
1

Symmetric Gauss-Seidel Technique Based
Alternating Direction Methods of Multipliers for
Transform Invariant Low-Rank Textures Problem

Yanyun Ding and Yunhai Xiao

Abstract—Transform Invariant Low-Rank Textures, referred
to as TILT, can accurately and robustly extract textural or
geometric information in a 3D from user-specified windows in
2D in spite of significant corruptions and warping. It was dis-
covered that the task can be characterized, both theoretically and
numerically, by solving a sequence of matrix nuclear-norm and
`1-norm involved convex minimization problems. For solving this
problem, the direct extension of Alternating Direction Method
of Multipliers (ADMM) in an usual Gauss-Seidel manner often
performs numerically well in practice but there is no theoretical
guarantee on its convergence. In this paper, we resolve this
dilemma by using the novel symmetric Gauss-Seidel (sGS) based
ADMM developed by Li, Sun & Toh (Math. Prog. 2016). The
sGS-ADMM is guaranteed to converge and we shall demonstrate
in this paper that it is also practically efficient than the directly
extended ADMM. When the sGS technique is applied to this
particular problem, we show that only one variable needs to
be re-updated, and this updating hardly imposes any excessive
computational cost. The sGS decomposition theorem of Li, Sun
& Toh (arXiv: 1703.06629) establishes the equivalent between
sGS-ADMM and the classical ADMM with an additional semi-
proximal term, so the convergence result is followed directly.
Extensive experiments illustrate that the sGS-ADMM and its
generalized variant have superior numerical efficiency over the
directly extended ADMM.

Key words. Transform invariant low-rank textures, alternat-
ing direction method of multipliers, symmetric Gauss-Seidel,
singular value decomposition, optimality conditions.

1.. INTRODUCTION

DETECTING, identifying, and recognizing feature points
or salient regions in images is a very important and

fundamental problem in computer vision. These points and
regions carry rich and high-level semantic information which
are important for image understanding. Hence, extracting both
textural and geometric information accurately may facilitate
many real-world applications such as camera calibration, 3D
reconstruction, character recognition, and scene understanding.

Because different points or regions are often used to es-
tablish or measure the similarity between different images, it
is hoped that the transformation occurred under the changes
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of viewpoint or illumination has some stability or invariance
properties. For these reasons, many so-called invariant features
and descriptors for capturing geometrically meaningful struc-
tures from various images have been proposed, analyzed, and
implemented over the past decades.

Among these methods, the widely used type is the “scale
invariant feature transform” (SIFT) [16], [18], which is often
invariant to the changes in rotation and scale within a limited
extent, but it is not truly invariant under projective transforms
[27]. Unlike conventional techniques, the “Transform Invariant
Low-Rank Textures” (TILT) [27] correctly extracts rich struc-
tural and geometric information about the image in 3D scene
from its 2D images, and simultaneously produces the global
correlations or transformations of those regions in 3D, which
are truly invariant of image domain transformations.

We consider a true 2D low-rank texture X ∈ Rm×n lies
on a planar surface in 3D scene. It is called a low-rank
texture if r � min{m,n}, where r , rank(X). All regular,
symmetric patters clearly belong to this class of textures. The
image that we observed from a certain viewpoint is actually
a transformed version of the original low-rank texture X , i.e.,
D = X ◦ τ−1, where D is an observed image (deformed
and corrupted) and τ : R2 → R2 is a certain group of
transforms, e.g., affine transforms, perspective transforms, and
general cylindrical transforms [28]. Generally, the transformed
texture D might no longer be low rank in such a situation. But
beyond that, the textures images are often corrupted by noises
and occlusions, or contain some pixels from the surrounding
background. Therefore, the following model is more faithful
to real this situation

D ◦ τ = X + E,

where E corresponds to the noises or errors. We assume that,
in this paper, E is a sparse matrix, which means that only a
small fraction of the image pixels are grossly corrupted. Our
goal is to recover the exact low-rank texture X and the domain
transformation τ from the observed image D, which naturally
leads to the following optimization problem

min
X,E,τ

{
rank(X) + λ‖E‖0, s.t. D ◦ τ = X + E

}
, (1.1)

where ‖E‖0 denotes the number of non-zero entries in E,
and λ > 0 is a weighting parameter that balance the rank of
the texture versus the sparsity of the error. Actually, problem
(1.1) is combinatorial and known to be NP-hard, and generally
computationally intractable. Therefore, convex relaxations are
often used to make the minimization tractable.
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The most popular choice is to replace the “rank(·)” term
with the nuclear norm [8], and replace the `0-norm term
with the `1-norm [2], which yields the following convex
minimization problem to produce an approximate solution

min
X,E,τ

{
‖X‖∗ + λ‖E‖1, s.t. D ◦ τ = X + E

}
, (1.2)

where ‖ · ‖∗ is the so-called nuclear norm (also known as
Ky Fan norm) defined by the sum of all singular values, and
‖ · ‖1 is defined as the sum of absolute values of all entries.
This model is also derived from the batch images alignment
problem by Pent et al. [19] to seek an optimal set of images
domain transformations, where X represents a batch of aligned
images and E models the differences among images. We must
emphasize that although the objective function in model (1.2)
is convex and separable, the nonlinear constraint may cause
many difficulties to minimize. As mentioned in [19], [27] that,
a common technique to overcome this difficulty is to linearize
the nonlinear term D ◦ τ at the current estimation τ (i) as D ◦
(τ (i)+∆τ) ≈ D◦τ (i)+J∆τ , and then compute the increment
∆τ via solving a sequence of three-block convex minimization
problem with form

min
X,E,∆τ

{
‖X‖∗ + λ‖E‖1, s.t. D ◦ τ (i) + J∆τ = X +E

}
,

(1.3)
where J is the Jacobian of the image with respect to the
transform parameters τ (i) defined as

J =
∂

∂ζ

( vec(D ◦ ζ)

‖vec(D ◦ ζ)‖2

)∣∣∣
ζ=τ(i)

, (1.4)

where “vec(·)” is used to stack a matrix column-by-column
sequentially as a vector. When the increment ∆τ is attained,
the transform is immediately updated as τ (i+1) = τ (i) + ∆τ .
It is important to assume that D ◦ τ (i) does not belong to the
rang space of J . Otherwise, problem (1.3) only admits zero
solutions. The model (1.3) has separable structure in terms of
both the objective function and the constraint, and thus, it falls
into the framework of the alternating direction method of mul-
tipliers (ADMM). Zhang et al. [27] implemented the directly
extended ADMM and illustrated its practical performance.
Nevertheless, the directly extended ADMM is divergent for
multi-block convex minimization problems, so its convergence
can not be theoretically guaranteed [4]. Because of this, Ren
& Lin [20] reformulated problem (1.3) as a two-block convex
minimization and solved immediately by a linearized ADMM
with an adaptive penalty parameter updating technique. In
this paper, we also focus the application of ADMM on the
three-variable involved convex minimization (1.3) since this
method has been widely and successfully used in the field of
image processing, such as[24], [25], [26]. However, unlike the
aforementioned approaches, we employ a symmetric Gauss-
Seidel (sGS) based ADMM developed by Li, Sun & Toh [13]
to sweep one of the variables just one more time. Due to the
simple closed-form solutions are admitted for subproblems,
this technique imposes almost no excessive computational
burdens. The advantage of using the sGS technique is that
it decomposes a large problem into several smaller parts and
then solves it correspondingly via its favorable structure. The
technique has been widely and successfully used to solve many

multi-block conic programming problems over the past few
years, such as [5], [13], [14], [22]. We show that the sGS
decomposition theorem in [15] can be used to establish the
equivalence between the sGS-ADMM and the semi-proximal
ADMM with a specially designed semi-proximal term which,
allows the desired convergence to be directly derived from the
convergence result of Fazel et al. [9].

The remaining parts of this paper is organized as follows.
Section 2. contains two subsections. Subsection 2.1. reviews
some basic definitions and facts in convex analysis. Subsection
2.2. reviews some typical ADMMs and the convergence results
for our subsequent developments. In Section 3., we apply
the sGS-ADMM to solve (1.3) and list its convergence result
immediately. In Section 4., we present an sGS based general-
ized ADMM method. In Section 5., we provide computational
experiments to show the algorithms’ practical performance.
And finally we conclude the paper in Section 6..

2.. PRELIMINARIES

In this section, we provide some basic concepts and give
a quick review of a couple of semi-proximal ADMM which
will be used in the subsequent developments.

A. Basic concepts
Let E be finite dimensional real Euclidean space endowed

with an inner product 〈·, ·〉 and its induced norm ‖ · ‖, respec-
tively. A subset C of E is said to be convex if (1−λ)x+λy ∈ C
whenever x ∈ C, y ∈ C, and 0 ≤ λ ≤ 1. The relative interior
of C, which we denote by ri(C), is defined as the interior
which results when C is regarded as a subset of its affine
hull. For any z ∈ E , the symbol ΠC(z) denotes the metric
projection of z onto C, which is the optimal solution of the
minimization problem miny{‖y − z‖|y ∈ C}. A subset K
of E is called a cone if it is closed under positive scalar
multiplication, i.e., λx ∈ K when x ∈ K and λ > 0
[21]. The normal cone of K at point x ∈ K is defined by
NK(x) = {y ∈ E|〈y, z − x〉 ≤ 0, ∀z ∈ K}.

Let f : E → (−∞,+∞] be a closed proper convex function.
The effective domain of f , which we denote by dom(f), is
defined as dom(f) = {x|f(x) < +∞}. A vector x∗ is said
to be a subgradient of f at point x if f(z) ≥ f(x) + 〈x∗, z−
x〉 for all z ∈ E . The set of all subgradients of f at x is
called the subdifferential of f at x and is denoted by ∂f(x).
Obviously, ∂f(x) is a closed convex set while it is not empty.
The multivalued operator ∂f : x ⇒ ∂f(x) is shown to be
maximal monotone [21, Corollary 31.5.2], i.e., for any x, y ∈
E such that ∂f(x) and ∂f(y) are not empty, it holds that
〈x − y, u − v〉 ≥ 0 for all u ∈ ∂f(x) and v ∈ ∂f(y). The
Moreau-Yosida regularization of f at x ∈ E with positive
scalar β > 0 is defined by

ϕβf (x) := min
y∈E

{
f(y) +

1

2β
‖y − x‖2

}
. (2.1)

For any x ∈ E , problem (2.1) has a unique optimal solution,
which is well known as the proximal point of x associated
with f , i.e.,

P βf (x) := arg min
y∈E

{
f(y) +

1

2β
‖y − x‖2

}
. (2.2)
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The following propositions server as important building blocks
in the subsequent developments:

Proposition 2.1: ([1, Theorem 2.1]) Given X ∈ Rm×n of
rank r, let

X = UΣV >, and Σ = diag({σi}1≤i≤r),

be the singular value decomposition (SVD) of X . For each
µ > 0, it is shown that the proximal point of X defined as

Dµ(X) = arg min
Y

{
‖Y ‖∗ +

1

2µ
‖Y −X‖2F

}
(2.3)

can be characterized as follows

Dµ(X) = UΣµV
> and Σµ = diag({σi − µ}+),

where {·}+ = max{0, ·}.
Proposition 2.2: Let X ∈ Rm×n be a given matrix. For

each µ > 0, the proximal point of X is defined as

Sµ(X) = arg min
Y

‖Y ‖1 +
1

2µ
‖X − Y ‖2F .

It is shown that the (i, j)-entry of Sµ(X) can be characterized
as follows

[Sµ(X)]i,j = sgn(Xi,j) ·
{
|Xi,j | − µ

}
+
,

where “sgn” is sign function.

B. Classical and Generalized Semi-proximal ADMM

Let X , Y , and Z be finite dimensional real Euclidian spaces.
Consider the convex optimization problem with the following
two-block separable structure

min
y,z

f(y) + g(z)

s.t. A∗y + B∗z = c,
(2.4)

where f : Y → (−∞,+∞] and g : Z → (−∞,+∞] are
closed proper convex functions, A : X → Y and B : X → Z
are given linear maps, and c ∈ X is given data. The dual of
problem (2.4) is given by

max
x

{
f∗(−Ax) + g∗(−Bx) + 〈c, x〉

}
. (2.5)

The Karush-Kuhn-Tucker (KKT) system of problem (2.4) is
given by

0 ∈ Ax+ ∂f(y), 0 ∈ Bx+ ∂g(z), and A∗y+B∗z = c.

The augmented Lagrangian function associated with (2.4)
is given by

Lσ(y, z;x) = f(y)+g(z)+〈x,A∗y+B∗z−c〉+σ

2
‖A∗y+B∗z−c‖2,

where x ∈ X is a multiplier, and σ > 0 be a given
penalty parameter. Staring from an initial point (x0, y0, z0) ∈
X × (dom f)× (dom g), the iterations of the semi-proximal
ADMM of Fazel, Pong, Sun & Tseng [9] for solving (2.4) is
summarized as

yk+1 = arg miny
{
Lσ(y, zk;xk) + σ

2 ‖y − y
k‖2Tf

}
,

zk+1 = arg minz
{
Lσ(yk+1, z;xk) + σ

2 ‖z − z
k‖2Tg

}
,

xk+1 = xk + ξσ
(
A∗yk+1 + B∗zk+1 − c

)
,

(2.6)

where Tf and Tg are positive semi-definite and the step-length
ξ is chosen in the interval (0, (1 +

√
5)/2). On the one hand,

when Tf = 0 and Tg = 0, the semi-proximal ADMM (2.6)
reduces to the classical ADMM introduced by Glowinski &
Marroco [11] and Gabay & Mericire [10] in the mid-1970s.
On the other hand, when Tf = αI and Tg = βI with
positive scalars α > 0 and β > 0, the iterative scheme
(2.6) comes down to proximal ADMM presented by Eckstein
[6] in 1990s. The following theorem is selected from the
convergence Theorem B.1 in [9]. For more details, one can
refer to [9] and the references therein.

Assumption 2.1: There exists (ȳ, z̄) ∈ ri(dom(f) ×
dom(g)) such that A∗ȳ + B∗z̄ = c.

Theorem 2.1: ([9, Theorem B.1]) Suppose that the solution
set of problem (2.4) is nonempty and that Assumption 2.1
holds. Let the sequence {(yk, zk;xk)} be generated by itera-
tive scheme (2.6) from an initial point (y0, z0;x0). Then, under
the conditions that ξ ∈ (0, (1 +

√
5)/2) and Tf and Tg be

positive semi-definite, the sequence {(yk, zk;xk)} converges
to a unique limit (ȳ, z̄; x̄) with (ȳ, z̄) solving problem (2.4).

Next, we quickly review another type of ADMM. In order to
broadening the capability of the semi-proximal ADMM (2.6)
at the special case ξ = 1, Xiao, Chen & Li [23] introduced
the following generalized semi-proximal ADMM with initial
point w̃0 = (x̃0, ỹ0, z̃0) ∈ X × (dom f)× (dom g):

zk+1 = arg min
z

{
Lσ(ỹk, z; x̃k) +

σ

2
‖z − z̃k‖2Tg

}
,

xk+1 = x̃k + σ(A∗ỹk +B∗zk+1 − c),

yk+1 = arg min
y

{
Lσ(y, zk+1;xk+1) +

σ

2
‖y − ỹk‖2Tf

}
,

w̃k+1 = w̃k + ρ(wk+1 − w̃k),
(2.7)

where ρ ∈ (0, 2) is a relaxation factor and wk = (xk, yk, zk).
For ρ = 1, the above generalized ADMM scheme is exactly
the classical ADMM scheme (2.6) with ξ = 1. When Tf = 0
and Tg = 0, the iteration (2.7) is actually the generalized
ADMM developed by Eckstein & Bertsekas [7]. For details
on this equivalence, one can refer to Chen’s Ph.D. thesis [3,
Section 3.2].

From Theorem B.1 in [9] and Theorem 5.1 in [23], the
convergence result of corresponding algorithm based on the
scheme (2.7) under Assumption 2.1 can be stated as follows:

Theorem 2.2: ([9, Theorem B.1], [23, Theorem 5.1]) Sup-
pose that the solution set of problem (2.4) is nonempty and
that Assumption 2.1 holds. Let the sequence {(yk, zk;xk)}
be generated by iterative scheme (2.7) from an initial point
(x̃0, ỹ0, z̃0). Then, under the conditions that ρ ∈ (0, 2)
and that Tf and Tg be positive semi-definite, the sequence
{(yk, zk;xk)} converges to a unique limit (ȳ, z̄; x̄) with (ȳ, z̄)
solving problem (2.4).

3.. APPLYING SGS-ADMM ON PROBLEM (1.3)

In this section, we quickly review the direct extend ADMM
of Zhang et al. [27], and show the applications of sGS-ADMM
subsequently. In the following, for simplicity, we may omit
the superscripts i+ 1 or i of variables. This should not cause
ambiguity by referring to the context.
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The Lagrangian function of (1.3) is given by

L(X,E,∆τ ;Y ) = ‖X‖∗ + λ‖E‖1
+
〈
Y,D ◦ τ + J∆τ −X − E

〉
,
(3.1)

where Y is a multiplier and 〈·, ·〉 is the standard trace inner
product. Then the dual of (1.3) takes the following form

max
Y

{
〈Y,D ◦ τ〉 : J∗Y = 0, ‖Y ‖ ≤ 1,

∥∥Y ∥∥∞ ≤ λ}, (3.2)

where J∗ is an adjoint operator, transpose in the matric case,
of operator J ; ‖·‖ is the so-called spectral norm which depends
on the largest singular value of a matrix; ‖ · ‖∞ is ∞-norm
that is defined as the maximum entries magnitude of a matrix.
Denote B1 = {Y | ‖Y ‖ ≤ 1} and B2 = {Y | ‖Y ‖∞ ≤ λ}.
The model (3.2) can be equivalently reformulated as

min
Y

{
− 〈Y,D ◦ τ〉 : J∗Y = 0, Y ∈ B1, Y ∈ B2

}
. (3.3)

We say that Ȳ is the Lagrangian multiplier of (3.3) at point
(X̄,∆τ̄ , Ē), if it satisfies the KKT condition:

−D ◦ τ − J∆τ +X + E = 0,

J∗Y = 0,

0 ∈ −X +NB1(Y ),

0 ∈ −E +NB2
(Y ),

(3.4)

where NB1
(Y ) (resp. NB1

(Y )) is the normal cone to B1 (resp.
B2) at Y ∈ B1 (resp. Y ∈ B1).

The augmented Lagrangian function associated with (1.3)
is defined by:

Lσ(X,E,∆τ ;Y )

= ‖X‖∗ + λ‖E‖1 +
〈
Y,D ◦ τ + J∆τ −X − E

〉
+σ

2 ‖D ◦ τ + J∆τ −X − E‖2F ,

(3.5)

where ‖ · ‖F is the Frobenius norm, and σ > 0 is a penalty
parameter. The directly extended ADMM implemented by
Zhang et al. [27] minimizes Lσ(X,E,∆τ ;Y ) firstly with
respect to X , later with E, and then with ∆τ by fixing
other variables with their latest values. More precisely, with
the given (Xk, Ek,∆τk;Y k), it generates the new iterate
(Xk+1, Ek+1,∆τk+1;Y k+1) via the iterative scheme:

Xk+1 = arg minX Lσ(X,Ek,∆τk;Y k),

∆τk+1 = arg min∆τ Lσ(Xk+1, Ek,∆τ ;Y k),

Ek+1 = arg minE Lσ(Xk+1, E,∆τk+1;Y k),

Y k+1 = Y k + ξσ(D ◦ τ + J∆τk+1 −Xk+1 − Ek+1).
(3.6)

Although each step of the above iteration involves solving a
convex minimization problem, it was shown in [27] that a
simple closed-form solution is permitted for each subprob-
lem. For the completeness of this paper, we re-present the
derivations for each step of (3.6) by using the new notations
reported in Propositions 2.1 and 2.2. Firstly, we can get for

every k = 0, 1, . . . that

Xk+1 = arg min
X

Lσ(X,Ek,∆τk;Y k)

= arg min
X

{
‖X‖∗

+
σ

2

∥∥X − (D ◦ τ + J∆τk − Ek + Y k/σ)
∥∥2

F

}
= D1/σ(D ◦ τ + J∆τk − Ek + Y k/σ),

where the last equality is from Proposition 2.1. Secondly, for
every k = 0, 1, . . ., we have

∆τk+1 = arg min
∆τ

Lσ(Xk+1, Ek,∆τ ;Y k)

= arg min
∆τ

{〈
Y k, J∆τ

〉
+
σ

2
‖D ◦ τ + J∆τ −Xk+1 − Ek‖2F

}
,

which amounts to solving the following linear system of
equations with variable ∆τ

J∗Y k/σ + J∗(D ◦ τ + J∆τ −Xk+1 − Ek) = 0.

Hence, the solution ∆τk+1/2 is given explicitly by

∆τk+1 = −(J∗J)−1[J∗(D ◦ τ −Xk+1 − Ek) + J∗Y k/σ].

Thirdly, for every k = 0, 1, . . ., we have

Ek+1 = arg min
E

Lσ(Xk+1, E,∆τk+1;Y k)

= arg min
E

{
λ‖E‖1

+
σ

2

∥∥E − (D ◦ τ + J∆τk+1 −Xk+1 + Y k/σ)
∥∥2

F

}
= Sλ/σ(D ◦ τ + J∆τk+1 −Xk+1 + Y k/σ),

where the last equality is from Proposition 2.2.
Although the direct extension of ADMM scheme indeed

works empirically to produce corrected solutions, it was shown
in [4] that the scheme (3.6) is not necessarily convergent in
theory. Ideally, we should find a convergent variant which is
at least as efficient as the directly extended ADMM (3.6) in
practice. We achieve this goal by adopting the clever sGS
technique developed recently by Li, Sun & Toh [13].

Based on the sGS technique [13], we view X as one
group and (∆τ, E) as another, and present the following
iterative framework: Given (Xk, Ek,∆τk), we compute the
next iteration with X → ∆τ → E → ∆τ instead of the usual
X → ∆τ → E Gauss-Seidel fashion (3.6), which can be
reduced to the following iterative scheme:

Xk+1 = arg minX Lσ(X,Ek,∆τk;Y k),

∆τk+1/2 = arg min∆τ Lσ(Xk+1, Ek,∆τ ;Y k),

Ek+1 = arg minE Lσ(Xk+1, E,∆τk+1/2;Y k),

∆τk+1 = arg min∆τ Lσ(Xk+1, Ek+1,∆τ ;Y k),

Y k+1 = Y k + ξσ(D ◦ τ + J∆τk+1 −Xk+1 − Ek+1).
(3.7)

Note that the difference between the sGS based iterative
scheme (3.7) and the directly extended ADMM (3.6) is that
we perform an extra preparation step to compute ∆τk+1/2
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and then compute Ek+1. As we can see from the previous
statement that the extra step can be done at moderate cost, so
that the iterative process can be performed cheaply.

With the descriptions on how the subproblems in (3.6) are
solved as in [27], we now present the sGS-ADMM method in
[13] for solving (1.3).

Algorithm: (sGS-ADMM)
1. Initialization: Input deformed and corrupted image D ∈
Rm×n and its Jabobian J against deformation τ . Choose
constants λ > 0, σ > 0, and ξ ∈ (0, (1+

√
5)/2). Choose

starting point (X0,∆τ0, E0, Y 0).
2. while. “not converge”, do

3. Xk+1 = D1/σ(D ◦ τ + J∆τk − Ek + Y k/σ);

4. ∆τk+1/2 = −(J∗J)−1[J∗(D ◦ τ − Xk+1 − Ek) +
J∗Y k/σ];

5. Ek+1 = Sλ/σ(D ◦ τ + J∆τk+1/2 −Xk+1 + Y k/σ);

6. ∆τk+1 = −(J∗J)−1[J∗(D ◦ τ − Xk+1 − Ek+1) +
J∗Y k/σ];

7. Y k+1 = Y k + ξσ(D ◦ τ +J∆τk+1−Xk+1−Ek+1);

8. end while.
9. Output: Solution (X,∆τ, E) of problem (1.3).

The remaining task is to establish the convergence result of
sGS-ADMM by using the sGS decomposition theorem of Li,
Sun & Toh [15] to associate it with the semi-proximal ADMM
(2.6). The relationship between both methods are reported in
the lemma below.

Lemma 3.1: For any k ≥ 0, the E- and ∆τ -subproblems
in (3.7) can be summarized as the following compact form:

(Ek+1,∆τk+1)

= arg minE,∆τ

{
Lσ(Xk+1, E,∆τ ;Y k)

+σ
2

∥∥∥( E
∆τ

)
−
(

Ek

∆τk

)∥∥∥2

T

}
.

(3.8)
Proof: To prove the lemma, it is sufficient to note that

the matrix for the quadratic term associated with (E,∆τ) is
given by

H =

(
I −J
−J∗ J∗J

)
= Q+M+M∗,

where

M =

(
0 −J
0 0

)
, Q =

(
I 0
0 J∗J

)
,

and
M∗ =

(
0 0
−J∗ 0

)
.

By directly applying the sGS decomposition theorem in [15],
and setting

T =MQ−1M∗ =

(
J(J∗J)−1J 0

0 0

)
, (3.9)

the required conclusion follows.

Based on the result, we can rewrite the iterative scheme
(3.7) as



Xk+1 = arg minX L(X,Ek,∆τk;Y k),

(Ek+1,∆τk+1) = arg minE,∆τ

{
Lσ(Xk+1, E,∆τ ;Y k)

+σ
2

∥∥∥( E
∆τ

)
−

(
Ek

∆τk

)∥∥∥2

T

}
,

Y k+1 = Y k + ξσ(D ◦ τ + J∆τk+1

−Xk+1 − Ek+1),
(3.10)

which reduces to the two-block semi-proximal ADMM (2.6).
Note that the main idea of the sGS decomposition theorem
[15] for deriving the convergence of sGS-ADMM by showing
that it is equivalent to two-block ADMM with a special semi-
proximal term T . This equivalence is very important because
the convergence can be easily followed by using the known
convergence result of Fazel et al. [9]. To conclude this section,
we present the convergence result of sGS-ADMM for solving
(1.3).

Theorem 3.1: ([9, Theorem B.1]) Let the sequence
{(Xk,∆τk, Ek, Y k)} be generated by Algorithm sGS-
ADMM with ξ ∈ (0, (1 +

√
5)/2), then it converges to the

accumulation point (X̄,∆τ̄ , Ē, Ȳ ) such that (X̄,∆τ̄ , Ē) is the
solution of the problem (1.3).

4.. AN SGS BASED GENERALIZED ADMM

This section is devoted to introducing a generalized variant
of sGS-ADMM for solving probelm (1.3). Again, variable X
is viewed as one group and (∆τ, E) as another, and sGS
technique with order ∆τ → E → ∆τ is used in this group.
For convenience, we denote Ω = (X,∆τ, E, Y ). The afore-
mentioned sGS-ADMM will make a very small modification,
i.e., adding an extra relaxation step, which amounts to the al-
gorithm below with an initial porint Ω̃0 = (X̃0,∆τ̃0, Ẽ0, Ỹ 0).

Algorithm: (sGS-ADMM G)
1. Initialization: Input deformed and corrupted image
D ∈ Rm×n and its Jabobian J against deformation τ .
Choose constants λ > 0, σ > 0, and ρ ∈ (0, 2). Choose
starting point (X̃0, Ẽ0, Ỹ 0)
2. while. “not converge”, do

3. ∆τk+1/2 = −(J∗J)−1[J∗(D ◦ τ − X̃k − Ẽk) +
J∗Ỹ k/σ];

4. Ek+1 = Sλ/σ(D ◦ τ + J∆τk+1/2 − X̃k + Ỹ k/σ);

5. ∆τk+1 = −(J∗J)−1[J∗(D ◦ τ − X̃k − Ek+1) +
J∗Ỹ k/σ];

6. Y k+1 = Y k + σ(D ◦ τ + J∆τk+1 − X̃k − Ek+1);

7. Xk+1 = D1/σ(D ◦ τ + J∆τk+1 −Ek+1 + Y k+1/σ);

8. Ω̃k+1 = Ω̃k + ρ(Ωk+1 − Ω̃k);

9. end while.
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10. Output: Solution (X,∆τ, E) of problem (1.3).

Analogously, based on the novel sGS decomposition the-
orem of Li, Sun & Toh [15], we can reformulated sGS-
ADMM G as the following framework:

(Ek+1,∆τk+1) = arg minE,∆τ

{
Lσ(X̃k, E,∆τ ; Ỹ k)

+σ
2

∥∥∥( E
∆τ

)
−
(

Ẽk

∆̃τk

)∥∥∥2

T

}
,

Y k+1 = Ỹ k + σ(D ◦ τ + J∆τk+1 − X̃k − Ek+1),

Xk+1 = arg minX Lσ(X,Ek+1,∆τk+1;Y k+1),

Ω̃k+1 = Ω̃k + ρ(Ωk+1 − Ω̃k),
(4.1)

where T is defined in (3.9).Therefore, according to Theorem
B.1 in [9] and Theorem 5.1 in [23], the convergence result of
Algorithm sGS-GADMM G can be listed.

Theorem 4.1: ([9, Theorem B.1], [23, Theorem 5.1]) Let
the sequence {(Xk,∆τk, Ek, Y k)} be generated by Algo-
rithm sGS-ADMM G with ρ ∈ (0, 2), then it is automati-
cally well-defined and converges to the accumulation point
(X̄,∆τ̄ , Ē, Ȳ ) such that (X̄,∆τ̄ , Ē) is the solution of the
problem (1.3).

5.. NUMERICAL EXPERIMENTS

In this section, we construct a series of numerical ex-
periments by using deformations contained real images to
evaluate the practical performance of algorithms sGS-ADMM
and sGS-ADMM G. In the mean time, we also test against
the directly extended ADMM approach (named TILT) to
further illustrate the efficiency and robustness of sGS-ADMM
and sGS-ADMM G. The Matlab package for the algorithm
TILT is available at the link http://perception.csl.illinois.edu/
matrix-rank/tilt.html. We mention that all these algorithms are
tested by running MATLAB on a LENOVO with one Intel Core
i5-5200U Processor (24 Cores, 2.2 to 2.19 GHz) and 8 GB
RAM.

In order to make both algorithms well-defined on the
original model (1.2), we quickly review some specific imple-
mentation details reported by Zhang et al. [27], which are also
used in both algorithms. Firstly, before starting the iterative
process, the intensity of the image is normalized as D ◦ τ :=
D◦τ/‖D◦τ‖F because the low-rank texture is invariant with
respect to scaling in the pixel values. Secondly, a set of linear
constraints is added to eliminate the scaling and translation
ambiguities in the solution, e.g., for affine transformations, a
constraint At∆τ = 0 (liner operator At is known) is added to
ensure that the center of the initial rectangular region remain
fixed before and after the transformation. Finally, to increase
the range of deformation, TILT employed a branch-and-bound
scheme, e.g., for affine case, the affine transformation can be
parameterized as A(θ, t), then TILT computes the best rotation
angle θ and used it as an initialization to search for the skew
parameter t. It was shown that these reviewed implementations
improved the range of convergence of TILT potentially. Since
the main contribution of our paper lies in employing the

sGS-ADMM algorithm to solve the problem (1.3), hence, in
the following each experiment, we only consider the single
affine transformation and use the branch-and-bound scheme
for convenience.

We perform two classes of numerical experiments. In the
first class, we evaluate the practical performance of sGS-
ADMM and sGS-ADMM G on some natural images belong
to various categories, while in the second class, we test against
algorithm TILT on some representative synthetic and realistic
low-rank patterns to examine both algorithms’ performance. In
the considered model, we choose parameter as λ = 1/

√
m and

set the initial estimation as τ (0) = 0. The iterative processes
of each algorithm start at zero, i.e., (E0,∆τ0, Y 0, X0) =
(Ẽ0,∆τ̃ , Ỹ 0, X̃0) = 0. Moreover, we choose ξ = 1.618
in sGS-ADMM and ρ = 1.8 in sGS-ADMM G since both
values are used frequently in algorithms’ designing for solving
various optimization problems.

Based on the optimality condition (3.4), we measure the
accuracy of a computed candidate solution (E,∆τ,X;Y ) for
(1.3) and its dual (3.3) via

η = max{ηP , ηD, ηX , ηE},

where

ηP = max
{
‖D◦τ+J∆τ−X−E‖F

‖D◦τ‖F , At∆τ
}
,

ηD = ‖J∗Y ‖,

ηX =
‖Y−ΠB1

(Y+X)‖F
1+‖Y ‖F +‖X‖F ,

ηE =
‖Y−ΠB2

(Y+E)‖F
1+‖Y ‖F +‖E‖F ,

(5.2)

where ΠB(·) is the metric projection onto B under the Frobe-
nius norm. According to the adjustment strategy in [12], we
initialize the penalty parameter as σ = 1/‖D ◦ τ (i)‖F , and
increase it frequently with σ = 1.25σ if ηP /ηD ≥ 5 in each
test, and decrease it with σ = 0.8σ if ηP /ηD ≤ 1/5. All
the algorithms are terminated if η < 10−3, or the maximum
iteration number 1, 000 is achieved. Besides, others the param-
eters’ in TILT are set with default values for comparison in a
fair way. While the final ∆τ̄ is achieved based on the current
τ (i), we then set τ (i+1) := τ (i) + ∆τ̄ and solve problem (1.3)
immediately once again. As in [27], the external loops proceed
repeatedly when the absolute values between two successive
rounds are small enough, i.e., |f (i+1) − f (i)| ≤ 10−4, where
f (i) = ‖X‖∗ + λ‖E‖1 at the i-th external loop.

In the first test, we visually examine the practical per-
formance of sGS-ADMM and sGS-ADMM G. As Figure
1 shows, the results report the original input images and
the rectified textures returned by each algorithm. As can be
observed from the last two columns that, both algorithms
correctly recovered the local geometry for all the textual
images from green windows located inside, which in turn
demonstrates the practical efficiency of both algorithms.

In the second test, we numerically evaluate the computa-
tional improvement of both algorithms based on some rep-
resentative synthetic and natural low-rank patterns shown in
the first row of Figure 2. For these images to be tested, we
introduce a small deformation ( say rotation by 10o) to each
texture, as shown in the third and forth rows of Figure 2.

http://perception.csl.illinois.edu/matrix-rank/tilt.html
http://perception.csl.illinois.edu/matrix-rank/tilt.html
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Fig. 1. Low-rank textures rectified by algorithms sGS-ADMM and sGS-ADMM G.
Left: the original images where red windows denote the original input and green windows
denote the deformed texture found by our methods. The remaining columns denote the
rectified textures using the transforms found by sGS-ADMM (middle right) and sGS-
ADMM G (right), respectively.

Then we examine whether these algorithms can converge to
the correct solution under some random corruptions. For each
external loop (Outer), we compare these methods with respect
to the number of internal iterations (Iter), the computing time
(Time), the final Rank of the solution X (Rank), the final
‖E‖1, and the final KKT residual (Tol). Detailed comparison
results are listed in Table I

AS can be seen from Table I that, all the algorithms obtained
the same final rank and the comparable KKT residuals for all
test cases. From these results, we also see that sGS-ADMM
and sGS-ADMM G are the most competitive while TILT is
the slowest one. We also observe that the total number of
internal iterations of both sGS-ADMM and sGS-ADMM G is
much smaller than TILT. This is because sGS-ADMM and
sGS-ADMM G sweep the variable ∆τ twice during each
iteration which in turn ensures the convergence of the iterative
process. We also test a series of other images contained with
different decompositions and we observed the consistent re-
sults. These results and observations clearly demonstrated the
efficiency and stability of sGS-ADMM and sGS-ADMM G.

6.. CONCLUSIONS

Transform Invariant Low-Rank Textures targets to extract
both textural and geometric information defining regions of
low-rank planar patterns from 2D scene. This task can be
characterized as a sequence of matrix nuclear-norm and `1-
norm involvednon-smooth convex minimization problems. The
extended directly ADMM implemented by Zhang et al. [27]
often performs numerically well, but its theoretical conver-
gence is not guaranteed. In this paper, we employed the sGS-

Fig. 2. Representative Results of sGS-ADMM. First two rows: original regular low-
rank patterns and textures; Middle two rows: rotated images; Bottom two rows: rectified
image by sGS-ADMM.

ADMM developed by Li, Sun & Toh [13] for solving the
convex non-smooth model (1.3) and used the sGS decom-
position technique in [15] to extend the generalized ADMM
to solve (1.3). The distinct feature of the sGS-ADMM is
that it needs to update the variable ∆τ again, but it greatly
reduces the total number of iterations and computing time.
The reason for the improved performance is the using the
novel sGS decomposition theorem in [15] to establish the
equivalence between the internal iterative scheme and the
classical ADMM with an addition of a particular proximal
term. With the encouraging numerical performance of sGS-
ADMM, it is worthwhile to investigate other techniques,
such as the rank-correction technique [17], to further improve
the solution accuracy. This is an interesting topic of future
research.
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TABLE I
COMPARISON RESULTS OF TILT WITH SGS-ADMM AND SGS-ADMM G.

TILT sGS-ADMM sGS-ADMM G
No. Outer Iter Time Rank ‖E‖1 Tol Iter Time Rank ‖E‖1 Tol Iter Time Rank ‖E‖1 Tol
1 1 628 1.84 14 1.06e+00 9.99e-04 389 1.03 14 1.06e+00 9.96e-04 350 0.95 14 1.06e+00 9.96e-04

2 773 2.34 13 5.56e-01 9.99e-04 479 1.20 13 5.56e-01 9.97e-04 430 1.08 13 5.56e-01 9.99e-04
3 799 2.06 13 5.38e-01 1.00e-03 495 1.30 13 5.39e-01 9.98e-04 445 1.16 13 5.38e-01 9.99e-04
4 813 2.22 13 5.16e-01 9.99e-04 503 1.34 13 5.16e-01 9.99e-04 452 1.14 13 5.16e-01 1.00e-03
5 801 2.16 13 5.20e-01 9.96e-04 496 1.33 13 5.20e-01 9.93e-04 446 1.16 13 5.20e-01 9.96e-04

2 1 800 2.05 13 7.42e-01 1.00e-03 495 1.30 13 7.42e-01 9.99e-04 445 1.17 13 7.42e-01 9.99e-04
2 930 2.45 12 4.16e-01 1.00e-03 576 1.45 12 4.16e-01 9.99e-04 518 1.27 12 4.15e-01 9.99e-04
3 912 2.45 11 4.04e-01 9.98e-04 564 1.39 11 4.04e-01 9.97e-04 506 1.25 11 4.04e-01 9.99e-04
4 931 2.53 11 4.04e-01 1.00e-03 576 1.48 11 4.04e-01 1.00e-03 519 1.31 11 4.04e-01 9.99e-04
5 923 2.31 11 4.04e-01 9.99e-04 571 1.45 11 4.04e-01 9.99e-04 514 1.30 11 4.03e-01 9.99e-04

3 1 987 2.45 13 1.87e-01 9.99e-04 610 1.58 13 1.87e-01 1.00e-03 549 1.45 13 1.87e-01 9.98e-04
2 1365 3.25 8 7.39e-02 9.99e-04 844 2.16 8 7.39e-02 9.99e-04 760 1.97 8 7.38e-02 9.99e-04
3 1393 3.42 8 6.09e-02 9.98e-04 861 2.08 8 6.08e-02 1.00e-03 774 1.97 8 6.09e-02 9.96e-04
4 1381 3.41 8 6.11e-02 9.97e-04 853 2.09 8 6.11e-02 9.99e-04 764 1.94 8 6.12e-02 9.99e-04

4 1 573 1.50 15 9.09e-01 9.94e-04 355 0.92 15 9.09e-01 9.93e-04 319 0.88 15 9.09e-01 9.95e-04
2 712 1.75 13 6.20e-01 9.99e-04 440 1.14 13 6.20e-01 1.00e-03 396 1.00 13 6.20e-01 9.96e-04
3 694 1.75 13 5.89e-01 9.99e-04 429 1.08 13 5.89e-01 9.99e-04 386 1.09 13 5.89e-01 9.98e-04
4 732 1.81 13 5.99e-01 9.99e-04 453 1.22 13 5.99e-01 9.98e-04 407 1.09 13 5.99e-01 1.00e-03
5 707 1.72 13 5.96e-01 9.99e-04 437 1.13 13 5.96e-01 1.00e-03 394 1.13 13 5.96e-01 9.90e-04
6 708 1.78 13 5.97e-01 1.00e-03 438 1.14 13 5.97e-01 9.99e-04 394 1.03 13 5.97e-01 9.99e-04

5 1 857 2.17 13 4.35e-01 9.99e-04 530 1.36 13 4.35e-01 9.99e-04 477 1.19 13 4.35e-01 9.99e-04
2 958 2.39 12 3.75e-01 9.91e-04 592 1.47 12 3.75e-01 9.94e-04 533 1.28 12 3.75e-01 9.91e-04
3 984 2.41 11 3.67e-01 9.99e-04 609 1.50 11 3.67e-01 9.99e-04 548 1.53 11 3.67e-01 9.99e-04
4 972 2.38 12 3.65e-01 9.99e-04 602 1.50 12 3.64e-01 9.99e-04 542 1.50 12 3.62e-01 1.00e-03
5 603 1.50 12 3.67e-01 9.91e-04 542 1.47 12 3.66e-01 9.92e-04

6 1 714 2.30 12 3.98e-01 9.97e-04 442 1.14 12 3.99e-01 9.94e-04 397 1.16 12 3.99e-01 9.98e-04
2 816 2.14 10 1.91e-01 9.98e-04 505 1.22 10 1.91e-01 9.99e-04 455 1.28 10 1.91e-01 9.96e-04
3 847 2.11 9 1.91e-01 1.00e-03 524 1.25 9 1.91e-01 1.00e-03 472 1.27 9 1.91e-01 1.00e-03
4 841 2.05 9 1.91e-01 9.99e-04 521 1.28 9 1.91e-01 9.99e-04 468 1.25 9 1.91e-01 1.00e-03

7 1 918 2.31 12 4.33e-01 9.99e-04 568 1.53 12 4.33e-01 9.99e-04 511 1.31 12 4.33e-01 1.00e-03
2 954 2.34 13 3.31e-01 9.96e-04 590 1.50 13 3.31e-01 1.00e-03 530 1.34 13 3.31e-01 9.99e-04
3 990 2.45 12 3.13e-01 9.99e-04 612 1.53 12 3.13e-01 9.99e-04 551 1.41 12 3.13e-01 9.98e-04
4 992 2.45 12 3.15e-01 9.99e-04 614 1.56 12 3.15e-01 9.99e-04 553 1.38 12 3.14e-01 9.99e-04

8 1 630 1.80 15 7.03e-01 9.97e-04 390 1.05 15 7.03e-01 9.98e-04 351 0.94 15 7.03e-01 9.98e-04
2 602 1.66 16 6.34e-01 9.97e-04 373 0.97 16 6.34e-01 9.96e-04 336 0.84 16 6.34e-01 9.99e-04
3 614 1.59 16 6.27e-01 9.97e-04 380 1.00 16 6.27e-01 9.97e-04 342 0.88 16 6.28e-01 9.96e-04
4 621 1.56 16 6.25e-01 9.96e-04 384 1.00 16 6.25e-01 9.97e-04 346 0.88 16 6.25e-01 9.96e-04
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