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Abstract In this paper, we introduce a generalized asym-
metric fronts propagation model based on the geodesic dis-
tance maps and the Eikonal partial differential equations.
One of the key ingredients for the computation of the geodesic
distance map is the geodesic metric, which can govern the
action of the geodesic distance level set propagation. We
consider a Finsler metric with the Randers form, through
which the asymmetry and anisotropy enhancements can be
taken into account to prevent the fronts leaking problem
during the fronts propagation. These enhancements can be
derived from the image edge-dependent vector field such
as the gradient vector flow. The numerical implementations
are carried out by the Finsler variant of the fast marching
method, leading to very efficient interactive segmentation
schemes. We apply the proposed Finsler fronts propagation
model to image segmentation applications. Specifically, the
foreground and background segmentation is implemented
by the Voronoi index map. In addition, for the application
of tubularity segmentation, we exploit the level set lines of
the geodesic distance map associated to the proposed Finsler
metric providing that a thresholding value is given.

Keywords Finsler Metric · Randers Metric · Eikonal
Partial Differential Equation · Fast Marching Method ·
Image Segmentation · Tubular Structure Segmentation

1 Introduction

Fronts propagation models have been considerably devel-
oped for the applications of image segmentation and bound-
ary detection since the original level set framework proposed
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by Osher and Sethian [31]. Guaranteed by their solid math-
ematical background, the fronts propagation models lead to
strong abilities in a wide variety of computer vision tasks
such as image segmentation and boundary detection [10,11,
25, 42]. In their basic formulation, the boundaries of an ob-
ject are modeled as closed contours, each of which can be
obtained by evolving an initial closed curve in terms of a
speed function till the stopping criteria reached. A typical
speed function usually involves a curve regularity penalty,
for instance the curvature, and an image data term. The use
of curve evolution scheme for image segmentation can be
backtrack to the original active contour model [21] which
has inspired a amount of approaches [14, 16, 18, 22, 27, 40].

Let Ω ⊂ R2 be an open bounded domain. Based on the
level set framework [31], a closed contour γ can be retrieved
by identifying the zero level set line of a scalar function
φ : Ω → R such that γ := {x ∈ Ω; φ(x) = 0}. By this
curve representation, the curve evolution can be carried out
by evolving the function φ

∂φ

∂t
= ξ ‖∇φ‖, (1)

where ξ : Ω → R is a speed function and t denotes the
time. At any time t, the curve γ can be recovered by iden-
tifying the zero-level set line of the function φ. Using the
level set evolutional equation in Eq. (1), the contours split-
ting and merging can be adaptively handled. The main draw-
back of the level set-based front propagation method is its
expensive computational burden. In order to alleviate this
problem, Adalsteinsson and Sethian [1] suggested to restrict
the computation for the update of the level set function φ
within a narrow band. In this case, only the values of φ at
the points nearby the zero-level set lines are updated ac-
cording to Eq. (1). Moreover, the distance-preserving level
set method [23] is able to avoid level set reinitialization by
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Fig. 1 Fronts propagation for interactive image segmentation through different geodesic metrics. (a) The original image and the seeds, where
blue and green brushes indicate the seeds which are placed in the foreground and background, respectively. (b) - (d) Segmentation results via
the isotropic Riemannian metric, the anisotropic Riemannian metric and the Finsler metric. The blue curves represent the segmented foreground
boundaries.

enforcing the level set function φ as a signed Euclidean dis-
tance function from the current curves during the evolution.

Despite the efforts devoted to the reduction in the com-
putation burden, the classical level set-based fronts prop-
agation scheme (1) is still impractical especially for real-
time applications. In order to solve this issue, Malladi and
Sethian [26] proposed a new geodesic distance-based front
propagation model for real-time image segmentation. It re-
lies on a geodesic distance map Us : Ω → R+ ∪ {0} as-
sociated to a set s of source points. The value of Us(x) at
a point x in essence is equivalent to the minimal geodesic
curve length between the point x and a source point s ∈ s

in the sense of an isotropic Riemannian metric, which is de-
pendent on a potential function P : Ω → R+. The geodesic
distance map Us coincides with the viscosity solution to the

Eikonal equation, which can be efficiently computed by the
fast marching methods [28, 29, 30, 36, 38], leading to a pos-
sible real-time solution to the segmentation problem. In the
context of segmentation, the potential function usually has
small values in the homogeneous region and large values
near the boundaries. Based on the geodesic distance map
Us, a curve can be denoted by the T -level set of the distance
map Us, where T > 0 is a geodesic distance thresholding
value. In other words, a curve γ can be characterized by the
distance value T such that

γ := {x ∈ Ω; Us(x) = T}. (2)

By assigning large values to the potential function P around
image edges, the basic idea behind [26] is to use the curve
γ defined in Eq. (2) to delineate the boundaries of interest-
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ing objects. One difficulty suffered by the geodesic distance-
based fronts propagation scheme is that the fronts may leak
outside the targeted regions before all the points of these
regions have been visited by the fronts. The leakages some-
times occur near the boundaries close to the source posi-
tions or in weak boundaries, especially when dealing with
long and thin structures. The main reason for this leaking
problem is the positivity constraint required by the metric
(potential) functions for the Eikonal equation. In order to
solve this problem, Cohen and Deschamps [17] suggested
an adaptive freezing scheme for tubular structure segmenta-
tion. They took into account a Euclidean curve length crite-
rion to prevent the fast marching fronts to travel outside the
tubular structures in order to avoid the leaking problem. The
main difficulty of this model lies at the choice of a suitable
Euclidean curve length thresholding value. Chen and Co-
hen [12] considered an anisotropic Riemannian metric for
vessel tree segmentation, where the vessel orientations are
taken into account to mitigate the leaking problem. Li and
Yezzi [24] proposed a dual fronts propagation model for ac-
tive contours evolution, where the geodesic metric includes
both edge and region statistical information. The basic idea
of [24] is to propagate the fronts simultaneously from the
exterior and interior boundaries of the narrowband. The op-
timal contours can be recovered from the positions where
the two fast marching fronts meet. These meeting interfaces
also correspond to the boundaries of the adjacent Voronoi
regions. Arbeláez and Cohen [3, 4] and Bai and Sapiro [6]
made use of the Voronoi index map and the Voronoi region
for interactive image segmentation, both of which can be
constructed through the geodesic distance maps associated
to the pseudo path metrics. In their formulation, these mod-
els [3, 4, 6] allow the values of the metrics to be zero and to
be dependent on path orientations. The image segmentation
can be characterized by the Voronoi regions, each of which
involves all the points labeled by the same Voronoi index. In
this case, the contours indicating the tagged object bound-
aries are no longer the level sets of the geodesic distance
map, but the common boundaries of the adjacent Voronoi
regions. Other interesting geodesic distance map-based im-
age segmentation methods include [9, 19, 32].

A common point of the Eikonal front propagation mod-
els mentioned above is that the segmentation procedure is
carried out by using the geodesic distance map itself. Find-
ing geodesics through the gradient descent on the geodesic
distance map is an alternative way of using the Eikonal equa-
tion framework for practical applications. Since the origi-
nal work by Cohen and Kimmel [18], a broad variety of
minimal path models have been proposed to solve various
image analysis problems [?, ?, ?, ?, 7, 13]. Recently, a sig-
nificant contribution to the minimal path framework lies at
the development of the curvature-penalized geodesic mod-
els such as [?, ?, ?, 14]. In the basic formulations of [?, ?,

14], the curve length values of the minimal geodesics with
curvature penalization can be approximately measured by
strongly anisotropic Riemannian metrics or Finsler metrics
established in an orientation-lifted space. As a result, the
geodesic distance maps associated to these metrics can be
efficiently and accurately estimated by the Hamiltonian fast
marching method [?]. The curvature-penalized geodesics can
be recovered via a gradient descent scheme on the associated
geodesic distance map.

In this paper, we extend the geodesic distance map-based
front propagation framework to a Finsler case, where both
the edge anisotropy and asymmetry are taken into account
simultaneously. Our model thus relies on the geodesic dis-
tance map itself instead of minimal paths. Moreover, we also
present two ways to construct the Finsler metrics with re-
spect to the applications of foreground and background ob-
ject segmentation and tubularity segmentation. In order to
quickly find suitable and reliable solutions in various sit-
uations, it is important for the fronts propagation models
with a single-pass manner to be robust against to the leaking
problem. The existing front propagation approaches invok-
ing either Riemannian metrics [12, 17] or pseudo path met-
rics [3,4,6], do not take into account the edge asymmetry in-
formation. This may increase the risk of the leaking problem
especially when the provided seeds are close to the targeted
boundaries. We show an example of the leaking problem in
Fig. 1. In Fig. 1a, the source points inside the foreground
and background are indicated by green and blue brushes, re-
spectively. The contours in Figs. 1b and 1c obtained from the
Riemannian metrics pass through the boundaries before the
whole object has been covered by the fast marching fronts.
In contrast, the segmented contour derived from the pro-
posed Finsler metric can avoid such problem as shown in
Fig. 1d.

1.1 Paper Outline

The remaining of this paper is organized as follows: In Sec-
tion 2, we introduce the geodesic distance map associated
to a general Finsler metric, the Voronoi regions and the rel-
evant numerical tool. Section 3 presents the construction of
the asymmetric Finsler metrics associated to different image
segmentation applications. The numerical considerations for
the Finsler metrics-based fronts propagation are introduced
in Section 4. The experimental results and the conclusion
are respectively presented in Sections 5 and 6.

2 Background on Geodesic Distance Map

A Finsler geodesic metric F : Ω × R2 → [0,+∞] is a con-
tinuous function over the domain Ω × R2. For each fixed
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Fig. 2 The course of the fast marching front propagation for the computation of the geodesic distance map Us. (a) The original image. The blue
brush indicates the source point set s such that Us(x) = 0, ∀x ∈ s. (b)-(e) The course of the fast marching front propagation.

point x ∈ Ω, the geodesic metric F(x,v) can be character-
ized by an asymmetric norm of v ∈ R2. In other words, the
Finsler geodesic metric F is convex and 1-homogeneous on
its second argument. It is also potentially asymmetric such
that ∃x ∈ Ω and ∃v ∈ R2, the following inequality is held

F(x,v) 6= F(x,−v). (3)

The geodesic curve length associated to the metric F along
a Lipschitz continuous curve C can be expressed by

`F (C) :=

∫
C
F(C(s), C′(s)) ds, (4)

where C′(s) = d
dsC(s) is the first-order derivative of the

curve C and s is the arc-length parameter of the curve C.
Letting s ⊂ Ω be a set which involves all the source

points. The minimal curve length from y to x with respect
to the Finsler metric F is defined by

DF (y,x) = inf
C∈Ay,x

`F (C), (5)

where Ay,x is the set of all the Lipschitz continuous curves
linking from a point y to x ∈ Ω.

The geodesic distance map Us associated to the geodesic
metricF can be defined in terms of the minimal curve length
DF in Eq. (5) such that

Us(x) := inf
y∈s
DF (y,x). (6)

The geodesic distance map Us is the unique viscosity solu-
tion to the Eikonal equation [14, 29]max
‖v‖6=0

〈∇Us(x),v〉
F(x,v)

= 1, ∀x ∈ Ω\s,

Us(x) = 0, ∀x ∈ s,
(7)

where ∇Us denotes the standard Euclidean gradient of Us
and 〈·, ·〉 is the Euclidean scalar product in the Euclidean
space R2.

The Eikonal equation (7) can be interpreted by the Bell-
man’s optimality principle which states that

Us(x) = min
y∈∂Λ(x)

{DF (y,x) + Us(y)}, (8)

where Λ(x) ⊂ Ω is a neighbourhood of point x and ∂Λ(x)

is the boundary of Λ(x). This interpretation is a key ingredi-
ent for the numerical computation of the geodesic distance
map via the fast marching method [29].

2.1 Voronoi Index Map

In this section, we consider a more general case for which a
family of source point sets are provided. Suppose that these
source point sets are denoted by sk and are indexed by k ∈
{1, 2, · · · , n} with n the total number of source point sets.
For the sake of simplicity, we note s = ∪nk=1sk.

For a given geodesic metric F , we can compute the re-
spective geodesic distance map Uk associated to each source
point set sk by Eq. (6). A Voronoi index map is a func-
tion L : Ω → {1, 2, · · · , n} such that for any source point
x ∈ sk

L(x) = k, k ∈ {1, 2, · · · , n}, (9)

and for any domain point x ∈ Ω\s, the Voronoi index L(x)

is identical to the index of the closest source point set in
the sense of the geodesic distance [4,7]. One can construct a
Voronoi index map L in terms of the geodesic distance maps
Uk (1 ≤ k ≤ n) by

L(x) = arg min
1≤k≤n

Uk(x), ∀x ∈ Ω. (10)

By the Voronoi index map L, the whole domain Ω can be
partitioned into n Voronoi regions Vk ⊂ Ω

Vk := {x ∈ Ω; L(x) = k}. (11)

The common boundary Γi,j := ∂Vi ∩ ∂Vj of two adjacent
Voronoi regions Vi and Vj is comprised of a collection of
equidistant points to the source point sets si and sj , i.e.,

Ui(x) = Uj(x), ∀x ∈ Γi,j . (12)
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Finally, we consider a geodesic distance map Us associated
to the set s = ∪ksk which can be expressed by

Us(x) = min
1≤k≤n

Uk(x), (13)

where Uk is the geodesic distance map with respect to the
source point set sk indexed by k.

2.2 Fast Marching Method

Many approaches [8, 35, 39, 41] can be used to estimate the
geodesic distance map Us. Among them, the fast marching
method [36, 38] solves the Eikonal equation in a very effi-
cient way. It has a similar distance estimation scheme with
Dijkstra’s graph-based shortest path algorithm [20]. One cru-
cial ingredient of the fast marching method is the construc-
tion of the stencil mapΛ, whereΛ(x) defines the neighbour-
hood of a grid point x. The isotropic fast marching meth-
ods [36, 38] are established on an orthogonal 4-connectivity
neighbourhood system, which suffers some difficulties for
the distance computation associated to asymmetric Finsler
metrics [29]. In order to find accurate solutions to the Finsler
Eikonal equation, more complicated neighbourhood systems
are taken into account [?, 28, 29, 37]. These neighbourhood
systems or stencils are usually constructed depending on the
geodesic metrics. In this paper, we adopt the Finsler vari-
ant of the fast marching method proposed by Mirebeau [29].
It invokes a geometry tool of anisotropic stencil refinement
and leads to a highly accurate solution, but requires a low
computation complexity.

2.2.1 Hopf-Lax Operator for Local Distance Update

The Finsler variant of the fast marching method [29] esti-
mates the geodesic distance map on a regular discretization
grid Z2 of the domain Ω. It makes use of the Hopf-Lax op-
erator to approximate (8) by

Us(x) = min
y∈∂Λ(x)

{F(x,x− y) + IΛ(x) Us(y)}, (14)

where Λ(x) denotes the stencil of x involving a set of ver-
tices in Z2 and IΛ(x) is a piecewise linear interpolation oper-
ator in the neighbourhood Λ(x). The estimate of the quality
and order for the solution to (14) can be found in [29].

The Hopf-Lax operator is first introduced for the geodesic
distance computation by Tsitsiklis [38] from an optimal con-
trol point of view. The minimal curve length DF of a short
geodesic from y to x is approximated by the lengthF(x,x−
y) of a line segment xy. The geodesic distance value Us(y)

in Eq. (8) is estimated by a piecewise linear interpolation
operator IΛ(x) at y located at the stencil boundary ∂Λ(x).
It is comprised of a set Tx of one-dimensional simplexes or
line segments. Each simplex Ti ∈ Tx connects two adjacent

Algorithm 1 Fast Marching Fronts Propagation
Input: Source points set s = ∪ksk.
Output: Geodesic distance map Us and Voronoi index map L.
1: ∀x ∈ Ω\s, set Us(x)←∞ and b(x)←Far.
2: ∀x ∈ s, set Us(x)← 0 and b(x)←Trial.
3: ∀x ∈ sk, set L(x) = k.
4: while there remains at least one Trial point do
5: Find a Trial point xmin globally minimizing Us.
6: Set b(xmin)←Accepted.
7: if xmin /∈ s then
8: Update the Voronoi index L(xmin) by Eq. (18).
9: end if

10: for all z ∈ Z2 such that xmin ∈ Λ(z) do
11: if b(z) 6=Accepted and z /∈ s then
12: /∗ Update some map Cdyn(z) if necessary. ∗/
13: Find Û(z) by evaluating the Hopf-Lax formula (15).
14: Set Us(z)← min{Us(z), Û(z)} and b(z)←Trial.
15: end if
16: end for
17: end while

vertices which are involved in the stencil Λ(x). The solution
Us to the Hopf-Lax operator (14) can be attained by

Us(x) = min
Ti∈Tx

Ui(x), (15)

where Ui is the solution to the minimization problem

Ui(x) = min
y∈Ti

{F(x,x− y) + IΛ(x) Us(y)}. (16)

For each simplex Ti ∈ Tx which joins two vertices z1 and
z2, the minimization problem (16) can be approximated by
Tsitsiklis’ theorem [38] such that

Ui(x) = min
λ
F

(
x,x−

2∑
i=1

λizi

)
+

2∑
i=1

λiUs(zi), (17)

where λ = (λ1, λ2) subject to λ1, λ2 ≥ 0 and
∑2
i λi = 1.

2.2.2 Fast Marching Fronts Propagation Scheme

The fast marching method estimates the geodesic distance
map Us in a wave front propagation manner. We demon-
strate the course of the fast marching fronts propagation in
Fig 2 on a synthetic image. In this figure, we invoke a Finsler
metric for the computation of the geodesic distance map Us,
where the metric will be presented in Section. 4. The fast
marching fronts propagation is coupled with a procedure of
label assignment operation, during which all the grid points
are classified into three categories:

– Accepted points, for which the values of Us have been
estimated and frozen.

– Far points, for which the values of Us are unknown.
– Trial points, which are the remaining grid points in Z2

and form the fast marching fronts. A Trial point will
be assigned a label of Accepted if it has the minimal
geodesic distance value among all the Trial points.
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In the course of the geodesic distance estimation, each grid
point x ∈ Z2\s will be visited by the monotonically advanc-
ing fronts which expand from the source points involved in
s. The values of Us for all the Trial points are stored in a pri-
ority queue in order to quickly find the point with minimal
Us. The label assignment procedure1 can be carried out by a
binary map b : Z2 → {Accepted, Far, Trial}.

Suppose that s = ∪ksk with sk a source point set. The
geodesic distance map Us and the Voronoi index map L can
be simultaneously computed [7, 15], where the computation
scheme in each iteration can be divided into two steps.
Voronoi index update. In each geodesic distance update it-
eration, among all the Trial points, a point xmin that glob-
ally minimizes the geodesic distance map Us is chosen and
tagged as Accepted. We set L(xmin) = k if xmin ∈ sk.
Otherwise, the geodesic distance value Us(xmin) can be es-
timated in the simplex T∗ ∈ Txmin

(see Eq. (15)), where the
vertices relevant to T∗ are respective z1 and z2. This is done
by finding the solution to (17) with respect to the simplex
T∗, where the corresponding minimizer is λ∗ = (λ∗1, λ

∗
2).

Then the Voronoi index map L can be computed by

L(xmin) =

{
L(z1), if λ∗1 ≥ λ∗2,
L(z2), otherwise.

(18)

Local Geodesic Distance Update. For a grid point x, we
denote by Λ?(x) := {z ∈ Z2;x ∈ Λ(z)} the reverse sten-
cil. The remaining step in this iteration is to update Us(z) for
each grid point z such that z ∈ Λ?(xmin) and b(z) 6=Accepted
through the solution Ûs(z) to the Hopf-Lax operator (14).
This is done by assigning to Us(z) the smaller value between
the solution Ûs(z) and the current geodesic distance value of
Us(z). Note that the solution Ûs(z) to (14) is attained using
the stencil Λ(z) [29].

The algorithm for the fast marching method is described
in Algorithm 1. In this algorithm, the computation of a map
Cdyn in Line 12 of Algorithm 1 is not necessary for the gen-
eral fast marching fronts propagation scheme, but required
by our method as discussed in Section 4.3.
Computation Complexity. The complexity estimate for the
isotropic fast marching methods [36, 38] established on the
4-neighbourhood system is bounded by O(N lnN), where
N denotes the cardinality N := #Z2 of the discrete do-
main Z2 ∩Ω. The complexity estimates for the Finsler vari-
ant cases [29, 37] with adaptive stencil system rely on the
anisotropic ratio κ(F) of the geodesic metric F . The es-
timate for the ordered upwind method [37] is bounded by
O(κ(F)N lnN), which is impractical for image segmen-
tation application. In contrast, for the method [29] used in
this paper, the complexity bound reduces toO(N lnκ(F) +

1 Initially, each source point x ∈ s is tagged as Trial and the re-
maining grid points are tagged as Far.

N lnN). Note that the anisotropic ratio κ(F) is defined by

κ(F) := max
x∈Z2

{
max

‖u‖=‖v‖=1

F(x,u)

F(x,v)

}
. (19)

3 Finsler Metric Construction

Definition 1 Let S+
2 be the collection of all the positive def-

inite symmetric matrices with size 2×2. For any matrixM ∈
S+
2 , we define a norm ‖u‖M =

√
〈u, Mu〉, ∀u ∈ R2.

3.1 Principles for Finsler Metric Construction

In this section, we present the construction method of the
Finsler metric which is suitable for fronts propagation and
image segmentation. Suppose that a vector field g : Ω → R2

has been provided such that g(x) points to the object edges
at least when x is nearby them. In this case, the orthogonal
vector field g⊥ indicates the tangents of the edges.

Basically, the Eikonal equation-based fronts propagation
models [26] perform the segmentation scheme through a
geodesic distance map. In order to find a good solution for
image segmentation, the used geodesic metric should be able
to reduce the risk of front leaking problem. For this purpose,
we search for a direction-dependent metricFg satisfying the
following inequality

Fg(x, g⊥(x)) < Fg(x, g(x)) < Fg(x,−g(x)). (20)

Recall that for an edge point x, both the feature vectors
g⊥(x) or −g⊥(x) are propositional to the tangent of the
edge at x. When the fast marching front arrives at the vicin-
ity of image edges, it prefers to travel along the edge feature
vectors g⊥(x) and −g⊥(x), instead of passing through the
edges, i.e., prefers to travel along the direction −g(x).

The inequality (20) requires the geodesic metric Fg to
be anisotropic and asymmetric with respect to its second ar-
gument. Thus, we consider a Finsler metric with a Randers
form [33] involving a symmetric quadratic term and a linear
asymmetric term for any x ∈ R2 and any vector u ∈ R2

F(x,u) := C(x)
(
‖u‖Mg(x) − 〈ωg(x),u〉

)
, (21)

whereMg : Ω → S+
2 is a positive symmetric definite tensor

field and ωg : Ω → R2 is a vector field that is sufficiently
small. The function C : Ω → R+ is a positive scalar-valued
potential which gets small values in the homogeneous re-
gions and large values around the image edges. It can be
derived from the image data such as the coherence measure-
ments of the image features, which will be discussed in de-
tail in Section 4.3.

The tensor fieldMg and the vector field ωg should sat-
isfy the constraint

‖ωg(x)‖M−1
g (x) < 1, ∀x ∈ Ω, (22)
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in order to guarantee the positiveness [29] of the Randers
metric F .

We reformulate the Randers metric Fg in Eq. (21) as

Fg(x,u) = C(x)Gg(x,u), (23)

where Gg : Ω×R2 → [0,∞] is still a Randers metric which
can be formulated by

Gg(x,u) = ‖u‖Mg(x) − 〈ωg(x),u〉. (24)

The remaining part of this section will be devoted to the
construction of the Randers metric Gg in terms of the vector
field g which is able to characterize the directions orthogonal
to the image edges.

Let us define a new vector field ḡ : Ω → R2 by

ḡ(x) :=
g(x)

‖g(x)‖2
.

The tensor field Mg used in Eq. (21) can be constructed
dependently on two scalar-valued coefficient functions η1
and η2 such that

Mg(x) = η21(x)ḡ(x)⊗ ḡ(x) + η2(x)ḡ⊥(x)⊗ ḡ⊥(x), (25)

where ḡ⊥(x) is the orthogonal vector of ḡ(x) and⊗ denotes
the tensor product, i.e., u ⊗ u = uuT . Note that the eigen-
values of Mg(x) are η21(x)/‖g(x)‖2 and η2(x)/‖g(x)‖2,
respectively corresponding to the eigenvectors g(x)/‖g(x)‖
and g⊥(x)/‖g(x)‖.

The vector ωg(x) is positively collinear to field g(x) for
all x ∈ Ω

ωg(x) = τ(x) ḡ(x), (26)

where τ : Ω → R is a scalar-valued coefficient function.
We estimate the coefficient functions η1, η2 and τ through

two cost functions ψf , ψb : Ω → (1, +∞), which assign
the cost values ψf(x), ψb(x) and 1 to the Randers metric Gg
respectively along the directions g(x),−g(x) and g⊥(x) for
any point x ∈ Ω such that
Gg(x, g(x)) = ψf(x),

Gg(x,−g(x)) = ψb(x),

Gg(x, g⊥(x)) = 1.

(27)

Combining Eqs. (25) and (27) yields that
η1(x)− τ(x) = ψf(x),

η1(x) + τ(x) = ψb(x),

η2(x) = 1,

(28)

for any x ∈ Ω.

The positive symmetric definite tensor fieldMg and the
vector field ωg thus can be respectively expressed in terms
of the cost functions ψf and ψb by

Mg(x) =
1

4
(ψf(x) + ψb(x))2 ḡ(x)⊗ ḡ(x)

+ ḡ⊥(x)⊗ ḡ⊥(x), (29)

and

ωg(x) =
1

2
(ψb(x)− ψf(x)) ḡ(x). (30)

Based on the tensor fieldMg and the vector fieldωg respec-
tively formulated in Eqs. (29) and (30), the positiveness con-
straint (22) is satisfied due to the assumption that ψf(x) > 1

and ψb(x) > 1, ∀x ∈ Ω. The cost functions ψf and ψb

can be derived from the image edge information such as the
image gradients, which will be discussed in Section 4.

Note that if we set ψf ≡ ψb, the vector field ωg will
vanish, i.e., ωg ≡ 0 (see Eq. (30)). In this case, one has
〈ωg(x),u〉 = 0 for any point x ∈ Ω and any vector u ∈ R2,
leading to a special form of the Randers metric Gg. This spe-
cial form is a symmetric (potentially anisotropic) Rieman-
nian metric R(x,u) = ‖u‖Mg(x) which depends only on
the tensor fieldMg.

Remark 1 (Randers Eikonal Equation) The Eikonal equa-
tion for a general Finsler metric can be found in Eq. (7). As-
sociated to the Randers metric Gg defined in (24), the general
Eikonal equation (7) gets to be the following form{
‖∇Us(x)− ωg(x)‖M−1

g (x) = 1, ∀x ∈ Ω\s,
Us(x) = 0, ∀x ∈ s,

(31)

where Us is the geodesic distance map and s is the source
point set.

3.2 Tissot’s indicatrix

A basic tool for studying and visualizing the geometry dis-
tortion induced from a geodesic metric is the Tissot’s indi-
catrix defined as the collection of control sets in the tangent
space [14]. For an arbitrary geodesic metric F : Ω × R2 →
[0,∞], the control set B(x) for any point x ∈ Ω is defined
as the unit ball centered at x such that

B(x) := {u ∈ R2;F(x,u) ≤ 1}. (32)

We demonstrate the control sets B(q) in Fig. 3 for the Ran-
ders metric Gg(q, ·) with different values ofψf(q) andψb(q)

at a point q ∈ Ω. The vector g(q) is set as

g(q) =
(

cos
(π

4

)
, sin

(π
4

))T
.

In Fig. 3a, we show the control sets for the Randers metric
Gg with respect to different values ofψb(q) and a fixed value
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Fig. 3 Control sets B(q) for different geodesic metrics associated to different values of ψf(q) and ψb(q). The blue arrow indicates the direction
g(q) = (cos(π/4), sin(π/4))T . The blue dots and the contours denote the origins and the boundaries of these control sets, respectively. (a)
Control sets for Randers metrics associated to ψf(q) = 5 and different values of ψb(q). (b) Control sets for anisotropic Riemannian metrics with
ψf(q) = ψb(q) > 1. (c) Control set for an isotropic Riemannian metric with ψf(q) = ψb(q) = 1.

Fig. 4 Geodesic distance maps associated to the Randers metric Gg with different values of ψf and ψb. The red arrow indicate the vector
(cos(π/4), sin(π/4))T . The white dots are the source points. Each white curve indicates a level set line of the respective geodesic distance map.
(a) Geodesic distance map associated to ψf ≡ 3 and ψb ≡ 8. (b) Geodesic distance map associated to ψf ≡ 3 and ψb ≡ 3. (c) Geodesic distance
map associated to ψf ≡ 8 and ψb ≡ 3. The color bars are on the top of each figure.

ψf(q) = 5. One can point out that the common origin of
these control sets have shifted from the original center of
the ellipses2 due to the asymmetric property as formulated
in Eq. (3). In Fig. 3b, the control sets for the Randers metric
Gg associated to ψf(q) = ψb(q) > 1 are demonstrated,
where Gg(q, ·) gets to be anisotropic and symmetric on its
second argument. When ψf(q) = ψb(q) = 1, the values of
the Randers metric Gg(q,u) turn to be invariant with respect

2 These ellipses are the boundaries of the control sets.

to u as shown in Fig. 3c. In this case, the tensorMg(q) is
propositional to the identity matrix.

In Fig. 4, we show the geodesic distance maps associated
to Gg with different values of the cost functions ψf and ψb.
The vector field g is set to

g ≡
(

cos
(π

4

)
, sin

(π
4

))T
.

In Figs. 4a and 4c, we can see that the geodesic distance
maps have strongly asymmetric and anisotropic appearance.
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In Fig. 4b, we observe that the geodesic distance map ap-
pears to be symmetric and strongly anisotropic. This is be-
cause the respective propagation speed of the fast march-
ing fronts along the directions (cos(π/4), sin(π/4))T and
−(cos(π/4), sin(π/4))T is identical to each other.

4 Data-Driven Randers Metrics Construction

4.1 Cost Functions ψf and ψb for the Application of
Foreground and Background Segmentation

In this section, we present the computation method for the
cost functions ψf and ψb using the image edge information,
based on which the image data-driven Randers metric Gg
can be obtained.

Let I = (I1, I2, I3) : Ω → R3 be a vector-valued image
in the chosen color space and let Gσ be a Gaussian kernel
with variance σ (We set σ = 1 through all the experiments
of this paper). The gradient of the image I at each point x =

(x, y) is a 2× 3 Jacobian matrix

∇Iσ(x) = ∇Gσ ∗ I (x)

involving the Gaussian-smoothed first-order derivatives along
the axis directions x and y

∇Iσ(x) =

(
∂xGσ ∗ I1 ∂xGσ ∗ I2 ∂xGσ ∗ I3
∂yGσ ∗ I1 ∂yGσ ∗ I2 ∂yGσ ∗ I3

)
(x).

(33)

Let ρ : Ω → R be an edge saliency map. It has high values
in the vicinity of image edges and low values inside the flat-
ten regions. For each domain point x ∈ Ω, the value of ρ(x)
can be computed by the Frobenius norm of the Jacobian ma-
trix ∇Iσ(x)

ρ(x) =

√√√√ 3∑
i=1

(
|∂xGσ ∗ Ii(x)|2 + |∂yGσ ∗ Ii(x)|2

)
. (34)

For a gray level image I : Ω → R, the edge saliency map
ρ can be simply computed by the norm of the Euclidean
gradient of the image I such that

ρ(x) =
√
|∂xGσ ∗ I(x)|2 + |∂yGσ ∗ I(x)|2. (35)

Construction of the Vector Field g. We use the gradient
vector flow method [40] to compute the vector field g for
the construction of the Randers metric Fg. This can be done
by minimizing the following functional Egvf with respect to
a vector field h = (h1, h2)T : Ω → R2, where Egvf can be
expressed as

Egvf(h) = ε Ereg(h) + Edata(h), (36)

where ε ∈ R+ is a constant and

Ereg(h) =

∫
Ω

(
‖∇h1(x)‖2 + ‖∇h2(x)‖2

)
dx, (37)

Edata(h) =

∫
Ω

‖∇ρ(x)‖ 2‖h(x)−∇ρ(x)‖2 dx. (38)

The parameter ε controls the balance between the regular-
ization term Ereg and the data fidelity term Edata. As dis-
cussed in [40], the values of ε should depend on the image
noise levels such that a large value of ε is able to suppress
the effects from image noise. We set ε = 0.1 through all the
numerical experiments of this paper. The minimization of
the functional Egvf can be carried out by solving the Euler-
Lagrange equations of the functional Egvf with respect to the
components h1 and h2. The gradient vector flow h is more
dense and smooth than the original gradient filed∇ρ. In the
vicinity of edges, the values of ‖∇ρ‖ are large and one has
the approximation h ≈ ∇ρ due to the effects of the data
fidelity term Edata, while in the flatten regions where the
gradient ∇ρ nearly vanishes, the vector field h is forced to
keep smooth (i.e., slowly-varying), because within these re-
gions the minimization of the regularization term Ereg plays
a dominating role for the computation of h. More details for
gradient vector flow method can be found from [40].

The vector field g for the construction of the Randers
metric Gg can be obtained by normalizing the vector field h

g(x) =
h(x)

‖h(x)‖
, ∀x ∈ Ω. (39)

The cost functions ψf and ψb used in Eq. (27) for the fore-
ground and background segmentation application can be ex-
pressed for any x ∈ Ω by

ψf(x) = exp

(
αf ρ(x)

‖ρ‖∞

)
, (40)

ψb(x) = exp

(
αb ρ(x)

‖ρ‖∞

)
ψf(x), (41)

where αf and αb are nonnegative constants dominating how
anisotropic and asymmetric the Randers metric Gg is.

Once the cost functions ψf and ψb have been computed
by Eqs. (40) and (41), we can construct the tensor filedMg

and the vector field ωg respectively via Eqs. (29) and (30).
Indeed, one has ψf(x) ≈ ψb(x) ≈ 1 for the points x located
in the homogeneous region of the image I where ρ(x) ≈
0. In this case, the data-driven Randers metric Gg(x, ·) ex-
pressed in Eq. (24) approximates to be an isotropic Rieman-
nian metric. For each point x around the image edges such
that the value of ρ(x) is large, the Randers metric Gg(x, ·)
will appear to be strongly anisotropic and asymmetric.
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Fig. 5 Fronts propagation results associated to the Randers metric Fg with different values of βd. (a) Original image with source points, respec-
tively, placed in the foreground (green brush) and background (blue brush) regions. (b)-(d) Fronts propagation for the values of βd = 0, 5 and
10, respectively.

4.2 Cost Functions ψf and ψb for Tubularity Segmentation

In this section, we take into account a feature vector field p :

Ω → R2 which extracts local orientation features from the
image. A feature vector p(x) characterizes the orientation
that a tubular structure should have at a point x belonging to
this structure. The feature vector field p can be estimated by
the steerable filters [?, ?, ?, ?].

Based on the cost functions ψf and ψb in Eqs. (39) and
(40), we are able to build a positive symmetric definite ten-
sor fieldMg for the Randers metric Gg. For each point x in-
side the tubular structures where the gray levels vary slowly,
the value of the gradient norm ρ(x) nearly vanishes, lead-
ing to ψb(x) ≈ ψf(x) ≈ 1. In this case, the Randers metric
Gg(x,u) is approximately independent of the directions u

(see Section 4.1). However, with respect to tubular structure

segmentation application, we expect that inside the tubular
structure the fast marching fronts travel faster along the di-
rections p(·) or −p(·) than along the directions p⊥(·) or
−p⊥(·) in order to reduce the risk of the front leakages. For
this purpose, we make use of a new tensor field M̃g : Ω →
S+
2 based onMg in Eq. (29) such that

M̃g(x) =Mg(x) + µp⊥(x)⊗ p⊥(x), ∀x ∈ Ω,

where µ ∈ R+ is a constant. It is relevant to the anisotropy
property of the tensor field M̃g. In the numerical experi-
ments of this paper, we set µ = ‖ψf‖2∞.

In practice, we observe that inside the tubular structures,
the feature vector field p can be well approximated by the
vector field g⊥ which is the orthogonal vector field of g de-
rived from Eqs. (36) and (39). In order to reduce the compu-
tation time, we construct the tensor field M̃g by the vector
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field g such that

M̃g(x) =Mg(x) + µ g(x)⊗ g(x). (42)

In this case, we obtain a new Randers metric G̃g for the ap-
plication of tubularity segmentation, which depends on the
tensor field M̃g and can be formulated as

G̃g(x,u) :=

√
〈u,M̃g(x)u〉 − 〈ωg(x),u〉. (43)

Note that we build G̃g by using the same vector fieldωg with
the Randers metric Gg. Based on the new Randers metric
G̃g, inside the tubular structures the fast marching fronts will
travel fast along the directions p(·) or−p(·), but slow when
the fronts arrive at the boundaries and slower when the fronts
tend to pass through them.

4.3 Computing the Potential

We present the computation methods for the potential func-
tion C used by the data-driven Randers metric that is formu-
lated in Eq. (23). Basically, the potential function C should
have small values in the homogeneous regions and large val-
ues in the vicinity of the image edges.

4.3.1 Foreground and Background Segmentation

For foreground and background segmentation application,
the potential function CFB := C has a form of

CFB(x) = exp

(
βs ρ(x)

‖ρ‖∞

)
Cdyn(x), (44)

where βs is a positive constant and ρ is the edge saliency
map defined in Eqs. (34) or (35). The term exp(βs ρ(x))

which depends only on the edge saliency map ρwill keep in-
variant during the fast marching fronts propagation. The dy-
namic potential function Cdyn relies on the positions of the
fronts. It will be updated in the course of the geodesic dis-
tances computation in terms of some consistency measure
of image features [6]. Basically, the values of the dynamic
potential Cdyn should be small in the homogeneous regions.
We use a feature map F : Ω → Rn with n the dimensions
of the feature vector to establish the dynamic potential Cdyn.
The feature map F can be the image color vector (n = 3),
the image gray level (n = 1), or the scalar probability map
(n = 1) as used in [6].

Recall that in each fast marching distance update itera-
tion, the latest Accepted point xmin is chosen by searching
for a Trial point with minimal distance value Us (s is the set
of the source points), i.e.,

xmin := arg min
x:b(x)=Trial

Us(x). (45)

Then the value of Cdyn(z) for each point z ∈ Z2\s such that
xmin ∈ Λ(z) and b(z) 6=Accepted can be updated by evalu-
ating the Euclidean distance between F(z) and F(xmin) (see
Line 12 of Algorithm 1). In other words, one can compute
the dynamic potential Cdyn in each fast marching update it-
eration by

Cdyn(z) = exp(βd ‖F(z)− F(xmin)‖ ) (46)

for all grid points z ∈ Z2\s such that xmin ∈ Λ(z) and
b(z) 6=Accepted, where βd is a positive constant. Note that
we initialize the dynamic potential Cdyn by

Cdyn(x) = 1, ∀x ∈ s.

Based on the potential CFB in Eq. (44) and the Randers
metric Gg (see Section 4.1), the data-driven Randers metric
Fg for the foreground and background segmentation appli-
cation can be expressed for any point x ∈ Ω and any vector
u ∈ R2 by

Fg(x,u) = CFB(x)Gg(x,u). (47)

Finally, we show the effects of the dynamic potential
Cdyn in Eq. (46) in the foreground and background segmen-
tation application. The fronts propagation results are shown
in Fig. (5) with respect to the Randers metric Fg. In this ex-
periment, we choose different values for the parameter βd
that is used by the dynamic potential Cdyn and a fixed pa-
rameter βs = 10 to compute the edge-based potential CFB.
The values of αf and αb are set to be 2 and 3, respectively.
Indeed, one can point out that the dynamic potential is able
to help the fronts propagation scheme to avoid leakages.

4.3.2 Tubularity Segmentation

We assume that the gray levels inside the tubular structures
are stronger than outside. For tubularity segmentation, we
consider a potential function CT := C involving a static term
and a dynamic term C̃dyn such that

CT(x) = exp
(
βs(‖ζ‖∞ − ζ(x))

)
C̃dyn(x), (48)

where ζ : Ω → [0, 1] is a feature map that characterizes the
tubularity appearance, i.e., the value of ζ(x) indicates the
probability of a point x belonging to a tubular structure. In
practice, the map ζ can be specified as the image gray levels
or as a normalized vesselness map derived from a tubularity
detector such as [?, ?, ?].

The dynamic potential C̃dyn is estimated in the course
of the fast marching fronts propagation. The computation
scheme of C̃dyn is almost identical to the dynamic potential
Cdyn presented in Section 4.3.1, except that the dynamic po-
tential C̃dyn for tubularity segmentation is dependent on the
feature map ζ.
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We also initialize the dynamic potential by C̃dyn(x) =

1, ∀x ∈ s. In each geodesic distance update iteration, we
suppose xmin be the latest Accepted point. For each grid
point z ∈ Z2\s such that xmin ∈ Λ(z) and b(z) 6= Accepted,
we update the dynamic potential C̃dyn by

C̃dyn(z) = exp(βd |min{ζ(z)− ζ(xmin), 0}| ). (49)

The reason for the use of (49) is that if the latest Accepted
point xmin belongs to a tubular structure, then the inequal-
ity ζ(z) > ζ(xmin) means that the neighbour point z also
belongs to this structure. Therefore, we assign a small value
to C̃dyn. In this paper, we set the map ζ as the normalized
image gray levels, i.e., ζ(x) ∈ [0, 1], ∀x ∈ Ω.

The data-driven Randers metric F̃g for tubularity seg-
mentation can be formulated by

F̃g(x,u) = CT(x) G̃g(x,u), ∀x ∈ Ω, ∀u ∈ R2, (50)

where the potential CT and the metric G̃g are expressed in
Eqs. (48) and (43), respectively.

5 Experimental Results

5.1 Implementation Details

Parameter Setting. The anisotropy and asymmetry of the
Randers metrics Gg and G̃g are determined by the param-
eters αf and αb (see Eqs. (40) and (41)). We respectively
denote by Gαg and G̃αg the data-driven Randers metrics Gg
and G̃g with a pair of parameters α = (αf , αb). In this case,
the corresponding Randers metrics Fg in Eq. (47) and F̃g

in (50) can be noted by Fα
g and F̃α

g , respectively. The po-
tential functions CFB and CT rely on two parameters βs and
βd. We fix βd = 10 through all the experiments, except in
Fig. 8 for which we set βd = 5. The values of βs are indi-
vidually set for each experiment.

Note that the parameter α = (0, 0) indicates that the
geodesic metrics G(0,0)g and G̃(0,0)g are isotropic with respect
to the second argument. Furthermore, whenα = (a, 0) with
a ∈ R+, the metrics G(a,0)g and G̃(a,0)g get to be the anisotropic
Riemannian cases3.
Image Segmentation Schemes. The interactive foreground
and background segmentation task can be converted to the
problem of identifying the Voronoi index map or Voronoi
regions in terms of geodesic distance [4, 6]. Let s1 and s2
be the sets of source points which are respectively located
at the foreground and background regions. The Voronoi re-
gions V1 and V2, indicating foreground and background re-
gions respectively, can be determined by the Voronoi index
map L through Eq. (11) such that

Vi := {x ∈ Ω;L(x) = i}, i = 1, 2.

3 Note that metrics Gαg and G̃αg have the identical anisotropy and
asymmetry properties to Fα

g and F̃α
g , respectively.

With respect to the foreground and background segmen-
tation, the computation complexity for the geodesic distance
computation is consistent to the used fast marching method [29],
which is bounded by O(N lnκ(Fg) + N lnN) with N the
number of the grid points in Z2.

For tubularity segmentation, all the user-provided seeds
are supposed to be placed inside the targeted structures. We
make use of the Th-level set of the geodesic distance map Us
as the boundaries of the targeted tubular structures. We de-
note byNaccepted the number of the grid points in Z2 tagged
as Accepted, i.e.,

Naccepted = #{x ∈ Z2; b(x) = Accepted}.

In order to reduce the computation time of the fast marching
method, we terminate the fronts propagation once the num-
ber Naccepted of the grid points tagged as Accepted reaches
the given thresholding value Nth. In this case, the tubular
structures can be recovered by the regions which are com-
prised of all the Accepted points. Let Ntrial be the number
of Trial grid points when Naccepted points have been tagged
as Accepted and let Nused = Naccepted + Ntrial be the to-
tal number of grid points for which the distance values have
been updated. The computation complexity for this appli-
cation is bounded by O(Nused lnκ(F̃g) + Nused lnNused),
since only Nused grid points are visited by the fast marching
fronts.

5.2 Advantages of Using Anisotropy and Asymmetry
Enhancements

Let us consider a synthetic image as shown in Fig. 6a with
two sampled points x and y indicated by blue dots. The ar-
rows respectively indicate the directions of g(x) and g(y),
where x is near the edges and y is located inside the ho-
mogeneous region. In Fig. 6b, we plot the cost values of the
metrics G(0,0)g (x,uj), G(2,0)g (x,uj) and G(2,1)g (x,uj), along
different directions uj ∈ R2. The directions uj are obtained
by rotation such that

uj = M(j θs) g(x), j = 1, 2, ..., 72, (51)

where θs = π/36 is the angle resolution and M(j θs) is a
rotation matrix with angle j θs in a countclockwise order. In
Fig. 6c, we plot the cost values for the metrics G(0,0)g (y,vj),
G(2,0)g (y,vj) and G(2,1)g (y,vj) with

vj = M(j θs)g(y).

In Fig. 6b, we can see that all of the three metrics get low val-
ues around the directions M(π/2) g(x) and M(3π/2) g(x),
which are orthogonal to the direction g(x). However, around
the direction −g(x), the Randers metric G(2,1)g attains much
larger values than the Riemannian cases G(0,0)g and G(2,0)g .
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Fig. 6 a shows a synthetic image. The blue dots indicate two sampled points. The arrows indicate the directions g(x) and g(y). b and c Plots of
the cost values of G(0,0)g , G(2,0)g and G(2,1)g at points x and y along different directions.

Fig. 7 a A synthetic image. The blue dots indicate two sampled points. The arrows indicate the directions of g(x) and g(y). b and c Plots of the
cost values of G̃(0,0)g , G̃(2,0)g and G̃(2,1)g at points x and y along different directions.

Such an asymmetric property is able to reduce the risk of
front leakages.

In Fig. 7, we plot the cost values for the metrics G̃(0,0)g ,
G̃(2,0)g and G̃(2,1)g at the points x and y along different ro-
tated directions. In Fig. 7b, the cost values (indicated by the
red curve) of the Randers metric G̃(2,1)g at the point x near
the edges and outside the tubular structure show strongly
asymmetric property. In Fig. 7c, we can see that along all of
the rotated directions, the cost values for both the Randers
metric G̃(2,1)g are equivalent to the anisotropic Riemannian
metric G̃(2,0)g . This anisotropic property is able to force the
fast marching fronts travel faster along the tubularity orien-
tations which are approximated by the vector field g⊥.

5.3 Experiments on Synthetic and Real Images

In Fig. 8, we show the fronts propagation results on a syn-
thetic image. In the first column of Fig. 8, we initialize the
sets of the source points in different locations, which are in-
dicated by green and blue brushes. The columns 2 to 4 of

Fig. 8 are the segmentation results from the isotropic Rie-
mannian metric F (0,0)

g , the anisotropic Riemannian metric
F (2,0)

g and the Randers metric F (2,3)
g , respectively. For the

purpose of fair comparisons, the three metrics used in this
experiment share the same potential function C defined in
Eq. (44). One can point out that the results from the metrics
F (0,0)

g and F (2,0)
g suffer from the leaking problem, while

the final boundaries (red curves) associated the proposed
Randers metric F (2,3)

g are able to catch the expected edges
thanks to the asymmetric enhancement. In this experiment,
we choose βd = 5.

In Fig. 9, we compare the interactive image segmenta-
tion results via different geodesic metrics on real images
which are obtained from the Weizmann dataset [2] and the
Grabcut dataset [34]. The final segmentation results are de-
rived from the boundaries of the corresponding Voronoi in-
dex maps. In column 1, we show the initial images with
seeds indicating by green and blue brushes respectively in-
side the foreground and background regions. In columns 2

to 4 of Fig. 9, we demonstrate the segmentation results ob-
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Fig. 8 Image segmentation via different geodesic metrics on a synthetic image. Column 1 shows the initializations, where the green and blue
brushes indicating the seeds in different regions. Columns 2-4 show the segmentation results by the fronts propagation associated to the isotropic
Riemannian metric F(0,0)

g , the anisotropic Riemannian metric F(2,0)
g and the Randers metric F(2,3)

g , respectively. The blue curves are the
segmented boundaries of the Voronoi regions.

tained via the isotropic Riemannian metricF (0,0)
g , the anisotropic

Riemannian metric F (2,0)
g and the Randers Metric F (2,3)

g .
For the results from the isotropic and anisotropic Rieman-
nian metrics (shown in columns 2 and 3), the final contours
leak into the background regions. In contrast, the segmen-
tation contours associated to the Randers metric F (2,3) are
able to follow the desired object boundaries.

In Fig. 10, we compare the tubularity segmentation re-
sults on a Spiral respectively using the isotropic Riemannian
metric F̃ (0,0)

g , the anisotropic Riemannian metric F̃ (2,0)
g and

the Randers metric F̃ (2,3)
g . The tubularity boundaries (red

curves) are computed through the level set lines of the re-
spective geodesic distance maps with an identical thresh-
olding value of Nth. The shadow regions indicate the seg-
mented regions involving all the points tagged as Accepted.
In the first column of Fig. 10, for each row the respective
source points are placed at the end of the Spiral. One can
point out that the final segmentation contours corresponding
to the isotropic Riemannian metric F̃ (0,0)

g (shown in column
2) and the anisotropic Riemannian metric F̃ (2,0)

g (shown in
column 3) leak into the background before the whole tubu-
lar structure has been covered by the fast marching fronts.
Indeed, using the anisotropy enhancement can improve the
segmentation results such that the leakages for the contours
from the anisotropic Riemannian metric F̃ (2,0)

g only occur
at the locations far from the seeds. Finally, the segmentation
contours shown in column 4 resulted by the Randers metric

F (2,3) with both anisotropic and asymmetric enhancements
are able to delineate the desired tubularity boundaries.

In Fig. 11, we perform the fast marching fronts propaga-
tion on a tubular tree structure. We again observe the leaking
problem that occurs in the segmentation results derived from
the isotropic Riemannian metric F̃ (0,0)

g and the anisotropic
Riemannian metric F̃ (2,0)

g , which are shown in columns 2
and 3 respectively. While in column 4, the fronts are able
to pass through the whole tubular tree structure before they
leak into the background.

6 Conclusion

In this paper, we extend the fronts propagation framework
from the Riemannian case to a general Finsler case with ap-
plications to image segmentation. The Finsler metric with a
Randers form allows us to take into account the asymmetric
and anisotropic image features in order to reduce the risk of
the leaking problem during the fronts propagation. We pre-
sented a method for the construction of the Finsler metric
with a Randers form using a vector field derived from the
image edges. This metric can also integrate with a feature
coherence penalization term updated in the course of the fast
marching fronts propagation. We applied the fronts prop-
agation model associated to the proposed Randers metrics
to foreground and background segmentation and tubularity
segmentation. Experimental results show that the proposed
model indeed produces promising results.
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Fig. 9 Image segmentation via different geodesic metrics on real images. Column 1 shows the initializations, where the green and blue brushes
are the seeds indicate the background and foreground regions. Columns 2-4 show the segmentation results by the metrics F(0,0)

g , F(2,0)
g and

F(2,3)
g , respectively. The red curves are the segmented boundaries of the respective Voronoi regions.
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Fig. 10 Tubularity segmentation results via different geodesic metrics on a Spiral. Column 1 shows the initializations with the blue brushes
indicating the seeds. Columns 2-4 show the segmentation results through the geodesic metrics F̃(0,0)

g , F̃(2,0)
g and F̃(2,3)

g , respectively.

Fig. 11 Tubularity segmentation results via different geodesic metrics on a tubular tree. Column 1 shows the initializations with the blue brushes
indicating the seeds. Columns 2-4 show the segmentation results through the geodesic metrics F̃(0,0)

g , F̃(2,0)
g and F̃(2,3)

g , respectively.
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