
ar
X

iv
:1

60
5.

03
72

1v
2 

 [
m

at
h.

A
P]

  1
9 

Fe
b 

20
17

Journal of Mathematical Imaging and Vision manuscript No.
(will be inserted by the editor)

Cross-diffusion systems for image processing: II. The
nonlinear case
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Abstract In this paper we study the application of
2 × 2 nonlinear cross-diffusion systems as mathemat-

ical models of image filtering. These are systems of

two nonlinear, coupled partial differential equations of

parabolic type. The nonlinearity and cross-diffusion char-

acter are provided by a nondiagonal matrix of diffusion
coefficients that depends on the variables of the system.

We prove the well-posedness of an initial-boundary-

value problem with Neumann boundary conditions and

uniformly positive definite cross-diffusion matrix. Un-
der additional hypotheses on the coefficients, the mod-

els are shown to satisfy the scale-space properties of

shift, contrast, average grey and translational invari-

ances. The existence of Lyapunov functions and the

asymptotic behaviour of the solutions are also stud-
ied. According to the choice of the cross-diffusion ma-

trix (on the basis of the results on filtering with linear

cross-diffusion, discussed by the authors in a compan-

ion paper, and the use of edge stopping functions ) the
performance of the models is compared by computa-

tional means in a filtering problem. The numerical re-
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sults reveal differences in the evolution of the filtering
as well as in the quality of edge detection given by one

of the components of the system, in terms of the cross-

diffusion matrix.
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1 Introduction

This paper is concerned with the use of nonlinear
cross-diffusion systems for the mathematical modeling

of image filtering. In this approach a grey-scale image

is represented by a vector field u = (u, v)T of two real-

valued functions u, v defined on some domain in R
2.

Additionally, an image restoration problem is modelled

by an evolutionary process such that, from an initial

distribution of a noisy image and with the time as a

scale parameter, the restored image at any time satis-

fies an initial-boundary-value problem (IBVP) of a non-
linear system of partial differential equations (PDE) of

cross-diffusion type, where the coupled evolution of the

two components of the image and the nonlinearity are

determined by a cross-diffusion coefficient matrix.
The use of cross-diffusion systems for modelling, es-

pecially in population dynamics, is well known, see e. g.

Galiano et al. [10,11] and Ni [21] (along with references

therein). To our knowledge, in the case of image pro-

cessing, two previous proposals are related. The first
one concerns the use of complex diffusion (Gilboa et

al. [14]), where the image is represented by a complex

function and the filtering process is governed by a non-

linear PDE of diffusion type with a complex-valued dif-
fusion coefficient. This equation can be written as a

cross-diffusion system for the real and imaginary parts

of the image. The application of complex diffusion to

http://arxiv.org/abs/1605.03721v2
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image filtering and edge-enhancing problems brings ad-

vantages based on the role of the imaginary part as edge

detector in the linear case (the so-called small theta ap-

proximation) and its use, in the nonlinear case, instead

of the size of the gradient of the image as the main
variable to control the diffusion coefficient, Gilboa et

al. [12,13,14].

A second reference on nonlinear cross-diffusion is

the unpublished manuscript by Lorenz et al. [20], where
the authors prove the existence of a global solution of

a cross-diffusion problem, related to the complex dif-

fusion approach proposed by Gilboa and collaborators.

This already represents an advance with respect to the

ill-posed Perona-Malik formulation, Perona & Malik
[23] and Kinchenassamy [17]. Additionally, a better be-

haviour of cross-diffusion models with respect to the

textures of the image is numerically suggested.

The present paper is a continuation of a compan-
ion work by the same authors devoted to the applica-

tion of linear cross-diffusion processes to image filtering

(Araújo et al. [2]). The linear cross-diffusion is analyzed

as a scale-space representation and an axiomatic, based

on scale invariance, is built. Then those convolution ker-
nels satisfying shift, rotational and scale invariance as

well as recursivity (semigroup property) are character-

ized. The resulting filters are determined by a positive

definite matrix, directing the diffusion, and a positive
parameter which, as in the scalar case, Pauwels et al.

[22], delimits the locality property. Furthermore, since

complex diffusion can be seen as a particular case of

cross-diffusion, some properties of the former are gen-

eralized in the latter. More precisely, the use of one of
the components of the cross-diffusion system as edge de-

tector is investigated, extending the property of small

theta approximation.

The general purpose of the present paper is to con-
tinue the research on cross-diffusion models for image

processing, by incorporating nonlinearity. The contri-

butions of the paper are the following:

– We formalize nonlinear cross-diffusion IBVP as math-

ematical models for image processing, by proving
the following theoretical results:

1. Well-posedness. By assuming that the coefficient

matrix is uniformly positve definite and has glob-

ally Lipschitz and bounded entries, the IBVP of

a nonlinear cross diffusion system of PDE with
Neumann boundary conditions is studied. The

existence of a unique weak solution, continuous

dependence on the initial data and the existence

of an extremum principle are proved. Some of
the arguments of Lorenz et al. [20] for the sys-

tem under study will be used and generalized

here. Some extensions, not treated here, are the

use of nonlocal operators and different types of

boundary conditions in the PDE formulation.

2. The previous IBVP is also studied from the scale-

space representation viewpoint, see e. g. Álvarez

et al. [3] and Lindeberg [19]. Specifically, grey-
level shift invariance, reverse contrast invariance

and translational invariance are proved under

additional assumptions on the diffusion coeffi-

cients.
3. The theoretical results are completed by analyz-

ing the existence of Lyapunov functionals asso-

ciated to the cross-diffusion problem, Weickert

[24]. The first result here is the decreasing of the

energy (defined as the Euclidean norm of the so-
lution) by cross-diffusion. The existence of Lya-

punov functionals different from this energy de-

pends on the relation between the cross-diffusion

coefficient matrix and the function defining the
functional. Finally, the solution is proved to evolve

asymptotically to a constant image consisting of

the average values of the components of the ini-

tial distribution.

– A numerical comparison of the performance of the
models is made. The computational study is carried

out on the basis of the results about the linear mod-

els, presented in Araújo et al. [2] and the numerical

treatment of complex diffusion in Gilboa et al. [14].
More precisely, the performance of the experiments

is based on the choices of the cross-diffusion coef-

ficient matrix and the scheme of approximation to

the continuous problem.

As far as the coefficients are concerned, we select
a matrix which combines linear cross-diffusion, in-

cluding a constant positive definite matrix, with the

use of standard edge detection functions, depending

on the component of the image that plays the role
of edge detector from the generalized small theta

approximation. The resulting form of the diffusion

matrix generalizes the complex diffusion approach,

Gilboa et al. [14]. Two strategies for the treatment of

the edge detection functions are also implemented.
On the other hand, an adaptation to cross-diffusion

systems of an explicit numerical method, considered

and analyzed in Araújo et al. [4] and Bernardes et

al. [6], for complex diffusion problems was used to
perform the numerical experiments in filtering prob-

lems. The numerical results reveal differences in the

behaviour of the models, according to the choice of

the positive definite matrix and the edge stopping

function. They are mainly concerned with a delay
of the blurring effect (already observed in the lin-

ear case) and the influence of the generalized small
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theta approximation in the detection of the edges

during the filtering problem.

The paper is structured according to these highlights.

In Section 2 the IBVP of a cross-diffusion PDE with

Neumann boundary conditions is introduced and the

theoretical results of well-posedness, scale-space prop-
erties, Lyapunov functions and long time behaviour are

proved. Section 3 is devoted to the computational study

of the performance of the models. The main conclusions

and future research are outlined in Section 4.

The following notation will be used throughout the

paper. A bounded (typically rectangular) domain in R
2

will be denoted by Ω, with boundary ∂Ω and where
Ω := Ω ∪ ∂Ω. By n we denote the outward normal

vector to ∂Ω. For p positive integer, Lp(Ω) denotes the

normed space of Lp-functions on Ω with || · ||Lp as the

associated norm. From the Sobolev space Hk(Ω) on Ω
(k is a nonnegative integer), where H0(Ω) = L2(Ω) we

define Xk := Hk(Ω)×Hk(Ω) with norm denoted by

||u||Xk
=
(
||u||2k + ||v||2k

)1/2
, u = (u, v)T ,

where || · ||k is the norm in Hk(Ω). On the other hand,

the dual space of Hk(Ω) will be denoted by
(
Hk(Ω)

)′
;

this is characterized as the completion of L2(Ω) with

respect to the norm, [1],

||v||−k,2 = sup
u∈Hk(Ω),||u||k=1

|〈u, v〉|, 〈u, v〉 =
∫

Ω

uvdΩ.

Additionally, (Xk)
′ will stand for (Hk(Ω))′×(Hk(Ω))′.

For T > 0, QT = Ω × (0, T ] will denote the set
of points (x, t) with x ∈ Ω, 0 < t ≤ T and QT :=

Ω× [0, T ]. The space of infinitely continuously differen-

tiable real-valued functions in Ω×(0, T ] will be denoted

by C∞
(
Ω × (0, T ]

)
as well as the space of m−th order

continuously differentiable functions u : (0, T ] → Xk

by Cm(0, T,Xk), m, k nonnegative integers. Addition-

ally, L2(0, T,Hk) will stand for the normed space of

functions u : (0, T ] → Hk(Ω) with associated norm

||u||L2(0,T,Hk) =

(∫ T

0

||u(t)||2kdt
)1/2

.

We also denote by L∞(0, T,Hk) the normed space of

functions u : (0, T ] → Hk(Ω) with norm

||u||L∞(0,T,Hk) = ess sup
t∈(0,T )

||u(t)||k,

with ess sup as the essential supremum. (The essential

infimum will be denoted as ess inf.)

In Section 2 we will make use of the convolution

operator

(g ∗ f)(x) =
∫

R2

f(x− y)g(y)dy, (1.1)

for g ∈ L1(R2), f ∈ L2(R2) and the Fourier transform

f̂(ξ) =

∫

R2

f(x)e−iξ·xdx, f ∈ L2(R2), ξ ∈ R
2, (1.2)

where · denotes the Euclidean inner product in R
2 with

the norm represented by | · |. In order to define (1.1),

(1.2) when f ∈ L2(Ω), a continuous extension of f in
R

2 will be considered and denoted by f̃ .

Finally, div,∇ will stand, respectively, for the diver-

gence and gradient operators. Concerning the gradient,

if u = (u, v)T then Ju stands for the Jacobian matrix
of u, ux = (ux, vx)

T ,uy = (uy, vy)
T and

||Ju||X0
:=
(
||ux||2X0

+ ||uy||2X0

)1/2
.

Additional notation for the numerical experiments

will be specified in Section 3.

2 Nonlinear cross-diffusion model

We consider the following IBVP of cross-diffusion

for u = (u, v)T ,

∂u

∂t
(x, t) = div (D11(u(x, t))∇u(x, t)

+D12(u(x, t))∇v(x, t)) , (2.1)

∂v

∂t
(x, t) = div (D21(u(x, t))∇u(x, t)

+D22(u(x, t))∇v(x, t)) , (x, t) ∈ QT ,

with the initial data given by

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (2.2)

and Neumann boundary conditions in ∂Ω × [0, T ],

〈D11(u)∇u +D12(u)∇v, n〉 = 0,

〈D21(u)∇u +D22(u)∇v, n〉 = 0. (2.3)

In (2.1), (2.3), the scalar functions Dij , i, j = 1, 2, are

the entries of a cross-diffusion 2× 2 matrix operator

u 7→ D(u) : QT →M2×2(R),

with, for (x, t) ∈ QT ,

D(u)(x, t) = D(u(x, t)) =

(
D11(u(x, t)) D12(u(x, t))
D21(u(x, t)) D22(u(x, t))

)
,

and which satisfies the following hypotheses:

(H1) There exists α > 0 such that for each u : QT → R
2

ξTD(u(x, t))ξ ≥ α|ξ|2, ξ ∈ R
2, (x, t) ∈ QT . (2.4)

(H2) There exists L > 0 such that for u,v : QT →
R

2, (x, t) ∈ QT , i, j = 1, 2,

|Dij(v(x, t)) −Dij(u(x, t))| ≤ L|v(x, t) − u(x, t)|.
(H3) There exists M > 0 such that for each u : QT → R

2

|Dij(u(x, t))| ≤M, (x, t) ∈ QT , i, j = 1, 2.
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Conditions (H1)-(H3) will also be complemented with

other assumptions, required by scale-space properties,

see Section 2.2.

In what follows the weak formulation of (2.1)-(2.3)

will be considered. This consists of finding u = (u, v)T :
(0, T ] −→ X1 satisfying, for any t ∈ (0, T ]
∫

Ω

((∂tu)w1 + (∂tv)w2) dΩ

+

∫

Ω

tr
(
(Jw)TD(u)(Ju)

)
dΩ = 0, (2.5)

for all w = (w1, w2)
T ∈ X1 and where tr denotes the

trace of the matrix.

2.1 Well-posedness

This section is devoted to the study of well-posedness

of (2.1)-(2.3). More precisely, we prove the existence of
a unique solution of (2.5), regularity, continuous de-

pendence on the initial data and finally an extremum

principle. The proofs follow standard arguments, see

Catté et al. [8], Weickert [24] (see also Galiano et al. [10]
and references therein). We first consider a related lin-

ear problem and prove a maximum-minimum principle

as well as estimates of the solution in different norms.

These results are crucial to prove the existence of the

solution for the nonlinear case by using the Schauder
fixed-point theorem, Brezis [7]. The same arguments as

in Catté et al. [8] and Weickert [24] apply to prove the

uniqueness, as well as regularity and continuous depen-

dence on the initial data. Finally, the proof of the ex-
tremum principle for the linear problem can be adapted

to obtain the corresponding result for (2.1)-(2.3).

Theorem 1 Let us assume that (H1)-(H3) hold and

let u0 = (u0, v0)
T ∈ X1. Then (2.5) admits a unique

solution u ∈ C(0, T,X0) ∩ L2(0, T,X1) that depends
continuously on the initial data. Furthermore, if D is in

C∞(R2,M2×2(R)) then u is a strong solution of (2.1)-

(2.3) with u ∈ C∞(Ω × (0, T ]).

Proof We first define

W (0, T ) = {w ∈ L2(0, T,H1(Ω)) :

dw

dt
∈ L2(0, T, (H1(Ω))′)},

with the graph norm.

Existence

In order to study the existence of solution of (2.5)
we first consider, for U = (U, V )T , with

U, V ∈ W (0, T )
⋂
L∞(0, T, L2(Ω)),

the following linear IBVP in QT :

∂u

∂t
(x, t) = div (D11(U(x, t))∇u(x, t)

+D12(U(x, t))∇v(x, t)) ,
∂v

∂t
(x, t) = div (D21(U(x, t))∇u(x, t)

+D22(U(x, t))∇v(x, t)) ,
u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω, (2.6)

with Neumann boundary conditions in ∂Ω × [0, T ]

〈D11(U)∇u +D12(U)∇v, n〉 = 0,

〈D21(U)∇u +D22(U)∇v, n〉 = 0. (2.7)

SinceD(U) = D(U, V ) is uniformly positive definite

(hypothesis (H1)), then, e. g. Ladyzenskaya et al. [18],
there is a unique weak solution of (2.6), (2.7), u(U, V ) =

(U1(U, V ), U2(U, V )), with

U1, U2 ∈W (0, T )
⋂
L∞(0, T, L2(Ω)).

We now establish some estimates for this solution in dif-

ferent norms, Lorenz et al. [20]. Consider first the weak

formulation of (2.6): find u(U, V ) = (U1(U, V ), U2(U, V ))
in L2(0, T,X1) satisfying
∫

Ω

((∂tU1)v1 + (∂tU2)v2) dΩ

+

∫

Ω

tr
(
(Jv)TD(U, V )(Ju)

)
dΩ = 0, (2.8)

for every v = (v1, v2) ∈ X1 and all 0 ≤ t ≤ T . We take

the test functions v1 = (U1 − b1)+, v2 = (U2 − b2)+ for
some b1, b2 > 0 that will be specified later and where

f+ = max{f, 0} (Lorenz et al. [20], Weickert [24]). Then

(2.8) becomes

1

2

∫

Ω

(
∂t(U1 − b1)

2
+ + ∂t(U2 − b2)

2
+

)
dΩ

+

∫

U1>b1,U2>b2

tr
(
(Ju)TD(U, V )(Ju)

)
dΩ = 0.

Then (H1) implies that

d

dt

∫

Ω

(
(U1 − b1)

2
+ + (U2 − b2)

2
+

)
dΩ ≤ 0.

Thus integrating between 0 and t, for any 0 ≤ t ≤ T ,

we have∫

Ω

(
(U1(t)− b1)

2
+ + (U2(t)− b2)

2
+

)
dΩ

≤
∫

Ω

(
(U1(0)− b1)

2
+ + (U2(0)− b2)

2
+

)
dΩ. (2.9)

Now we take b1, b2 such that the integral on the right
hand side of (2.9) becomes zero. If we assume that

U1(0), U2(0) ∈ L∞(Ω) and define

b1 = ||U1(0)||L∞(Ω), b2 = ||U2(0)||L∞(Ω),
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then (2.9) implies
∫

Ω

(
(U1(t)− b1)

2
+ + (U2(t)− b2)

2
+

)
dΩ ≤ 0

and consequently (U1(t)− b1)+ = (U2(t)− b2)+ = 0 for

0 ≤ t ≤ T , that is

U1(x, t) ≤ b1 = ||U1(0)||L∞(Ω),

U2(x, t) ≤ b2 = ||U2(0)||L∞(Ω). (2.10)

Similarly, taking v1 = (U1 − a1)−, v2 = (U2 − a2)−
for some a1, a2 > 0 and where f− = min{f, 0}, the
same argument leads to
∫

Ω

(
(U1(t)− a1)

2
− + (U2(t)− a2)

2
−

)
dΩ

≤
∫

Ω

(
(U1(0)− a1)

2
− + (U2(0)− a2)

2
−

)
dΩ.

If we now define

a1 = ess inf U1(0), a2 = ess inf U2(0),

then∫

Ω

(
(U1(t)− a1)

2
− + (U2(t)− a2)

2
−

)
dΩ ≤ 0

and therefore (U1(t) − a1)− = (U2(t) − a2)− = 0 for
0 ≤ t ≤ T , that is

U1(x, t) ≥ ess inf U1(0), U2(x, t) ≥ ess inf U2(0). (2.11)

In particular, if U1(0), U2(0) ≥ 0 then U1(x, t), U2(x, t) ≥
0 for all (x, t) ∈ QT .

A second estimate for the solution of the linear prob-

lem (2.6) is now obtained from the functional of energy

EL(t) =
1

2

∫

Ω

tr
(
(Ju)TD(U, V )(Ju)

)
dΩ.

Note that if in the weak formulation (2.8) we take v =

(U1, U2)
T then

d

dt
EL(t) +

∫

Ω

(∇U1∇U2)D(U, V )(∇U1∇U2)
TdΩ = 0,

which implies
d

dt
EL(t) ≤ 0,

that is EL(t) decreases. This leads to the L∞ estimates

||U1||L∞(0,T,L2(Ω)) ≤ ||U1(0)||L2(Ω),

||U2||L∞(0,T,L2(Ω)) ≤ ||U2(0)||L2(Ω). (2.12)

We now search for estimates of U1(t), U2(t) as func-

tions in H1(Ω) (and also of
d

dt
U1(t),

d

dt
U2(t) as func-

tions in (H1(Ω))′). Note first that from the previous

argument we have, for t ∈ [0, T ],
∫

Ω

(
U1(x, t)

2 + U2(x, t)
2
)
dΩ

≤
∫

Ω

(
U1(x, 0)

2 + U2(x, 0)
2
)
dΩ,

and also

d

dt

1

2

∫

Ω

(
U1(x, t)

2 + U2(x, t)
2
)
dΩ

+α

∫

Ω

(
|∇U1(x, t)|2 + |∇U2(x, t)|2

)
dΩ ≤ 0. (2.13)

Then (2.13) implies that for any t ∈ [0, T ]

1

2

∫

Ω

(
U1(x, t)

2 + U2(x, t)
2
)
dΩ

+α

∫ t

0

∫

Ω

(
|∇U1(x, s)|2 + |∇U2(x, s)|2

)
dΩds

≤ 1

2

∫

Ω

(
U1(x, 0)

2 + U2(x, 0)
2
)
dΩ.

Therefore
∫ T

0

1

2

∫

Ω

(
U1(x, t)

2 + U2(x, t)
2
)
dΩdt

+α

∫ T

0

∫

Ω

(
|∇U1(x, t)|2 + |∇U2(x, t)|2

)
dΩdt

=

∫ T

0

EL(t)dt

+α

∫ T

0

∫

Ω

(
|∇U1(x, t)|2 + |∇U2(x, t)|2

)
dΩdt

=

∫ T

0

EL(t)dt− EL(T ) + EL(T )

+α

∫ T

0

∫

Ω

(
|∇U1(x, t)|2 + |∇U2(x, t)|2

)
dΩdt

≤
∫ T

0

EL(t)dt− EL(T ) + EL(0) ≤ (T + 1)EL(0).

Thus, if U0 = (U1(0), U2(0))
T then there exists a con-

stant C1 = C1(α,U0, T ) such that

||U1||L2(0,T,H1(Ω)) ≤ C1,

||U2||L2(0,T,H1(Ω)) ≤ C1. (2.14)

On the other hand, if ||v||L2(0,T,X1) = 1, the weak

formulation (2.8), assumption (H3) and Cauchy-Schwarz

inequality imply that
∣∣∣∣∣

∫ T

0

∫

Ω

((∂tU1)v1 + (∂tU2)v2) dΩdt

∣∣∣∣∣

=

∣∣∣∣∣

∫ T

0

(∫

Ω

tr
(
(Jv)TD(U, V )(Ju)

)
dΩ

)
dt

∣∣∣∣∣

≤
∫ T

0

M ||∇v(t)||X0
||∇u(t)||X0

dt

≤
∫ T

0

M ||v(t)||X1
||u(t)||X1

dt

≤M ||v||L2(0,T,X1)||u||L2(0,T,X1) =M ||u||L2(0,T,X1).

Therefore, this and (2.14) lead to

|| d
dt
u||L2(0,T,(X1)′) ≤M ||u||L2(0,T,X1) ≤MC1. (2.15)
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The existence of a solution of (2.5) is now derived,

making use of the estimates (2.12), (2.14) and (2.15)

and by using the Schauder fixed-point theorem, Brezis

[7]. (Analogous arguments were used in Catté et al.

[8], see also Weickert [24].) We first assume that u0 =
(u0, v0)

T ∈ X0 in (2.2). Consider the following subset

of W (0, T )2 :=W (0, T )×W (0, T ):

K = {w = (w1, w2)
T ∈ W (0, T )2 : w satisfies

(2.12), (2.14) and (2.15) with w(0) = u0},

and the mapping T : K −→ W (0, T )2 such that T (w) :=

u(w) is the (weak) solution of (2.6) with (U, V )T = w.

It is not hard to see that K is a nonempty, convex

subset of W (0, T )2. Our goal is to apply the Schauder

fixed point theorem to the operator T in the weak topol-

ogy. To this end, we need to prove that:

(1) T (K) ⊂ K.

(2) K is a weakly compact subset of W (0, T )2.

(3) T is weakly continuous.

Observe that by construction (1) is satisfied. In order

to prove (2), consider a sequence {wn}n ⊂ K and t ∈
[0, T ]. Since K is a bounded set, then

{wn(t)}n, {
d

dt
wn(t)}n

are uniformly bounded in X1 which implies the exis-

tence of a subsequence (denoted again by {wn(t)}n,
{ d
dtwn(t)}n) and ϕ(t), ψ(t) ∈ X1 such that

wn(t) → ϕ(t),
d

dt
wn(t) → ψ(t),

weakly in X1 and for 0 ≤ t ≤ T . On the other hand,

since W (0, T ) ⊂ L2(0, T, L2(Ω)) and the embedding is

compact, Catté et al. [8], there exists w ∈ L2(0, T,X0)

such that ||wn−w||L2(0,T,X0) → 0 for some subsequence
{wn}n. Consequently w = ϕ ∈ L2(0, T,X1). Actually,

ψ = d
dtϕ and then K is weakly compact in W (0, T )2.

Finally, consider a sequence {wn}n ⊂ K which con-
verges weakly to some w ∈ K. Let un = T (wn). In

order to prove property (3), we have to see that un

converges weakly to u = T (w). Here the proof is sim-

ilar to that of Catté et al. [8]. Previous arguments ap-

plied to un and property (2) establish the existence of
a subsequence {un}n and φ ∈ L2(0, T,X1) satisfying

(i) un → φ weakly in L2(0, T,X1);
(ii) d

dtun → d
dtφ weakly in L2(0, T, (X1)

′);

(iii) un → φ in L2(0, T,X0) and almost everywhere on

Ω × [0, T ], (e. g. Brezis [7], Theorem 4.9);

(iv) wn → w in L2(0, T,X0) and almost everywhere on

Ω × [0, T ].

These convergence properties imply two additional ones:

(v) un(0) → φ(0) in (X1)
′;

(vi) ∇un → ∇φ weakly in L2(0, T,X0).

Now, note that due to (H2) and property (v) we have

D(wn) → D(w)

in L2(0, T,X0). Then if we take limit in (2.8) we have

φ = T (w). Finally, since the whole sequence {un}n is
bounded in K which is weakly compact, then it con-

verges weakly in W (0, T ). By uniqueness of solution of

(2.8) the whole sequence un = T (wn) must converge

weakly to φ = T (w); therefore T is weakly continuous
and (3) holds.

Thus, Schauder fixed point theorem proves the ex-
istence of a solution u of (2.5). The solution u is in

K and therefore u ∈ L2(0, T,X1),
du
dt ∈ L2(0, T, (X1)

′),

and it satisfies (2.12), (2.14) and (2.15). Furthermore,

due to the conditions (H1)-(H3) on D, at least u ∈
C(0, T,X0).

Regularity of solution

The same bootstrap argument as in Catté et al. [8]

and Weickert [24] applies to obtain that u is a strong

solution and u ∈ C∞(Ω × (0, T ]) if (H2) is substituted

by the hypothesis that D is in C∞(R2,M2×2(R)).

Uniqueness of solution

Consider u(1) = (u(1), v(1))T ,u(2) = (u(2), v(2))T so-
lutions of (2.5) with the same initial condition. Then

for all w = (w1, w2)
T ∈ X1

∫

Ω

(
(∂t(u

(1) − u(2)))w1 + (∂t(v
(1) − v(2)))w2

)
dΩ

+

∫

Ω

tr
(
(Jw)TD(u(1))(Ju(1))

)
dΩ

−
∫

Ω

tr
(
(Jw)TD(u(2))(Ju(2))

)
dΩ = 0,

which can be written as

∫

Ω

(
(∂t(u

(1) − u(2)))w1 + (∂t(v
(1) − v(2)))w2

)
dΩ

+

∫

Ω

tr
(
(Jw)TD(u(1))(J(u(1) − u(2)))

)
dΩ

+

∫

Ω

tr
(
(Jw)T

(
D(u(1))−D(u(2))

)
(Ju(2))

)
dΩ = 0.
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Now we take w = u(1) − u(2) and use (H1), (H2) to

write

1

2

d

dt
||u(1)(t)− u(2)(t)||2X0

+ α||J
(
u(1)(t)− u(2)(t)

)
||2X0

≤ L||u(1)(t)− u(2)(t)||X0
||Ju(2)(t)||X0

||J
(
u(1)(t)− u(2)(t)

)
||X0

≤ 1

α
L2||u(1)(t)− u(2)(t)||2X0

||Ju(2)(t)||2X0

+
α

4
||J
(
u(1)(t)− u(2)(t)

)
||2X0

.

(In the last step the inequality ab ≤ a2/4ǫ2 + ǫ2b2 has
been used, with ǫ2 = α/4.) Therefore

d

dt
||u(1)(t)− u(2)(t)||2X0

≤ 2

α
L2||u(1)(t)− u(2)(t)||2X0

||Ju(2)(t)||2X0
.

Finally, Gronwall’s lemma leads to

||u(1)(t)− u(2)(t)||2X0
(2.16)

≤ ||u(1)(0)− u(2)(0)||2X0
exp

(
C

∫ t

0

||Ju(2)(s)||2X0
ds

)
,

with C = 2
αL

2 and since u(1)(0) = u(2)(0) then unique-

ness is proved.

Continuous dependence on initial data

Since u is bounded on QT , then Ju is bounded and

hypothesis (H1) on D implies
∫ t

0

||Ju(·, s)||2X0
ds

≤
∫ T

0

||Ju(·, s)||2X0
ds =

1

α

∫ T

0

α||Ju(·, s)||2X0
ds

≤ 1

α

∣∣∣∣∣

∫ T

0

∫

Ω

∇u(x, t)D(u(x, t))∇u(x, t)T dΩ

∣∣∣∣∣ ds

=
1

α

∣∣∣∣∣

∫ T

0

∫

Ω

u(x, t)Tut(x, t)dΩ

∣∣∣∣∣ ds

≤ 1

α

∫ T

0

||u(·, s)||X0
||ut(·, s)||X0

ds

≤ 1

α
||u||L2(0,T,X1)||ut||L2(0,T,(X1)′).

Now, let ǫ > 0 and take

δ := ǫ exp

(
−C
α
||u(s)||L2(0,T,X1)||ut||L2(0,T,(X1)′)

)
.

If ||u(1)(0)− u(2)(0)||X0
< δ and using (2.16) then

||u(1)(t)− u(2)(t)||X0
< ǫ,

for all t ∈ [0, T ]. This proves the continuous dependence

on the initial data.

Extremum principle

Well-posedness results are finished off with the fol-

lowing extremum principle.

Theorem 2 Let us assume that in (2.2) u0 = (u0, v0)
T ∈

L∞(Ω) × L∞(Ω) and define:

a1 = ess inf u0, a2 = ess inf v0,

b1 = ||u0||L∞(Ω), b2 = ||v0||L∞(Ω).

Let u = (u, v)T be the weak solution of (2.1)-(2.3).

Then for all (x, t) ∈ QT

a1 ≤ u(x, t) ≤ b1, a2 ≤ v(x, t) ≤ b2.

Proof . Note that the same argument as that of the lin-

ear problem (2.6) can be adapted to this nonlinear case

straightforwardly, by taking, in the case of the maxi-

mum principle, w1 = (u − b1)+, w2 = (v − b2)+ in the

weak formulation (2.5) and, in the case of the minimum
principle, w1 = (u− a1)−, w2 = (v − a2)−.

Remark 1 In Gilboa et al. [14], a nonlinear complex

diffusion problem with diffusion coefficient of the form

c = c(v) =
eiθ

1 +
(

v
κθ

)2 , (2.17)

is considered. In (2.17) the image is represented by a

complex function u + iv, κ is a threshold parameter
and θ is a phase angle parameter. In the corresponding

cross-diffusion formulation (2.1) for u = (u, v)T , the

coefficient matrix is

D(u, v) = g(v)

(
cos θ − sin θ

sin θ cos θ

)
,

g(v) =
1

1 +
(

v
κθ

)2 . (2.18)

Thus, for ξ ∈ R
2,

ξTD(u, v)ξ = (g(v) cos θ)|ξ|2.

The function g in (2.18) is decreasing for v ≥ 0 and

satisfies g(0) = 1, lims→+∞ g(s) = 0. Consequently, D

in (2.18) would not satisfy (H1) for v ≥ 0. In addition
to assuming θ ∈ (0, π) (in order to have cos θ > 0), two

strategies to overcome this drawback are suggested.

– The first one is to replace g(v) in (2.18) by g(M(v)),

where M(·) is a cut-off operator

M(v)(x, t) = min
(x,t)∈QT

{v(x, t),M}, (2.19)

with M a sufficiently large constant. The same ap-

proach can be generalized for the cross-diffusion ma-

trix operator D.
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– A second strategy is to replace g(v) in (2.18) by

g(|wσ |) where wσ is the second component of the

matrix convolution vσ = Kσ ∗ u, Kσ := K(·, σ) =
(kij(·, σ))i,j=1,2 is the matrix such that (Araújo et

al. [2])

K̂σ(ξ) = (k̂ij(·, σ))i,j=1,2 = e−|ξ|2σd, ξ ∈ R
2,

where

d = dθ =

(
cos θ − sin θ

sin θ cos θ

)
.

(The matrix convolution Kσ ∗ u is defined as the
vector
(
k11 ∗ ũ+ k12 ∗ ṽ
k21 ∗ ũ+ k22 ∗ ṽ

)

where ∗ denotes the usual convolution operator in

R
2 and ũ = (ũ, ṽ)T is a continuous extension of u

in R
2.)

We observe that the weak formulation (2.5) with the
corresponding modified matrix D(u, v) = g(|wσ|)dθ
satisfies the conclusions of Theorem 1 by adapting

the proof as follows (see Catté et al. [8]): Let U, V ∈
W (0, T )

⋂
L∞(0, T,H0(Ω)) such that

||U ||L∞(0,T,H0(Ω)) ≤ ||u0||0,
||V ||L∞(0,T,H0(Ω)) ≤ ||v0||0.

Since U, V ∈ L∞(0, T,H0(Ω)) and g as well as each

entry ofKσ are C∞ then g(|wσ|) ∈ L∞(0, T, C∞(Ω)).
Thus, since g is decreasing, there is C > 0, which

only depends on g,Kσ and ||u0||0, ||v0||0 such that

g(|wσ |) ≤ C

almost everywhere in QT . Thus the corresponding
matrix D(u, v) = g(|wσ|)dθ satisfies (H1) for almost

any (x, t) ∈ QT . With this modification, the rest of

Theorem 1 is proved in the same way.

The previous argument can be generalized to a general
cross-diffusion problem (2.1) with cross-diffusion matri-

ces of the form

D(u) = D(u, v) = g(|wσ|)d, (2.20)

where

(i) wσ is the second component of vσ = Kσ ∗ u with

Kσ satisfying

K̂σ(ξ) = e−|ξ|2σd, ξ ∈ R
2,

for some positive definite matrix d and,

(ii) g : [0,+∞) −→ (0,+∞) is a smooth, decreasing

function with g(0) = 1 and lims→+∞ g(s) = 0.

2.2 Scale-space properties

For t ≥ 0 let us define the scale-space operator

Tt : u0 7−→ Tt(u0) := u(t) = u(·, t), (2.21)

such that u(t) is the unique weak solution at time t

of (2.1)-(2.3) with initial data (2.2) given by u0. Some
properties of (2.21) will be here analyzed. More pre-

cisely additional hypotheses on D in (2.1) allow (2.21)

to satisfy grey-level shift, reverse constrast, average grey

and translational invariances. In what follows we as-

sume that (H1)-(H3) hold.

2.2.1 Grey-level shift invariance

Lemma 1 Let us assume that D in (2.1) additionally

satisfies

D(u(x, t) +C) = D(u(x, t)), (2.22)

for all (x, t) ∈ QT ,u(·, t) ∈ X1 and C = (C1, C2)
T ∈

R
2. Then

Tt(0) = 0, Tt(u0 +C) = Tt(u0) +C, t ≥ 0. (2.23)

Proof The main argument for the proof is the unique-

ness of solution of (2.1)-(2.3). Note first that u = 0 is a

solution with u0 = 0 and consequently it is clear that

Tt(0) = 0. On the other hand, because of (2.22) we

have that

w(t) = Tt(u0) +C, t ≥ 0,

satisfies (2.1) with initial condition u0 +C and there-
fore, by uniqueness, it must coincide with Tt(u0 + C).

Remark 2 From Araújo et al. [2], we know that the ker-

nel matrices Kσ satisfying (2.21) are mass preserving,

that is Kσ ∗C = C,C ∈ R
2 and therefore

Kσ ∗ (u+C) = (Kσ ∗ u) +C.

This implies that cross-diffusion coefficient matrices (2.20)

satisfy (2.23) but only for constants C = (C1, 0)
T , C1 ∈

R. If the first component of u(t) represents the grey-

level values of the filtered image at time t then this

weaker version of (2.23) can be interpreted as shift in-

variance of the grey values.

2.2.2 Reverse contrast invariance

Lemma 2 Let us assume that D in (2.1) additionally

satisfies

D(−u(x, t)) = D(u(x, t)), (2.24)

for all (x, t) ∈ QT ,u(·, t) ∈ X1. Then

Tt(−u0) = −Tt(u0), t ≥ 0. (2.25)
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Proof By (2.24) the functions w1(t) = Tt(−u0) and

w2(t) = −Tt(−u0) satisfy (2.5) with the same initial

data −u0. Therefore, by uniqueness, w1 = w2 and

(2.25) holds.

Remark 3 Matrices D of the form (2.20) satisfy (2.24)

and therefore the corresponding operator (2.21) satis-

fies (2.25).

2.2.3 Average grey invariance

For f ∈ L2(Ω) we define

m(f) =
1

A(Ω)

∫

Ω

f(x)dΩ,

where A(Ω) stands for the area of Ω.

Lemma 3 For u = (u, v)T let M(u) = (m(u),m(v))T .

Then

M(Tt(u0)) = M(u0), t ≥ 0. (2.26)

Proof We consider the vector function

G(t) = (G1(t), G2(t))
T ,

G1(t) =

∫

Ω

u(x, t)dΩ, G2(t) =

∫

Ω

v(x, t)dΩ, t ≥ 0,

where u = (u, v)T = Tt(u0). As in Weickert [24], we

have, for i = 1, 2,

|Gi(t)−Gi(0)| ≤ A(Ω)1/2||u(t)− u(0)||X0
.

Since at least u ∈ C(0, T,X0) then G is continuous at

t = 0. On the other hand, divergence theorem and the

boundary conditions (2.3) imply that, for i = 1, 2

d

dt
Gi(t) =

∫

Ω

div(Di1(u)∇u +Di2(u)∇v)dΩ

=

∫

∂Ω

〈Di1(u)∇u +Di2(u)∇v), n〉dΓ = 0.

Then Gi(t) is constant for all t ≥ 0. Thus the quan-

tity M(u0) = (m(u0),m(v0))
T is preserved by cross-

diffusion.

Remark 4 Actually, each component Gi(t), i = 1, 2 is

preserved. This may be used to establish a suitable

definition of average grey level in this formulation, us-
ing these two quantities, and its preservation by cross-

diffusion; we refer Araújo et al. [2] for a discussion about

this question.

2.2.4 Translational invariance

Let us define the translational operator τh as

τhu(x) = (u(x+ h), v(x + h))T ,

u = (u, v)T ∈ X0, x,h ∈ R
2.

Lemma 4 We assume that D in (2.1) additionally sat-

isfies

D(τhu(x, t)) = D(u(x, t)), (2.27)

for all (x, t) ∈ QT ,u(·, t) ∈ X1. Then

Tt(τhu0) = τh(Tt(u0)), t ≥ 0. (2.28)

Proof Due to (2.27), the functions w1(t) = Tt(τhu0)

and w2(t) = τhTt(u0) are solutions of (2.5) with the

same initial data τhu0. Therefore, by uniqueness, (2.28)

holds.

Remark 5 Matrices D of the form (2.20) satisfy (2.27)

and therefore the corresponding operator (2.21) satis-
fies (2.28).

2.3 Lyapunov functions and behaviour at infinity

The previous study is finished off by analyzing the

existence of Lyapunov functionals and the behaviour of

the solution when t→ +∞. As far as the first question
is concerned, we have the following result.

Lemma 5 Let u = (u, v)T be the unique weak solution

of (2.1)-(2.3) and let us consider the functional

V (t) = Φ(u(t)) :=
1

2

∫

Ω

(
u(x, t)2 + v(x, t)2

)
dΩ. (2.29)

Then V defines a Lyapunov function for (2.1)-(2.3).

Proof Note first that from the weak formulation (2.5)

with w = u we obtain

d

dt
V (t) +

∫

Ω

tr
(
(Ju)TD(u(x, t))(Ju)

)
dΩ = 0,

which, due to (H1) and (2.5), implies

d

dt
V (t) ≤ 0, t ≥ 0.

Note also that since r̃(z) = z2/2 is convex and (2.26)

holds, then Jensen inequality implies that

Φ(Mu0) =

∫

Ω

(m(u0))
2 + (m(v0))

2

2
dΩ

=

∫

Ω

r̃(m(u0)) + r̃(m(v0))dΩ

=

∫

Ω

r̃(m(u(t))) + r̃(m(v(t)))dΩ

≤
∫

Ω

(
1

A(Ω)

∫

Ω

r̃(u(x, t))dΩ

+
1

A(Ω)

∫

Ω

r̃(v(x, t))dΩ

)
dΩ

=

∫

Ω

(r̃(u(x, t) + r̃(v(x, t)) dΩ = Φ(u(t)).

Therefore, (2.29) is a Lyapunov functional.
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The search for more Lyapunov functions will make

use of convex functions.

Lemma 6 Let aj , bj, j = 1, 2 be defined in Theorem 2,

I = I(a,b) = (a1, b1) × (a2, b2) and let us assume that

r is a C2(I) convex function satisfying

∇2r(u(x))D(u(x)) = D(u(x))∇2r(u(x)), (2.30)

where u is the weak solution of (2.1)-(2.3) with u0, v0 ≥
0 and ∇2r(u, v) stands for the Hessian of r. Then

Vr(t) = Φr(u(t)) =

∫

Ω

r(u(t), v(t))dΩ, (2.31)

is a Lyapunov function for (2.1)-(2.3).

Proof Observe that using divergence theorem, bound-

ary conditions (2.3) and after some computations we
have

V ′
r (t) =

∫

Ω

(ru(u, v)ut + rv(u, v)vt) dΩ

=

∫

Ω

(ru(u, v)div (D11(u)∇u +D12(u)∇v)

+rv(u, v)div (D21(u)∇u +D22(u)∇v)) dΩ

= −
∫

Ω

(
〈∇2r(u, v)

(
ux
vx

)
, D(u)

(
ux
vx

)
〉

+ 〈∇2r(u, v)

(
uy
vy

)
, D(u)

(
uy
vy

)
〉
)
dΩ.

Since r is convex, then∇2r(u, v) is positive semi-definite.

Thus, due to (2.30), ∇2r(u, v)D(u) is positive semi-

definite and therefore V ′(t) ≤ 0, t ≥ 0. Similarly, the
application of a generalized version of Jensen inequal-

ity, Zabandan & Kiliman [25], and the convexity of r

imply

r(M(u)) ≤ m(r(u)).

This and (2.26) lead to

Φr(M(u0)) =

∫

Ω

r(M(u0))dΩ =

∫

Ω

r(M(u(t)))dΩ

≤
∫

Ω

m(r(u(t)))dΩ

=

∫

Ω

1

A(Ω)

∫

Ω

r(u(t))dxdΩ =

∫

Ω

r(u(t))dx

= Φr(u(t)),

and (2.31) is a Lyapunov functional.

Remark 6 The choice r(x, y) = x2+y2

2 leads to the Lya-

punov functional (2.29). More generally, if p ≥ 2 then

taking
r(x, y) = |x|p + |y|p,

implies that the Lp × Lp norm

||u||Lp×Lp = (||u||pLp + ||v||pLp) , u = (u, v)T ,

is a Lyapunov functional, see Weickert [24].

As far as the behaviour at infinity of the solution of

(2.1)-(2.3) is concerned, the arguments in Weickert [24]

can also be adapted here.

Lemma 7 Let u(t), t ≥ 0 be the weak solution of (2.1)-

(2.3) and let us consider w = u−M(u0), where M is
given by Lemma 3. If (2.23) holds then

lim
t→∞

||w(t)||X0
= 0. (2.32)

Proof Since (2.23) holds then w satisfies the diffusion

equation of (2.1). By using the weak formulation (2.5),
divergence theorem and the boundary conditions(2.3),

we have

1

2

d

dt

∫

Ω

(w2
1 + w2

2)dΩ = −
∫

Ω

tr
(
(Jw)TD(Jw)

)
dΩ.

Now, (H1) and (2.5) imply

tr
(
(Jw)TD(Jw)

)
≥ α||Jw||2X0

.

Therefore

d

dt
||w||2X0

≤ −2α||Jw||2X0
.

Note now that if we apply the Poincaré inequality to

each wi, i = 1, 2, then there is C0 > 0 such that

||w||2X0
≤ C0||Jw||2X0

.

This implies that

d

dt
||w||2X0

≤ −2αC0||w||2X0
.

By Gronwall’s lemma

||w(t)||2X0
≤ e−2αC0t||w(0)||2X0

and (2.32) holds.

Remark 7 Since we are assuming strong ellipticity (H1)
in the model, the asymptotic behaviour (2.32) is ex-

pected. In particular, we conclude that the model does

not preserve the discontinuities of the initial conditions,

which is a serious limitation in the Computer Vision
context. Assumption (H1) could be relaxed by consider-

ing degenerate elliptic cross-diffusion operators D, that

is, substituting (2.4) by

ξTD(u(x, t))ξ ≥ 0, (x, t) ∈ QT .

The analysis of such models is beyond the scope of this

work.

3 Numerical experiments

The performance of (2.1)-(2.3) in filtering problems

is numerically illustrated in this section.
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3.1 The numerical procedure

In order to implement (2.1)-(2.3) some details are

described. The first point concerns the choice of the

cross-diffusion matrix D. We have considered to this

end the results on linear cross-diffusion shown in the

companion paper Araújo et al. [2] and the complex dif-
fusion approach, Gilboa et al. [14], see Remark 1. Ac-

cording to them, matrices of the form

D(u, v) = g(|w|)d, d =

(
d11 d12
d21 d22

)
, (3.1)

were used for the experiments, with

g(v) =
1

1 +
(
v
κ

)2 , (3.2)

with κ a threshold parameter, see Gilboa et al. [14]

and d a positive definite matrix. Both possibilities w =

M(v) in (2.19) and w = wσ in (2.20) have been imple-
mented. The form (3.1), (3.2) takes into account (2.17)

by using the extended version of the small theta ap-

proximation, see Araújo et al. [2] (which justifies the

presence of d12 in (3.2)) as well as the classical nonlin-

ear diffusion approach with the form of g, see Aubert &
Kornprobst, [5], Catté et al. [8], Perona & Malik [23].

The guidance about the choice of the matrix d was

also based on linear cross-diffusion. Thus if s = (d22 −
d11)

2 + 4d12d21, three types of matrices d (for which
s > 0, s < 0 and s = 0) have been considered. (The

parameter s determines if the eigenvalues of d are real

or complex, see Araújo et al. [2].) The specific examples

of d for the experiments are given in Section 3.2.

A second question on the implementation concerns
the choice of a numerical scheme to approximate (2.1)-

(2.3). Thus, the explicit numerical method introduced

and analyzed in Araújo et al. [4] for the complex dif-

fusion case has been adapted here. The method is now
briefly described. By using the notation of Section 2,

QT is first dicretized as follows. We define a uniform

grid on Ω = [l1, r1]× [l2, r2] with mesh step size h > 0

as

Ωh = {xij = (xi, yj) ∈ Ω : xi = l1 + ih, yj = l2 + jh,

i = 0, ..., N1 − 1, j = 0, ..., N2 − 1}, (3.3)

for integers N1, N2 > 1 such that hNi = ri− li, i = 1, 2.

As far as the time discretization is concerned, fixed T >

0, for an integerM ≥ 1 and ∆ > 0 such thatM∆t = T ,
the interval [0, T ] is partitioned in

0 = t0 < t1 < · · · < tM−1 < tM = T, (3.4)

with tm+1 = tm +∆t,m = 0, . . . ,M − 1. The resulting

discretization of QT with (3.3) and (3.4) is denoted by

Q
∆t

h = Q∆t
h ∪Γ∆t

h , whereQ∆t
h , Γ∆t

h stand for the interior

and boundary meshes, respectively.

If MN1×N2
(R) denotes the space of N1 × N2 real

matrices then let us consider some initial distribution

U0, V 0 : Ωh →MN1×N2
(R) with U0 = (U0

ij)
N1,N2

i=1,j=1, V
0 =

(V 0
ij)

N1,N2

i=1,j=1. From U0, V 0 and for m = 0, . . . ,M −
1 the approximate image at time tm+1 is defined as

(Um+1, V m+1)T , where Um+1 = (Um+1
ij )N1,N2

i=1,j=1, V
m+1 =

(V m+1
ij )N1,N2

i=1,j=1 : Ωh → MN1×N2
(R) satisfy the system

(in vector form)

Um+1 − Um

∆t
= ∇h · (g(V m)(d11∇hU

m + d12∇hV
m)),

Vm+1 − V m

∆t
= ∇h · (g(V m)(d21∇hU

m + d22∇hV
m)),

(3.5)

where g and d are given by (3.1), (3.2). In (3.5), ∇h

is the discrete operator such that if W = (Wij)
N1,N2

i=1,j=1

then

(∇hW )ij =

(
Wi+1,j −Wi−1,j

2h
,
Wi,j+1 −Wi,j−1

2h

)
,

i = 1, . . . , N1 − 1, j = 1, . . . , N2 − 1.

The scheme (3.5) is completed with the discretization of

the Neumann boundary conditions (2.2) by using ∇h.

We note that for the complex diffusion case, a sta-
bility condition for (3.5) with diffusion coefficient (2.17)

was derived in Araújo et al. [4] and Bernardes et al. [6],

∆t := max
0≤m≤M−1

∆tm ≤ cos θ

4

(
1 +

minm (V m)2

κ2θ2

)
.(3.6)

Condition (3.6) was taken into account in the numerical
experiments below, where h = 1 and ∆t = 0.05 (with

κ = 10) were used.

3.2 Numerical results

In this section several numerical experiments have
been performed according to the following steps. As-

sume that the discrete values Sij = S(xij),xij ∈ Ωh

of some real-valued function S : Ω :→ R represent an

original image on Ωh. From S, some noise of Gaussian

type with zero mean and standard deviation σ′ at pixel
xij is added to Sij . This is represented by a matrix

N(σ′) = (Nij(σ
′))ij and generates the initial noisy im-

age values

u0 = (u0ij)ij , u0ij = Sij +Nij(σ
′),

i = 1, . . . , N1, j = 1, . . . , N2.

Then the explicit method (3.5) with initial distribution

U0
ij = u0ij , V

0
ij = 0, i = 1, . . . , N1, j = 1, . . . , N2 and D

from (3.1), (3.2) is run; the corresponding numerical

solutions Um, V m,m = 1, . . . ,M are monitored in such
a way that Um approximates the original signal S at

time tm. In order to measure the quality of restoration,

three metrics are used:
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– Signal-to-Noise-Ratio (SNR):

SNR(S,Um) = 10 log10

(
var(S)

var(Um − S)

)
, (3.7)

where the variance (var) of an image U is defined

by

var(U) =
1

N1N2
‖U − Ū‖2F ,

‖ · ‖F stands for the Frobenius norm and Ū is a

uniform image with intensities equal to the mean
value of the intensities of U .

– Peak Signal-to-Noise-Ratio (PSNR):

PSNR(S,Um) = 20 log10

(
255

RMSE(S,Um)

)
, (3.8)

where the Root-Mean-Square-Error (RMSE) is de-

fined as

RMSE(S,Um) =
1√
N1N2

‖S − Um‖2F ;

– The no-reference perceptual blur metric (NPB) pro-

posed by Crété-Roffet et al. [9]. This is based on

evaluating the blur annoyance of the image by com-
paring the variations between neighbouring pixels

before and after the application of a low-pass filter.

The estimation ranges from 0 (the best quality blur

perception) to 1 (the worst one).

The following numerical results illustrate the behaviour

of (2.1)-(2.3) according to the choice of the matrix d in

(3.1) and the implementation of (3.2). The experiments

are concerned with the filtering of a noisy image of Lena

(Figure 1) and a first group makes use of the matrices

(i) NCDF1 (s > 0): d11 = 1, d12 = 0.025, d21 = 1, d22 =

1.

(ii) NCDF2 (s < 0): d11 = 1, d12 = −0.025, d21 = 0.025,

d22 = 1.
(iii) NCDF3 (s = 0): d11 = 1, d12 = −0.025, d21 =

1, d22 = 1.1.

These models were taken to study three points of the

filtering: the restoration process from the first compo-
nent of the numerical solution of (3.5), the behaviour of

the edges from the second component and the quality

of filtering from the computation of the evolution of the

three metrics. The numerical experiments in Figure 2,

show the time evolution of the SNR and PSNR parame-
ters given by the models NCDF1-3. For the three mod-

els, the metrics attain a maximum value from which

the quality of restoration is decreasing. The main differ-

ence appears in the time at which the maximum holds,
being longer in the case of NCDF1 (corresponding to

s > 0) and NCDF3 (for which s = 0) then in the model

NCDF2 (where s < 0: this would illustrate the complex

(a)

(b)

Fig. 1 (a) Original image S of Lena; (b) Noisy image of Lena
with Gaussian noise of σ′ = 30.

diffusion case, see Araújo et al. [2]). Note also from Fig-

ure 2 that NCDF1 and NCDF3 will provide a better
evolution of the two metrics: they will be more suit-

able than NCDF2 for long time restoration processes,

while NCDF2 performs better in short computations.

Since the longer the evolution the more noise is re-
moved, models NCDF1 and NCDF3 suggest a better

control of the diffusion to improve the quality of the

restored images. This is observed in Figures 3 and 4,



Cross-diffusion systems for image processing: II. The nonlinear case 13

5 10 15 20 25

6

7

8

9

10

11

12

13

14

15

T

S
N

R

 

 

NCDF1
NCDF2
NCDF3

(a)

5 10 15 20 25

20

21

22

23

24

25

26

27

28

29

T

P
S

N
R

 

 

NCDF1
NCDF2
NCDF3

(b)

Fig. 2 SNR (a) and PSNR (b) vs. time: NCDF1 (solid line),
NCDF2 (dashed line) and NCDF3 (dashed-dotted line).

which show the two components of the solution of (3.5)

at time t = 2.5 given by NCDF1 and NCDF2. (The

images corresponding to NCDF3 are similar to those of
NCDF1 and will not be shown here.) Observe that the

second component has the role of edge detector and it

is less affected by noise and over diffusion in the case of

NCDF1. For large values in magnitude of the entries of
the matrix d in (3.2) the differences in the models are

more significant. This is illustrated by a second group

of experiments, for which the matrices are

(i) NCDF4 (s > 0): d11 = 1, d12 = 0.9, d21 = 1, d22 = 1.

(ii) NCDF5 (s < 0): d11 = 1, d12 = −0.9, d21 = 0.9, d22 =
1.

(iii) NCDF6 (s = 0): d11 = 1, d12 = −0.9, d21 = 0.225, d22 =

1.9,

t = 2.5

(a)

t = 2.5

(b)

Fig. 3 First component of solution of (3.5) at time t = 2.5
with (a) NCDF1 and (b) NCDF2.

and the rest of the implementation data is the same

as that of the previous experiments. The evolution of
the SNR and PSNR values is now shown in Figure 5.

Note that the behaviour of NCDF5 and NCDF6 is very

similar and their quality metrics, compared to those

of NCDF4, are more suitable up to a time of filtering
close to t = 5. From this time, NCDF4 behaves better

and becomes a better choice to filter for a longer time.

The comparison between the solutions of (3.5) with the
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t = 2.5

(a)

t = 2.5

(b)

Fig. 4 Second component of solution of (3.5) at time t = 2.5
with (a) NCDF1 and (b) NCDF2.

three models reveals these differences in a significant

way, see Figures 6-9, where the images corresponding
to NCDF4 and NCDF5 at several times are displayed.

(The results with NCDF6 are very similar to those of

NCDF5.) In the case of the first component (Figures 6

and 7), the performance of the models by t = 2.5 are
similar, but at longer times NCDF4 delays the blurring

and leads to a restored image with better quality. This

control of the diffusion is confirmed in Figures 10-12,
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(b)

Fig. 5 SNR (a) and PSNR (b) vs. time: NCDF4 (solid line),
NCDF5 (dashed line) and NCDF6 (dashed-dotted line).

which show, for the three models, the time evolution of
the NPB metric (right) and the corresponding first com-

ponent of the solution of (3.5) at the time for which the

SNR value is maximum (left). (In each case this time

corresponds to the iteration of the numerical scheme as-

sociated to the small circle in the figure on the right.)
The reduction of the edge spreading is also observed in

the detection of the edges by using the second compo-

nents, see Figures 8 and 9. The evolution of the NPB

curve for NCDF4 implies the best quality in terms of
blur perception, among the three models.

4 Concluding remarks

In the present paper nonlinear cross-diffusion sys-

tems as mathematical models for image filtering are
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t = 2.5

t = 15.0

t = 25.0

Fig. 6 First component of the solution of (3.5) at times t =
2.5, 15, 25 with NCDF4.

t = 2.5

t = 15.0

t = 25.0

Fig. 7 First component of the solution of (3.5) at times t =
2.5, 15, 25 with NCDF5.
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t = 2.5

t = 15.0

t = 25.0

Fig. 8 Second component of solution of (3.5) at times t =
2.5, 15, 25 with NCDF4.

t = 2.5

t = 15.0

t = 25.0

Fig. 9 Second component of solution of (3.5) at times t =
2.5, 15, 25 with NCDF5.
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Fig. 10 NCDF4: (a) NPB values vs time and (b) first compo-
nent of the solution of (3.5) at the time marked by the small
circle.

studied. This is a continuation of the companion pa-

per, Araújo et al. [2], devoted to the linear case. Here

the nonlinearity is introduced through 2× 2, uniformly

positive definite cross-diffusion coefficient matrices with
bounded, globally Lipschitz entries. In the first part of

the paper well-posedness of the corresponding IBVP

with Neumann boundary conditions is proved, as well

as several scale-space properties and the limiting be-
haviour to the constant average grey value of the im-

age at infinity. The second part is devoted to some nu-

merical comparisons on the performance of the filter-
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Fig. 11 NCDF5: (a) NPB values vs time and (b) first compo-
nent of the solution of (3.5) at the time marked by the small
circle.

ing process from some noisy images using three models

distinguished by different choices of the cross-diffusion

matrix. The computational part does not intent to be

exhaustive and instead aims to suggest and anticipate
some preliminary conclusions that may motivate fur-

ther research. As in the linear case, the systems in-

corporate some degrees of freedom. This diversity is

mainly represented by the choice of the cross-diffusion
matrix. The numerical study performed here makes use

of cross-diffusion matrices whose derivation was based

on the choices made in Gilboa et al. [14] for the com-
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Fig. 12 NCDF6: (a) NPB values vs time and (b) first compo-
nent of the solution of (3.5) at the time marked by the small
circle.

plex diffusion case, combined with the results on linear

cross-diffusion. The numerical results reveal that the
structure of the diffusion coefficients affects the evolu-

tion of the filtering process and the quality in the de-

tection of the edges through one of the components of

the system.

Additional lines of future research concern the ex-
tension of the cross formulation to study edge-enhancing

problems as well as the introduction and analysis of

discrete cross-diffusion systems, as discrete models for

image filtering and as schemes of approximation to the

continuous problem.
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