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Abstract

We introduce a new, integrated approach to uncali-
brated photometric stereo. We perform 3D reconstruction
of Lambertian objects using multiple images produced by
unknown, directional light sources. We show how to for-
mulate a single optimization that includes rank and inte-
grability constraints, allowing also for missing data. We
then solve this optimization using the Alternate Direction
Method of Multipliers (ADMM). We conduct extensive ex-
perimental evaluation on real and synthetic data sets. Our
integrated approach is particularly valuable when perform-
ing photometric stereo using as few as 4-6 images, since the
integrability constraint is capable of improving estimation
of the linear subspace of possible solutions. We show good
improvements over prior work in these cases.

1. Introduction

Uncalibrated photometric stereo (UPS) is the problem of
recovering the 3D shape of an object and associated light-
ing conditions, given images taken with varying, unknown
illumination. In this work we replace the existing pipeline
for solving UPS with an integrated approach. This paper,
like much prior work [15, 4, 31, 29, 2, 11, 22], focuses
on Lambertian objects illuminated by a single distant point
light source in each image. Existing methods, pioneered
by [15], formulate UPS as the problem of finding a low-
rank factorization of the measurements. Specifically, given
m images each with p pixels, let M denote the m X p matrix
containing the pixel intensities. These methods optimize

min|M — M||%  s.t. rank(M) = 3. (1)
M

This problem can be solved by SVD, from which we pro-
duce a family of solutions, each consisting of a set of light
sources, albedos, and surface normals. These solutions are
related by a 3 x 3 ambiguity matrix. The surface normals
provided by SVD are in general inconsistent with the partial
derivatives of the surface (i.e. they are not integrable). Con-
sequently, existing methods apply an additional sequence of
steps aimed at reducing the ambiguity and fitting a surface
to the recovered normals.
In this paper we propose instead to optimize:

min|| N7 — M3 @)
N
s.t. M isrank 3 and produced by an integrable surface.

Eq. (1) optimizes over rank 3 matrices, which can represent
sets of images produced by any set of surface normals. In
contrast, in (2) we optimize over only those rank 3 matrices
that correspond to integrable surfaces.

Intuitively, a single optimization over all constraints will
have a better global optimum than a sequence of optimiza-
tions in which constraints are used one at a time to increas-
ingly narrow the solution (see illustration in Figure 1). A
similar intuition has motivated the use of bundle adjustment
[14] as the dominant approach to large scale structure-from-
motion. Specifically in UPS the measurement matrix may
contain many errors due to shadows and specular effects.
Therefore, while in theory UPS can be solved with as few
as three images, SVD can properly handle these modeling
errors only when many images are supplied. Indeed, cur-
rent methods [2, | 1] typically use 10 or more images. With
fewer images SVD results tend to provide noisy solutions.
Our method incorporates integrability into this estimation,
providing valuable additional constraints that can reduce
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Figure 1: A cartoon of our approach. Blue represents the set
of rank 3 matrices, while red represents the subset of those that
correspond to integrable surfaces. Our optimization seeks to find
the integrable matrix (red dot) that is closest to the measurements
(black dot). If instead we first find the nearest rank 3 matrix and
then select an integrable matrix (the blue dots) we may produce a
suboptimal solution.

this noise. Our experiments indicate that our method can
produce reasonable reconstructions with as few as 4 im-
ages and good reconstruction with 6 images, significantly
improving over state-of-the-art methods with these few im-
ages.

For our approach we optimize a cost function based on
(2) over the surface, lighting, normals, and (restored) error-
free observations. The cost ensures that normals and light-
ing are consistent with the measurements, which must have
low rank. We use constraints that ensure integrability. This
is somewhat tricky because rank constraints apply to the
measurements while integrability constraints apply to the
normals. We show that by constructing a rank 3 matrix that
contains normals, measurements, and lighting, we can im-
pose the rank and integrability constraints together. Specifi-
cally, we use a truncated nuclear norm approach [16] to en-
force the rank constraint, while integrability is represented
by linear equalities. This leads to a single non-convex
problem that we solve using a series of Alternate Direction
Method of Multipliers (ADMM) operations [5, 13].

Our formulation allows us to easily account for miss-
ing data in the measurement matrix. This commonly oc-
curs when pixels are dark due to shadows, or saturated due
to specularities. In some of the prior approaches, this can
be solved with a preprocessing step, which may lead to
a pipeline with yet another optimization [29]. We handle
missing data using matrix completion based on the rank
constraint. We initialize our optimization using prior ap-
proaches, in much the same way that bundle adjustment is
initialized using simpler, but non-optimal algorithms [14].

2. Background and Previous Work

In this section we introduce in detail the problem of un-
calibrated photometric stereo for Lambertian objects and
review past work. We assume that we view an object in
multiple images from a fixed viewpoint. In each image the
object is illuminated by a single, distant point light source.

We represent lighting in image i with [; € R®, in which the
direction of [; represents the direction to the lighting, and
||;]] represents its magnitude. We represent the object us-
ing a set of surface normals 7; € R?, and albedos p; € R
for each pixel. We then obtain images with the equation:

M;; = max(0, p;l] 7j) (3)

where M;; represents the j-th pixel of the i-th im-
age. We define the surface normal 7 HZﬁ, n;
(—2z, —2y,1)T, where z, and z, represent partial deriva-
tives of the surface z(z,y) at pixel j. Negative values of
pjliTﬁj are set to 0; these appear as attached shadows.

We now describe the creation of all images using matrix
operations. We define .S to be a 3 x p matrix in which col-
umn j contains p;n;. Given m images, we can stack the
light into the matrix L of dimension m x 3, where each row
denotes one light per image. We concatenate all the images
to form an observation matrix M of dimension m X p, where
p is the number of pixels. Now, in the absence of shadows,
we can write the equation of UPS as:

M = LS. “4)

Classical work on photometric stereo (e.g. [28], see a
recent review in [1]) has assumed that known lighting is
obtained by careful calibration. With L known, (4) can be
solved as a linear least squares problem. A more general
and challenging case is unconstrained photometric stereo,
in which the L is unknown. A common approach, which
we use as a baseline algorithm, follows the steps in Algo-
rithm 1.

Algorithm 1 Baseline
Input : M
Output : Z
Factorization : Perform SVD on M to obtain light and
scaled surface normals M = LS [15].
Integrability : Follow Yuille and Snow [31] to resolve
ambiguity after the factorization using integrability. In
M = LS = LA 'AS, we solve for A, such that
S = AS approximately forms a set of integrable surface
normals.
Depth Reconstruction : Obtain the depth map Z from
the set of integrable surface normals S as, e.g, in [3].

Belheumer et al. [4] showed that in UPS the integrable
set of surface normals can only be recovered up to a Gen-
eralized Bas-Relief transformation (GBR). A number of re-
cent papers have concentrated on methods of solving the
GBR ambiguity. Researchers have used priors on the albedo
distribution [2], reflectance extrema [!1], grouping based
on image appearance and color [24], inter-reflections [9],



isotropy and symmetries [27], and specularity [10] as con-
straints while solving for the GBR. All of these methods
have first used the above mentioned baseline described in
Algorithm 1 to obtain a solution up to the GBR.

Recent works have explored a variety of other research
directions in photometric stereo. Mecca et al. [ 18] proposed
an integrated, PDE based approach to calibrated photomet-
ric stereo that uses a mere two images under perspective
projection. It is not clear how to extend this to uncalibrated
photometric stereo. Basri et al. [3] extended the baseline to
handle multiple light sources in each image using a spheri-
cal harmonics formulation. Chandraker et al. [8] proposed
a method to handle attached and cast shadows in the case of
multiple light sources per image. In [25] the authors deter-
mine the visibility subspace for a set of images to remove
the cast and attached shadows for performing UPS. Vari-
ous works have addressed non-Lambertian materials (e.g.,
Georghiades et al. [12] and Okabe et al. [20]).

In the context of Lambertian UPS, Georghiades et
al. [12] proposed to remove shadows and specularities and
recover the missing pixel values using matrix completion
algorithms, e.g., using the damped Wiberg [21] or Cabral’s
algorithm [6]. Wu et al. [29] proposed a Robust PCA for-
mulation as preprocessing for calibrated photometric stereo.
Their approach seeks a low-rank (not necessarily rank 3)
approximation to M while removing outlier pixels (corre-
sponding to shadows and specularities). Oh et al. [19] ap-
plied Robust PCA in the context of calibrated photometric
Stereo, replacing the Nuclear Norm with a Truncated Nu-
clear Norm (TNN) regularizer [16]. In [11], Favaro et al.
have used Robust PCA as preprocessing to the baseline al-
gorithm for UPS.

3. Our Approach

In this section we introduce our integrated formulation
that enforces integrability of surface normals in solving
the uncalibrated photometric stereo problem. We recall
from (4) that the measurement matrix M can be factored
into M = LS. To access the derivatives of z(, y) we write
S as a product

S = NA, (5)

where N is a 3 X p matrix whose j’th column is n; =

(=22, =2y, )T and A = diag(\;, A2, ..., Ap) with \; =
—p;/lln;l|l. We next define the matrix:
Xt xN I N
X = |:XL X]W:| - |:L MA1:| ) (6)

where X is (34 m) x (3 + p). The matrices X, A, and the
depth values (z(z, y)) form the unknowns in our optimiza-
tion. Note that, because LN = MA~1!, the following holds

for any 3 x 3 non-degenerate matrix A

A—l
X = [LAI} [A  AN]. (7)

This shows that X is rank 3. The matrix A represents a
linear ambiguity. However, forcing the normals in IV to be
integrable will reduce this ambiguity to the GBR.

To force integrability we denote by z = (21, ..., 2,) T the
vector of unknown depth values and require
N T

XV = [DIZ7 Dyz, —1] , )

where D, D, denote respectively the x- and y-derivative
operators and 1 denotes the vector of all 1’s.

Additional constraints are obtained by noticing that, be-
cause 0 < p; < land ||n;|| > 1,

~1<M<0 ©)

and
X1 = I5y3. (10)

We are now ready to define our optimization function.
Let W be a binary, m x p matrix so that W;; = 0if M;; is
missing and W;; = 1 otherwise, and let

1 )
faota(X2) = 5|IW © O = XMA)|[E, (D)

where ® denotes element-wise multiplication. Then (2) can
be written as

' X, A
Inin fdata(X, A)

s.t. rank(X) =3, (8), (9),and (10). (12)

Handling the rank-3 constraint: Enforcing the non-
convex constraint rank(X) = 3 can be challenging. In
the context of matrix completion a recent paper [16] pro-
posed using the Truncated Nuclear Norm (TNN) regular-
ization term:

3
Feonn(X) = || X« = Y on(X), (13)
k=1

where || X||. denotes the nuclear norm of X and o (X) is
the k-th largest singular value of X. Clearly, fi,,(X) =0
if and only if rank(X) < 3. We use f;,, as a regularizer
and solve

)I(I’l/lxr’lz fdata (X7 A) +c ftnn (X)

s.t. (8), (9),and (10), (14)

where c is a preset scalar.



4. Optimization using ADMM

In this section we introduce a method for solving (14).
This is a challenging problem because both fj,tq and finy,
are non-convex. Specifically, fiqtq (11) is bilinear in X and
A, while fi,, (13)is a difference between two convex func-
tions. Our solution is based on a nested iteration in which
the outer loop uses majorization to decrease f,, whereas
the inner loop uses the scaled ADMM with alternation to
decrease fyqtq-

Outer loop: Following [16] at each iteration of the outer
loop we replace fi,,(X) with a majorizer. Specifically, at
iteration k let X(*) = UXVT be the singular value de-
composition of X (%), and let Us (and V3) be the matrices
containing the left (right) singular vectors corresponding to
the three largest singular values of X (¥). Us and V5 are de-
termined in the outer loop and are held constant throughout
the inner loop. We then define

Fanag(X) = X | — trace(U3 XVa). (1)

maj

It was shown in [16] that f{r)(X) > fin(X) forall X and
that f(k) (X(k)) = ftnn(X(k)), and so decreasing fi,q;

maj
leads to decreasing fi,y,.

Inner loop: In the inner loop we seek to minimize

. (k)
)I;I’l/lxlzlz fdata(Xv A) + Cfm (X)

aj
st. (8), (9),and (10), (16)

We use scaled ADMM, a variant of the augmented La-
grangian method that splits the objective function and aims
to solve the different subproblems separately. We maintain
a second copy of X, which we denote by Y and form the
augmented Lagrangian of (16) as follows

. 1 IYNNTE:
Ry gl e Or= AT

c (|\Y||* - trace(UgTyvg)) n %HY X 4T

sit. X' = Iyxz, —1<\; <0V, X~ = [Duz, Dyz, —1]",

a7

where ||Y — X + I'||%, denotes the Lagrangian penalty; T
is a constant, and I' is a matrix of Lagrange multipliers the
same size as X that is updated by the ADMM steps [5, 13].
We next describe the ADMM steps (applied iteratively).

Step 1: Solving for (X, A, z).
In each iteration, k, we solve the following sub-problems:

1. Optimize w.r.t. XT: XT(h+1) = [ o,
2. Optimize w.r.t. X*:
XEEHD = argmin|[YEF® — x4 pER)2,
XL

yE®E) LB (18)

3. Optimize w.r.t. XV and z:

(XN<k+l),z(k+1)) = argminHYN<k) —xN 4N (k>||%
XN z

st. XV = [D,z, Dyz, -1]". (19)
The problem is solved by setting the third row of
XN (k+1) to —1 and by substituting D,z and Dyz for
the first two rows of X* in the objective, obtaining
linear least squares equations in z that can be solved
directly.

. Optimize w.r.t. X™ and A:

(XM (D) Gt :argmin%HW o (M- XM

XM A
+ %”}/M(k) _xM + Fj\l(k)l‘%

st. —1< ) <0V

We will separate this into the known and unknown pix-
els based on W. For an unknown pixel j in frame ¢
(W;; = 0) the first term vanishes and the minimization
only determines the respective entry of X so that:

Xizy (k+1) _ Y;_;V[(k) n F?f (k) (20)

For the known pixels, since A is diagonal we can write
these equations separately for each column j (corre-
sponding to the j-th pixel):

M (k k .1
(1 DAY =argming |(W; © (M; — X, X3
XM 5
T k Y k
+ 5O - X
st. —1<A; <0, 1)
The problem (21) is non-convex. We will solve it with

alternate optimization. X™ and A are updated by the
following steps until convergence.

XM Let M; = W; @ M, X; =Wj®XjMand
/Nlj»w(k) =W; 0o (YjM(k) + F;-V[ (k)). Then,

> 1 - = T M (k >
X; = argmin o |10 — X515 + 143 - X113
X

)\ij + TA;VI(]C)

(22)
)\? + T

A:
N s 2
Aj = argmin §||Mj - XXl st —1 <A <0,
Aj

J

= min(0, max(—1, X M; /| X;|3)). (23)



Step 2: Solving for Y. Solving for Y requires a solution to
Y*H) = argmine (||Y ||« — trace(Us Y'V3))
Y
+%\|Y xR (24

Below we show that this problem can be solved in closed
form by applying the shrinkage operator, obtaining

y(+D = p,, (x®+D) _p) 4 oV, (@9
T

where the shrinkage operator D;(.) is defined
as follows.  For a scalar s we define Di(s) =
sign(s) x max(|s| — t,0). For a diagonal matrix

S = diag(si, s2,...) with non-negative entries we define
Dy(S) = diag(D+(s1), D+(s2), ...). Finally, for a general
matrix T, let ¥ = USV7 be its singular value decomposi-
tion, then D, (Y) = UD,(S)V7.

To derive (25), we rewrite (24) as:

y k) - argmin \|YH*+2L||Y—X(k+l>+r(k)—£U3V3TH§7—T,
Y C T
(26)
c
where T' = trace(VaUZ (X (F+1) — (k) 4- 2—||U3V3T||%
T
is independent of Y. Equation (26) is of the general form
1
H%}HHYH* +5 |Y — C||%, for which the solution is D;(C'),

as is shown in [7], implying (25).

Step 3: Update of I'. The matrix I' contains Lagrange mul-
tipliers that are used in the saddle-point formulation (17)
to enforce the equality constraint X = Y. The following
update is a gradient ascent step that acts to maximize the
augmented Lagrangian (17) for I'. For details, see [5, 13].

kD) — k) 4 (Y(k+1) _ X(k+1)). 27)

The entire optimization process is listed in Algorithm 2.
We will make the code available.

5. Experimental Results

In this section we evaluate and compare the performance
of our algorithm with two versions of the baseline algo-
rithm, in both real world and synthetic examples. We com-
pare the following methods:

Baseline: Algorithm 1 described in Section 2. This method
isusedin [2, 11,24,9,27,10].

RPCA: Images are preprocessed using Robust PCA [29],
parameters are chosen as suggested by [ 1]. Then we apply
the baseline algorithm to the obtained matrix. This method
is used in [1 1]. RPCA solves a sparse low rank optimiza-
tion to detect shadows and other non-Lambertian effects.
The method uses L; regularization to identify outlier pix-
els, even when they do not result in intensities near O or 1.

Algorithm 2 TNN formulation solved with ADMM

Input: M, W.
Output: X, z.
Initialization: Initialize X” and XV by running Base-
line algorithm (without resolving GBR). Initialize X ¥ =
~M,A = ~-I,andc =1 Set X = X,V = X,
I'=0,and 7 = 1.
k=0.
while not converged do
Perform SVD over X (%) to obtain Us and V.
Run ADMM:
while not converged do
Update of X, z and A.
Update X!(*+1D) = [ .
Update X L(*+1) using (18).
Update X V(*+1) and z using (19).
while not converged do
for each pixel j do
Update XJM(’CH) using (22) and A;Hl) using
(23).
end for
for each pixel j in each image ¢ do
if W;; = 0i.e. pixel j is not known then
Update Xi]y(kﬂ) using (20).
end if
end for
end while
Update Y using (25).
Update of I using (27).
k=Fk+1.
end while
end while

Our(NC): Our proposed formulation as described in Sec-
tion 4 using W = 1, i.e., no completion. This allows
comparison to Baseline, which also does not perform ma-
trix completion.

Our(MC): Our proposed formulation as in Section 4 with
w;; € {0,1}, allowing for matrix completion. In both ver-
sions of our algorithm we use ¢ = 1 and use RPCA to ini-
tialize optimization. We identify missing pixels as those
with normalized intensity outside the range of (0.02, 0.98).

All the tested methods solve for the surface only up to a
GBR ambiguity. To compare the results with ground truth,
we find the GBR that optimizes the fit to ground truth, and
measure the residual error.

In the presence of a large number of images with
noise and non-Lambertian effects, we expect the sequential
pipeline of Baseline and RPCA, involving SVD, to produce
accurate solutions, because the problem solved by SVD is
heavily overconstrained. In the presence of fewer images,
our integrated method will be able to produce a more ac-



curate decomposition by using both rank and integrability
constraints to find the right linear subspace. Thus we ex-
pect our integrated approach to improve over the Baseline
and RPCA as we reduce the number of images. In the fol-
lowing sub-section we will show results with synthetic and
real world data that supports our claim.

5.1. Experiments on Synthetic Data

99 <

We use five real objects (“cat”, “owl”, “rock™, “horse”,
“buddha”) to produce synthetic images, their shape is ob-
tained by applying calibrated photometric stereo to a pub-
licly available dataset [17]. We use the normals and albedos
from these objects to generate images. Each image is gen-
erated by a randomly selected light source which lies at 30
degrees of the viewing direction on average. All images are
of size 512 x 340 with objects occupying 29-72K pixels. A
segmentation mask is also supplied. To show the variation
of performance with the number of images N, we use sets
of 4,6, 8, 10, 15, 20, 25 and 30 images respectively. We add
Gaussian noise with standard deviation ranging from 1% to
7% (in steps of 2%) of the maximum intensity. For each
choice of noise, we run 5 different trials with random noise
and lighting to generate the synthetic images. Thus we have
5 objects, 4 levels of noise and 5 random simulations, mak-
ing a total of 100 experiments for each of the 8 different
sets of 4, 6, 8, 10, 15, 20, 25 and 30 images. As a measure
of performance, we calculate the error in the reconstructed
depth map. Let the ground truth surface be Z and the re-
constructed surface be Z,... We measure error in depth as
Zerr = 100 % % To compare two algorithms (say,
algorithm A vs. algorithm B), we define the following two
terms :

Relative Improvement (in %) : Denote e{ and e}, as the
depth error for each trial k£ by using algorithm A and B re-
spectively. The Relative Improvement of algorithm B over

b__a . .
A is the average of (51»6717%) over all trials K for each choice
k

of N expressed in percentage.

Percent of Improved Trials : This denotes the number of
trials in which algorithm B improves over A. In terms of
notation introduced previously, this is & Zszl I(ed < ep),
where [(.) is in indicator variable and K is the total number
of trials for each choice of N;. The measure is expressed in
percentage.

In Figure 2a we compare performance of Our(MC) with
Baseline and RPCA, on synthetic data in the presence of
Gaussian noise. We initialize our methods with RPCA. We
observe that as the number of images decreases, our method
improves compared to Baseline and RPCA. With simple
Gaussian noise RPCA doesn’t produce additional advan-
tages as there are no outliers.

In Figure 2b we compare the performance of our meth-
ods on synthetic data with Gaussian noise and with specu-
larities generated by the Phong reflectance model [26, 23].
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Figure 2: Performance comparison of Our(MC) algorithm to
RPCA (in blue) and Baseline (yellow) for different numbers of
input images with gaussian noise under either a pure lambertian
model (top) or the Phong model (bottom). The left bar plot shows
the amount of relative improvement achieved with our algorithm,
and the right plot shows the percent of trials in which our algo-
rithm out performed each one of the competing algorithms.
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Figure 3: Performance comparison of Our(MC) with RPCA and
Baseline with varying noise created using the Phong model.

Mathematically each image M; can be represented as :
M; =L;S+ ks(VR)?, (28)

where V' is the viewing direction and R denotes the direc-
tions of perfect reflection for incoming light L; for each
pixel 7. Larger o produces sharper specularities, while
larger k, causes more light to be reflected as specularity. We
use ks = 0.2 and o = 10. We observe that the advantage
of Our(MC) degrades as the number of images increases,



as expected. This experiment shows that even though our
method is designed specifically for Lambertian objects it
can tolerate a certain amount of model irregularities such as
specularity. With 4 images our method beats RPCA in 85%
of the all trials with a relative improvement of 22.12%.

In Figure 3 we compare Our(MC) with Baseline and
RPCA with variation of noise for different subsets of im-
ages (4,6,10 and 15). We can conclude that our method is
robust to noise and its advantages do not degrade with an
increase in noise.

5.2. Experiments on Real World Data
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Figure 4: Performance comparison of Our (MC) and Our (NC)
algorithms to RPCA and Baseline with real images.

To test our approach on real data, we used the two pub-
licly available data sets [17] and [30] consisting of 5 and 7
objects respectively. The datasets provide calibrated light-
ing, which we use to perform calibrated photometric stereo.
The obtained depth map, albedo, and surface normals are
considered as ground-truth for photometric stereo with un-
known lighting similar to [2]. To show the variation of per-
formance with the number of images, we select subset of 4,
6, 8 and 10 images for each object. We perform 10 random
selections of subset of images for each of the 12 objects.
Thus we have 120 experiments for every subset of images.

In Figure 4 we compare the performance of our meth-
ods, Our(MC) and Our(NC), with Baseline and RPCA with
variation in the number of images. We see that for fewer
images our methods outperform Baseline and RPCA by a
significant amount and are comparable to RPCA for more
images. For 4 images Our(MC) outperforms Baseline in
84.9% cases with a relative improvement of 30.6% and out-
performs RPCA in 81.4% cases with a relative improvement
of 12%. However for 10 images we beat Baseline in 75%
cases with a relative improvement of 10.7% and beat RPCA
in only 47.3% cases with a relative improvement of -7.2%.

Figure 5 shows the average reconstruction error obtained
by Our(MC), RPCA and Baseline on 12 real-world objects
over 10 random simulations. We observe that Our(MC) out-
performs RPCA on 11 out of 12 objects for 4 images and
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Figure 5: Average surface reconstruction error with 4 (top) and
6 (bottom) real images of 12 objects over 10 random trials using
Our(MC), RPCA and Baseline.

10 out of 12 objects for 6 images (and is comparable in
1). With 10 images the average reconstruction error using
Our(MC) over all objects and all trials is 4.6%. This in-
creases to 8.1% with four images, and is only 5.4% with
six images. This shows that we have reasonable reconstruc-
tion with 4 images and good reconstruction with as few as
6 images.

In Figure 6 we compare the error in surface reconstruc-
tion between Baseline, RPCA, and Our(MC) on some of
our real world examples. Figure 7 shows two views of sur-
faces reconstructed using the Our(MC) algorithm using 4
images, showing reasonable surface reconstruction. These
results suggest that our joint approach to enforcing rank and
integrability constraints can significantly improve the per-
formance of photometric stereo in the presence of a few im-
ages.

In general, we see that incorporating matrix comple-
tion into our formulation results in a slight improvement,
with Our(MC) somewhat outperforming Our(NC). This in-
dicates that the improvement of our method compared to
RPCA or Baseline is mostly due to the joint optimization
formulation and not due to matrix completion. We further
note that RPCA seems to significantly improve over Base-
line. RPCA is able to identify outliers and use that extra
information for better recovery. This also suggests that the
robust error function used by RPCA is important. However
our integrated approach, which does not have a robust cost
function like RPCA, still outperforms RPCA for 4 and 6
images and is almost equal for 8 or 10 images. This shows
that an integrated approach is very useful for a small number
of images and provides similar gain compared to RPCA for
more images. It would be an interesting topic of future work
to amend the cost function of Our(MC) to include RPCA’s
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Figure 7: Two views of surfaces reconstructed with Our(MC) algorithm for 4 images. Each column shows two images of surfaces

reconstructed on “Cat”, “Owl”, “Pig” and “Hippo” respectively.

robust handling of error, to see if this further improves its
performance.

For an image of size 512 x 340 with an object occupying
an area of 30K pixels, our algorithm takes 20 minutes on a
2.7 GHz Intel Core i5 machine.

6. Conclusion and Future Work

In this paper we have introduced a new low-rank con-
strained optimization method for solving uncalibrated pho-
tometric stereo using fewer images. The key to this ap-
proach is to combine rank and integrability constraints in a

single optimization problem. This relies on a novel formu-
lation that exposes both depth and surface normals to the
optimization, linking them with an integrability constraint.
We then show how to perform this optimization using a
truncated nuclear norm and ADMM. Our joint formulation
produces better solutions, compared to other methods that
use SVD, for fewer images. We have shown promising re-
sults compared to baseline approaches using both real and
synthetic examples. We also observe that our method can
handle certain degrees of model irregularities as it has out-
performed RPCA in synthetic examples with specularities



generated using the Phong model.

In the future, it will be interesting to apply the idea of Ro-
bust PCA to our formulation. We would also like to extend
this work to handle more general lighting configurations,

e.g.,

using spherical harmonic approximations to lighting.
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