
{z ∈ P | x ≤ z ≤ y} is the supremum of all integers n

with x = z0 < · · · < zn = y; when this length is finite

(for instance when P is finite), it is the greatest such n,

and the sequence takes the form x = z0 ≺ · · · ≺ zn = y,
we call it a covering chain between x and y. When P

has a least element 0, the height of x ∈ P is the length

of the interval [0, x]. When P has no least element, but
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Table 2 First: binary relations on P(E); second: binary relations on Π∗(E); third: partial order relations on Π∗(E) studied in
[15,16]; fourth; new partial order relations on Π∗(E) introduced in this paper. Notation designates the mathematical notation;
for a relation R, Definition defines the relation for A,B ∈ P(E) or π1, π2 ∈ Π∗(E).

Notation Name Definition

≬ overlap A ∩B 6= ∅

support inclusion supp(π1) ⊆ supp(π2)

support containment supp(π1) ⊇ supp(π2)

support equality supp(π1) = supp(π2)

⇚ singularity ∀B,B′ ∈ π1, ∀C ∈ π2 :
[
B ⊆ C,B′ ⊆ C

]
⇒ B = B′

≤ standard order ∀B ∈ π1, ∃C ∈ π2 : B ⊆ C

⋐ building order ∀C ∈ π2, ∃B ∈ π1 : B ⊆ C

⊆ inclusion order π1 ⊆ π2

i

≤ inflating order π1 ≤ π2 & π1 ⋐ π2 & π1 ⇚ π2

m

≤ merging order π1 ≤ π2 & supp(π1) = supp(π2)
i

⊆ inclusion-inflating order π1 ≤ π2 & π1 ⇚ π2

mi

≤ merging-inflating order π1 ≤ π2 & π1 ⋐ π2

a

≤ apportioning order π1 ⋐ π2 & supp(π1) = supp(π2)
ai

≤ apportioning-inflating order π1 ⋐ π2 & supp(π1) ⊆ supp(π2)
e

≤ extended order π1 ⋐ π2 ∩ P(supp(π1)) & supp(π1) ⊆ supp(π2)
rg

≤ regional order supp(π1) ⊇ supp(π2) & π1 ≤ π2 ∪ {back(π2)}
ln

≤ linking order π1 ⊢ π2 & supp(π1) ⊇ supp(π2)
pa

≤ partial apportioning order π1 ⋐ π2 & supp(π1) ⊇ supp(π2)
pm

≤ partial merging order π1 ⋐ π2 & π1 ⊢ π2 & supp(π1) ⊇ supp(π2)
jn

≤ joining order supp(π1) ⊇ supp(π2) & ∃ f : π2 → π1 injection,
∀A ∈ π2, f(A) ∩ supp(π2) ⊆ A

for every x ∈ P there exists a minimal element m such

that m ≤ x, we call the height of x w.r.t. m the length

of the interval [m,x]. Given a map g : P → Z, we
say that P is graded by g [5,8] if for any x, y ∈ P ,

x < y ⇒ g(x) < g(y) and x ≺ y ⇒ g(y) = g(x) + 1.

In [15] we generalized grading as follows. Let the

covering relation ≺ be partitioned into t mutually dis-

joint non-void relations
1
≺, . . . ,

t
≺, and let g1, . . . , gt :

P → Z. We consider the following three conditions:

1. For all x, y ∈ P and ı = 1, . . . , t we have

x
ı
≺ y =⇒

{
gı(y) = gı(x) + 1 &

g(y) = g(x) for  6= ı .

2. Every interval in P has finite length.

3. For all x, y ∈ P ,

x < y =⇒

{
∀ ı ∈ {1, . . . , t}, gı(y) ≥ gı(x) &

∃ ı ∈ {1, . . . , t}, gı(y) > gı(x) .

The conditions 1 and 2 together are equivalent to con-

ditions 1 and 3 together. We say then that P is graded

by (g1, . . . , gt) for (
1
≺, . . . ,

t
≺). We obtain then the fol-

lowing three consequences:

4. For all x, y ∈ P and ı = 1, . . . , t we have

x
ı
≺ y ⇐⇒ x ≤ y &

{
gı(y) = gı(x) + 1 &

g(y) = g(x) for  6= ı .

5. In a covering chain z0 ≺ · · · ≺ zn in P , among the n

coverings zℓ−1 ≺ zℓ (ℓ = 1, . . . , n), there are gı(zn)−

gı(z0) occurrences of zℓ−1

ı
≺ zℓ for ı = 1, . . . , t.

6. P is graded by
∑t

i=1 gı.

In the particular case where t = 1, the fact that P is

graded by g for ≺ simply means that P is graded by g
(in the usual sense).

2.2 Orders on partial partitions

We write Π(E) for the set of all partitions of E, and
Π∗(E) for the set of all partial partitions of E; thus

Π∗(E) is the disjoint union of all Π(A) for A ∈ P(E).

WriteØ for the empty partial partition (with no block);
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then Π(∅) = Π∗(∅) = {Ø}. Set 1∅ = 0∅ = Ø, while

for any A ∈ P(E) \ {∅}, let 1A = {A} (the partition
of A into a single block) and 0A =

{
{p} | p ∈ A

}
(the

partition of A into its singletons); following [11], we call

0A the identity partition of A, and 1A the universal
partition of A. For π ∈ Π∗(E), the support of π is the

union of its blocks, supp(π) =
⋃
π; the complement

of the support is the background of π, back(π) = E \
supp(π). Given π ∈ Π∗(E) and p ∈ E, we define Clπ(p),

the class of p in π [12]: for p ∈ back(π) we set Clπ(p) =

∅, while for p ∈ supp(π) we set Clπ(p) = C, where

p ∈ C ∈ π (C is the unique block of π containing p).

We now recall the relations and partial orders on

Π∗(E) considered in [15,16]. The standard order ≤ and

the building order ⋐ [20,21] are defined by setting for
any π1, π2 ∈ Π∗(E):

π1 ≤ π2 ⇐⇒ ∀B ∈ π1, ∃C ∈ π2, B ⊆ C ,
π1 ⋐ π2 ⇐⇒ ∀C ∈ π2, ∃B ∈ π1, B ⊆ C .

In other words, for π1 ≤ π2, every block of π1 is included

in a block of π2, while for π1 ⋐ π2, every block of π2

contains a block of π1.

The standard order≤ constitutesΠ∗(E) into a com-

plete lattice with least element Ø and greatest element
1E [12]. Throughout this paper, the symbol ∧ will des-

ignate the binary infimum for the standard order; for

π1, π2 ∈ Π∗(E), π1∧π2 is the set of all non-empty B∩C
for B ∈ π1 and C ∈ π2. For A ∈ P(E) and π ∈ Π∗(E),
π ∧ 1A is the set of all non-void B ∩A for B ∈ π.

The building order ⋐ is a partial order on Π∗(E),

but it does not make a lattice [15,16,20,21].

Note that a block of π1 is included in at most one

block of π2; on the other hand a block of π2 can contain

several blocks of π1. We define thus the singularity rela-

tion⇚: for π1, π2 ∈ Π∗(E), write π1 ⇚ π2 (or π2 ⇛ π1)
if every block of π2 contains at most one block of π1:

π1 ⇚ π2 ⇐⇒


∀B,B′ ∈ π1, ∀C ∈ π2,[

B ⊆ C & B′ ⊆ C
]
⇒ B = B′


 .

In the sequel, we will use the following property given

in [15]:

∀π1, π2 ∈ Π∗(E), π1 ∧ π2 ⇚ π2 =⇒ π1 ⇚ π2 . (1)

We now recall the definition of the 5 orders intro-
duced in [15], both in terms of the relation between

blocks of the two partial partitions and of the opera-

tions transforming the first into the second. Let π1, π2 ∈
Π∗(E).

The inclusion order ⊆: for π1 ⊆ π2, each block of π1

is a block of π2, thus π2 is obtained from π1 by adding

new blocks made of points in back(π1).

The inflating order
i

≤:

π1

i

≤ π2 ⇐⇒
[
π1 ≤ π2 & π1 ⋐ π2 & π1 ⇚ π2

]
.

Here π2 is obtained by inflating some blocks of π1.

The merging order
m

≤:

π1

m

≤ π2 ⇐⇒
[
π1 ≤ π2 & supp(π1) = supp(π2)

]
.

Here π2 is obtained by merging some blocks of π1.

The inclusion-inflating order
i

⊆:

π1

i

⊆ π2 ⇐⇒
[
π1 ≤ π2 & π1 ⇚ π2

]
.

Here π2 is obtained from π1 by inflating some blocks

and/or adding new blocks. There is an alternate defini-
tion, see Proposition 13 of [15]:

π1

i

⊆ π2 ⇐⇒ π2 ∧ 1supp(π1) = π1 . (2)

The merging-inflating order
mi

≤:

π1

mi

≤ π2 ⇐⇒
[
π1 ≤ π2 & π1 ⋐ π2

]
.

Here π2 is obtained from π1 by merging and/or inflating
some blocks.

For the standard order, we have π1 ≤ π2 iff π2 is

obtained from π1 by possibly adding new blocks then

possibly merging some blocks.

Next we recall the definition of the 3 orders intro-

duced in [16], using another operation on blocks, appor-
tioning: some blocks can be split into parts, and each

part is merged with a remaining block. Block merging

is a special case of apportioning, where the apportioned
blocks are “split into one part”, that is, not split, before

being merged to another block.

The apportioning order
a

≤:

π1

a

≤ π2 ⇐⇒
[
π1 ⋐ π2 & supp(π1) = supp(π2)

]
.

Here π2 is obtained by apportioning some blocks of π1.

The apportioning-inflating order
ai

≤:

π1

ai

≤ π2 ⇐⇒
[
π1 ⋐ π2 & supp(π1) ⊆ supp(π2)

]
.

Here π2 is obtained from π1 by apportioning and/or

inflating some blocks.

The extended order
e

≤:

π1

e

≤ π2 ⇐⇒

[
π1 ⋐ π2 ∩ P(supp(π1))

& supp(π1) ⊆ supp(π2)

]
.

Here π2 is obtained from π1 by possibly adding new

blocks then possibly apportioning some blocks.
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Finally we recall the covering relations on Π∗(E)

associated to the above orders. Given π1, π2 ∈ Π∗(E),
let us write:

π1

c
≺ π2 if π2 is obtained by adding a block to π1:

π1

c
≺ π2 ⇐⇒

[
supp(π1) ⊂ E, ∃B ⊆ back(π1),

B 6= ∅, π2 = π1 ∪ {B}

]
;

π1

s
≺ π2 if π2 is obtained by adding a singleton block

to π1:

π1

s
≺ π2 ⇐⇒

[
supp(π1) ⊂ E, ∃ p ∈ back(π1),

π2 = π1 ∪
{
{p}

}
]

;

π1

i
≺ π2 if π2 is obtained by inflating one block of

π1 by exactly one point:

π1

i
≺ π2 ⇐⇒



supp(π1) ⊂ E, π1 6= Ø,

∃ p ∈ back(π1), ∃B ∈ π1,

π2 =
(
π1 \ {B}

)
∪
{
B ∪ {p}

}


 .

π1

m
≺ π2 if π2 is obtained by merging two blocks of

π1:

π1

m
≺ π2 ⇐⇒

[
|π1| ≥ 2, ∃C1, C2 ∈ π1, C1 6= C2,

π2 =
(
π1 \ {C1, C2}

)
∪ {C1 ∪ C2}

]
;

π1

a
≺ π2 if π2 is obtained by apportioning a single

block of π1 among remaining blocks:

π1

a
≺ π2 ⇐⇒

[
supp(π1) = supp(π2) & |π1| ≥ 2

& ∃A ∈ π1, π1 \ {A}
i
< π2

]
.

When π1

x
≺ π2 (x = c, s, i,m, a), we say that π2

x-covers π1, and we call the relation
x
≺ the x-covering.

The covering relations corresponding to the above or-

ders are given here as a list of pairs order : covering :

⊆ :
c
≺

i

≤ :
i
≺

m

≤ :
m
≺

a

≤ :
a
≺

i

⊆ :
s
≺ ∪

i
≺

mi

≤ :
m
≺ ∪

i
≺

ai

≤ :
a
≺ ∪

i
≺ ≤ :

m
≺ ∪

s
≺

e

≤ :
a
≺ ∪

s
≺

The first 4 orders are simple and have a simple covering,

while the last 5 orders are compound and have a double

covering.
Assume now that E is finite. For any π ∈ Π∗(E),

we have defined its c-height hc(π), s-height hs(π), and

m-height hm(π), as follows:

hc(π) = |π| , hs(π) = |supp(π)| ,

hm(π) = |supp(π)| − |π| .

We have hm(π) = hs(π)−hc(π), hs(π) = hm(π)+hc(π)

and hc(π) = hs(π) − hm(π). The following is straight-

forward:

Property 3 Let E be finite. Then for any π ∈ Π∗(E),

1. 0 ≤ hc(π) ≤ |E|, hc(π) = 0 ⇔ π = Ø and hc(π) =

|E| ⇔ π = 0E ;
2. 0 ≤ hs(π) ≤ |E|, hs(π) = 0 ⇔ π = Ø and hs(π) =

|E| ⇔ π ∈ Π(E);

3. 0 ≤ hm(π) ≤ |E| − 1, hm(π) = 0 ⇔ ∃A ⊆ E, π =
0A and hm(π) = |E| − 1 ⇔ π = 1E .

For the 4 simple orders, ⊆ is graded by hc while
i

≤,
m

≤ and
a

≤ are graded by hm. The 5 compound orders
have the following double gradings:

i

⊆ : (hc, hm) for (
s
≺,

i
≺)

mi

≤ : (−hc, hs) for (
m
≺,

i
≺)

ai

≤ : (−hc, hs) for (
a
≺,

i
≺)

≤ : (hm, hs) for (
m
≺,

s
≺)

e

≤ : (hm, hs) for (
a
≺,

s
≺)

In order to grade the new orders to be introduced
in this paper, we define two new heights, which are

complementary to hc and hs. Let E be finite; for any

π ∈ Π∗(E), we first define the r-height hr(π) by

hr(π) = |E| − hc(π) = |E| − |π| . (3)

From item 1 of Property 3, we have 0 ≤ hr(π) ≤ |E|,
hr(π) = 0 ⇔ π = 0E and hr(π) = |E| ⇔ π = Ø.

Note that for π ∈ Π(E), hr(π) = hm(π) is the height
of π for the refinement order on Π(E). Next we define

the b-height hb(π) by

hb(π) = |E|−hs(π) = |E|− |supp(π)| = |back(π)| . (4)

From item 2 of Property 3, we have 0 ≤ hb(π) ≤ |E|,
hb(π) = 0 ⇔ π ∈ Π(E) and hb(π) = |E| ⇔ π = Ø.

3 The regional order

We will investigate the most basic way to simplify a
partial partition: by merging or removing blocks. These

operations will be involved in all orders considered in

this paper, in other words these orders will all contain
the regional order. We will formalize the intuition that

removing a block amounts to merging it with the back-

ground, by adding a marker point to the background;

thus the regional order for partial partitions will be iso-
morphic to the refinement order for partitions of the

space with the point added. The regional order will be

seen to have relations with hierarchies of partitions.
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3.1 A bijection between partial partitions and

partitions

Given a partial partition π of E, adding to it its back-

ground leads to a partition π ∪ {back(π)} of E. This
map is surjective but not injective, because in the re-

sulting partition one cannot identify the block that was

the background. Thus we will add to to the space E
a point ℘ /∈ E that will mark the background; let

Ê = E ∪ {℘}; hence to π ∈ Π∗(E) one adds the block

b̂ack(π) = back(π) ∪ {℘}, leading to

π̂ = π ∪ {b̂ack(π)} ∈ Π(Ê) . (5)

Then the map π 7→ π̂ is a bijection Π∗(E) → Π(Ê); the

inverse bijection removes from a partition of Ê the block

containing ℘, in other words, it is the map Π(Ê) →
Π∗(E) : π 7→ π \ {Clπ(℘)}, where Clπ(℘) designates the
block of π containing ℘.

This bijection has a combinatorial consequence. For
n ∈ N, the n-th Bell number Bn [3] is the number of

partitions of a set of size n: Bn = |Π(E)| for |E| = n.

Given the bijection Π∗(E) → Π(Ê) and the fact that
Π∗(E) is the disjoint union of all Π(A) for A ∈ P(E),

it follows that
∣∣∣Π(Ê)

∣∣∣ =
∑

A∈P(E)

|Π(A)| ,

which leads to a well-known recursion formula for com-

puting Bell numbers [18]:

Bn+1 =

n∑

k=0

(
n

k

)
B(k) .

Now we apply this bijection to translate to Π∗(E)

the refinement order on Π(Ê):

Proposition 4 Let π1, π2 ∈ Π∗(E). Then the follow-
ing statements are equivalent:

1. π̂1 ≤ π̂2 for the refinement order on Π(Ê).

2. supp(π1) ⊇ supp(π2) and π1 ≤ π2 ∪ {back(π2)} for

the standard order (that is, every block of π1 is in-
cluded either in a block of π2 or in the background

of π2).

3. Every block of π2 is the union of some blocks of π1.

Proof For all A ∈ π2, define BA = {B ∈ π1 | B ≬ A}
and CA = {B ∈ π1 | B ⊆ A}.

1 =⇒ 2: Every block of π̂1 = π1 ∪ {b̂ack(π1)}

is included in a block of π̂2 = π2 ∪ {b̂ack(π2)}. Since

both b̂ack(π1) and b̂ack(π2) contain the point ℘, we

have b̂ack(π1) ⊆ b̂ack(π2), that is, back(π1) ⊆ back(π2),

thus supp(π1) ⊇ supp(π2). Now let A ∈ π1; then A is

included in a block of π̂2, that is, A is included either in

a block of π2, or in b̂ack(π2), and as ℘ /∈ A, the latter

means that A ⊆ back(π2).

2 =⇒ 3: Let A ∈ π2. Since supp(π1) ⊇ supp(π2),

A ⊆ supp(π1), hence A ⊆
⋃
BA. For any B ∈ BA, B is

not included in back(π2), so it is included in a block of
π2, that is, B ⊆ A. Thus

⋃
BA ⊆ A, hence A =

⋃
BA.

(In fact, BA = CA.)
3 =⇒ 1: For any A ∈ π2, we have A =

⋃
CA

with CA ⊆ π1, hence A ⊆ supp(π1). It follows that

supp(π2) ⊆ supp(π1), thus back(π1) ⊆ back(π2) and

b̂ack(π1) ⊆ b̂ack(π2). For any B ∈ π1, either B ⊆

back(π2) ⊆ b̂ack(π2), or B ≬ supp(π2), and then there is

some A ∈ π2 such that B ≬ A; now for p ∈ B ∩A, there

is C ∈ CA such that p ∈ C, so we deduce that B = C
and B ∈ CA, that is, B ⊆ A. We have thus shown that

every block of π̂1 = π1 ∪ {b̂ack(π1)} is included in a

block of π̂2 = π2 ∪ {b̂ack(π2)}, therefore π̂1 ≤ π̂2. ⊓⊔

We define thus the regional order
rg

≤ on Π∗(E) by

setting π1

rg

≤ π2 if any of the three equivalent conditions

in Proposition 4 holds. See also Figure 2. This gives a
precise basis for the idea that removing blocks can be

seen as merging them with the background. Since the

regional order on Π∗(E) corresponds to the refinement
order on Π(Ê) by the bijection Π∗(E) → Π(Ê) : π 7→
π̂, we deduce the following:

Theorem 5 Π∗(E) with the regional order
rg

≤ is a com-

plete lattice isomorphic to Π(Ê) ordered by refinement.

The regional order contains the merging
m

≤ and inverse
inclusion ⊇ orders: for any π1, π2 ∈ Π∗(E), each of

π1

m

≤ π2 and π1 ⊇ π2 implies π1

rg

≤ π2. It is generated
by composing merging and inverse inclusion in any or-

der:

π1

rg

≤ π2 ⇐⇒
(
∃π3 ∈ Π∗(E), π1

m

≤ π3 ⊇ π2

)

⇐⇒
(
∃π4 ∈ Π∗(E), π1 ⊇ π4

m

≤ π2

)
.

The greatest and least elements are Ø and 0E. The

covering relation is
m
≺ ∪

c
≻.

Let E be finite. Then (Π∗(E),
rg

≤) is graded by hr,

or equivalently by −hc, that is, for any π1, π2 ∈ Π∗(E)

we have

π1

rg
< π2 =⇒ hc(π1) > hc(π2) ,

π1

m
≺ π2 =⇒ hc(π2) = hc(π1)− 1 ,

π1

c
≻ π2 =⇒ hc(π2) = hc(π1)− 1 .

For π ∈ Π∗(E), the height of π is hr(π).

Proof The isomorphism follows from item 1 of Propo-

sition 4. If π1

m

≤ π2, then supp(π1) = supp(π2) and
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1π 2π

4π π3

E E

E E

Fig. 7 For π1

rg

≤ π2, given π4 the set of blocks of π1 included

in blocks of π2, we have π1 ⊇ π4

m

≤ π2; given π0 the set of
blocks removed from π1 (here the grey block), π3 = π0 ∪ π2

satisfies π1

m

≤ π3 ⊇ π2.

π1 ≤ π2 ≤ π2 ∪ {back(π2)}, so item 2 of Proposition 4

is satisfied; if π1 ⊇ π2, then every block of π2 is a block

of π1, so item 3 of Proposition 4 is satisfied; both cases

lead to π1

rg

≤ π2.

If π1

m

≤ π3 ⊇ π2, then π1

rg

≤ π3

rg

≤ π2; if π1 ⊇ π4

m

≤

π2, then π1

rg

≤ π4

rg

≤ π2; both cases lead to π1

rg

≤ π2.

Conversely, let π1

rg

≤ π2. For every A ∈ π2, there is

some CA ⊆ π1 such that A =
⋃

CA; let π4 =
⋃

A∈π2
CA.

Then π1 ⊇ π4; now

supp(π4) =
⋃

π4 =
⋃

A∈π2

⋃
CA =

⋃

A∈π2

A = supp(π2)

and every block B ∈ π4 belongs to CA for some A, so

B ⊆ A, hence π4

m

≤ π2. Now let π0 = π1 \ π4; since

supp(π2) = supp(π4), which is disjoint from supp(π0),

π3 = π0 ∪ π2 is a partial partition. As π4

m

≤ π2, π1 =

π0 ∪ π4

m

≤ π0 ∪ π2 = π3, and obviously π3 ⊇ π2. The

argument is illustrated in Figure 7.

The greatest element of Π(Ê) is 1
Ê
, whose unique

block contains ℘; removing that block, one obtains Ø ∈

Π∗(E), which is thus the greatest element for
rg

≤. The
least element ofΠ(Ê) is 0

Ê
, whose block containing ℘ is

the singleton {℘}; removing that singleton, one obtains

0E ∈ Π∗(E), which is thus the least element for
rg

≤.

The covering relation in Π(Ê) is
m
≺; for π1, π2 ∈

Π∗(E), π̂1

m
≺ π̂2 if π̂2 is obtained by merging two blocks

of π̂1. If these two blocks are in π1, then they are merged

in Π∗(E) and π1

m
≺ π2. If one of the blocks is b̂ack(π1),

the other one in π1, this means that in Π∗(E) the other
block is merged with the background, that is, removed,

and π1

c
≻ π2.

Let E be finite. Then Π(Ê), ordered by refinement,

has height function hm. Now ∀π ∈ Π∗(E),

hm(π̂) = |supp(π̂)| − |π̂| =
(
|E|+ 1

)
−
(
|π|+ 1

)

= |E| − |π| = |E| − hc(π) = hr(π) ,
(6)

cf. (3). Thus by isomorphism the height of π in Π∗(E)
is hr(π) = |E| − hc(π). Then Π∗(E) is graded by that

height, and as |E| is constant, it is graded by −hc. ⊓⊔

Note that this order does not distinguish between

block merging and block removal; for instance in a cov-
ering chain, the removal of k blocks (k > 0) can be

obtained by t binary block mergings
m
≺ (where 0 ≤ t ≤

k − 1) followed by k − t individual block removals
c
≻;

for instance, for t = 0 by k individual block removals,

and for t = k − 1 by k − 1 binary block mergings fol-

lowed by the removal of the block resulting from the

mergings. However the evolution of the support indi-

cates the existence of block removals: for π1

rg

≤ π2, we

have supp(π1) ⊃ supp(π2) if and only if at least one

block of π1 has been removed in order to obtain π2.

3.2 Possible applications

As mentioned in the Introduction, see Figure 1, skele-
ton filtering [2,4] can involve the removal of spurious

branches and the merging of significant branches. Thus

assuming that the skeleton is segmented into a partial

partition of branches and junction points, the filtering
will grow the partial partition according to the regional

order.

In double thresholding of grey-level images [22], one

applies two thresholdings, one by a narrow interval and

another by a wide interval, then one keeps all connected
components of the wide thresholding that contain a

connected component of the narrow thresholding. Thus

if one decomposes the image into three parts, (a) pixels
satisfying the narrow thresholding, (b) those satisfying

the wide thresholding but not the narrow one, and (c)

those that do not satisfy the wide thresholding, then
we eliminate all connected components of (c), keep all

connected components of (a), but of the connected com-

ponents of (b) we retain only those that are adjacent

to a connected component of (a); the retained compo-
nents (b) and (a) will then be regrouped by merging

adjacent ones. We have thus a combination of block

removals and block mergings, that is, a growth of the
partial partition for the regional order.

We can apply something similar to a partial parti-
tion, for instance one obtained by segmentation of ob-

jects against a background in the presence of noise. One

can measure in some way the quality of the blocks, and
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q

e(p,q)

p
p

q
e(p,q)

p q
q

p
q

p

e(p,q)
e(p,q)

e(p,q)

Fig. 8 In 2D, the edge element e(p, q) between pixels p and q

is 1D when p and q are axially adjacent, and 0D when p and
q are diagonally adjacent. In 3D, the edge element e(p, q) be-
tween voxels p and q is 2D when p and q are axially adjacent,
1D when p and q are diagonally adjacent, and 0D when p and
q are diametrically adjacent.

give a ternary rating, say high, medium or low. Blocks
of high quality will be retained, those of low quality

will be eliminated, while those of medium quality can

be accepted only on certain conditions, and then they

are merged with blocks of high quality.

Now we will see in the next subsection that the re-

gional order is involved in the evolution of boundaries

in a hierarchy of partitions.

3.3 Hierarchies and boundaries

A hierarchy is an increasing sequence of partitions for

the refinement order, or of partial partitions for the
standard order, going from the least to the greatest ele-

ment of the lattice: π0 ≤ . . . ≤ πn = 1E , where π0 = 0E

for partitions but π0 = Ø for partial partitions. Hierar-
chies have been extensively used in image segmentation

[9] and filtering [19]. In Section 4.2 of [15] we studied

edge saliency in a hierarchy of partial partitions, that
is, the evolution of edges and block boundaries as one

goes up in a hierarchy [10].

Assuming a digital framework, given two neighbour-

ing points p and q of E, the pair {p, q} corresponds to
an edge element e(p, q) separating p and q. See Fig-

ure 8, and also Figure 9 below for the decomposition of

edges into edge elements. In a partial partition π, the
edge element e(p, q) will be of one of the following four

types:

– background : p and q belong both to the background

of π;

– outer : one of p and q belongs to the background of
π, the other to a block of π;

– separating : p and q belong to two distinct blocks of

π;
– inner : p and q belong to the same block of π.

See Figure 12 of [15]. Only outer and separating edge
elements correspond to block boundaries. For partial

partitions with the standard order, these 4 types of edge

elements are ordered

background < outer < separating < inner ,

so that as one climbs from π0 to πn, the type of the edge

element e(p, q) can only increase. Here we put “outer”
and “separating” in bold type, in order to mean that

they are “visible” edge elements corresponding to block

boundaries, while “background” and “inner” are “invis-
ible”.

In the case of a hierarchy of partitions (with the

refinement order), since the background is empty, there
are only separating and inner edge elements. Thus block

boundaries are made of separating edge elements, and

as one climbs the hierarchy, they can only disappear

by having their edge elements becoming inner. In other
words, the above inequality is simplified into

separating < inner .

We can partition the set of separating edge elements by

grouping together all those that separate the same set of

blocks of the partial partition. Thus to every partition
of E corresponds a partial partition of edge elements,

where each block represents the common boundary of

a set of adjacent blocks of the partition of E.
We illustrate this in Figure 9 in the framework of

images on a cellular complex: each pixel is a 2-cell, and

the edge elements are the 0- and 1-cells, corresponding
to corners and side boundaries. As one climbs in the

hierarchy, the various boundaries will merge (because

they separate the same blocks) or disappear (since they

are constituted of inner edges). Thus the partial parti-
tion of edge elements will grow according to the regional

order.

Let us now consider a hierarchy of partial partitions
for the regional order, in other words a chain

0E = π0

rg

≤ . . .
rg

≤ πn = Ø

inΠ∗(E), and the evolution of the corresponding edges;

by the above isomorphism, such a chain corresponds to

a hierarchy

0
Ê
= 0̂E = π̂0 ≤ . . . ≤ π̂n = Ø̂ = 1

Ê

in Π(Ê) for the refinement order.

Since the background in Π∗(E) becomes a block

in Π(Ê), whose role in the order is the same as other
blocks, in some sense we do not differentiate between

blocks and background. Thus the outer and separat-

ing types of edge elements belong together to the cat-
egory of “visible” edge elements that lie along bound-

aries between blocks of a partition of Ê; similarly the

background and inner types of edge elements belong to-

gether to the category of “invisible” edge elements that
lie inside a block of a partition of Ê. The two categories

are ordered

visible < invisible ,
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2|3|4

3

1
4

2

2|41|2|4

1|3 1|2 1|2|3

1|4

1|3|4

3|4

2|3

3|4

3+4

3+4
1

2

1|2|3+4 1|2

1|3+4

1|2|3+4 2|3+4

4

2

2|4

1+3|2

1+3
1+3|2

1+3|4

1+3|2|4
1+3|4

1+3|2|4

Fig. 9 Top: The 4 blocks (in light colour) are labelled
1, 2, 3, 4. The boundary between blocks a1, . . . , an (n = 2, 3)
is labelled a1| · · · |an; boundaries between two (resp., three)
blocks are shown hatched (resp., with a dark colour). Mid-
dle: The blocks 3 and 4 are merged into a block labelled
3 + 4, the initial boundaries a1| . . . |an are either merged, or
removed; note that the boudary 1|2|3+4 is disconnected. Bot-
tom: Merging the blocks 1 and 3 into a block labelled 1 + 3,
the initial boundaries are merged or removed; note that the
boundaries 1 + 3|4 and 1 + 3|2|4 are disconnected.

since when climbing in a hierarchy, an edge element can

only change from visible to invisible.

On the other hand we distinguish blocks from the

background in Π∗(E), in fact this means that in Ê we

single out the point ℘. Thus if for a partition of Ê a

point belongs to the same block as ℘, this will remain
the case for all partitions higher up in the hierarchy.

Therefore the four edge types are ordered along two

axes, according to invisibility and to inclusion in the

1

7 8

5

4
5

3
2

1,4,6

2,3

7,8
6

9

Fig. 10 Left: A territory is partitioned into 9 districts labeled
1 to 9. Right: A partial partition of the territory made of 4
public service units (in dark colours); the districts served by
each unit are filled with the corresponding light colour, and
their labels are listed next to the unit, separated by commas.
Each unit is included in the union of districts that it serves.
Note that district 9 is not served by any unit.

background:

outer < background

∨ ∨
separating < inner

As one climbs in the hierarchy, the type of an edge

element e(p, q) can only increase.

4 The linking order

We will consider a situation where the blocks of a par-

tial partition are regrouped into clusters, then in each

cluster a smaller “representative” block is built by tak-
ing some points. In other words blocks are merged, then

deflated.

We illustrate this through an example. Suppose that

a territory is divided into several districts. One wishes
to place public service units (for example, schools or

postal delivery services); each unit serves one or several

districts, and each district is served by at most one
unit; it is possible for a district to have no unit (say,

a military base or an airport does not need a school).

Now for practical reasons the space occupied by each
unit will be within the union of districts that it serves;

in other words, a unit cannot overlap a district that it

does not serve. See Figure 10. The function associating

to a district the unit serving it links the initial partition
of districts to the partial partition of units.

We will formalize such a construction in three ways.

Contrarily to all orders that we have considered up to
now, we will not rely on the inclusion relation between

individual blocks of two partial partitions, but rather

on the overlap between these blocks.

4.1 Three views of linking

Given two partial partitions π1 and π2, let π ⊆ π1 and

consider a map λ : π → π2 such that for every C ∈ π2,
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C ⊆
⋃
{A ∈ π | λ(A) = C}, then we say that λ links π1

to π2; indeed, each block C ∈ π2 links together into a
cluster all blocks of A ∈ π such that λ(A) = C. When

π = π1, that is, λ is a map π1 → π2, then we say that

λ completely links π1 to π2.

Lemma 6 Let π ⊆ π1 and λ : π → π2 that links π1 to

π2. For any B ∈ π1 and C ∈ π2, if B ≬ C, then B ∈ π

and C = λ(B).

Proof As B ≬ C, there is p ∈ B∩C, and as C ⊆
⋃
{A ∈

π | λ(A) = C}, there is some A ∈ π such that λ(A) = C

and p ∈ A, thus the two block A,B ∈ π1 overlap, hence
B = A, so B ∈ π and λ(B) = C. ⊓⊔

This means that a block of π1 overlaps at most one

block of π2. We introduce thus the following binary re-
lation:

– single overlap: we write π1 ⊢ π2 or π2 ⊣ π1 if every

block of π1 overlaps at most one block of π2,

∀B ∈ π1, ∀C,D ∈ π2,[
B ≬ C & B ≬ D

]
=⇒ C = D .

(7)

It has the following characterization:

Proposition 7 For any π1, π2 ∈ Π∗(E),

π1 ⊢ π2 ⇐⇒ π1∧1supp(π2) ≤ π2 ⇐⇒ π1∧π2 ⇚ π1 .

In particular,

π1 ≤ π2 =⇒ π1 ⊢ π2 =⇒ π2 ⇚ π1 .

Proof The blocks of π1 ∧ 1supp(π2) are all non-empty

B∩ supp(π2) for B ∈ π1; here B∩ supp(π2) is the union

of all B∩C for C ∈ π2. If some B ∈ π1 overlaps at least
two blocks C1, C2 ∈ π2, then B∩supp(π2) overlaps both

C1, C2, so it cannot be included in one block of π2, hence

π1∧1supp(π2) 6≤ π2. If each B ∈ π1 overlaps at most one
block of π2, then B∩ supp(π2) either is empty and then

is not a block of π1 ∧ 1supp(π2), or overlaps exactly one

block C of π2, and then B ∩ supp(π2) = B ∩ C ⊆ C;

hence every block of π1∧1supp(π2) is included in a block
of π2, and π1 ∧ 1supp(π2) ≤ π2. Therefore π1 ⊢ π2 ⇔
π1 ∧ 1supp(π2) ≤ π2.

The blocks of π1 ∧ π2 are all non-void B ∩ C for
B ∈ π1 and C ∈ π2. If some B ∈ π1 overlaps at least

two blocks C1, C2 ∈ π2, then B∩C1, B∩C2 ∈ π1∧π2, so

B contains at least two blocks of π1∧π2. If each B ∈ π1

overlaps at most one block of π2, there is at most one

C ∈ π2 with a non-void B ∩ C, so B contains at most

one block of π1∧π2. Therefore π1 ⊢ π2 ⇔ π1∧π2 ⇚ π1.

If π1 ≤ π2, then supp(π1) ⊆ supp(π2), so π1 ≤
1supp(π2) and π1 ∧ 1supp(π2) = π1 ≤ π2, thus π1 ⊢ π2.

Now π1 ⊢ π2 is equivalent to π1 ∧ π2 ⇚ π1, and by (1),

the latter implies that π2 ⇚ π1. ⊓⊔

Note that when π1 ≥ π2, a block of π1 overlaps a

block of π2 iff it contains it, thus here π1 ⊢ π2 ⇐⇒
π2 ⇚ π1. Further properties of single overlap are given

in Appendix A.

We define the linking order
ln

≤ as the intersection of

the support containment and single overlap relations,
∀π1, π2 ∈ Π∗(E):

π1

ln

≤ π2 ⇐⇒
[
π1 ⊢ π2 & supp(π1) ⊇ supp(π2)

]
. (8)

In other words, every block of π1 overlaps at most one

block of π2 and every block of π2 is included in the

union of all blocks of π1 that overlap it. This relation
corresponds to a map that links the two partial parti-

tions, and also to merging then deflating blocks:

Proposition 8 For any π1, π2 ∈ Π∗(E), π1

ln

≤ π2 if

and only if there exists a map that links π1 to π2. More-

over, when π2 6= Ø, the following four statements are

equivalent:

1. π1

ln

≤ π2;
2. there is a map that links π1 to π2;

3. there is a map that completely links π1 to π2;

4. there exists π0 ∈ Π∗(E) \ {Ø} such that π1

m

≤ π0

i

≥
π2.

Then we necessarily have π1 6= Ø.

Proof Suppose first that π1

ln

≤ π2. Let π be the set of

blocks of π1 that overlap a block of π2:

π = {A ∈ π1 | ∃C ∈ π2, A ≬ C} .

As π1 ⊢ π2, for A ∈ π there is a unique C ∈ π2 with
A ≬ C, so we define λ : π → π2 by λ(A) = C when

A ≬ C. Since supp(π2) ⊆ supp(π1), each block of π2 is

contained in the union of all blocks of π1 that overlap

it, thus for C ∈ π2:

C ⊆
⋃

{A ∈ π1 | A ≬ C} =
⋃

{A ∈ π | λ(A) = C} ,

hence λ links π1 to π2.

Suppose next that for some π ⊆ π1 there is a map

λ : π → π2 that links π1 to π2. As for every C ∈ π2,

C ⊆
⋃

{A ∈ π | λ(A) = C} ⊆ supp(π) ⊆ supp(π1) ,

we have supp(π2) ⊆ supp(π1). For any B ∈ π1, by

Lemma 6, the only block of π2 that can overlap B is
λ(B) for B ∈ π. It follows that π1 ⊢ π2. Therefore

π1

ln

≤ π2. So we have shown that π1

ln

≤ π2 if and only if

there exists a map that links π1 to π2.
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Now take π2 6= Ø. Then we cannot have supp(π2) ⊆

supp(Ø), nor a map that links Ø to π2, nor Ø
m

≤ π0 for
π0 6= Ø, thus in any case we must have π1 6= Ø.

From the above argument, item 1 implies item 2 and

item 3 implies item 1. Next we show that item 2 implies

item 3. Let π ⊆ π1 and λ : π → π2 that links π1 to π2.
Define λ∗ : π1 → π2 as follows: for A ∈ π, set λ∗(A) =

λ(A); choose a fixed H ∈ π2, and for B ∈ π1 \ π, set

λ∗(B) = H. Then for every C ∈ π2,

C ⊆
⋃

{A ∈ π | λ(A) = C} =
⋃

{A ∈ π | λ∗(A) = C} ⊆
⋃

{B ∈ π1 | λ∗(B) = C} ,

hence λ∗ completely links π1 to π2.

There remains to show that items 3 and 4 are equiv-

alent. Suppose item 3: λ completely links π1 to π2. For

any C ∈ π2, let ϕ(C) =
⋃
{B ∈ π1 | λ(B) = C}

and let π0 = {ϕ(C) | C ∈ π2}; as λ is a map, for
any two distinct C,C ′ ∈ π2, ϕ(C) and ϕ(C ′) may not

contain a common block of π1, so they are disjoint;

thus π0 is a non-void partial partition. For any B ∈ π1,
B ⊆ ϕ(λ(B)) ∈ π0, so π1 ≤ π0, and for any C ∈ π2,

ϕ(C) ⊆ supp(π1), so supp(π0) ⊆ supp(π1); we deduce

that π1

m

≤ π0. By definition of linking, for any C ∈ π2,

C ⊆ ϕ(C); now for any other C ′ ∈ π2, C
′ ⊆ ϕ(C ′)

and ϕ(C ′) is disjoint from ϕ(C), so C ′ 6⊆ ϕ(C); thus ϕ

is a bijection π2 → π0, and we deduce that π0

i

≥ π2.

Therefore item 4 holds.

Conversely, suppose item 4: there is π0 ∈ Π∗(E) \

{Ø} such that π1

m

≤ π0

i

≥ π2. For any A ∈ π1, there is a

unique B ∈ π0 such that A ⊆ B, and there is a unique
C ∈ π2 such that B ⊇ C; we define thus λ(A) = C,

hence λ is a map π1 → π2. For any C ∈ π2, there is a

unique B ∈ π0 such that B ⊇ C, and B is a union of
blocks of π1; now for each A ∈ π1 such that A ⊆ B, we

have λ(A) = C, hence

C ⊆ B =
⋃

{A ∈ π1 | A ⊆ B}

⊆
⋃

{A ∈ π1 | λ(A) = C} ,

which means that λ completely links π1 to π2, that is,

item 3. ⊓⊔

We illustrated in Figure 3 the equivalence between

items 1 and 4, namely that for π1, π2 ∈ Π∗(E) \ {Ø},

π1

ln

≤ π2 ⇐⇒ ∃π0 ∈ Π∗(E) \ {Ø}, π1

m

≤ π0

i

≥ π2 ,

in other words, for non-void partial partitions, linking
is generated by merging followed by inverse inflating.

The equivalence with item 2 appears implicitly, as π

consists of all hatched blocks of π1, and λ associates to

each block of π the unique block of π2 with the same

hatching.

When π2 = Ø, we have trivially π1

ln

≤ Ø and for
π = Ø the empty map Ø → Ø links π1 to Ø; thus

items 1 and 2 hold. However if π1 6= Ø, there is no map

that completely links π1 to Ø, and for π1

m

≤ π0 we have

π0 6= Ø, so π0 6
i

≥ π2; thus items 3 and 4 cannot hold in

this case.

Hence in the analysis and characterization of the
linking order, we have to distinguish Ø from non-void

partitions.

4.2 Characterization of the linking order

Theorem 9 The linking order
ln

≤ is a partial order re-

lation on Π∗(E). It contains the inverse inclusion-in-

flating
i

⊇ and regional
rg

≤ orders, that is, for any π1, π2 ∈

Π∗(E), each of π1

i

⊇ π2 and π1

rg

≤ π2 implies π1

ln

≤ π2.
The greatest and least elements are Ø and 0E. For any

π1, π2 ∈ Π∗(E) we have

π1

m

≤ π2 ⇐⇒
[
π1

ln

≤ π2 & supp(π1) = supp(π2)
]
. (9)

For non-void partial partitions (in Π∗(E) \ {Ø}),
the maximal elements are the 1{p} for p ∈ E and the

covering relation is
m
≺ ∪

i
≻. On the other hand, Ø covers

an element of Π∗(E) \ {Ø} iff it is maximal, i.e., it is

1{p} for some p ∈ E, and then 1{p}

s
≻ Ø.

Let E be finite. Then Π∗(E) \ {Ø} ordered by
ln

≤ is

graded by (hr, hb), equivalently by (−hc,−hs), for (
m
≺

,
i
≻), that is, for any π1, π2 ∈ Π∗(E) \ {Ø} we have

π1

ln
< π2 =⇒



hs(π1) ≥ hs(π2) &

hc(π1) ≥ hc(π2) &

(hs + hc)(π1) > (hs + hc)(π2)


 ,

π1

m
≺ π2 =⇒

[
hs(π2) = hs(π1) &
hc(π2) = hc(π1)− 1

]
,

π1

i
≻ π2 =⇒

[
hc(π2) = hc(π1) &

hs(π2) = hs(π1)− 1

]
.

For π ∈ Π∗(E) \ {Ø}, the height of π is hr(π)+ hb(π).

On the other hand, the height of Ø is 2|E|−1 = hr(Ø)+

hb(Ø)− 1.

Proof By (8) and Proposition 7, for π1, π2 ∈ Π∗(E)

we have π1

ln

≤ π2 iff π1 ∧ 1supp(π2) ≤ π2 & supp(π1) ⊇
supp(π2). Thus, under the fixed condition supp(π1) =



16 Christian Ronse

supp(π2), we have π1

ln

≤ π2 iff π1∧1supp(π2) ≤ π2, that is,

π1 ∧ 1supp(π1) ≤ π2, in other words π1 ≤ π2. Therefore

[
π1

ln

≤ π2 & supp(π1) = supp(π2)
]

⇐⇒
[
π1 ≤ π2 & supp(π1) = supp(π2)

]

⇐⇒ π1

m

≤ π2 ,

so (9) holds.
Both support containment and single overlap are re-

flexive relations, so their intersection is reflexive. Let us

show that this intersection is anti-symmetric. If π1

ln

≤ π2

and π2

ln

≤ π1, then supp(π1) ⊇ supp(π2) and supp(π2) ⊇
supp(π1), that is, supp(π1) = supp(π2); then (9) gives

π1

m

≤ π2 and π2

m

≤ π1, hence π1 = π2. Let us show that

it is transitive. Let π0

ln

≤ π1

ln

≤ π2, that is, π0 ⊢ π1 ⊢ π2

and supp(π0) ⊇ supp(π1) ⊇ supp(π2); then 1supp(π2) ≤
1supp(π1) and Proposition 7 gives π0∧1supp(π1) ≤ π1 and

π1 ∧ 1supp(π2) ≤ π2, hence

π0 ∧ 1supp(π2) = π0 ∧ (1supp(π1) ∧ 1supp(π2))

= (π0 ∧ 1supp(π1)) ∧ 1supp(π2) ≤ π1 ∧ 1supp(π2) ≤ π2 ,

thus π0 ⊢ π2; also supp(π0) ⊇ supp(π2), hence π0

ln

≤ π2.

Therefore
ln

≤ is a partial order.

If π1

i

⊇ π2, then (2) gives π1 ∧ 1supp(π2) = π2; thus
π1 ∧ 1supp(π2) ≤ π2, so π1 ⊢ π2 by Proposition 7, also

π2 = π1 ∧ 1supp(π2) ≤ π1, so supp(π2) ⊆ supp(π1), hence

π1

ln

≤ π2. If π1

rg

≤ π2, by Proposition 4, supp(π1) ⊇
supp(π2) and π1 ≤ π2 ∪ {back(π2)}; restricting to the

support of π2 we get:

π1 ∧ 1supp(π2) ≤
(
π2 ∪ {back(π2)}

)
∧ 1supp(π2) = π2 ,

so Proposition 7 gives π1 ⊢ π2, hence π1

ln

≤ π2. Therefore
ln

≤ contains
i

⊇ and
rg

≤.

By Theorem 5, 0E and Ø are the least and greatest
elements of Π∗(E) for the regional order, so for any

π ∈ Π∗(E), 0E

rg

≤ π
rg

≤ Ø, and as
ln

≤ contains
rg

≤, we

deduce that 0E

ln

≤ π
ln

≤ Ø, that is, 0E and Ø are the
least and greatest elements of Π∗(E) for the linking

order. For π ∈ Π∗(E) \ {Ø}, if π has several blocks or

has a block with several points, then a larger element of

Π∗(E)\{Ø} is obtained by merging blocks or deflating
a block respectively; thus to be maximal, it must have

a single block with a single point, i.e., π = 1{p} for

some p ∈ E; conversely, in 1{p}, no block merging or
deflation is possible, so it is maximal in Π∗(E) \ {Ø}.

Let
ln
≺ be the covering relation for

ln

≤. The hypothesis

of Lemmas 1 and 2 is satisfied with P = Π∗(E) \ {Ø}

with the partial order
ln

≤ (for ≤), which is the transitive

closure of the union of the two partial orders
m

≤ and
i

≥ (standing for
α

≤ and
β

≤), Q = P(E) with the partial

order ⊇ for ⊑, and the support supp for the map f .

Since the covering relations of
m

≤ and
i

≥ are
m
≺ and

i
≻

respectively, we deduce (from Lemmas 1 and 2) that

for any π1, π2 ∈ Π∗(E) \ {Ø}: (i) if π1

ln
≺ π2, then

π1

m
≺ π2 or π1

i
≻ π2; (ii) if π1

m
≺ π2, then π1

ln
≺ π2. Let

us now show that (iii) if π1

i
≻ π2, then π1

ln
≺ π2. Let

π1

i
≻ π2, where π2 is obtained by removing a point p

from a block of π1 that also contains another point; then

π2 = {C \ {p} | C ∈ π1} (where each such C \ {p} 6= ∅).

By Proposition 8, a chain π1

ln

≤ · · ·
ln

≤ π2 in Π∗(E)\{Ø}

alternates merging
m

≤ and inverse inflation
i

≥, with the
support monotonously decreasing; since globally there

is only one decrease of the support, where the point p is

removed from a block, this chain reduces to π1

m

≤ π3

i
>

π4

m

≤ π2, where π4 is obtained by removing the point p

from a block of π3, thus π4 = {C \ {p} | C ∈ π3}. Then
for any q ∈ supp(π2) we have Clπ2

(q) = Clπ1
(q) \ {p},

Clπ1
(q) ⊆ Clπ3

(q), Clπ4
(q) = Clπ3

(q)\{p} and Clπ4
(q) ⊆

Clπ2
(q). We deduce that Clπ1

(q) \ {p} ⊆ Clπ3
(q) \ {p} =

Clπ4
(q) ⊆ Clπ2

(q) = Clπ1
(q) \ {p}, so Clπ1

(q) \ {p} =

Clπ3
(q) \ {p} = Clπ4

(q) = Clπ2
(q); as the last equal-

ity holds for any q ∈ supp(π2), we get π4 = π2. Since

Clπ1
(q) ⊆ Clπ3

(q) and Clπ1
(q) \ {p} = Clπ3

(q) \ {p},
we get Clπ3

(q) = Clπ1
(q) or Clπ3

(q) = Clπ1
(q) ∪ {p};

the second case means that Clπ3
(q) is the merging of

the block Clπ1
(q) with a block reduced to the single-

ton {p}, which is impossible; hence Clπ3
(q) = Clπ1

(q)

for any q ∈ supp(π2), so π3 = π1. Therefore π1

ln
≺ π2.

We have thus shown that the covering relation for
ln

≤ on

Π∗(E) \ {Ø} is
m
≺ ∪

i
≻.

For π ∈ Π∗(E) \ {Ø}, we have π
ln
< Ø, and for π′ ∈

Π∗(E) with π
ln
< π′, we have π′

ln
< Ø; thus Ø does not

cover π iff there is π′ ∈ Π∗(E) such that π
ln
< π′; hence

Ø covers π iff π is a maximal element of Π∗(E) \ {Ø},

that is, 1{p} for some p ∈ E, and indeed 1{p}

ln
≺ Ø and

1{p}

s
≻ Ø.

Assume that E is finite, and let π1, π2 ∈ Π∗(E) \

{Ø} such that π1

ln

≤ π2. By Proposition 8, there exists

π0 ∈ Π∗(E)\{Ø} such that π1

m

≤ π0

i

≥ π2; then by [15]

(see there the analysis of
m

≤ and
i

≤) we have:

(i) hs(π1) = hs(π0) and hc(π1) ≥ hc(π0); for π1

m
< π0

we have hc(π1) > hc(π0).
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last. . .

Fig. 11 Removing a singleton block that is not the last block
is done in two steps, merging it with another block, then
deflating that block. Removing the last block is done in a
single step.

(ii) hc(π0) = hc(π2) and hs(π0) ≥ hs(π2); for π0

i
> π2,

hs(π0) > hs(π2).

Thus hs(π1) = hs(π0) ≥ hs(π2) and hc(π1) ≥ hc(π0) =

hc(π2). If π1

ln
< π2, then one of the following holds:

(a) π1

m
< π0, so hc(π1) > hc(π0) = hc(π2); (b) π0

i
>

π2, so hs(π1) = hs(π0) > hs(π2). Thus for π1

ln
< π2,

hs(π1) ≥ hs(π2) and hc(π1) ≥ hc(π2), with at least

one inequality being strict, hence (hs+hc)(π1) > (hs+

hc)(π2). An argument similar to (i) shows that if π1

m
≺

π2, then hs(π2) = hs(π1) and hc(π2) = hc(π1)− 1, and

an argument similar to (ii) shows that if π1

i
≻ π2, then

hc(π2) = hc(π1) and hs(π2) = hs(π1)−1. Therefore the

order
ln

≤ on Π∗(E) \ {Ø} is graded by (−hc,−hs) for

(
m
≺,

i
≻). As hr = |E| − hc and hb = |E| − hs, cf. (3,4),

with |E| constant, it is also graded by (hr, hb).

For π ∈ Π∗(E) \ {Ø}, the length of the interval
[0E , π] is hr(π) + hb(π) − hr(0E) − hb(0E) = hr(π) +

hb(π)−0−0 = hr(π)+hb(π); as 0E is the least element,

it is thus the height of π. Now since 1{p}

ln
≺ Ø for any

p ∈ E, the height of Ø is 1 + hr(1{p}) + hb(1{p}) =

1 + 2(|E| − 1) = 2|E| − 1 = hr(Ø) + hb(Ø)− 1. ⊓⊔

We know from [15] that the inverse inclusion-infla-

ting order
i

⊇ contains the inverse inflating
i

≥ and in-
verse inclusion ⊇ orders, and from Theorem 5 that the

regional order
rg

≤ contains the merging
m

≤ and inverse in-

clusion ⊇ orders; thus the linking order
ln

≤ contains also

the merging
m

≤, inverse inclusion ⊇ and inverse inflating
i

≥ orders.

Note that the change of the height function on the
greatest element (the formula is decreased by 1) co-

incides with the change in the covering relation, from
m
≺ ∪

i
≻ in Π∗(E)\{Ø} to

s
≻ between maximal elements

of Π∗(E) \ {Ø} and Ø. Indeed, removing a singleton

block increases both hr and hb by 1; now inΠ∗(E)\{Ø}
removing the singleton block requires two steps, merg-
ing it with another block then deflating the resulting

block (
m
≺ then

i
≻), while from a maximal element of

Π∗(E) \ {Ø} to Ø, the removal of the unique singleton

block is done in one step
s
≻. See Figure 11.

2 3 4 5 6 7 8
3+4 3+4

1

Fig. 12 Left: the flat zones with non-zero grey-level are num-
bered 1 to 8. Middle and right: in grey-level thinning, the
non-peak zones are removed, and the two peak zones (3 and
4) are merged, then this merged zone is deflated.

4.3 Possible applications

The linking order is useful in the analysis of situations

where a partial partition can be improved by reducing,

removing or merging blocks.

In the Introduction, we discussed skeletonization of
binary images: this operation deflates connected com-

ponents, then cleaning the skeleton to remove spurious

branches removes blocks in a partition of the skeleton,
also such blocks can be merged in order to simplify the

representation.

Similarly, skeletonization (or thinning) of a grey-

level image can be seen as an operation on the partition
of flat zones (i.e., maximal connected zones of constant

grey-level); setting the zones with minimum grey-level

as the background, the zones with non-minimum grey-
level will form a partial partition. Now skeletonization

will thin peak zones while non-peak zones will be re-

moved; furthermore, small variations in peaks can be

smoothed out, leading to a merging of the zones on the
peaks before thinning the merged zones. See Figure 12.

This thinning can be operated directly at the level of

the partial partition, not that of the pixels, and it relies
on block removal, block merging and block deflating,

thus a growth for the linking order.

In the Introduction, we also considered the process-

ing of region markers in segmentation algorithms based
on region growing or watershed, and saw that markers

can be:

– reduced in order to maintain each one inside the cor-

responding region, in other words to avoid spilling

into other regions;
– merged in order to avoid oversegmentation;

– removed in order to suppress “parasitic” regions; the

latter are then apportioned between neighbouring
regions).

In the partial partition of markers, the corresponding
operations are deflating, merging and removing blocks,

thus the partial partition of markers grows for the link-

ing order.
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5 Partial apportioning and partial merging

Block apportioning was proposed in order to eliminate

“parasitic” classes in an image segmentation [20,21];

such classes lie along transitions between objects, so
they must be removed and their contents must be ap-

portioned between the neighbouring classes correspond-

ing to significant objects. When the segmentation is
a partial partition including the objects but not the

background, the “parasitic” classes can also lie along

the transitions between objects and the background;
when removing such classes, their contents must be ap-

portioned between neighbouring classes and the back-

ground.

We will thus generalize the operation of block ap-
portioning in order to apportion blocks between other

blocks and the background. We will also consider a par-

ticular case which generalizes block merging. We will
thus obtain two new partial orders on Π∗(E), the par-

tial apportioning and partial merging orders.

5.1 The apportioning order

We recall from [16] the definition and main properties of

the apportioning order. Let π1, π2 ∈ Π∗(E) \ {Ø} and
consider a map β : π2 → π1. Let β(π2) = {β(C) | C ∈
π2}. Then the following two conditions are equivalent:

1. supp(π1) = supp(π2) and for all C ∈ π2, β(C) ⊆ C.

2. There is a map α : supp
(
π1 \ β(π2)

)
→ β(π2) such

that for every C ∈ π2, C = β(C) ∪ α−1(β(C)).

We say then that β apportions π1 into π2. Here β is an
injection π2 → π1 which selects for every block of π2 a

block of π1 contained in it. Furthermore, for a given β,

the map α is unique, it is defined by

∀ p ∈ supp
(
π1 \ β(π2)

)
, α(p) = β(Clπ2

(p)) . (10)

It describes the apportioning of the blocks of π1 \β(π2)
between the blocks of β(π2), since each C ∈ π2 is

obtained by adding to β(C) all points p in blocks of

π1 \ β(π2) satisfying α(p) = β(C). See Figure 13. Fur-
thermore, we have π1 = π2 ⇔ β(π2) = π1 ⇔ β(π2) =

π2.

We define the apportioning order
a

≤ on Π∗(E) as

the intersection of the building order and the support

equality relation: ∀π1, π2 ∈ Π∗(E),

π1

a

≤ π2 ⇐⇒
[
π1 ⋐ π2 & supp(π1) = supp(π2)

]
. (11)

Now given π1, π2 ∈ Π∗(E) \ {Ø}, we have π1

a

≤ π2 if
and only if there exists β : π2 → π1 such that β ap-

portions π1 into π2. Note that the map β is not neces-

sarily unique: if a block C ∈ π2 contains several blocks
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π1 2π

α

α

β

β

Fig. 13 Left: π1; middle: π2; here π1

a

≤ π2, the blocks of π1

included in a block of π2 are hatched. Right: one possible
choice for β, and the resulting α, in order to apportion π1

into π2.

Bi ∈ π1 (i ∈ I), then for β(C) we can choose any Bi

for β(C). Furthermore,

π1

a
< π2 ⇐⇒

[
supp(π1) = supp(π2) & |π1| ≥ 2

& ∃π ⊂ π1, π 6= Ø, π
i
< π2

]
.

We have also Ø
a

≤ Ø, and indeed the notion of a map

β : Ø → Ø apportioning Ø into Ø is trivial. For π ∈

Π∗(E) \ {Ø}, we cannot have π
a
< Ø or Ø

a
< π: Ø is

isolated.

Given π1, π2 ∈ Π∗(E) \ {Ø} such that π1

a

≤ π2,
we call the apportioning index of π1 into π2, and write

I(π1, π2), the cardinal |π1 \ β(π2)| for any β : π2 → π1

that apportions π1 into π2; indeed that cardinal, giv-
ing the number of blocks that are apportioned to other

blocks, will remain constant. We also trivially define

I(Ø,Ø) = 0. We have I(π1, π2) = 0 ⇔ π1 = π2.
Let π0, π1, π2 ∈ Π∗(E) \ {Ø}, β1 : π1 → π0 that

apportions π0 into π1, and β2 : π2 → π1 that appor-

tions π1 into π2. Then β1β2 apportions π0 into π2, and

I(π0, π2) = I(π0, π1) + I(π1, π2).
The following is a more explicit version of Lemma 8

of [16], we will use it to analyse both partial apportion-

ing and partial merging:

Lemma 10 Let π0, π2 ∈ Π∗(E) \ {Ø} with π0

a
< π2,

with I(π0, π2) = c+ d, where c, d > 0, and let β appor-
tion π0 into π2. Let us decompose π0 \ β(π2) into the

disjoint union of two partial partitions πc and πd with

|πc| = c and |πd| = d; set V = supp(β(π2)) and W =
supp

(
β(π2) ∪ πc

)
= V ∪ supp(πc); then β(C) = C ∩ V

for any C ∈ π2. Let π1 = {C ∩W | C ∈ π2} ∪ πd; then

π1 ∈ Π∗(E) and supp(π1) = supp(π0). Define βd : π2 →
π1 : C 7→ C ∩ W and βc : π1 → π0 by βc(B) = B for
B ∈ πd, and βc(C ∩W ) = C ∩ V for C ∈ π2. Then βd

apportions π1 into π2, π1 \ βd(π2) = πd, I(π1, π2) = d,

βc apportions π0 into π1, π0\βc(π1) = πc, I(π0, π1) = c
and βcβd = β.

The covering relation corresponding to the appor-

tioning order
a

≤ is
a
≺: for π1, π2 ∈ Π∗(E) \ {Ø}, we
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write π1

a
≺ π2 and say that π2 a-covers π1, if π1

a
< π2

and I(π1, π2) = 1, in other words, π2 is obtained by ap-
portioning a single block of π1 among remaining blocks.

An equivalent formulation is:

π1

a
≺ π2 ⇐⇒

[
supp(π1) = supp(π2) & |π1| ≥ 2

& ∃A ∈ π1, π1 \ {A}
i
< π2

]
.

(12)

When E is finite, the order
a

≤ is graded by hm, and for

π1

a

≤ π2, we have I(π1, π2) = hm(π2)− hm(π1).

5.2 Partial apportioning

In order to apportion blocks between other blocks and
the background, we will generalize the definition (11).

Now using the isomorphism Π∗(E) → Π(Ê) intro-

duced in Subsection 3.1, we will also describe partial
apportioning in Π∗(E) as a particular case of appor-

tioning in Π(Ê). We will then obtain maps β, α as

above.

We define the partial apportioning order
pa

≤ as the

intersection of the building order and the support con-

tainment relation: ∀π1, π2 ∈ Π∗(E),

π1

pa

≤ π2 ⇐⇒
[
π1 ⋐ π2 & supp(π1) ⊇ supp(π2)

]
. (13)

Compared to (11), we have support containment in-

stead of support equality. We can better understand it

through the isomorphism Π∗(E) → Π(Ê):

Lemma 11 For any π1, π2 ∈ Π∗(E), π1

pa

≤ π2 if and

only if π̂1

a

≤ π̂2 and Clπ̂1
(℘) ⊆ Clπ̂2

(℘).

Proof We have Clπ̂i
(℘) = b̂ack(πi) = back(πi) ∪ {℘}

(i = 1, 2). Thus Clπ̂1
(℘) ⊆ Clπ̂2

(℘) ⇔ back(π1) ⊆
back(π2) ⇔ supp(π1) ⊇ supp(π2).

Assume that this inclusion holds. If π1 ⋐ π2, then
every block of π2 contains a block of π1, and as Clπ̂2

(℘)

contains Clπ̂1
(℘), every block of π̂2 contains a block of

π̂1, thus π̂1 ⋐ π̂2; as supp(π̂1) = supp(π̂2) = Ê, we

deduce that π̂1

a

≤ π̂2. Conversely, if π̂1

a

≤ π̂2, then π̂1 ⋐

π̂2 = π2∪{b̂ack(π2)}, hence every blockB of π2 contains

a block of π̂1 = π1 ∪ {Clπ̂1
(℘)}; as ℘ ∈ Clπ̂1

(℘) but

℘ /∈ B, B does not contain Clπ̂1
(℘), thus it contains a

block of π1, that is, π1 ⋐ π2.

We have shown that supp(π1) ⊇ supp(π2) and π1 ⋐

π2 iff Clπ̂1
(℘) ⊆ Clπ̂2

(℘) and π̂1

a

≤ π̂2. ⊓⊔

We have then a map β̂ : π̂2 → π̂1 apportioning π̂1

into π̂2; thus for every C ∈ π̂2, β̂(C) ∈ π̂1 and β̂(C) ⊆
C. Note that even if Clπ̂2

(℘) contains, in addition to
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α

α

α

β

β

Fig. 14 Left: π1; middle: π2; here π1

pa

≤ π2, the blocks of π1

included in a block of π2 are hatched. Right: one possible
choice for β, and the resulting α, in order to partially appor-
tion π1 into π2.

Clπ̂1
(℘), a block of π1, we do not allow a choice for

β̂(Clπ̂2
(℘)), we always set β̂(Clπ̂2

(℘)) = Clπ̂1
(℘). Thus

the restriction β of β̂ to π2 is a map π2 → π1 satisfying

β(C) ⊆ C for all C ∈ π2; conversely, if supp(π1) ⊇
supp(π2), any map β : π2 → π1 satisfying β(C) ⊆ C for
all C ∈ π2, is the restriction of a map β̂ apportioning π̂1

into π̂2: set β̂(C) = β(C) for C ∈ π2, and β̂(b̂ack(π2)) =

b̂ack(π1); we say that β partially apportions π1 into π2.
Then we have a map α defined on

supp
(
π̂1 \ β̂(π̂2)

)
= supp

(
π1 \ β(π2)

)

with values in

β̂(π̂2) = β(π2) ∪ {b̂ack(π1)} ,

given by α(p) = β̂(Clπ̂2
(p)), cf. (10); it describes how

each block of π1 \ β(π2) is apportioned between the

blocks of β(π2) and the background Clπ̂1
(℘) = b̂ack(π1):

for B ∈ π1 \ β(π2), every p ∈ B is added to a block of

π1 or its background, namely to α(p) ∈ β̂(π̂2). See Fig-

ure 14. In particular, a whole block of π1 can be merged
with another block, or merged with the background,

that is, removed.

We now define the partial apportioning index of π1

into π2, namely

I(π1, π2) = |π1 \ β(π2)| =
∣∣∣π̂1 \ β̂(π̂2)

∣∣∣ = I(π̂1, π̂2) ,

in other words, the partial apportioning index of π1 into
π2 equals the apportioning index of π̂1 into π̂2, it does

not depend on the choice of β̂. It gives the number of

blocks that are partially apportioned to other blocks.

Given π0, π1, π2 ∈ Π∗(E) \ {Ø}, β1 : π1 → π0 that

partially apportions π0 into π1, and β2 : π2 → π1

that partially apportions π1 into π2, then β1β2 par-
tially apportions π0 into π2, and I(π0, π2) = I(π0, π1)+

I(π1, π2). This follows from the similar statement about

apportioning by applying Lemma 11.
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Now we can define the corresponding covering rela-

tion: given π1, π2 ∈ Π∗(E)\{Ø}, we write π1

pa
≺ π2 and

say that π2 pa-covers π1, if π1

pa
< π2 and I(π1, π2) = 1.

Following (12), it means that

supp(π1) ⊇ supp(π2) & |π̂1| ≥ 2

& ∃A ∈ π1, π̂1 \ {A}
i
< π̂2 .

We get thus

π1

pa

≺ π2 ⇐⇒

[
supp(π1) ⊇ supp(π2) & π1 6= Ø

& ∃A ∈ π1, π1 \ {A}
i

≤ π2

]
.

(14)

Here the block A is apportioned between the remaining
blocks of π1 and the background. Note that we had

π1\{A}
i
< π2 in (12), while we have here π1\{A}

i

≤ π2;

indeed the case π1 \ {A} = π2, i.e., π2 is obtained by

removing a block of π1, gives supp(π1) ⊃ supp(π2), that

is, Clπ̂1
(℘) ⊂ Clπ̂2

(℘), so π̂1\{A}
i
< π̂2. Moreover, when

|π1| = 1, we get π1 = {A} and π2 = π1 \ {A} = Ø, so
the unique block A is removed from π1.

The following analogue of Lemma 10 will be used

for both the partial apportioning and partial merging
orders:

Lemma 12 Let π0, π2 ∈ Π∗(E) such that π̂0

a
< π̂2,

with I(π̂0, π̂2) = c + d, where c, d > 0, and let β̂ ap-

portion π̂0 into π̂2. Let π̂1 ∈ Π(Ê), β̂d : π̂2 → π̂1 and

β̂c : π̂1 → π̂0 be constructed as in Lemma 10, and let

π1 ∈ Π∗(E) correspond to π̂1. Then:

1. If β̂(Clπ̂2
(℘)) = Clπ̂0

(℘), then β̂d(Clπ̂2
(℘)) = Clπ̂1

(℘)

and β̂c(Clπ̂1
(℘)) = Clπ̂0

(℘), in particular Clπ̂0
(℘) ⊆

Clπ̂1
(℘) ⊆ Clπ̂2

(℘).

2. If π0 ⊢ π2, then π1 ⊢ π2.

3. If π0 ⊢ π2 and β̂(Clπ̂2
(℘)) = Clπ̂0

(℘), then π0 ⊢ π1.

Proof 1. As β̂d apportions π̂1 into π̂2, β̂c apportions

π̂0 into π̂1 and β̂ = β̂cβ̂d, we get

℘ ∈ Clπ̂0
(℘) = β̂(Clπ̂2

(℘)) = β̂cβ̂d(Clπ̂2
(℘))

⊆ β̂d(Clπ̂2
(℘)) ∈ π̂1 ;

hence Clπ̂1
(℘) = β̂d(Clπ̂2

(℘)) ⊆ Clπ̂2
(℘) and Clπ̂0

(℘) =

β̂cβ̂d(Clπ̂2
(℘)) = β̂c(Clπ̂1

(℘)) ⊆ Clπ̂1
(℘).

2. From the construction in Lemma 10, we have

π̂1 = {C ∩ W | C ∈ π̂2} ∪ π̂d, where π̂d ⊆ π̂0. Let

B ∈ π1. If B = C ∩W for some C ∈ π̂2, as C ∩W ⊆ C,

B = C ∩ W does not overlap any other block of π̂2,
so it overlaps at most one block of π2. If B ∈ π̂d, then

B ∈ π̂0, and as ℘ /∈ B, B ∈ π0, and since π0 ⊢ π2, B

overlaps at most one block of π2. Therefore π1 ⊢ π2.

3. From the construction in Lemma 10, we have

both π̂d ⊆ π̂0 and π̂d ⊆ π̂1. Let A ∈ π0. If A ∈ π̂d, then
A ∈ π̂1, so A is disjoint from any other block of π̂1, thus

it overlaps no other block of π1 than itself. If A /∈ π̂d,

then A overlaps no block of π̂d, so the only blocks of π̂1

that it can overlap are the C ∩W = β̂d(C) for C ∈ π̂2;

if A overlaps two of them, C1 ∩W and C2 ∩W , then it

overlaps both C1, C2 ∈ π̂2, and as π0 ⊢ π2, we cannot
have both C1 or C2 in π2, so for i = 1 or 2 we have

Ci = Clπ̂2
(℘); as β̂(Clπ̂2

(℘)) = Clπ̂0
(℘), item 1 gives

Ci ∩W = β̂d(Ci) = β̂d(Clπ̂2
(℘)) = Clπ̂1

(℘) ,

so we cannot have both C1 ∩ W and C2 ∩ W in π1,
therefore π0 ⊢ π1. ⊓⊔

Theorem 13 Partial apportioning
pa

≤ is a partial order

relation on Π∗(E); it is included in the building order

⋐ and it contains the apportioning
a

≤ and regional
rg

≤

orders; in other words, for any π1, π2 ∈ Π∗(E), π1

pa

≤ π2

implies π1 ⋐ π2 and each of π1

a

≤ π2 and π1

rg

≤ π2

implies π1

pa

≤ π2. The greatest and least elements are Ø

and 0E. The covering relation is
pa
≺.

Let E be finite. Then (Π∗(E),
pa

≤) is graded by hr,

or equivalently by −hc, that is, for any π1, π2 ∈ Π∗(E)
we have

π1

pa
< π2 =⇒ hc(π1) > hc(π2) ,

π1

pa

≺ π2 =⇒ hc(π2) = hc(π1)− 1 .

For π ∈ Π∗(E), the height of π is hr(π). For π1, π2 ∈

Π∗(E) such that π1

pa

≤ π2, we have I(π1, π2) = hr(π2)−
hr(π1) = hc(π1)− hc(π2).

Proof Since the building order ⋐ is a partial order and
the support containment relation is a quasi-order, their

intersection
pa

≤ is an order. By definition (13), π1

pa

≤ π2

implies π1 ⋐ π2. Comparing (11) with (13), clearly π1

a

≤

π2 is a particular case of π1

pa

≤ π2. If π1

rg

≤ π2, then by

Proposition 4, supp(π1) ⊇ supp(π2) and every block of
π2 is the union of some blocks of π1, so it contains at

least one such block, that is, π1 ⋐ π2; thus π1

pa

≤ π2.

By Theorem 5, for any π ∈ Π∗(E), we have 0E

rg

≤

π
rg

≤ Ø, and as
pa

≤ contains
rg

≤, we derive that 0E

pa

≤ π
pa

≤
Ø, so Ø and 0E are the greatest and least elements.

Let π0, π2 ∈ Π∗(E) such that π0

pa

< π2; then π0 6= Ø,

π̂0

a
< π̂2 and I(π0, π2) = I(π̂0, π̂2) > 0. If π2 does not

cover π0, then for some π1 ∈ Π∗(E) we have π0

pa
< π1

pa
<

π2, hence π̂0

a
< π̂1

a
< π̂2, so I(π̂0, π̂1) > 0, I(π̂1, π̂2) > 0

and I(π̂0, π̂2) = I(π̂0, π̂1) + (π̂1, π̂2) > 1. Conversely,
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if I(π̂0, π̂2) > 1, let β̂ : π̂2 → π̂0 that apportions π̂0

into π̂2, with β̂(Clπ̂2
(℘)) = Clπ̂0

(℘). Set c = 1 and d =
I(π̂0, π̂2)−1, so c, d > 0, and we apply Lemma 10: there

is some π̂1 ∈ Π(Ê) (corresponding to π1 ∈ Π∗(E)),

two maps β̂d : π̂2 → π̂1 and β̂c : π̂1 → π̂0 such that
β̂c apportions π̂0 into π̂1, I(π̂0, π̂1) = c, β̂d apportions

π̂1 into π̂2, I(π̂1, π̂2) = d and β̂ = β̂cβ̂d. We have

thus π̂0

a
< π̂1

a
< π̂2 and item 1 of Lemma 12 gives

Clπ̂0
(℘) ⊆ Clπ̂1

(℘) ⊆ Clπ̂2
(℘). Therefore π0

pa
< π

pa
< π2.

We have thus shown that for π0

pa
< π2, I(π̂0, π̂2) > 0,

where I(π̂0, π̂2) > 1 if and only if π2 does not cover π0,
in other words, π2 covers π0 if and only if I(π0, π2) =

I(π̂0, π̂2) = 1, that is, π0

pa
≺ π2, so

pa
≺ is the covering

relation.

Let E be finite. By [16], Π(Ê), ordered by
a

≤ is
graded by hm, and (6) gives hm(π̂) = |E| − hc(π) =

hr(π) for all π ∈ Π∗(E). Hence for any π1, π2 ∈ Π∗(E)

we have

π1

pa
< π2 ⇒ π̂1

a
< π̂2 ⇒ hm(π̂1) < hm(π̂2)

⇒ hr(π1) < hr(π2) ⇒ hc(π1) > hc(π2)

and

π1

pa
≺ π2 ⇒ π̂1

a
≺ π̂2 ⇒ hm(π̂2) = hm(π̂1) + 1

⇒ hr(π2) = hr(π1) + 1 ⇒ hc(π2) = hc(π1)− 1 ,

so (Π∗(E),
pa

≤) is graded by hr, equivalently by −hc.

For π1

pa

≤ π2, π̂1

a

≤ π̂2, and [16] again gives I(π̂1, π̂2) =

hm(π̂2)− hm(π̂1), hence

I(π1, π2) = hr(π2)− hr(π1) = hc(π1)− hc(π2) .

As 0E is the least element, the height of π ∈ Π∗(E) is

hr(π)− hr(0E) = hr(π)− 0 = hr(π). ⊓⊔

We know from [16] that the apportioning order
a

≤

contains the merging order
m

≤, and from Theorem 5 that

the regional order
rg

≤ contains the merging
m

≤ and inverse

inclusion ⊇ orders; thus the partial apportioning order
pa

≤ contains also the merging
m

≤ and inverse inclusion ⊇
orders.

5.3 Partial merging

We will consider the intersection of the partial appor-

tioning
pa

≤ and linking
ln

≤ orders, we call it the partial

merging order, and write it
pm

≤. Thus by (8,13) we have
for any π1, π2 ∈ Π∗(E):

π1

pm

≤ π2 ⇐⇒

[
π1 ⋐ π2 & π1 ⊢ π2 &

supp(π1) ⊇ supp(π2)

]
. (15)

We will describe it from the both points of views of a

map β that partially apportions π1 into π2 and of a
map λ that links π1 to π2.

Let π1

pm

≤ π2; since π1

pa

≤ π2, we can describe the

relation between π1 and π2 in terms of the map β :
π2 → π1 that partially apportions π1 into π2, the map

α : supp
(
π1 \ β(π2)

)
→ β(π2) ∪ {b̂ack(π1)} and the

partial apportioning index of π1 into π2, I(π1, π2) =
|π1 \ β(π2)|. For every block A ∈ π1, as π1 ⊢ π2, A

overlaps at most one block of π2, soA∩supp(π2) is either

empty or included in a block of π2. More precisely, we
have one of the following three possibilities:

1. There is a block B ∈ π2 such that A ⊆ B; this can
be because either A = β(B) or A /∈ β(π2) and A

is merged with β(B), that is, α(p) = β(B) for all

p ∈ A.

2. A ⊆ back(π2); here A /∈ β(π2) and A is merged

with the background, that is, α(p) = b̂ack(π1) for

all p ∈ A.

3. supp(π2) ≬ A ≬ back(π2) and there is a block B ∈ π2

such that A ∩ supp(π2) ⊆ B; here A /∈ β(π2) and

we have α(p) = β(B) for p ∈ A ∩ supp(π2) and

α(p) = b̂ack(π1) for p ∈ A ∩ back(π2).

In other words, a block of π1 either is included in a block

of π2, or is removed (goes to the background back(π2)),
or is split into two parts, one being removed (merging

with the background), and the other is merged with

another block of π1; in the third case, we say that the

block is partially merged. See Figure 5.

Compared with the general case of π1

pa

≤ π2, we ex-

clude the case where for some k ≥ 2, there are k blocks

B1, . . . , Bk ∈ π2 overlapping A, and A is apportioned
between either the blocks β(B1), . . . , β(Bk) ∈ π1, or the

blocks β(B1), . . . , β(Bk) and the background b̂ack(π1).

We can now interpret the partial merging order π1

pm

≤
π2 in terms of a map that links π1 to π2. As in Lemma 6

and in the proof of Proposition 8, we define

π = {A ∈ π1 | ∃C ∈ π2, A ≬ C} ,

the set of blocks of π1 that overlap some block of π2,
and λ : π → π2 by λ(A) = C, for the unique block

C ∈ π2 such that A ≬ C. Then from the linking order

π1

ln

≤ π2 we have C ⊆
⋃
{A ∈ π | λ(A) = C} for every

C ∈ π2. But we have also π1 ⋐ π2, in other words every
block of π2 contains a block of π1, which means that for

every C ∈ π2, there is some A ∈ π such that λ(A) = C

and A ⊆ C.

Comparing the two descriptions in terms of the map
λ the and two maps β, α, we have β(π2) ⊆ π and for any

B ∈ β(π2), λ(B) = β−1(B), which is the block of π2

containing B; for B ∈ π \β(π2), λ(B) is the block of π2
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Fig. 15 Left: From π1; middle: π2; here π1

pm

≤ π2, and the
blocks of π1 to which others will be partially merged are
shown hatched. Right: all portions of blocks of π1 included
in back(π2) are shown in a lighter colour, the other portions
keep their coulour; we show π, the maps β, α and λ.

containing B∩supp(π2), thus for all p ∈ B∩supp(π2) we

have β−1(α(p)) = λ(B). For B ∈ π1 \ π, B ⊆ back(π2).

See Figure 15.

We write π1

pm
≺ π2 and say that π2 pm-covers π1, if

π1

pm
< π2 and I(π1, π2) = 1, in other words if π1

pa
≺ π2

and π1 ⊢ π2. In practice this means that π1 6= Ø and
for some block A ∈ π1, one of the following holds:

1. π2 = π1 \ {A}: A is removed;

2. |π1| ≥ 2 and there is B ∈ π1 \ {A} such that π2 =(
π1 \ {A,B}

)
∪ {A ∪B}: A is merged with B;

3. |π1| ≥ 2, |A| ≥ 2 and there are C ⊂ A with C 6= ∅
and B ∈ π1 \ {A} such that π2 =

(
π1 \ {A,B}

)
∪

{C ∪ B}: A is split into two non-void parts C and

A \ C, C is merged with the block B and A \ C is
removed, that is, added to the background.

We will now characterize the partial merging order

from the point of view of partial apportioning:

Theorem 14 Partial merging
pm

≤ is a partial order re-

lation on Π∗(E); it contains the regional
rg

≤ order; in

other words, for any π1, π2 ∈ Π∗(E), π1

rg

≤ π2 implies

π1

pm

≤ π2. The greatest and least elements are Ø and 0E.

The covering relation is
pm
≺.

Let E be finite. Then (Π∗(E),
pm

≤) is graded by hr,

or equivalently by −hc, that is, for any π1, π2 ∈ Π∗(E)

we have

π1

pm
< π2 =⇒ hc(π1) > hc(π2) ,

π1

pm

≺ π2 =⇒ hc(π2) = hc(π1)− 1 .

For π ∈ Π∗(E), the height of π is hr(π). For π1, π2 ∈

Π∗(E) such that π1

pm

≤ π2, we have I(π1, π2) = hr(π2)−
hr(π1) = hc(π1)− hc(π2).

Proof Being the intersection of the partial apportion-

ing
pa

≤ and linking
ln

≤ orders, both of which are partial

order relation on Π∗(E) containing the regional order
rg

≤, the partial merging order
pm

≤ will also be a partial

order relation on Π∗(E) containing
rg

≤.

For any π ∈ Π∗(E), 0E

rg

≤ π
rg

≤ Ø, hence 0E

pm

≤ π
pm

≤
Ø, thus Ø and 0E are the greatest and least elements.

Let π0, π2 ∈ Π∗(E) such that π0

pm

< π2; then π0

pa

<

π2, π̂0

a
< π̂2 and I(π0, π2) = I(π̂0, π̂2) > 0. If π2 does not

cover π0, then for some π1 ∈ Π∗(E) we have π0

pm
< π1

pm
<

π2, hence π̂0

a
< π̂1

a
< π̂2, so I(π̂0, π̂1) > 0, I(π̂1, π̂2) > 0

and I(π̂0, π̂2) = I(π̂0, π̂1) + (π̂1, π̂2) > 1. Conversely,
if I(π̂0, π̂2) > 1, let β̂ : π̂2 → π̂0 that apportions π̂0

into π̂2, with β̂(Clπ̂2
(℘)) = Clπ̂0

(℘). As in the proof

of Theorem 13, we obtain π̂1 ∈ Π(Ê) according to

Lemma 10, with π̂0

a
< π̂1

a
< π̂2 and π0

pa

< π1

pa

< π2.
As β̂(Clπ̂2

(℘)) = Clπ̂0
(℘) and π0 ⊢ π2, items 2 and 3 of

Lemma 12 give π1 ⊢ π2 and π0 ⊢ π1, hence π0

pm
< π

pm
< π2.

We have thus shown that for π0

pm
< π2, I(π̂0, π̂2) > 0,

where I(π̂0, π̂2) > 1 if and only if π2 does not cover π0,

in other words, π2 covers π0 if and only if I(π0, π2) =

I(π̂0, π̂2) = 1, that is, π0

pm

≺ π2, so
pm

≺ is the covering

relation.

For any π1, π2 ∈ Π∗(E), combining Theorem 13

with the inclusion of
pm

≤ and
pm

≺ in
pa

≤ and
pa

≺ respectively,

we get π1

pm
< π2 ⇒ π1

pa
< π2 ⇒ hc(π1) > hc(π2) and

π1

pm
≺ π2 ⇒ π1

pa
≺ π2 ⇒ hc(π2) = hc(π1) − 1, hence

(Π∗(E),
pm

≤) is graded by −hc, equivalently by hr. As in

Theorem 13, we obtain the height of π equal to hr(π)

and I(π1, π2) = hr(π2)− hr(π1) = hc(π1)− hc(π2). ⊓⊔

We know from Theorem 5 that the regional order
rg

≤ contains the merging
m

≤ and inverse inclusion ⊇ or-

ders; thus the partial merging order
pm

≤ contains also the

merging
m

≤ and inverse inclusion ⊇ orders.

5.4 Possible applications of partial apportioning and

partial merging

Partial apportioning is useful in order to eliminate “par-
asitic” blocks in an image segmentation [20,21] in the

case where this segmentation consists of a partial par-

tition of objects against a background; in general, such

“parasitic” blocks correspond to noise or lie inside tran-
sitions between homogeneous regions, themselves form-

ing blocks (or the background). Thus “parasitic” blocks

will be removed, and their contents will be apportioned
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between neighbouring blocks corresponding to signifi-

cant objects, and the background, so the partial par-
tition will grow according to the partial apportioning

order.

Let us return to the example given at the end of

Subsection 3.2, of a partial partition whose blocks will

be rated as of high, medium or low quality. We elimi-
nated blocks of low quality and kept those of high qual-

ity, while those of medium quality were retained only

on certain conditions (for instance being adjacent to a
high-quality block, as in double thresholding). Now sup-

pose that blocks of medium quality can be subjected to

a more detailed examination, and split into two parts,
of medium-high and medium-low quality respectively,

where the medium-low one is eliminated; now if the

medium-high part is adjacent to a high quality block

and their merging retains a high quality, it is merged
with it, otherwise it is eliminated. We operate thus a

partial merging of medium quality blocks with neigh-

bouring high quality ones.

6 The joining order

We will consider the order where a partial partition is

increased by any operation on blocks considered in this
paper, namely deflating, removing, merging, apportion-

ing, partial apportioning, and partial merging. In fact,

all these operations can be generated by block appor-

tioning followed by block deflating. This order will con-
tain all other orders considered in this paper, thus any

improvement of a partial partition according to one of

these orders will mean a growth for this new order. Its
general definition in terms of a relation between the

blocks of the two partial partitions is far from intuitive,

and we do not see yet possible applications for it, hence
we deem this order to be less interesting than the pre-

vious ones; maybe future problems could justify it.

We define the joining order
jn

≤ as follows: for π1, π2 ∈

Π∗(E), π1

jn

≤ π2 iff supp(π1) ⊇ supp(π2) and there is an

injection f : π2 → π1 such that for any block A ∈ π2,

f(A) ∩ supp(π2) ⊆ A, in other words, f(A) overlaps no
other block of π2 than A. We give here another equiv-

alent definition:

Lemma 15 Let π1, π2 ∈ Π∗(E). Define A(π1, π2) as

the set of blocks of π1 that do not overlap any block of

π2:

A(π1, π2) = {B ∈ π1 | B ∩ supp(π2) = ∅} ;

then B(π1, π2) as the set of blocks of π2 such that there

is a block of π1 that overlaps it but does not overlap any

other block of π2:

B(π1, π2) =

{
C ∈ π2

∃B ∈ π1,

∅ 6= B ∩ supp(π2) ⊆ C

}
.

Then π1

jn

≤ π2 iff
∣∣A(π1, π2)

∣∣ ≥
∣∣π2 \ B(π1, π2)

∣∣ and

supp(π1) ⊇ supp(π2).

Proof Let π1

jn

≤ π2, so supp(π1) ⊇ supp(π2) and for all

C ∈ π2, f(C) ∩ supp(π2) ⊆ C; if ∅ 6= f(C) ∩ supp(π2),

then there isB = f(C) ∈ π1 with ∅ 6= B∩supp(π2) ⊆ C,
so C ∈ B(π1, π2); thus for C ∈ π2 \B(π1, π2), we have

f(C) ∩ supp(π2) = ∅, that is, f(C) ∈ A(π1, π2); as f is

an injection, we get
∣∣A(π1, π2)

∣∣ ≥
∣∣π2 \B(π1, π2)

∣∣.
Let

∣∣A(π1, π2)
∣∣ ≥

∣∣π2 \ B(π1, π2)
∣∣. There is thus

an injection g : π2 \ B(π1, π2) → A(π1, π2), so for

C ∈ π2 \ B(π1, π2) we set f(C) = g(C); then f(C) ∩
supp(π2) = ∅ ⊆ C. For C ∈ B(π1, π2) we choose one
B ∈ π1 such that ∅ 6= B ∩ supp(π2) ⊆ C, and set

f(C) = B. Thus we have f : π2 → π1 such that for

all C ∈ π2, f(C) ∩ supp(π2) ⊆ C. We now show that f
is injective. For two distinct C1, C2 ∈ π2 \ B(π1, π2),

f(C1) = g(C1) 6= g(C2) = f(C2) by definition; for

two distinct C1, C2 ∈ B(π1, π2), for i = 1, 2 we have
∅ 6= f(Ci) ∩ supp(π2) ⊆ Ci, but as C1 and C2 are dis-

joint, the non-empty sets f(C1)∩ supp(π2) and f(C2)∩
supp(π2) must also be disjoint, thus f(C1) 6= f(C2); fi-

nally for C1 ∈ π2 \ B(π1, π2) and C2 ∈ B(π1, π2), we
have f(C1) ∈ A(π1, π2), so f(C1)∩ supp(π2) = ∅, while
f(C2) ∩ supp(π2) 6= ∅, so f(C1) 6= f(C2). Assuming

supp(π1) ⊇ supp(π2), we deduce that π1

jn

≤ π2. ⊓⊔

For example in Figure 6, we have
∣∣π2 \B(π1, π2)

∣∣ =∣∣A(π1, π2)
∣∣ = 3 and

∣∣B(π1, π2)
∣∣ = 1; for the unique

block C ∈ B(π1, π2), there are two blocks of π1 over-
lapping C but no other block of π2, so two possible

choices for f(C). The injection f is then built as in the

above proof.

Theorem 16 The joining order
jn

≤ is a partial order re-

lation on Π∗(E). It contains the partial apportioning
pa

≤

and linking
ln

≤ orders, that is, for any π1, π2 ∈ Π∗(E),

each of π1

pa

≤ π2 and π1

ln

≤ π2 implies π1

jn

≤ π2. The

greatest and least elements are Ø and 0E. For any

π1, π2 ∈ Π∗(E) we have

π1

a

≤ π2 ⇐⇒
[
π1

jn

≤ π2 & supp(π1) = supp(π2)
]
. (16)

(a) For non-void partial partitions (inΠ∗(E)\{Ø}):
the joining order is generated by apportioning followed

by inverse inflating: ∀π1, π2 ∈ Π∗(E) \ {Ø},

π1

jn

≤ π2 ⇐⇒ ∃π ∈ Π∗(E) \ {Ø}, π1

a

≤ π
i

≥ π2 .
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See Figure 6. The maximal elements are the 1{p} for

p ∈ E. The covering relation is
a
≺ ∪

i
≻.

Let E be finite. Then Π∗(E) \ {Ø} ordered by
jn

≤ is

graded by (hr, hb), equivalently by (−hc,−hs), for (
a
≺

,
i
≻), that is, for any π1, π2 ∈ Π∗(E) \ {Ø} we have

π1

jn
< π2 =⇒



hs(π1) ≥ hs(π2) &
hc(π1) ≥ hc(π2) &

(hs + hc)(π1) > (hs + hc)(π2)


 ,

π1

a
≺ π2 =⇒

[
hs(π2) = hs(π1) &
hc(π2) = hc(π1)− 1

]
,

π1

i
≻ π2 =⇒

[
hc(π2) = hc(π1) &

hs(π2) = hs(π1)− 1

]
.

For π ∈ Π∗(E) \ {Ø}, the height of π is hr(π)+ hb(π).

(b) For Ø: Ø covers an element of Π∗(E) \ {Ø}
iff it is maximal, i.e., it is 1{p} for some p ∈ E, and

then 1{p}

s
≻ Ø. When E is finite, the height of Ø is

2|E| − 1 = hr(Ø) + hb(Ø)− 1.

Proof First we show that the joining order
jn

≤ contains

the partial apportioning order
pa

≤. Indeed, if π1

pa

≤ π2,

then supp(π1) ⊇ supp(π2) and we have an injection
β : π2 → π1 that partially apportions π1 into π2, that is,

for every A ∈ π2, β(A) ⊆ A, so we get β(A)∩supp(π2) ⊆
A ∩ supp(π2) = A; taking f = β, we deduce that

π1

jn

≤ π2. Next we show that the joining order con-

tains the linking order
ln

≤. Indeed, if π1

ln

≤ π2, then
supp(π1) ⊇ supp(π2) and π1 ⊢ π2; for any A ∈ π2, as

A ⊆ supp(π2) ⊆ supp(π1), there is at least one B ∈ π1

such that B ≬ A, so we choose one such B for f(A);
as π1 ⊢ π2 and f(A) ≬ A, f(A) does not overlap any

other block of π2, so f(A) ∩ supp(π2) ⊆ A; for any two

distinct A1, A2 ∈ π2, we have f(A1) ≬ A1, f(A2) ≬ A2,

but f(A1) does not overlap A2, so f(A1) 6= f(A2), and

f is injective. Hence π1

jn

≤ π2.

If π1

a

≤ π2, then supp(π1) = supp(π2) and π1

pa

≤ π2,

hence π1

jn

≤ π2. Conversely, if π1

jn

≤ π2 and supp(π1) =
supp(π2), then for every A ∈ π2 we have f(A) = f(A)∩
supp(π1) = f(A) ∩ supp(π2) ⊆ A, so π1 ⋐ π2, hence

π1

a

≤ π2. Thus (16) holds.

We now show that
jn

≤ is a partial order relation on

Π∗(E). First
jn

≤ is reflexive: supp(π) ⊆ supp(π) and tak-

ing for f the identity on π, for all A ∈ π we have

f(A) ∩ supp(π) = A ⊆ A. Next, it is antisymmetric:

if π1

jn

≤ π2 and π2

jn

≤ π1, then by double inclusion we

get supp(π1) = supp(π2), and (16) gives π1

a

≤ π2 and

π2

a

≤ π1, hence π1 = π2. Finally, it is transitive: let

π0

jn

≤ π1

jn

≤ π2, so supp(π0) ⊇ supp(π1) ⊇ supp(π2), and

there are two injections f2 : π2 → π1 and f1 : π1 → π0

such that for any A ∈ π2, f2(A)∩ supp(π2) ⊆ A and for
any B ∈ π1, f1(B)∩supp(π1) ⊆ B; thus f1f2 is an injec-

tion π2 → π0 and for any A ∈ π2, f1f2(A)∩ supp(π1) ⊆
f2(A), so

f1f2(A) ∩ supp(π2) = f1f2(A) ∩
(
supp(π1) ∩ supp(π2)

)

=
(
f1f2(A) ∩ supp(π1)

)
∩ supp(π2)

⊆ f2(A) ∩ supp(π2) ⊆ A ,

and we deduce that π0

jn

≤ π2.

Since the joining order contains the linking order, it

inherits from it its greatest and least elements Ø and

0E . The same argument as in the proof of Theorem 9
shows that the maximal elements of Π∗(E) \ {Ø} are

the 1{p} for p ∈ E.

If π1

a

≤ π
i

≥ π2, then π1

pa

≤ π
ln

≤ π2, so π1

jn

≤ π
jn

≤ π2,

thus π1

jn

≤ π2. Conversely, let π1, π2 ∈ Π∗(E) \ {Ø}

such that π1

jn

≤ π2: supp(π1) ⊇ supp(π2) and there is
an injection f : π2 → π1 such that for all A ∈ π2,

f(A)∩ supp(π2) ⊆ A. For any two distinct A1, A2 ∈ π2,

A1 ∩ A2 = ∅, and as f is injective, f(A1) 6= f(A2), so
f(A1) ∩ f(A2) = ∅; now

f(A1) ∩A2 = f(A1) ∩
(
supp(π2) ∩A2

)

=
(
f(A1) ∩ supp(π2)

)
∩A2 ⊆ A1 ∩A2 = ∅ ,

and similarly f(A2) ∩A1 = ∅; therefore

(
A1 ∪ f(A1)

)
∩
(
A2 ∪ f(A2)

)
=(

A1 ∩A2

)
∪
(
f(A1) ∩A2

)

∪
(
A1 ∩ f(A2)

)
∪
(
f(A1) ∩ f(A2)

)
= ∅.

Thus the A ∪ f(A) for A ∈ π2 are pairwise disjoint;

moreover, as A ∈ π2 and f(A) ∈ π1, we get A ⊆
supp(π2) ⊆ supp(π1) and f(A) ⊆ supp(π1), so A ∪
f(A) ⊆ supp(π1). Let Z = supp(π1) \

⋃
A∈π2

(
A∪ f(A)

)

and choose any map g : Z → π2. Then the g−1(A) =

{p ∈ Z | g(p) = A} for A ∈ π2 are pairwise disjoint,

and as Z is disjoint from all A ∪ f(A), each g−1(A0)
(A0 ∈ π2) is disjoint from all A∪ f(A) (A ∈ π2). Hence

π = {A∪f(A)∪g−1(A) | A ∈ π2} is a partial partition.

See Figure 16. We have

supp(π) =
⋃

A∈π2

(
A ∪ f(A)

)
∪ Z = supp(π1) .

Now each block of π is some A∪f(A)∪g−1(A), A ∈ π2,

and it contains f(A) ∈ π1; thus π1 ⋐ π, hence π1

a

≤ π.

Now for any A ∈ π2, A ⊆ A ∪ f(A) ∪ g−1(A) ∈ π and

every A ∪ f(A) ∪ g−1(A) ∈ π contains A but no other
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Fig. 16 Top row: from Figure 6, π1, π2 and the injection
f : π2 → π1 (indicated by arrows); for each A ∈ π2, f(A)
is shown with the same hatching as A (but without colour),
while other blocks of π1 are shown without hatching. Bottom
row, left: we show the A and f(A) for A ∈ π2, and the portion
Z of supp(π1) not covered by them; the dotted lines indicate
how Z will be apportioned. Bottom row, right: apportioning
Z to the A ∪ f(A), A ∈ π2, we obtain π.

block A′ ∈ π2 (because A′ is disjoint from A, f(A) and

g−1(A)), hence π2

i

≤ π.

Let
jn

≺ be the covering relation for
jn

≤. As in the proof
of Theorem 9, we apply Lemmas 1 and 2 with Π∗(E) \

{Ø},
jn

≤,
jn
≺,

a

≤,
a
≺,

i

≥,
i
≻, P(E), ⊇ and supp standing

for P , ≤, ≺,
α

≤,
α
≺,

β

≤,
β
≺, Q, ⊑ and f . Thus for any

π1, π2 ∈ Π∗(E) \ {Ø}: (i) if π1

jn
≺ π2, then π1

a
≺ π2

or π1

i
≻ π2; (ii) if π1

a
≺ π2, then π1

jn
≺ π2. Let us now

show that (iii) if π1

i
≻ π2, then π1

jn
≺ π2. Let π1

i
≻

π2, where π2 is obtained by removing a point p from
a block of π1 that also contains another point; then

π2 = {C \ {p} | C ∈ π1}. As in the proof of Theorem 9,

a chain π1

jn

≤ · · ·
jn

≤ π2 reduces to π1

a

≤ π3

i
> π4

a

≤ π2,

where π4 is obtained by removing the point p from a
block of π3, thus π4 = {C \ {p} | C ∈ π3}. A block of

π2 is of the form C \{p} for C ∈ π1; as π4 ⋐ π2, C \{p}
contains a block of π4, which is of the form B \ {p}
for B ∈ π3; as π1 ⋐ π3, B contains a block A ∈ π1;

thus A \ {p} ⊆ B \ {p} ⊆ C \ {p}, where A,C ∈ π1,

and as A \ {p}, C \ {p} 6= ∅, we have A = C, hence

B \ {p} = A \ {p} = C \ {p}, with C \ {p} ∈ π2 and
B \ {p} ∈ π4. Thus each block of π2 is equal to a block

of π4, so π2 ⊆ π4, and as π4

a

≤ π2, we deduce from [16]

that π4 = π2. Since C = A ⊆ B and C \ {p} = B \ {p},
we have C = B or B = C ∪ {p}. Suppose that for
some C ∈ π1 we have B = C ∪ {p} ∈ π3; thus the

block of π1 containing p has been apportioned, with

the part {p} merged with C; as this apportioned block

contains at least another point, there is another part D

merged with another block C ′ ∈ π1, so we have B′ ∈ π3

with C ′ ∪ D ⊆ B′, D 6= ∅ and p /∈ D; then the above

argument with C ′ instead of C will lead to B′ = C ′

or B′ = C ′ ∪ {p}, a contradiction. Thus C = B for
all C ∈ π1, so every block of π1 is equal to a block of

π3, hence π1 ⊆ π3, and as π1

a

≤ π3, we deduce from

[16] that π1 = π3. Therefore π1

jn

≺ π2. We have thus

shown that the covering relation for
jn

≤ on Π∗(E) \ {Ø}

is
a
≺ ∪

i
≻.

The same argument as in the proof of Theorem 9

shows that for π ∈ Π∗(E) \ {Ø}, π
jn

≺ Ø iff π is a
maximal element of Π∗(E)\{Ø}, that is, 1{p} for some

p ∈ E; we have thus 1{p}

jn

≺ Ø and 1{p}

s
≻ Ø.

For the grading and height, we take the argument

in the proof of Theorem 9, where we replace
m

≤,
m
< and

m
≺ by

a

≤,
a
< and

a
≺ respectively. ⊓⊔

Now the partial apportioning order
pa

≤ contains the

apportioning
a

≤ order, the linking order
ln

≤ contains the

inverse inclusion-inflating
i

⊇ and inverse inflating
i

≥ or-

ders, and both contain the merging
m

≤, inverse inclusion

⊇, regional
rg

≤ and partial merging order
pm

≤. It follows

that the joining order
jn

≤ contains also the merging
m

≤,

apportioning
a

≤, inverse inflating
i

≥, inverse inclusion

⊇, inverse inclusion-inflating
i

⊇ , regional
rg

≤ and partial

merging
pm

≤ orders.

7 Discussion and conclusion

7.1 Review of our orders on partial partitions

The standard order ≤ on Π∗(E) was first considered

by Dras̆kovic̆ová [6,7] and further studied in [12,13]; to-

gether with the identity, it remained for a long time the

only known partial order relation onΠ∗(E). Then Serra
introduced the building order ⋐ [20,21]. A systematic

study of orders on partial partitions was initiated by

the author: 5 new orders were introduced in [15] and 3
more in [16]. Among them, 4 are simple: the inclusion

⊆, inflating
i

≤, merging
m

≤ and apportioning
a

≤ orders,

where apportioning
a

≤ is a generalization of merging
m

≤.

The other orders are compound, each one being gener-

ated by combining two simple orders; they are the stan-
dard order ≤ and the 4 other new orders: the inclusion-

inflating
i

⊆, merging-inflating
mi

≤, apportioning-inflating
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ai

≤ and extended
e

≤ orders. We give below their genera-

tion by combining simple orders:

–
i

⊆ combines ⊆ and
i

≤,

–
mi

≤ combines
m

≤ and
i

≤,

–
ai

≤ combines
a

≤ and
i

≤,

– ≤ combines
m

≤ and ⊆,

–
e

≤ combines
a

≤ and ⊆.

Note that the standard ≤ and extended
e

≤ also contain

the inflating order
i

≤. Indeed, in item 1 of Proposition 10

of [15] we showed that inflating blocks can be achieved
by creating then merging blocks: ∀π1, π2 ∈ Π∗(E),

π1

i

≤ π2 =⇒ ∃π ∈ Π∗(E), π1 ⊆ π
m

≤ π2 .

The standard order and the 8 new orders of [15,16] are

graded; the 4 simple orders have a simple grading, the

5 compound ones have a double grading. For all these
orders, growing a partial partition either preserves or

increases its support, while existing blocks can grow by

merging or inflating.

These orders of [15,16] are relevant in image filter-
ing, where one aims at producing large homogeneous

zones in images, and also in modeling image segmenta-

tion based on region growing (such as the watershed),

as well as hierarchies of segmentations [12,15,16].

In this paper we have introduced several new or-

ders on Π∗(E), where in a growing partial partition,

both the support and the number of blocks can only

decrease or remain equal. They all contain the regional

order
rg

≤ generated by the merging
m

≤ and inverse inclu-

sion ⊇ orders, so merging or removing blocks increases

the partial partition. Thus they share the latter’s least
element 0E and greatest element Ø.

The regional
rg

≤, partial merging
pm

≤, and partial ap-

portioning
pa

≤ orders are simple, and when E is finite

they all share the same simple grading by hr (equiva-
lently, by −hc), which counts the decrease of the num-

ber of blocks: the growth of a partial partition neces-

sarily decreases the number of blocks. Although the re-

gional order
rg

≤ combines two operations, namely block

removal and block merging, the two operations cannot

be counted separately; as explained above, removing k
blocks can be obtained by k− 1 successive block merg-

ings followed by the removal of the merged block. In

fact, the regional and partial merging orders are in-

cluded in the partial apportioning order, so the op-
erations of merging, apportioning, removing or partial

merging of blocks are particular cases of partial appor-

tioning.

partial merging

joining

linking

partial apportioning

rg

pa

pm

ln

jn

regional

Fig. 17 Hasse diagram of the 5 new orders.

These simple orders are incompatible with block de-

flating: if π1

i

≥ π2 and π1

pa

≤ π2, then π1 = π2; indeed,

π1

i

≥ π2 ⇒ π1 ⋑ π2 [15], π1

pa

≤ π2 ⇒ π1 ⋐ π2 (13)

and the antisymetry of ⋐ leads to the equality. More

intuitively, when E is finite, deflating blocks decreases
the support of the partial partition without changing

the number hc(π) of blocks.

We have two compound orders containing the in-

verse inflating order
i

≥, the linking
ln

≤ and joining
jn

≤

orders, they combine
i

≥ with respectively the merging
m

≤ and apportioning
a

≤ order. They also contain the
inverse inclusion order ⊇. Indeed, in item 3 of Pro-

position 10 of [15] we showed that for non-void par-

tial partitions, removing some—but not all—blocks can
be achieved by merging blocks, then deflating blocks:

∀π1, π2 ∈ Π∗(E) \ {Ø},

π1 ⊇ π2 =⇒ ∃π ∈ Π∗(E), π1

m

≤ π
i

≥ π2 .

On the other hand, the empty partial partition Ø is not

obtained by combining block mergings and deflations, it

is necessary to remove a last block. Thus these orders

are effectively compound on Π∗(E) \ {Ø}. When E
is finite, these two orders restricted to Π∗(E) \ {Ø}
have a double grading: hr (equivalently, −hc) counts

the decrease of the number of blocks, obtained by block
mergings or apportionings, and hb (equivalently, −hs)

counts the decrease of the size of the support, obtained

by block deflations.
The Hasse diagram of the inclusion relation between

the regional, linking, partial apportioning, partial merg-

ing and joining orders is shown in Figure 17.

In [16] it was shown that the building order is gener-
ated by composing the inverse inclusion ⊇ and inflating
i

≤ orders; it also contains the merging order. Indeed, in

item 2 of Proposition 10 of [15] we showed that merg-

ing blocks can be achieved by removing then inflating
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blocks: ∀π1, π2 ∈ Π∗(E),

π1

m

≤ π2 =⇒ ∃π ∈ Π∗(E), π1 ⊇ π
i

≤ π2 .

The building order is not graded and does not satisfy

the Jordan-Dedekind chain condition. Moreover when

E is finite, its covering chains take a strange form, see
the Appendix in [16]. We think that this is related to the

fact that this order does not involve any condition on

the support, which can alternatively grow and shrink.

In the same way as [15,16] considerered all combi-

nations of the basic simple orders ⊆,
i

≤,
m

≤ and
a

≤, one
can consider the combinations of one with the inverse

of another (excluding the combination of apportioning
a

≤ with the inverse
m

≥ of merging, since
m

≤ is included

in
a

≤). We have the following combinations of one basic

order with the inverse of another:

– ⋐ combines
i

≤ and ⊇,

–
rg

≤ combines
m

≤ and ⊇,

–
ln

≤ combines
m

≤ and
i

≥,

–
jn

≤ combines
a

≤ and
i

≥.

There remains one further combination, that of
a

≤ and
⊇. We have checked that this order (containing the re-

gional order) consists of either apportionings or partial

apportionings where among the partially apportioned
blocks there is one that is completely removed. Thus

this order is not really meaningful in practice, since we

can consider instead the partial apportioning order
pa

≤,
which is both wider and conceptually simpler.

Similarly, the joining order
jn

≤, which is generated

by combining the apportioning
a

≤ and inverse inflating
i

≥ orders, has a counter-intuitive definition in terms of

blocks. Is there a wider and conceptually simpler order?

Note that any order strictly containing
jn

≤ would have

to involve a new operation on partial partitions.

On the other hand, the regional
rg

≤, linking
ln

≤ and

partial apportioning
pa

≤ orders are conceptually simple

and seem also to have some practical uses. We have
shown that in a hierarchy of partitions, the partial par-

tition of block boundaries increases for the regional or-

der. We have hinted that the linking order can be used
to describe the simplification of segmentation markers,

or applied in geographic information processing. We

have also indicated that the justification of apportion-

ing by the need to eliminate “parasitic segmentation
classes” lying along transitions [20,21] is also valid for

the partial apportioning order if the segmentation gives

a partial partition with a background.

Finally, we are uncertain about the possible uses

of the partial merging order
pm

≤; it was introduced as

the intersection of the linking and partial apportioning

orders. More applications are needed for the new orders

described in this paper.

Partial partitions are more flexible than partitions,

both for practical uses [12] in image filtering and seg-

mentation, and in terms of possible orders [15]. We saw
in [15,16] that restricting orders to partial partitions

with a fixed support, for instance to partitions of E,

then

– the inclusion ⊆, inflating
i

≤ and inclusion-inflating
i

⊆ orders reduce to the identity =;

– the standard ≤ and merging-inflating
mi

≤ orders re-

duce to the merging order
m

≤;

– the building ⋐, apportioning-inflating
ai

≤ and ex-

tended
e

≤ orders reduce to the apportioning order
a

≤.

Here we see that by restricting partial partitions to a
fixed support,

– by (9), the regional
rg

≤, partial merging
pm

≤ and linking
ln

≤ orders reduce to the merging order
m

≤;

– by (16), the partial apportioning
pa

≤ and joining or-

ders
jn

≤ reduce to the apportioning order
a

≤.

In other words, for partial partitions with a fixed sup-

port, the only orders that we get are the identity =,

merging
m

≤ and apportioning
a

≤ orders.

7.2 Conclusion and perspectives

This paper ends our study of orders on partial par-

titions relevant for image analysis. The previous two

papers [15,16] introduced 8 new orders relevant for im-
age filtering and segmentation. Here we introduced 5

new ones, motivated by image simplification or reduc-

tion: the regional, linking, partial apportioning, partial
merging and joining orders; the inclusion relation be-

tween them is shown in Figure 17. We did not explore

further combinations, such as that of the apportioning

order with the regional or partial merging orders, they
give only some special cases of partial apportioning.

The most important contribution of this paper is the

regional order, which is isomorphic to the refinement
order for partitions on the extended space in which a

background marker point has been added. It is also in-

volved in hierarchies of partitions. We think that the
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linking and partial apportioning orders should also be

useful.

An interesting question is whether there exist other

basic operations for simplifying partial partitions than
the ones we used here: merging, partial merging, ap-

portioning, partial apportioning, removing and deflat-

ing blocks. A related question is whether the joining
order is included in a larger order that is conceptually

simpler, using thus more general operations.

In [12] we discussed “connective” image segmenta-

tion in the framework of the two complete lattices of

partitions for the refinement order and partial parti-
tions for the standard order, and we indicated that the

set of “good” (partial) partitions (w.r.t. to a criterion)

had to be closed under supremum, so the “best” choice

was the supremum of all “good” ones. In [14], we dis-
cussed the idea in the case where the order does not

constitute a lattice, then the “best” partial partition

must be chosen among all “good” ones as one that is
maximal for the order. The same logic should be ap-

plied here: if we have a criterion for partial partitions

associated to an image, the “best” choice for a reduced
or simplified image should be one whose associated par-

tial partition should be, among all those satisfying the

criterion, one that is maximal for the order.

Several criteria for image segmentation were given

in [17], they were “connective” in the sense that the

set of corresponding (partial) partitions is stable under
supremum. We also saw in [14] that some practical is-

sues (such as transforming a partial partition by acting

separately on each block, or by a succession of several
operations) can constrain the order to be used. A pos-

sible axis of research is the study of criteria for image

simplification or reduction having interesting proper-
ties in relation to some of the orders studied here, or

the restrictions on the orders imposed by practical im-

age processing requirements.

A More about single overlap

In [15] we indicated that the singularity relation satisfies the
following:

∀π1, π2, π3, π4 ∈ Π∗(E),[
π1 ⇚ π2 & π3 ⊆ π1 & π4 ⊆ π2

]
=⇒ π3 ⇚ π4 .

We have the counterpart of it for single overlap:

∀π1, π2, π3, π4 ∈ Π∗(E),[
π1 ⊢ π2 and π3 ⊆ π1 and π4 ⊆ π2

]
=⇒ π3 ⊢ π4 .

(17)

In particular, single overlap is preserved by restriction: for
any A ∈ P(E), π1 ⊢ π2 ⇒ π1 ∩ P(A) ⊢ π2 ∩ P(A). Now the
following complements Proposition 7:

Proposition 17 For any π1, π2 ∈ Π∗(E),

∀π0 ∈ Π∗(E), π0 ≤ π1 ⊢ π2 =⇒ π0 ⊢ π2 ,

∀A ∈ P(E), π1 ⊢ π2 =⇒ π1 ⊢ π2 ∧ 1A ,

∀A ⊇ supp(π1), π1 ⊢ π2 ⇐⇒ π1 ⊢ π2 ∧ 1A .

In particular, single overlap is preserved by truncation: for any

A ∈ P(E), π1 ⊢ π2 ⇒ π1 ∧ 1A ⊢ π2 ∧ 1A.

Proof Let π1 ⊢ π2, that is (by Proposition 7), π1 ∧1supp(π2) ≤
π2. Then for π0 ∈ Π∗(E) such that π0 ≤ π1, we get π0 ∧
1supp(π2) ≤ π1 ∧ 1supp(π2) ≤ π2, that is, π0 ⊢ π2.

For A ∈ P(E) we have supp(π2 ∧ 1A) = supp(π2) ∩ A, so
1supp(π2∧1A) = 1supp(π2)∩A = 1supp(π2) ∧ 1A, hence

π1 ∧ 1supp(π2∧1A) = (π1 ∧ 1supp(π2)) ∧ 1A ≤ π2 ∧ 1A ,

thus π1 ⊢ π2∧1A. Combining both results with π0 = π1∧1A,
we get π1 ⊢ π2 ⇒ π1 ∧ 1A ⊢ π2 ⇒ π1 ∧ 1A ⊢ π2 ∧ 1A: single
overlap is preserved by truncation.

Suppose finally that A ⊇ supp(π1); then π1 ≤ 1A; now let
π1 ⊢ π2 ∧ 1A, that is, π1 ∧ 1supp(π2∧1A) ≤ π2 ∧ 1A; we saw
above that 1supp(π2∧1A) = 1supp(π2) ∧ 1A; hence we get

π1 ∧ 1supp(π2) = (π1 ∧ 1A) ∧ 1supp(π2) = π1 ∧ (1supp(π2) ∧ 1A)

= π1 ∧ 1supp(π2∧1A) ≤ π2 ∧ 1A ≤ π2 ,

therefore π1 ⊢ π2. ⊓⊔

As a counterpart of single overlap, we could consider the
relation given by “every block of π1 overlaps (at least) one
block of π2”, which is equivalent both to π1 ∧ 1supp(π2) ⋐ π1

and to π1∧π2 ⋐ π1. However it seems that this relation is too
general to produce a new partial order relation by intersecting
it with other relations.
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the-art report. In: T. Möller, B. Hamann, R.D. Russell
(eds.) Mathematical Foundations of Scientific Visualiza-
tion, Computer Graphics, and Massive Data Exploration,
p. 109125. Springer-Verlag (2009)

3. Bell, E.T.: Exponential numbers. The American Mathe-
matical Monthly 41(7), 411–419 (1934)

4. Bertrand, G., Couprie, M.: Isthmus based parallel and
symmetric 3D thinning algorithms. Graphical Models
80, 1–15 (2015). DOI 10.1016/j.gmod.2015.05.001

5. Birkhoff, G.: Lattice Theory, American Mathematical So-

ciety Colloquium Publications, vol. 25, 8th printing, 3rd
edn. American Mathematical Society (1995)
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