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Abstract The notion of tangential cover, based on max-
imal segments, is a well-known tool to study the geo-
metrical characteristics of a discrete curve. However, it
is not robust to noise, while extracted contours from
digital images typically contain noise and this makes
the geometric analysis tasks on such contours difficult.
To tackle this issue, we investigate in this paper a dis-

crete structure, named Adaptive Tangential Cover (ATC),

which is based on the notion of tangential cover and on
a local noise estimator. More specifically, the ATC is
composed of maximal segments with different widths
deduced from the local noise values estimated at each
point of the contour. Furthermore, a parameter-free al-
gorithm is also presented to compute ATC. This study
leads to the proposal of several applications of ATC on
noisy digital contours: dominant point detection, con-
tour length estimator, tangent/normal estimator, de-
tection of convex and concave parts. An extension of
ATC to 3D curves is also proposed in this paper. The
experimental results demonstrate the efficiency of this
new notion.

Keywords maximal blurred segment - noise level -
geometrical parameters - dominant points - tangent -
normal vectors - length contour estimator - contour
concave/convexe parts

1 Introduction

In shape recognition or shape matching in image pro-
cessing, the geometric analysis of digital shape contour
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is a fundamental task. A common approach is to de-
scribe the discrete curves of contours by their lists of
points but geometrical information like curvature or
tangent does not appear in this description. For more
than ten years, in discrete geometry field, the notion
of maximal segment has been widely used to describe
and to analyze the geometric properties of the contour
of digital shapes. Based on the definition of discrete
line [1], the sequence of all maximal discrete straight
segments (maximal DSS) along a digital contour C' is
called the tangential cover and can be computed in
O(N) time complexity [2] where N is the number of
points on the contour. In [3], F. Feschet studies the
structure of discrete curves with tangential cover and
shows that the tangential cover has the property of
being unique and canonical when computed on closed
curves. Tangential cover and maximal segments induce
numerous discrete geometric estimators (see [4] for a
state of the art): length, tangent, curvature estimators,
detection of convex or concave parts of a curve, mini-
mum length polygon of a digital contour, detection of
the noise level possibly damaging the shape [5,6].

However, as the tangential cover use the rigid arith-
metical definition of DSS [1], it is not adapted to noisy
digital contours. To deal with this issue, several meth-
ods based on non-DSS —often with parameters— were
presented as in [7,8]. There are likewise other approaches
that have been proposed to obtain a better model of
tangential cover, adapted to noise. One of them con-
sists in using the notion of maximal blurred segments
(MBS) which is an extension of maximal segments with
a width parameter [9,12]. It was used in several geomet-
ric estimators: curvature estimator [12], dominant point
detection [13,14], circularity detection, arc and segment
decomposition [15,16]. Nevertheless, the width param-
eter needs to be manually adjusted and the method is
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not adaptive to local amount of noise which can appear
on real contours.

This paper is an extension of the work proposed
in [17]: we present a parameter-free framework to
analyze noisy digital shape contours. We use a

new notion, named Adaptive Tangential Cover (ATC).

An ATC of a digital contour is composed of MBS with
appropriate widths, deduced from the noise level de-
tected in the contour. The local noise estimator com-
putes a value at each point of the discrete contour.
It permits to determine the widths of MBS compos-
ing the ATC. Therefore the algorithm to compute ATC
is parameter-free. The proposed framework works with
different local noise estimators and, in this paper, we
focus on two estimators presented in [18] and in [5,6].

We apply the ATC to extract geometric informa-
tion of noisy contours. In particular, an extension of
dominant point detection algorithm [14] with ATC is
proposed to obtain polygonal representations of noisy
discrete contours. This leads to the proposal of a length
estimator for noisy contours. Furthermore, a tangent es-
timator, based on the A-MST [19,20], is presented, well
adapted to noisy contours. By using the slopes of the
successive MBS of the ATC, a detector of convex and
concave parts of a contour is also proposed. Experimen-
tations and comparisons with other methods show the
interest of the proposed framework using ATC.

Moreover we propose a first approach of the no-
tion of 3D ATC, directly deduced from the ATC of 2D
curves.

The paper is organized as follows: in section 2, we
recall all necessary definitions and results to make the
paper self-content. Then, in section 3, we describe the
discrete structure named Adaptive Tangential Cover
(ATC), and we illustrate the construction algorithm
of ATC. In section 4, applications to analyze and to
extract geometric information from noisy contours are
presented as well as experimental results and an exten-
sion of ATC to 3D curves.

2 Geometrical tools for discrete curves analysis
We recall in this section several notions of discrete ge-
ometry, very useful in the study of discrete curves. The

main ideas of previous works are presented here and we
refer the reader to the given references for more details.

2.1 Maximal blurred segments

As previously described, the discrete primitives, such
as discrete lines [1], blurred segments [9] and maxi-

mal blurred segments [12] have been used in numerous
works to determine geometrical characteristics of dis-
crete curves.

Definition 1 A discrete line D(a,b, u,w), with a main
vector (a,b), a lower bound p and an arithmetic thick-

ness w (with a, b, 4 and w being integers such that

gcd(a,b) = 1) is the set of integer points (z,y) verify-

ing p < ar — by < p+ w. Such a line is denoted by

D(a,b, u,w).

Let us consider S as a sequence of integer points.

Definition 2 A discrete line D(a, b, p,w) is said to be
bounding for S if all points of S belong to D.

Definition 3 A bounding discrete line D(a, b, u, w) of

S is said to be optimal if the value —2—1— is min-
maz(lal,[b])

imal, i.e. if its vertical (or horizontal) distance is equal

to the vertical (or horizontal) thickness of the convex

hull of S.

This definition is illustrated in Fig. 1 and leads to the
definition of the blurred segments.

~ c.om./ex.hul.l ’ x

Fig. 1 D(2,7,-8,11), the optimal bounding line of the set

of points (vertical distance = 12 = 1.42).

Definition 4 A set S is a blurred segment of width
v if its optimal bounding line has a vertical or horizontal

distance less than or equal to v i.e. if —¥—=1-— <.
maz(|al,|b])

The notion of maximal blurred segment was intro-
duced in [12]. Let C be a discrete curve and C;; a
sequence of points of C' indexed from i to j. Let us sup-
pose that the predicate ”C; ; is a blurred segment of
width v is denoted by BS(i,j,v).

Definition 5 C; ; is called a maximal blurred seg-
ment of width v and noted M BS(4, j,v) iff BS(i, j, v),
-BS(i,j+1,v) and =BS(i — 1, j,v).

The following important property was proved in [12]

Property 1 Let MBS, (C) be the set of width v maxi-
mal blurred segments of the curve C. Then,
MBSV(C) = {MBS(B(), Eo, I/)7 J\jBS(.Bl7 El, l/),. cey
MBS(Bym-1,Em—_1,v)} and satisfies By < By < ... <
B,,_1. So we have: Eg < 1 < ... < E,,_1.
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Deduced from the previous property, an incremen-
tal algorithm was proposed in [12] to determine the set
of all maximal blurred segments of width v of a discrete
curve C. The main idea is to maintain a blurred seg-
ment when a point is added (or removed) to (from) it.
The obtained structure for a given width v can be con-
sidered as an extension of the tangential cover [2] and
we name it width v tangential cover of C. Using
the method proposed in [21], such a tangential cover
can be computed in O(nlogn). Examples of tangential
covers for different widths are given in Fig. 6(c-f) and
in Fig. 2.

2.2 Local noise estimators

In [5,6], a notion of Meaningful Scale (MS), was
designed to locally estimate what is the best scale to
analyze a digital contour. This estimation is based on
the study of the asymptotic properties of the discrete
lengths L (number of grid points) of maximal digi-
tal straight segments (maximal DSS, based on defi-
nition 1). In particular, it has been shown that the
lengths of maximal DSS covering a point P located on
the boundary of a C3 continuous object should be be-
tween §2(1/h'/3) and O(1/h'/?) if P is located on a
strictly concave or convex part and near O(1/h) else-
where (where h represents the grid size). This theoret-
ical property defined on finer and finer grid sizes was
used by taking the opposite approach with the compu-
tation of the maximal segment lengths obtained with
coarser and coarser grid sizes (from subsampling). Such
a strategy is illustrated in Fig. 2 (a~c) with a source
point P and its tangential cover defined from subsam-
pling grid size equals to 2 (Fig. 2 (b)) and 3 (Fig. 2 (c)).
From the graph of the maximal DSS mean lengths L?
obtained at different scales, the method consists in rec-
ognizing the first scale for which the lengths follow the
previous theoretical behavior.

As mentioned in [5,6], the multiscale profile can
be used to locally detect a scale interval considered
as meaningful. From this notion of meaningful scale, a
noise level can be deduced and associated to each point
of the contour (see Fig. 5). In the following, we called
MS estimator this local noise level estimator.

The previous method of meaningful scale detection [5,
6] has been extended to the detection of the Meaningful
Thickness (MT) [18]. This method mainly differs by
the choice of the blurred segment primitive and by the
scale definition which is given by the width parameter
of the blurred segment (called thickness in [18]). Such
a strategy presents the first advantage to be easier to
implement without the need to apply different subsam-
plings. The length variation of the maximal blurred seg-

_LH

(a) LT = 9.25

N/

[a~]

(d) &5 =713

Fig. 2 Images (a-c) illustrate the maximal segments (with
the mean L of their discrete length) used in the meaningful
scale estimation computed by subsampling the initial contour
(a). The equivalent blurred segments defined with different
widths illustrate the primitives used in the notion of mean-
ingful thickness (d-f). The mean £* of the Euclidean lengths
of the boxes bounding the width k blurred segments are given
for 3 k values.

ments (Euclidean lengths of the bounding boxes of the
blurred segments) obtained at different widths appears
to follow the equivalent properties for the maximal DSS
defined from sub-sampling. Fig. 3 shows the compari-
son of the length variations obtained with the maximal
DSS (b) and with the maximal blurred segments (c).
In both cases, the evolution of lengths presents equiv-
alent slopes which are included in the same interval.
More formally, if we denote by ¢; the width of value i, a
multi-thickness profile P, (P) of a point P is defined
in [18] as the graph

(log(t;), 1og(L"" /t:))i=1, ..n

with Zti, the mean of the Euclidean lengths of the boxes
bounding the width ¢; blurred segments. The following
conjecture has been experimentally checked.

Conjecture 1 (Multi-thickness). The plots of the len-
gths £§f'/ti in log-scale are approximately affine with
negative slopes s located between —% and —% for a

curved part and around -1 for a flat part.



Phuc Ngo et al.
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Fig. 3 Comparison between multiscale (b) and multi-thickness (c) profiles on different types of points defined on a shape (a)

containing curved (Pa, Pg) and flat (Pc, Pp) parts.
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Fig. 4 Multi-thickness profiles (b-d) obtained on different
points: P; with no noise (graph (b)), with low noise (Px,
graph (c)) and important noise (P;, graph (d)). The mean-
ingful thickness values 7n;, n, and 7; are represented on each
multi-thickness profile P;5.

Such a profile is illustrated on Fig. 4 (a,b) where a
multi-thickness profile is given on a point located on
a contour part presenting no noise.

From P, (P;) = (X;,Y;)i=1,. n, the multi-thickness
profile of P;, the meaningful thickness is defined as
a pair (i1,42), 1 < i1 < iz < n, such that for all i,
11 <1 < ig, % < T, and the property is not true
for i1 — 1 and io. As suggested in [18], the value of the
parameter T, is set to 0. In the following, we will denote
by n; the value i; corresponding to the first meaningful
thickness (i1, i2) of a point P;. n; is named meaningful
thickness value (MT value) and permits to detect
the noise level at each point P; of a curve. This local

noise level estimator is called MT estimator.

Fig. 5 Comparison between values obtained with MS esti-
mator (a) and MT estimator (b). The size of the blue boxes
represents for each pixel the MS or MT value.

Fig. 4 illustrates the meaningful thickness values
obtained for different points P;, P, and P, which present
respectively the following values: 7; = 1, n, = 3 and
7 = 5. Another illustration of the values obtained with
MT estimator is proposed in Fig. 6(b). Fig. 5 shows
the comparison between the noise level values obtained
with MS estimator and with MT estimator. The MT es-
timator shows slightly more sensitivity for the corners
but has the advantage to be able to process non integer
coordinate contours.

A local noise estimator is used in the next section
to define an adaptive tangential cover by taking into
account the amount of noise on the curve.

3 Adaptive tangential cover

The tangential covers applied for dominant point [14]
and arc/circle detection [15] use mostly mono-width
value (ie single width), denoted by v. Such a param-
eter v allows to take into account the amount of noise
present in digital contours. This method has two draw-
backs. Firstly, the value of v is manually adjusted in
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order to obtain a relevant approximating polygon of the
contours w.r.t. the noise. Secondly, the noise appearing
along the contour can be random. In other words, dif-
ferent noise levels can be present along the contours.
Fig. 6(b) illustrates the different noise levels detected
by the MT estimator.

Thus, using mono-width value for tangential covers
is inadequate in case of noisy curves.

To overcome these issues, we present the definition
of adaptive tangential cover which is a tangential
cover with different width values. To this end, we first
introduce the notion of inclusion between two MBS.

Definition 6 Let C be a discrete curve and M B.S; =
be two distinct maximal blurred segments on C. MBS}
is said to be included in M BS; if B; < B; and E; >
E;, and noted by M BS; C MBS;.

Definition 7 Let M BS(C) be a set of maximal blurred
segment of a discrete curve C. MBS; = MBS(B;, E;,.)
€ MBS(C) is said largest if for all MBS, € MBS(C)
with i # j, MBS; ¢ MBS,

Definition 8 Let C' = (C;)o<i<n—1 be a discrete curve.
Let 7 = (m:)o<i<n—1 be the vector of noise levels as-
sociated to each C; of C, obtained with a noise level
estimator £. Let MBS(C) = {MBS,, (C)} be the sets
of MBS for the different values vy in 1. An adaptive
tangential cover associated to £ (ATCg) of C is
defined as the set of the largest MBS of {MBSj =
MBS(B;,Ej,vy) € MBS(C) | vy = max{n | t €
[[ij EJ]]}}

A local noise level estimator £ is thus integrated in
the construction of AT Cg to provide the information
of noise along the contour. More precisely, the ATC¢
contains the MBS with width values varying in function
of the perturbations obtained by the noise level values
from £. Since the noise levels are different along the
contour curve, accordingly, the obtained AT'Cg¢ has the
MBS with bigger width values at noisy zones, and with
smaller width values in zones with less or no noise (see
Fig. 6(h)). Furthermore, this framework is parameter-
free.

The method for computing ATC¢ is described in
Algorithm 1. This algorithm is divided into two steps:
(1) labelling the point with the values from the noise
estimator £, and (2) building the ATC¢ of the curve
from the labels previously obtained.

More precisely, the algorithm is initialized with an
empty ATCg and the labels associated to each point
are the same as the noise level values (Lines 2-3).

In the first step (Lines 4-8), the tangential covers
with widths corresponding to all different noise levels

Algorithm 1: Calculation of adaptive tangential
cover of a curve C, associated to £: ATCk.

Input : C' = (Ci)o<i<n—1 given discrete curve,
&: a local noise level estimator,
1N = (Ni)o<i<n—1 vector of noise level
values from £ associated to each point
C; of C,
v ={v | vi € n} ordered set of 7 values,
MBS(C) = {MBS,, (C)}=," sets of
MBS of C for each vg € v

: ATCg(C) adaptive tangential cover of C
associated to £

Variables: a maximum value of 7 in a given interval

v = (7)o<i<n—1 vector of labels
associated to each point C; of C' w.r.t. MBS(C),

Output

1 begin
/* Initialization */
ATCe(C)=10;

vi =mn; for i € [0,n — 1]y ;
/* Step 1: Label each point of C with the
maximum noise level value w.r.t the MBS of
width v, passing through the point */
foreach vy, € v (in decreasing order) do
foreach M BS(B;, E;,vi) € MBS,,(C) do
o =max{n; | i € [Bi, E:]};
if o = v}, then
L v = vy, for ¢ € [B;, Ei] ;

0 N o o s

/* Step 2: Calculate ATCg by keeping the
MBS that contains at least one point whose
label is equal to the width of the MBS */
9 foreach vy € v do

10 foreach M BS(B;, E;,vi) € MBS,,(C) do
11 if 3v;, fori € [Bi, E;], such that v; = vy
then
12 ATCe(C) =
L ATCeg(CYU{MBS(B;, Ei,vi)};

are considered in order to find the label of each point.
At each level vy, the label of a point is updated to vy
if the MBS passing through the point has the maximal
noise level value being equal to v. It should be noted
that the number of noise levels overall the contour is
much smaller than the number of points on the con-
tour. Thus, the number of considered tangential covers
is often small. Then, in the second step (Lines 9-12),
the ATC¢ is composed of the MBS with widths being
the label associated to points constituting the MBS.

As stated in section 2.2, the MT estimator allows
to locally estimate the noise level at each point of a
discrete contour. To illustrate the notion of ATC, we
use the MT estimator as noise level estimator and we
note the adaptive tangential cover associated to
meaningful thickness (AT'Cy;r). An illustration of
the algorithm is given in Fig. 6.

1 [a,b] indicates all integers between a and b.
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(a) Input discrete curve

(g) Point’s label

_/J
(f) Labeling points with width vy, =3

(h) Adaptive tangential cover

Fig. 6 Illustration of Algorithm 1 with €= MT estimator. (a) Input discrete curve C. (b) Noise levels at each point C; of C
detected by the MT estimator; the red, green and violet points correspond to the meaningful thickness 7; of values 1, 2 and
3 respectively. The label of each point C; is initialized by its corresponding 7;. (¢) Tangential covers of three different widths
v = 1, 2 and 3 in yellow, blue and cyan. (d) (e) and (f) Labeling all points C; of C in function of its meaningful thickness
values and the tangent covers of widths 1, 2 and 3 respectively; The label v; of each point C; is updated to vy if the maximal
meaningful thickness, namely «, of points that belong to the M BS(B;, E;, vi) passing by C; is equal to vk, and stayed as
~; otherwise. (g) Label ~y; associated to each point of the considering curve. (h) Adaptive tangential cover obtained from the

tangential covers and the labels of points.
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4 Applications

In this section we present some applications of ATC to
dominant point detection, geometric estimators (length
and tangent), convex and concave part detector. The
experiments are performed on the contours of Fig. 7
obtained by using the extraction of connected region
boundary algorithm [22] and the local noise level esti-
mator is the MT estimator. In particular, different noise
levels are presented on these contours for the purpose of
showing the efficiency of AT'Cjr in case of non-uniform
noise (see Tab. 1). The ATCr associated to the ex-
tracted contour of these images are shown in Fig. 9.

(a) (b)

|

(c) (d)

Fig. 7 Series of input images. (a) (resp. (c)) contains man-
ual (resp. natural) noisy areas (images given in [5]) and (b,d)
are obtained by using the Kanugo [23] degradation document
model implemented in the imgAddNoise program of the DG-
talTools project [24].

4.1 Dominant point detection

Tangential covers, as stated previously, are involved in
applications of dominant point detection [14,13]. The
previous approaches use tangential covers composed of
maximal blurred segments with a constant width along
the curve. In general, this parameter needs to be man-
ually adjusted to obtain a good result of detection al-

Noise levels

115225335

Contour

Fig. 7(a) | x | x | x
Fig. 7(b) | x | x | x| x

Fig. 7(c) | x| x | x| x | x| x

Fig. 7(d) | x | x | x| x | x

Table 1 Different noise levels detected by MT estimator on
input images in Fig. 7.

gorithm. Therefore, such approaches are not adaptive
to discrete contours with irregular noise.

In this section, we present a dominant point detec-
tion algorithm using AT'C)sr. The reason is twofold: (1)
the ATC )y takes into account the amount of noise on
the curve and thus allows a better model of curve seg-
mentation, and (2) the algorithm for computing ATCyr
is parameter-free.

We recall hereafter the main idea of the dominant
point detection algorithm [14]. Firstly, the algorithm
finds the candidates as dominant points which are lo-
cated in the smallest common zone induced by succes-
sive maximal blurred segments [13]. Then, the domi-
nant point of each common zone is identified as the
point having the smallest angle with the two extremities
of the left and right of the maximal blurred segments
composing the zone. This is illustrated in Fig 8.

& -
2| MBS(Cigs, Cror,2) " Chso

Fig. 8 Illustration of the dominant point detection al-
gorithm with the adaptive tangential cover obtained
by Algorithm 1 in Fig. 6. Considering the maximal
blurred segments M BS(Cgo,Ci89,2), MBS(Cis4,C191,2)
and M BS(Cis6,C235,3), the common zone determined by
these three segments contains four points: Cig6,C187,C1ss
and Cigg (green and red points in the zoom). The left and
right extremities of the common zone are Cgg and Cass re-
spectively. The angles between each point in the common
zone and the two extremities are respectively 102.7°, 101.2°,
99.7° and 100.8°. The dominant point is the point having the
smallest angle measure, i.e., Cigg (red point in the zoom).

Fig. 10 shows the results of dominant point detec-
tion using ATCpsr.
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In order to compare the current parameter-free me-
thod, we consider in our experiments the mean tan-
gential cover with MBS of width-77 equals to the av-
erage of the obtained meaningful thicknesses at each
point of the studied curve used in [15].

It can be seen in Fig. 10 that using the mean tangen-
tial cover is not always a relevant strategy, particularly
in the high noisy zones of curves. This is due to the
fact that the width-77 parameter could not capture the
local noise on curve, contrary to the ATCy;r method
(see Fig.10 (a), (d)). In the zoom zones, we observe
that the dominant point detected by AT Cj;r method
fits better the corners, whereas the mean method in-
duces a decomposition very close to the studied curve
and detects more dominant points. In other words, in
the curved zones, the ATCy;r method simplifies the
representation of the curve.

4.2 Geometric estimators

Most of the geometric estimators have a high sensitivity
to the noise perturbing digital contours. The AT Cysp
is composed of MBS with appropriate widths, deduced
from the meaningful thicknesses, permits to obtain the
three following parameter-free geometric estimators tak-
ing into account the level of noise detected in the stud-
ied contour.

4.2.1 Contour length estimator

An estimator of the contour length is derived naturally
from the dominant points obtained with the method
presented in the previous section 4.1. The sum of Eu-
clidean distances between each pair of consecutive dom-
inant points on the contour provides an estimation of
the length of the studied contour. The ATCpr ap-
proach permits to reduce the effects of irregular noise
on the contour.

Tab. 2 shows the experimental results using ATCsp
and width v-tangential cover with v = 1,2,3 and 4 [13].

Note that other contour length estimators could be
adapted with the proposed adaptive tangential cover
in particular by integrating normal vector as described
n [25]. Such a possibility could be done by exploiting
for instance the \-MST estimator described in the next
section.

4.2.2 Tangent estimator based on \-MST

The ATC 1 can also be used to improve the precision
of existing tangent estimators in presence of noise. In
particular, we focus on a multi-grid convergent tangent
estimator called the A-MST [19,20]. This estimator is

based on the tangential cover of maximal straight seg-
ment and can handle noise by using the blurred segment
primitive. More precisely, the tangent estimation is ob-
tained by defining a pencil of maximal blurred segments
and from a mapping function A defined from [0,1] to
R*. From this pencil, a notion of eccentricity was in-
troduced in order to distribute weights on all the seg-
ments covering the considered point. More formally, the
eccentricity was defined as [20]:

)

0 otherwise

ei(k):{llOk—OEilh/Li if ic 2(k)

with Ll = ||CE1 - CBi

1 (1)

The tangent direction 6(k) of a contour point Cj is

Yic o) Mei(k))0:
Scr NE) Note that for the

experiments presented in this paper we have used the
following lambda function A = 64(—2%+32° —3z*+23).

This estimator can naturally be adapted by includ-
ing the ATC in the definition of the pencil & which can
contain a set of MBS of different widths. The Fig. 11
illustrates the main idea of this ATCprr A-MST esti-
mator. From a given point Ci32¢ of a noisy digital con-
tour, three samples of MBS covering it are displayed
in light gray (M BSy, M BSs and M BSg of #2(1320)).
From the relative position of C132¢ according to the in-
dex F;, we are able to compute the eccentricity of each
MBS (see Eq. 1) and we can then deduce the weights
from the A function. Finally, the tangent direction 0(k)
can be computed from the different values of 6; with
their associated weights.

The comparisons of Tab. 3 were performed by com-
puting the mean of the absolute error defined by the
tangent angle deviation between the estimated and the
ground-truth tangents (deduced from the nearest point
of the reference shape). The percentage of points having
small errors less than 0.1 is also computed to highlight
the amount of tangent vectors estimated with precision
(denoted as P<g.1).

Fig. 12 shows the experimental results of the AT'Cy;r
A-MST tangent estimator with the display of the nor-
mal vectors. Tab. 3 presents the comparisons of this
estimator with the A\-MST estimator defined by the
v-tangent covers with v = 1,2,3,4 and the MSMST
method proposed by Kerautret and Lachaud in [5]. The
MSMST method, simply consists by assigning, for each
point p, the A-MST tangent value computed from the
contour given at the scale defined by the meaning scale
of p. The ATCpr A-MST tangent estimator was also
compared with two other digital estimators which are
not based on the recognition of discrete straight seg-
ments. The first one is the estimator based on the Bi-

then computed by:
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Contour Ground-truth Estimated length
ATCpyr ‘ 1-TC ‘ 2-TC ‘ 3-TC ‘ 4-TC
Fig. 7 (a) 411.4497 411.594 414.416 | 412.046 | 415.639 417.09
Fig. 7 (b) 565.4867 565.419 573.874 | 568.044 | 563.393 | 558.178

Table 2 Contour length estimator of input images in Fig. 7.

27 — 62
€5 = 65 €8 = 72
05 = 21° O = 12°

Fig. 11 Illustration of the A-MST estimator principle defined from the adaptive tangential cover. A selection of three maximal
blurred segments extracted from the pencil 22(1320) are displayed in gray. For each segment, the eccentricity is given with the

associated tangent angle.

nomial Convolution (BC) [7] and the second one is the
Voronoi Covariance Measure (VCM) based estimator
[8] (see Tab. 3). Both methods use parameters which
are indicated as indexes of the method names in Tab. 3.
The experiments were obtained from the DGtal library
[29] and from the DGtalTools [24] implementation.

These results show that our proposed combination
of the A-MST estimator using ATCy;7 improves glob-
ally the stability of the estimator. It locally preserves
the polygonal discontinuities when no noise occurs and
it smoothes the tangent directions when some noisy
variations appear (even if some noise can locally re-
main due to the limits of the MT estimator). As shown
in Tab. 3 (a) the ATCpr A-MST estimator applied on
a polygonal shape shows the second best results after
the MSMST estimator which uses the meaningful scale
detection (that gives better noise detection than the
meaningful thickness on this shape). For the circle the
result appears also better than the 1,2,3-TC estimator.
The 4-TC estimator, the VC My 5 and BC' estimators
give better results than the ATCy;7 A-MST or MSMST
estimator but these configurations are not completely
significant since the circular shape is not too much de-
formed by a too large smoothing parameter.

4.2.3 Convex/concave part detector

The convexity of digital shape contours is defined and
studied in [26,4]. A digital shape O (subset of Z?) is
said digitally convez iff O is 4—connected and the Gauss
digitization of the convex hull of O is equal to O.

Fig. 12 Results of ATCpr A-MST tangent estimator dis-
played as normal vectors on the source shape extracted from
input images of Fig. 7.

Global convexity information can be deduced from
the maximal segments (based on DSS) of the studied
contour. Moreover, the convex and concave parts of the
shape contour are detected from the successive maximal
segments of the tangential cover of the contour. In [26],
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E Methods

= Absolute error

8 ATCpr | 1-TC | 2-TC | 3-TC | 4-TC | MSMST VCMs 2 VCMio,3 VCM2075 BC4 BCy

§ mean 0.065 | 0.11 {0.065|0.071|0.084| 0.02 0.097 0.068 0.066 0.074 | 0.063

i_%b Pooa 82.1 404 | 77.9 | 79.5 | 75.5 94 36.7 60.1 77.1 74.9 78.8

§ mean 0.072 |0.283|0.107|0.081|0.061| 0.089 0.129 0.079 0.052 0.049 | 0.05

';jb Pcoa 83 27.1 | T2 80 | 86.8 74.8 47.5 71.3 88.5 96.3 93.4

Table 3 Errors of tangent estimator of input images in Fig. 7.

it is proved that the contour of a polyomino is digitally
convex iff the directions of its maximal segments (based
on DSS) are monotonous.

The detector of convex and concave parts on a dig-
ital shape contour consists in detecting the sequence
of successive maximal segments on the tangential cover
whose slopes are monotonous. The maximal segments,
whose slope directions are increasing on one side and
decreasing on the other side, are transitional areas and
they cut the contour of a digital shape into convex and
concave parts.

The ATCyyr is an extension of the notion of tangen-
tial cover with maximal blurred segments (MBS) and
we use the same strategy by considering the successive
slope directions of MBS. We have tested on several ex-
amples the behaviour of the obtained sequence of MBS.
For weakly noisy digital contour, the slope directions
of MBS in ATC well localize the convex and concave
parts of the shape (see Fig 13(c)). For more noisy digi-
tal contours, the transitional areas are larger but convex
and concave parts are also detected (see Fig. 13(a,d)).
In some cases, if noise is irregularly distributed, small
perturbations in slope direction induce false detections
of convexity or concavity on small parts of the contour
(see Fig. 13(b)).

4.3 Extension of ATC in 3D

In this section, we propose an extension of ATC in 3D
space, namely 8D ATC. The main idea is to use the
2D projections onto the base planes of the 3D input
digital curve. Hereafter, we assume that the 3D input
curve has at least two valid? projections. Without loss
of generality, we can suppose the valid projections are
on (O,z,y) and (O, z, 2).

The notion of 3D discrete line [27] is defined as fol-
lows:

2 valid in the sense of there are no two points of 3D digital
curve having the same projection onto a 2D plane.

Fig. 13 Convex and concave part detector of input images in
Fig. 7. The segments in green and blue denote the convex and
concave parts respectively. While, the red segments denote a
transition between convex and concave parts.

Definition 9 A 3D discrete line, denoted
Dspla,b,c,u, 1, e, e’), with a main vector (a,b, ¢) such
that (a,b,¢) € Z3, and a > b > c is defined as the set
of points (z,y, z) from Z3 verifying:

p<cr—az<pu-+e
w<bxr—ay<p +e

with pu, ' e,e/ € Z. e and €' are called arithmetical
width of D.

The notion of 3D blurred segment (3D BS) is then
proposed in [28] and it is shown that a 3D BS is bijec-
tively projected into two projection planes.

Definition 10 Let Ssp be a sequence of integer points
in Z>. A set S3p is a 3D blurred segment of width
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v with a main vector (a,b,c) € Z% and a > b > ¢, if it
possesses an optimal discrete line, denoted by
Dsp(a,b,c, pu, p',w,w’) such that

— D(a,b, u,w) is optimal for the sequence of projec-
tions of points of S3p in the plane (O, z,y) and
w—1 <
maz(falJ) = ¥
— D(a,ec, p/,w') is optimal for the sequence of projec-
tions of points of S3p in the plane (O,x,z) and
w1l <u

maz(lal,|cl)

Still in [28], the recognition algorithm of 3D MBS is
given and has a linear complexity as in 2D. The main
idea of the 3D MBS recognition is to add simultaneously
the 2D points in the corresponding projection planes
until at least one of them fails; i.e., we can not add
any point more. Then, the 3D MBS is determined from
the two corresponding MBS projected onto 2D planes.
More details can be found in [28].

Similarly, the 3D ATC computation is performed by
combining its two projections. Regarding the noise lev-
els, we apply separately the noise estimation on each
projection plane. Then, the noise level at each point of
the 3D curve —without loss of generality— is the maxi-
mum value of the two projections. Note that the prin-
ciple for the algorithm of 3D ATC remains the same as
in 2D. Fig. 14 illustrates the 3D ATC of the 3D curves
with and without noise.

5 Conclusion and perspectives

Based on the new notion of adaptive tangential cover
[17], we have presented a new framework to analyze
a noisy digital contour. More precisely, this approach
combines the local scale analysis of a noise level esima-
tor (in this paper most of the experimentations are done
with the MT estimator) with the tangential cover and
permits to obtain a geometric analysis which is adap-
tive to noise. A first new application was proposed with
the classical problem of dominant point detection. The
use of the ATC allows to obtain a parameter-free noise-
resistant polygonalization method. Then, the ATC was
used in different geometric estimators based on the tan-
gential cover notion: (i) contour length estimator, (ii)
tangent estimator with the A-MST multigrid conver-
gent tangent estimator and (iii) concave/convex part
detector. Thanks to ATC, the robustness to noise of
these estimators were improved without the need to
manually adjust any parameter. An online demonstra-
tion based on the DGtal [29] and ImaGene [30] library
can reproduce the main results of the ATC and polyg-
onalization algorithm [31].

In this paper, we also proposed a first approach to
extend the notion of ATC to 3D by using the noise levels

of the 2D curves obtained by projecting the 3D curve.
A complete study for 3D ATC would be investigated
for any 3D curves. Another perspective is to study and
to construct a local noise level estimator adapted to 3D
curves.
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