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Abstract We revisit total variation denoising and study an
augmented model where we assume that an estimate of the
image gradient is available. We show that this increases the
image reconstruction quality and derive that the resulting
model resembles the total generalized variation denoising
method, thus providing a new motivation for this model.
Further, we propose to use a constraint denoising model and
develop a variational denoising model that is basically pa-
rameter free, i.e. all model parameters are estimated directly
from the noisy image.

Moreover, we use Chambolle-Pock’s primal dual method
as well as the Douglas-Rachford method for the new mod-
els. For the latter one has to solve large discretizations of
partial differential equations. We propose to do this in an in-
exact manner using the preconditioned conjugate gradients
method and derive preconditioners for this. Numerical ex-
periments show that the resulting method has good denois-
ing properties and also that preconditioning does increase
convergence speed significantly. Finally we analyze the du-
ality gap of different formulations of the TGV denoising
problem and derive a simple stopping criterion.
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1 Introduction

In this work we revisit variational denoising of images with
total variation penalties, dating back to the classical Rudin-
Osher-Fatemi total variation denoising method [23]. We start
by augmenting the model with an estimate of the image gra-
dient and analyze, how this helps for image denoising. This
is related to the method of first estimating image normals
and then using this estimate for a better image denoising, an
approach proposed by Lysaker et al. [20]. As we will see, a
combined approach, which tries to estimate the gradient of
the denoised image and the denoised image itself simultane-
ously, is very close to the successful total generalized varia-
tion denoising from Bredies et al. [4]. A brief introduction to
this idea was already proposed in [15]. Further, we will pro-
pose different (in some sense equivalent) versions of the to-
tal general variation denoising method (one of these, CTGV,
already introduced in [15]) which have several advantages
over the classical one: First, we are going to work with con-
straints in contrast to penalties, which, in some cases, allows
for a simple, clean and effective parameter choice. Second,
different formulations of these problems lead to different
dual problems and hence, different algorithms and some of
these turn out to be a little simpler regarding duality gaps and
stopping. Moreover, the different models show slightly dif-
ferent numerical performance. Finally, we will make use of
the Douglas-Rachford method to solve these minimization
problems. This involves the solution of large discretizations
of linear partial differential equations and we will develop
simple and effective preconditioners for these equations. In
contrast to [6] where the authors use classical linear splitting
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2 B. Komander et al.

methods for the inexact solution of the linear equations, we
propose to use a few iterations of the preconditioned conju-
gate gradient method.

The paper is organized as follows. Section 2 motivates
denoising of gradients as a mean to improve total varia-
tion denoising and derives several new variational methods.
Then, section 3 investigates the corresponding duality gaps
of the problems and section 4 deals with the numerical treat-
ment and especially with the Douglas-Rachford method and
efficient preconditioners for the respective linear subprob-
lems. Section 5 reports numerical experiments and section 6
draws some conclusions.

2 Total variation denoising with estimates of the
gradient

Since its introduction in 1992, the Rudin-Osher-Fatemi model
[23], also known as total variation denoising, has found nu-
merous applications. One way to put this model is that the
total variation of an image is used as a regularizer for an im-
age denoising optimization problem, in general minx F (x)+

G(Kx), with u0 as the input image, defined on a domain Ω
as

min
u
λ

∫
Ω

| ∇u|dx+
1

2

∫
Ω

|u(x)− u0(x)|2 dx

= min
u
λ‖|∇u|‖1 +

1

2
‖u− u0‖22.

(1)

One problem in the resulting denoised images is the occur-
ring staircasing effect, i.e. the creation of flat areas separated
by jumps. One way to overcome this staircasing, proposed
by Lysaker et al. [20], is an image denoising technique in
two steps. There, in a first step, a total variation filter was
used to smooth the normal vectors of the level sets of a given
noisy image and then, as a second step, a surface was fitted
to the resulting normal vectors. The method was formulated
in a dynamic way, i.e. by solving a certain partial differential
equation to steady state. A similar approach has been taken
in [14] for a problem of deflectometric surface measure-
ments where the measurement device does not only produce
approximate point coordinates but also approximate surface
normals. It turned out that the incorporation of the surface
normals results in an effective, but fairly complicated and
non-linear problem. Switching from surface normals to im-
age gradients, however, turns the problem into a “more lin-
ear” one and leads to an equally effective method, see [14].

In this section we follow the idea of introducing addi-
tional information, i.e. gradient information, into the ROF-
model (1) in order to prevent or reduce the staircasing effect.

2.1 Denoising with prior knowledge on the gradient

Consider the image model u0 = u† + η, where u0 is the
given noisy image, u† is the ground truth, i.e. the noise-
free image, and η is the additional Gaussian white noise.
In the situation of images, there are methods to obtain a rea-
sonable estimate of the amount of noise, i.e. an estimate on
‖u† − u0‖2 = ‖η‖2 is available. One can use, for example
the techniques from [17,18] to estimate the noise level of
Gaussian white noise quite accurately from a single image.
Using this information, it seems that

‖u− u0‖2 ≤ ‖u
† − u0‖2 = ‖η‖2 =: δ1

is a sensible condition for the denoised image, since one
should not look for an image u further away from u† than u0.
This motivates to consider a variant of the ROF model (1)
where the discrepancy ‖u− u0‖2 is not a penalty in the ob-
jective, but taken into account as a constraint. This leads to
a reformulation of the total variation problem as

min
u
‖|∇u|‖1 s.t. ‖u− u0‖2 ≤ ‖u

† − u0‖2 = ‖η‖2.

By estimating η as Gaussian noise from the given image u0
(e.g., using the method from [17,18]) one obtains a parame-
ter free denoising method.

Next, assume that we have some additional information
on the original image u† available, namely some estimate v
of its gradient. This could be taken into account as

min
u
‖|∇u− v|‖1 s.t. ‖u− u0‖2 ≤ ‖η‖2. (2)

It turns out, that this information can be quite powerful. The
next simple lemma shows that if we would know the gradi-
ent of u† and the noise level exactly, our model would re-
cover u† perfectly, even for arbitrary large noise (and also
independent of the type of noise).

Lemma 1 Assume that u† and u0 fulfill
∫
Ω
u† =

∫
Ω
u0 and

let v = ∇u† and δ1 = ‖u† − u0‖2. Then it holds that

u† = argmin
u
‖|∇u− v|‖1 s.t. ‖u− u0‖2 ≤ δ1, (3)

i.e. u† is the unique solution of the denoising problem.

Proof The set of minimizers is

argmin
u
‖|∇u−∇u†|‖1 s.t. ‖u− u0‖2 ≤ ‖u

† − u0‖2.

Clearly, u† is within this set, since the optimal value is 0 and
u† is feasible, because the constraint is trivially fulfilled.

To show that u† is indeed the unique solution, consider
any other u that also produces an objective value of zero.
This implies∇u = ∇u†, i.e. u = u† + c for some constant
c. Thus, u fulfills the constraint ‖u− u0‖22 ≤ ‖u† − u0‖

2

2



Denoising of image gradients and total generalized variation denoising 3

if ‖u† − u0 + c‖22 ≤ ‖u† − u0‖
2

2. We expand the left hand
side and get, writing |Ω| for the measure of Ω,

‖u† − u0‖
2

2 + 2c

∫
Ω

(u† − u0) + c2|Ω| ≤ ‖u† − u0‖
2

2.

Since the middle integral vanishes by assumption, we see
that c = 0.

ut

The next lemma shows, that v = ∇u† is also necessary
for perfect reconstruction.

Lemma 2 If δ1 = ‖u† − u0‖2,
∫
Ω
u† =

∫
Ω
u0 and u†

solves (3), then v = ∇u†.

Proof Let u† ∈ argminu ‖|∇u− v|‖1 s.t. ‖u− u0‖2 ≤
‖u† − u0‖2. We denote by IC(x) the indicator function of
a set C, and set K = ∇, F (u) = I‖ ·−u0‖2≤‖u†−u0‖2(u),
G(q) = ‖|q − v|‖1 (i.e. the Fenchel conjugate ofG isG∗(φ)

=
∫
Ω
vφdx + I‖| · |‖1≤1(φ)). The characterization of op-

timality by the Fenchel-Rockafellar optimality system [12,
Remark 4.2] shows that (u∗, φ∗) is a primal-dual optimal
pair if and only if{

0 ∈ K∗φ∗ + ∂F (u∗),

0 ∈ −Ku∗ + ∂G∗(φ∗),

which amounts to the inclusions{
0 ∈ K∗φ∗ + ∂F (u∗),

0 ∈ −Ku∗ + ∂G∗(φ∗),

⇔

{
0 ∈ K∗φ∗ + ∂ I‖ ·−u0‖2≤‖u†−u0‖2(u∗),

0 ∈ −Ku∗ + v + ∂ I‖| · |‖1≤1(φ∗).

That means, that (u†, φ∗) is optimal if and only if{
0 ∈ −div φ∗ + ∂ I‖ ·−u0‖2≤‖u†−u0‖2(u†),

0 ∈ −∇u† + v + ∂ I‖| · |‖1≤1(φ∗).

Since u† is on the boundary of the domain of the indicator
function in the first inclusion, the subgradient there is the
normal cone, which implies

∃ t ≥ 0 : 0 = div φ∗ + t(u† − u0),
∇u†(x) = v(x),

if |φ∗(x)| < 1,

∃ s(x) ≥ 0 : ∇u†(x)− v(x) = s(x)φ∗(x),

if |φ∗(x)| = 1.

By a result of Bourgain and Brezis [3, Proposition 1] there
is an L∞ solution φ of −div φ = u† − u0, i.e. there exists
L > 0 such that |φ| ≤ L a.e. and hence for φ̃ = φ/(L+1) it
holds that −div φ̃ = 1

L+1 (u† − u0) and |φ̃| < 1 a.e. Hence,
v = ∇u† a.e. ut

Remark 3 If the condition
∫
Ω
u† =

∫
Ω
u0 in Lemma 1 does

not hold, but
∫
Ω

(u†−u0) = ε, then the proof of that lemma
still shows that all solutions of (3) are of the form u† + c

with |c− ε
|Ω| | ≤

ε
|Ω| .

If v 6= ∇u†, then any solution ũ of (3) will usually be
different from u†, although, it will fulfill the trivial estimate

‖ũ− u†‖2 ≤ ‖ũ− u0‖2 + ‖u0 − u†‖2
≤ 2‖u0 − u†‖2 = δ1.

However, the following lemma shows that ũ → u† for v →
∇u† (for constant noise level δ1):

Lemma 4 Assume Ω is convex, u† and u0 fulfill
∫
Ω
u† =∫

Ω
u0, let v fulfill ‖|v −∇u†|‖1 ≤ ε and assume that there

exists a solution ũ of (3) with δ1 = ‖u† − u0‖2 for which
the constraint is active (i.e. ‖ũ− u0‖2 = δ1).

Then there exists another solution ū of (3) with δ1 =

‖u† − u0‖2 that fulfills
∫
Ω
ū =

∫
Ω
u† and moreover, it holds

that

‖ū− u†‖2 ≤ diam(Ω)ε

where diam(Ω) denotes the diameter of Ω.

Proof To obtain ū we consider ū = ũ + c for a suitable
constant c. The equality

∫
Ω
ū =

∫
Ω
u† is achieved for c =∫

Ω
(u†−ũ)/|Ω|. Since∇ ū = ∇ ũ holds, ū is optimal for (3)

as soon as it is feasible. To check feasibility we calculate

‖ū− u0‖22 = ‖ũ− u0 + c‖22

= ‖ũ− u0‖22 + 2c

∫
Ω

(ũ− u0) + c2|Ω|.

Since∫
Ω

(ũ− u0) =

∫
Ω

(ũ− u†) +

∫
Ω

(u† − u0)

= −c|Ω|+ 0,

we get that

‖ū− u0‖22 = ‖ũ− u0‖22 − c
2|Ω|

which shows feasibility of ū.
Now we use the Poincaré-Wirtinger inequality in L1 for

which the optimal constant is known from [1] to be diam(Ω)/2,
i.e. it holds that

‖ū− u†‖1 ≤
diam(Ω)

2 ‖|∇(ū− u†)|‖1
≤ diam(Ω)

2 (‖|∇ ū− v|‖1 + ‖|v −∇u†|‖1).

By optimality of ū and feasibility of u† we get ‖|∇ ū− v|‖1
≤ ‖|∇u† − v|‖1 and hence

‖ū− u†‖1 ≤ diam(Ω)ε. ut
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2.2 Denoising of image gradients

The previous lemma shows that any approximation v of the
true gradient∇u† is helpful for total variation denoising ac-
cording to (3). In order to determine such a v, one way is
to denoise the gradient of the input image, specifically, by
a variational method with a smoothness penalty for the gra-
dient and some discrepancy term. Naturally, a norm of the
derivate of the gradients can be used. A first candidate could
be the Jacobian of the gradient, i.e.

J(∇u) =

(
∂1(∂1u) ∂2(∂1u)

∂1(∂2u) ∂2(∂2u)

)
which amounts to the Hessian of u. Thus, the matrix is sym-
metric as soon as u is twice continuously differentiable. How-
ever, notice, that the Jacobian of an arbitrary vector field
is not necessarily symmetric and hence using ‖J(v)‖ as
smoothness penalty seems unnatural. Instead, we could use
the symmetrized Jacobian,

E(v) =

(
∂1v1

1
2 (∂1v2 + ∂2v1)

1
2 (∂1v2 + ∂2v1) ∂2v2

)
,

where v1 and v2 are the components of v. Note that for twice
differentiable u we have

E(∇u) = J(∇u) = Hess(u),

i.e. in both cases we obtain the Hessian of u. Imitating the
TV-seminorm (and also followoing the idea of total gener-
alized variation), we take F (v) = ‖| E v|‖1.

Similar to the constraint in (3) the denoised gradient
should not differ more from the true gradient than ∇u0,
thus, we consider the minimization problem with a constraint

min
v
‖| E(v)|‖1 s.t. ‖|∇u0 − v|‖1 ≤ δ2

The parameter δ2 can be chosen as follows: If we set δ2 :=

c‖|∇u0|‖1, then c = 1 would allow the trivial minimizer
v = 0 and any c < 1 will enforce some structure of ∇u0
onto the minimizer and smaller c leads to less denoising.

Putting the pieces together, we arrive at a two-stage de-
noising method:

1. Choose 0 < c < 1 and calculate a denoised gradient by
solving

v̂ ∈ argmin
v
‖| E(v)|‖1

s.t. ‖|∇u0 − v|‖1 ≤ c‖|∇u0|‖1 =: δ2.
(4)

2. Denoise u0 by solving

û ∈ argmin
u
‖|∇u− v̂|‖1

s.t. ‖u− u0‖2 ≤ ‖η‖2 =: δ1.
(5)

Instead of using the constrained formulation of the first prob-
lem, we can also use a penalized formulation. Thus, the gra-
dient denoising problem writes as:

1. Choose α > 0 and calculate a denoised gradient by solv-
ing

v̂ = argmin
v
‖|∇u0 − v|‖1 + α‖| E(v)|‖1 (6)

2. Denoise u0 by solving (5).

Since we use a denoised gradient prior to apply total
variation denoising, we term the method (4) and (5) De-
noised Gradient Total Variation (DGTV). Due to the sim-
ilarity with total generalized variation, we call the second
method based on (6) and (5) Denoised Gradient Total Gen-
eralized Variation (DGTGV).

2.3 Constrained and Morozov total generalized variation

Both two-stage denoising methods DGTV and DGTGV for
the gradient resemble previously known methods: The latter
is related to total generalized variation (TGV) [4] while the
former to constrained total generalized variation (CTGV) [15].
The TGV of second order, defined in [4] has been shown to
be equal to

TGV2
(α0,α1)(u) = min

v
α1‖|∇u− v|‖1 + α0‖| E(v)|‖1

(7)

in [5,4] while CTGV from [15] is defined as

CTGVδ(u) = min
v

{
‖| E(v)|‖1 s.t. ‖|∇u− v|‖1 ≤ δ

}
.

(8)

Considering∇u to be the given data in these problems, one
could say, following the notion from [19], that TGV is a
Tikhonov-type estimation of∇uwhile CTGV is a Morozov-
type estimation of∇u.

Now, combining the two steps of DGTGV into one op-
timization problem, where in each step the image as well as
the gradient is updated simultaneously, we get

min
u

{
TGV2

(α,1)(u) s.t. ‖u− u0‖2 ≤ δ1
}

= min
u,v

{
‖|∇u− v|‖1 + α‖| E(v)|‖1

s.t. ‖u− u0‖2 ≤ δ1
}
.

(9)

This formulation is a Morozov type formulation of the TGV
problem

min
u

1
2‖u− u0‖

2
2 + TGV2

(α0,α1)(u) (10)

and thus, in the following referred to as MTGV.
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Another approach to form a combined optimization prob-
lem out of DGTGV is to preserve both constraints, i.e. tak-
ing (4) and (5) to obtain

min
u,v
‖| E(v)|‖1 s.t. ‖u− u0‖2 ≤ δ1,

‖|∇u− v|‖1 ≤ δ2.
(11)

In both problem formulations δ1 again is the noise level. Us-
ing (8) we see that problem (11) becomes

min
u

CTGVδ2(u) s.t. ‖u− u0‖2 ≤ δ1. (12)

Obviously the TGV, MTGV and the CTGV denoising
problems are implicitly equivalent in the sense that, knowing
the solution to one of the problems allows to calculate the
respective parameters of one of the other problems such that
the solution stays one (cf. [19, Theorem 2.3] for a general
result and [15, Lemma 1, Lemma 2] for a result in the case
of CTGV and TGV).

2.4 Parameter choice

A few words on parameter choice for all methods are in or-
der. Frequently, a constraint ‖u− u0‖2 ≤ δ1 appears in the
problem and the parameter δ1 has a large influence on the
denoising result. A natural choice is to adapt the parameter
to the noise level, i.e.

δ1 = ‖η‖2 = ‖u0 − u†‖2.

For a given discrete image, this number can be estimated
as follows: Under the assumption that the noise is additive
Gaussian white noise, the methods from [17,18] allow to
estimate the standard deviation σ of the noise η. Then, it is
well known that the 2-norm of η is estimated ny ‖η‖2 ≈
σ
√
k, where k is the number of pixels.
The second parameter in DGTV is δ2 = c‖|∇u0|‖1, the

constraint parameter in (4). Setting c = 1 leads to v = 0 as
a feasible and also optimal solution, hence, the gradient we
insert into the second optimization problem is zero and thus
the second problem becomes pure total variation denoising
without any additional information. Therefore, c ∈ (0, 1)

is a reasonable choice. Experiments showed (cf. section 5)
that a lot of gradient denoising, i.e. smoothening of ∇u0,
leads to good reconstructions of the image in the second
step. Thus, we set c ≈ 0.99.

The method DGTGV, the penalized variant of the two-
stage method, includes the parameter α, the penalization pa-
rameter in (6). Again experiments showed that α = 1 leads
to a good image reconstruction (cf. section 5), independent
of the noise level, the image size or the image type.

Numerical experiments on the performance of the two-
stage methods with regard to image quality and computa-
tional speed can be found in section 5.

Also the problems CTGV-, TGV-, and MTGV-denoising
come with two parameters each that have to be chosen. For
CTGV- and MTGV-denoising the choice for δ1 is the same
as above. For the parameter α in MTGV-denoising (9) we
have experimental experience that hints that α ≈ 2 is a good
universal parameter (cf. section 5). This inline with the usual
recommendation that α1 = 2α0 is a good choice for TGV
denoising from (10) cf. [13]. For the remaining parameter δ2
for CTGV there is following heuristic from [15]: We denote
with uTV the TV denoised image with δ1 chosen according
to the noise level estimate from Section 2.4 and set δ2 =

c‖|∇uTV|‖1 with 0 < c < 1. However, CTGV will not be
included in the experiment in section 5 and the main reason
is, that the parameter choice here does lead to inferior results
compared to MTGV.

3 Duality gaps

Besides the choice of the problem parameters, controlling
the denoising, one has to choose a reasonable stopping cri-
terion. Since all considered problems are convex, the dual-
ity gap is a natural candidate. Fenchel-Rockafellar optimal-
ity [12] states that, under appropriate conditions, the primal
problem minF (x) +G(Kx) has the dual problem
maxy −F ∗(−K∗y) − G∗(y), that the duality gap, defined
as

gap(x, y) = F (x) +G(Kx) + F ∗(−K∗y) +G∗(y)

is an upper bound on the difference from the current ob-
jective value to the optimal one, i.e. gap(x, y) ≥ F (x) +

G(Kx) − F (x∗) − G(Kx∗) where x∗ is a solution of the
primal problem, and that the duality gap vanishes exactly at
primal-dual optimal pairs.

For the MTGV denoising problem (9) we have the gap
function:

gapMTGV(u, v, p, q) =

‖|∇u− v|‖1 + α‖| E(v)|‖1 + I{‖·−u0‖2≤δ1}(u)

+ δ1‖∇∗ p‖2 − 〈p,∇u0〉+ I{0}(p− E∗ q)
+ I{‖|·|‖∞≤α}(p) + I{‖|·|‖∞≤1}(q).

(13)

As also noted in [6] (for the TGV denoising problem (10))
this gap is not helpful: The problem is, that the indicator
function I{0}(p − E∗ q) is usually not finite as p = E∗ q is
usually not fulfilled. To circumvent this problem, one could
simply replace p by E∗ q in the gap function. If we do this,
we obtain a gap that only depends on q:

gapMTGV(u, v, q) =

‖|∇u− v|‖1 + α‖| E(v)|‖1 + I{‖·−u0‖2≤δ1}(u)

+ δ1‖∇∗ E∗ q‖2 − 〈E
∗ q,∇u0〉

+ I{‖|·|‖∞≤α}(E
∗ q) + I{‖|·|‖∞≤1}(q).

(14)
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We still have the problem, that I{‖|·|‖∞≤α}(E
∗ q) might be

infinite. So replacing q and p in (13) by

q̃ :=
q

max
(

1,
‖| E∗ q|‖∞

α

)
p̃ :=

E∗ q

max
(

1,
‖| E∗ q|‖∞

α

) = E∗ q̃,

we obtain a finite gap function which is a valid stopping
criterion for the problem:

Lemma 5 Let Φ(u, v) := ‖|∇u− v|‖1 + α‖| E(v)|‖1 +

I{‖·−u0‖2≤δ1}(u) be the primal functional of the MTGV de-
noising problem and (u∗, v∗) be a solution of minu,v Φ(u, v).
Then the error of the primal energy can be estimated by

Φ(u, v)− Φ(u∗, v∗)

≤‖|∇u− v|‖1 + α‖| E(v)|‖1 + I{‖·−u0‖2≤δ1}(u)

+ δ1‖∇∗(E∗ q̃)‖2 − 〈E
∗ q̃,∇u0〉+ I{‖|·|‖∞≤1}(q̃),

where q̃ := q

max
(
1,
‖| E∗ q|‖∞

α

) and q is any feasible dual vari-

able, i.e. ‖|q|‖∞ ≤ 1. Moreover, if (un, vn, qn) converge to
a primal-dual solution, the upper bound converges to zero.

Proof The estimate is clear since any dual value is smaller
or equal than any primal value. So we can change the dual
variables in the gap as we like.

Since the gap function is continuous on its domain, the
sequence (un, vn, qn) converges to a primal-dual solution
and has the same limit as (un, vn, q̃n), the second claim fol-
lows. ut

The remaining indicator functions that are left in the mod-
ified gap are guaranteed to be finite by several algorithms
(namely ones that use projections onto the respective con-
straints). As we will see later, this holds, for example, for
classical methods like Douglas-Rachford and Chambolle-
Pock.

Similar problems with an infinite duality gap appear in
other problems, too, e.g. in the CTGV denoising (12). A
closer look at the MTGV denoising problem (9) reveals that
the above construction of the modified gap can indeed be
avoided by a different choice of variables and that this holds
for a broad class of problems. First, we illustrate this for the
MTGV problem. The MTGV problem does not change if we
introduce a new variable w = ∇u − v and replace v in the
formulation. We obtain:

min
u,w
‖|w|‖1 + α‖| E(∇u− w)|‖1 s.t. ‖u− u0‖2 ≤ δ1.

(15)

For this problem, the gap function is

gapMTGV(u,w, q) =

‖|w|‖1 + α‖| E(∇u− w)|‖1 + I{‖·−u0‖2≤δ1}(u)

+ δ1‖∇∗(E∗(q))‖2 − 〈E
∗ q,∇u0〉

+ I{‖|·|‖∞≤α}(E
∗ q) + I{‖|·|‖∞≤1}(q),

(16)

which is exactly the same as (14). As above the indicator
function I{‖|·|‖∞≤α0}(E

∗ q) might be infinite and therefore
q should be replaced by q̃ from above. So replacing p by E∗ q
in (13) results in the gap function of (15). Both gap functions
can be used as valid stopping criteria for both problem for-
mulations.

This method for the stopping criterion does apply to gen-
eral problems of the form

min
u,v

F (u) +G(Av) +H(Bu− v), (17)

where A and B are linear (and standard regularity condi-
tions, implying Fenchel-Rockafellar duality is fulfilled). The
dual problem is

max
p,q
−F ∗(−B∗p)−H∗(p)−G∗(q) + I{0}(p−A∗q).

If we replace p by A∗q, we obtain

max
q
−F ∗(−B∗A∗q)−H∗(A∗q)−G∗(q),

which is the dual problem of (17) with variable change w =

Bu− v:

min
u,w

F (u) +G(A(Bu− w)) +H(w).

The TGV denoising problem for example is very similar
to MTGV. The gap is:

gapTGV(u, v, p, q) =

α1‖|∇u− v|‖1 + α0‖| E(v)|‖1 +
1

2
‖u− u0‖22

+
1

2
‖∇∗ p‖22 − 〈p,∇u0〉+ I{0}(p− E∗ q)

+ I{‖|·|‖∞≤α0}(p) + I{‖|·|‖∞≤α1}(q).

With p̃ and q̃ as before one gets a simple gap for TGV:

gapTGV(u, v, q̃) =

α1‖|∇u− v|‖1 + α0‖| E(v)|‖1 +
1

2
‖u− u0‖22

+
1

2
‖∇∗(E∗ q̃)‖22 − 〈E

∗ q̃,∇u0〉+ I{‖|·|‖∞≤α1}(q̃).
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Corollary 6 Let Φ(u, v) := ‖|∇u− v|‖1 + α‖| E(v)|‖1 +
1
2‖u− u0‖

2
2 be the primal functional of the TGV denoising

problem and (u∗, v∗) be a solution of minu,v Φ(u, v). Then
the error of the primal energy can be estimated by

Φ(u, v)− Φ(u∗, v∗)

≤ α1‖|∇u− v|‖1 + α0‖| E(v)|‖1 +
1

2
‖u− u0‖22

+
1

2
‖∇∗(E∗ q̃)‖22 − 〈E

∗ q̃,∇u0〉+ I{‖|·|‖∞≤α1}(q̃),

where q̃ := q

max
(
1,
‖| E∗ q|‖∞

α

) . Moreover, if (un, vn, qn) con-

verge to a primal-dual solution, the upper bound converges
to zero.

4 Numerics

In this section we describe methods to solve the convex opti-
mization problems related to the various denoising methods
from the previous sections. We will work with standard dis-
cretizations of the images and the derivative operators, but
state them for the sake of completeness in Appendix A.1. In
this section we focus on the optimization methods.

4.1 Douglas-Rachford’s method

The Douglas-Rachford algorithm (see [10] and [16]) is a
splitting algorithm to solve monotone inclusions of the form
0 ∈ A(x)+B(x), which requires only the resolventsRtA =

(I + tA)−1 andRtB = (I + tB)−1 but not the resolvent of
the sum A+ B.

One way to write down the Douglas-Rachford iteration
is as a fixed point iteration

zk = F (zk−1), with

F (z) = z +RtA(2RtB(z)− z)−RtB(z)

for some step-size t > 0. It is possible to employ relaxation
for the Douglas-Rachford iteration as

zk = zk−1 + ρ(F (zk−1)− zk−1), (18)

where 1 < ρ < 2 is overrelaxation and 0 < ρ < 1 is un-
derrelaxation. For ρ in the whole range from 0 to 2 and any
t > 0 it holds that the iteration converges to some fixed point
z of F such thatRtB(z) is a zero of A+ B, see, e.g. [11].

The Douglas-Rachford method can be used to solve the
saddle point problem

min
x

max
y
〈y,Kx〉+ F (x)−G∗(y). (19)

To that end, in [22] the authors propose to use the splitting

B(x, y) =

[
∂F (x)

∂G∗(y)

]
,

A(x, y) =

[
0 K∗

−K 0

] [
x

y

]
.

(20)

If A is a matrix the resolvent RtA simply is the matrix in-
verse (I + tA)−1. The resolvent of B is given by the proxi-
mal mappings of F and G∗, namely

RtB(x, y) =

[
(I + t∂F )−1(x)

(I + t∂G∗)−1(y)

]
=

[
proxtF (x)

proxtG∗(y)

]
.

For further flexibility, it is proposed in [22] to rescale the
problem by replacing G with G̃(y) := G( yβ ) and K with
K̃ := βK. Then one can replace the dual variable by ỹk :=

βyk and finally use proxtG̃∗(y) = 1
β proxtβ2G∗(βy) to ob-

tain a second stepsize s := β2t, which can be chosen inde-
pendently from the stepsize t. In total, the resolvents then
become

RtB(x, y) =

[
proxtF (x)

proxsG∗(y)

]
,

RtA =

[
I tK∗

−sK I

]−1
.

In each step of Douglas-Rachford we need the inverse of a
fairly large block matrix. However, as also noted in [22] this
can be done efficiently with the help of the Schur comple-
ment. If K is a matrix, K∗ = KT and[

I tKT

−sK I

]−1
=

[
0 0

0 I

]
+

[
I

sK

]
(I + stKTK)−1

[
I

−tK

]T
.

To use this, we need to solve equations with the positive
definite coefficient matrix I + λKTK efficiently.

In the following we interpret the linear operators as ma-
trices, without changing notation, i.e. the matrix E also stands
for the matrix realizing the linear operation E . With the help
of the vectorization operation vec, it holds that E · vec(u) =

vec(E u), where on the left hand side E is a matrix and on
the right hand side E is the linear operator from A.1.

As discussed is section 3, we have different possibili-
ties to choose the primal variables (and thus, also for the
dual variables): Namely, we could use the primal variables
u and v, as, e.g. in the MTGV problem (9), or the primal
variables u and w, as in the corresponding problem (15).
This choice does not only influence the dual problem and
the duality gap, but also the involved linear map KTK. The
formulation with u and v as primal variables leads to

KTK =

(
−div 0

−I ET
)(
∇ −I
0 E

)
=

(
−∆ div

−∇ I + ETE

)
(21)
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while the variable change to u and w gives

KTK =

(
−div(ET )

−ET
)(
E(∇) −E

)
=

(
HT

−ET
)(

H −E
)

=

(
HTH −HTE
−ETH ETE

)
, (22)

where H := E(∇) is the Hessian matrix, cf. Appendix A.2..
The same is true for CTGV from (11) and the usual TGV
problem (10). For problem (6) we have

KTK = ET E . (23)

4.2 Inexact Douglas-Rachford

For the solution of the linear equation with coefficient matrix
I +λKTK we propose to use the preconditioned conjugate
gradient method (PCG). For preconditioning we do several
approximations: First we replace complicated discrete dif-
ference operators by simpler one and then we use a block-
diagonal preconditioner and use the incomplete Cholesky
decomposition in each block. As we will see, with these pre-
conditioners we only need one or two iterations of PCG to
obtain good convergence results of the Douglas-Rachford
iteration. If we only use one iteration of PCG and denote
A = (I + stKTK), the linear step is approximated by

A−1b ≈ xk − aM(Axk + b),

where the PCG stepsize is given by

a =
〈b−Axk,M(b−Axk)〉

〈AM(b−Axk),M(b−Axk)〉

and M is the preconditioner for A, i.e. M−1 ≈ A.
In the following the coefficient matrices and precondi-

tioners are given in detail. With the matrices D1 and D2

representing the derivatives in the first and second direction,
we have

∇ =

(
D1

D2

)
, E =


D1 0
1
2D2

1
2D1

1
2D2

1
2D1

0 D2

 ,

J =


D1 0

D2 0

0 D1

0 D2

 , H =


D2

1

D1D2

D1D2

D2
2

 ,

−∆ = ∇T∇ = DT
1 D1 +DT

2 D2,

ET E =

(
DT

1 D1 + 1
2D

T
2 D2

1
2D

T
2 D1

1
2D

T
1 D2

1
2D

T
1 D1 +DT

2 D2

)
,

JTJ =

(
DT

1 D1 +DT
2 D2 0

0 DT
1 D1 +DT

2 D2

)
,

HTH = (D2
1)TD2

1 + 2(D1D2)T (D1D2) + (D2
2)TD2

2,

−ET H =

(
−DT

1 D
2
1 −DT

2 (D1D2)

−DT
1 (D1D2)−DT

2 D
2
2

)
.

The operator JTJ is in fact the negative (discrete) Laplace
operator applied component-wise and also called vector Lapla-
cian. Note that the operator ET E decomposes as

ET E = 1
2J

TJ + 1
2

[
DT

1

D2

] [
D1D2

]
.

Note that the boundary conditions are implicitely contained
in the discretization operators and adjoints (e.g. we use Neu-
mann boundary conditions for the gradient and thus, equa-
tions −∆u = f always contain Neumann boundary condi-
tions).

Our linear operators are dicretizations of continuous dif-
ferential operators. Hence, the resolvent steps correspond to
solutions of certain differential equations. In this context it
has been shown to be beneficial, to motivate precondition-
ers for the linear systems by their continuous counterparts,
see [21]. Block diagonal preconditioners are a natural choice
for these operators. The conjugate gradient method is usu-
ally used for linear systems of the form Ax = f , where f is
an element of a finite dimensional space X . As discussed in
[21] it can also be used in the case whereX is infinite dimen-
sional and A : X → X is a symmetric and positive-definite
isomorphism. Consider for example the negative Laplace
operator A : X = H1

0 (Ω)→ X∗ defined by

〈Au, v〉 =

∫
Ω

∇u · ∇v dx, u, v ∈ X.

The standard weak formulation of the Dirichlet problem is
now Ax = f , where f ∈ X∗. Since X 6= X∗ the linear
operator A maps x out of the space and the conjugate gra-
dient method is not well defined. To overcome this problem,
we introduce a preconditionerM, which is a symmetric and
positive definite isomorphism mapping X∗ to X . The pre-
conditioned system MAx = Mf can then be solved by
the conjugate gradient method. We consider now the corre-
sponding continuous linear operator from (21):

Au,v = I + stK∗K = I + st

(
−∆ −∇∗
−∇ I + E∗ E

)
.

The operatorAu,v is an isomorphism mappingX = H1(Ω)×
(H1(Ω))2 into its dual X∗ = H1(Ω)′ × (H1(Ω)′)2. The
canonical choice of a preconditioner, in the sense of [21], is
therefore given as the blockdiagonal operator

Mu,v =

(
(I − st∆)−1 0

0 (I + st (I + J∗J))
−1

)



Denoising of image gradients and total generalized variation denoising 9

(the inverses of the respective operators also exist in the con-
tinuous setting, see [2, Theorem 6.6]). To see that Au,v has
a bounded inverse, we can check coercivity, i.e. for some
k > 0 we have

〈Au,v(u, v), (u, v)〉
= 〈u, u〉L2(Ω) + st〈∇u,∇u〉(L2(Ω))2

− 2st〈∇u, v〉(L2(Ω))2

+ (1 + st)〈v, v〉(L2(Ω))2 + st〈E v, E v〉(L2(Ω))4

= ‖u‖2L2(Ω) + st‖∇u‖2(L2(Ω))2 − 2st〈∇u, v〉(L2(Ω))2

+ (1 + st)‖v‖2(L2(Ω))2 + st‖ E v‖2(L2(Ω))4

≥ ‖u‖2L2(Ω) + st‖∇u‖2(L2(Ω))2

− 2st‖∇u‖(L2(Ω))2‖v‖(L2(Ω))2

+ (1 + st)‖v‖2(L2(Ω))2 + st‖ E v‖2(L2(Ω))4

≥ ‖u‖2L2(Ω) + st‖∇u‖2(L2(Ω))2

− 2st

(
‖∇u‖2(L2(Ω))2

2ε
+
ε‖v‖2(L2(Ω))2

2

)
+ (1 + st)‖v‖2(L2(Ω))2 + st‖ E v‖2(L2(Ω))4

= ‖u‖2L2(Ω) + st(1− 1

ε
)‖∇u‖2(L2(Ω))2

+ (1 + st(1− ε))‖v‖2(L2(Ω))2 + st‖ E v‖2(L2(Ω))4

≥ k̃
(
‖u‖2L2(Ω) + ‖∇u‖2(L2(Ω))2

)
+ k̃

(
‖v‖2(L2(Ω))2 + ‖ E v‖2(L2(Ω))4

)
≥ k

(
‖u‖2H1(Ω) + ‖v‖2(H1(Ω))2

)
.

The second to last estimate holds for some k̃ > 0 since for
all st > 0 we can find ε > 0, such that st

(
1− 1

ε

)
> 0 and

(1 + st(1 − ε)) > 0. We can chose k̃ as the minimum of
both of them. The last estimate follows for some k > 0 as a
consequence of Korn’s inequality [8].

The corresponding continuous linear operator from (23)
is

Av = I + st E∗ E .

The operatorAv is an isomorphism mappingX = (H1(Ω))2

into its dual X∗ = (H1(Ω)′)2. The canonical choice of a
preconditioner is therefore given as the blockdiagonal oper-
ator

Mv = (I + stJ∗J)−1.

The corresponding continuous linear operator from (22)
is

Au,w = I + stK∗K = I + st

(
H∗H −H∗ E
−E∗H E∗ E

)
,

where H = E(∇) is the Hessian matrix. In our experiments
we chose the discrete version of the blockdiagonal operator

Mu,w =

(
(I + stH∗H)−1 0

0 (I + stJ∗J)
−1

)
for preconditioning. It gives good numerical results, but is
not as nicely accompanied by the theory as the previous
operator. To obtain fast algorithms the inverses in the pre-
conditioners can be well approximated by the incomplete
Cholesky decomposition.1 For the denoising problems with
the primal variables u und v we use the preconditioner

Cu,v =

(
ichol(I − st∆) 0

0 ichol
(
I + st

(
I + JTJ

))) (24)

and for the denoising problems with the primal variables u
and w we use the preconditioner

Cu,w =

(
ichol(I +HTH) 0

0 ichol
(
I + stJTJ

)) . (25)

For problem (6) we use the preconditioner

Cv = ichol(I + stJTJ). (26)

Here the preconditioners are given in the formM−1 = CTC.

5 Experiments

In the previous sections we introduced several different mod-
els for variational image denoising and also described two
algorithms, each applicable to each model. This leaves us
with a large number of parameters that have to be chosen. In
this section, we try to illustrate the effects of these param-
eters and to give some guidance on how these parameters
should be chosen. To that end, we divide the set of parame-
ters into two groups:

Problem parameters: These are the parameters of the model
itself. For example in the case of TGV denoising (10),
the two problem parameters are the two regularization
parameters α0 and α1 while for MTGV (9) we have the
parameters α and δ1 and the DGTGV method consisting
of (6) and (5) also has the two parameters α and δ1.

Algorithmic parameters: These are parameters, that influ-
ence only the algorithm, but not the theoretical minimiz-
ers. These can be for example: One or more step-sizes,
the relaxation parameter, the stopping criterion (e.g. a
tolerance for the duality gap), the parameters of the CG
iteration, or the preconditioner.

1 We used the MATLAB function ichol with default parameters
in the experiments. Varying the parameters did not lead to significantly
different results.
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The problem parameters influence the quality of the denois-
ing, while the algoritmic parameters influence the perfor-
mance (or speed) of the method. Moreover, there is a trade-
off between speed and quality: if the algorithm is stopped
too early, the minimizer may not be approximated well. Note,
however, that sometimes early stopping may increase recon-
struction quality (which often indicates that the model can
be improved), but we shall not deal with this question here
but rather focus on the analysis of the problem and algorith-
mic parameters separately.

5.1 Optimal constants in DGTV, DGTGV and MTGV

The two-stage denoising method DGTV from section 2.2
use the parameter δ2 which we motivated to be δ2 = c‖|∇u0|‖2
in section 2.4. We calculated the optimal constants c for var-
ious images with different noise-levels, cf. figure 1. As ex-
pected, all c ≥ 1 lead to the same result (in this case v = 0

is a feasible solution and optimal and therefor, the two-stage
method becomes pure TV-denoising). If we choose c < 1,
we transfer a bit of structure of the input image into the gra-
dient as an additional information for the image denoising
step. Hence, c ≈ 0.99 seems like a sensible choice.

0.85 0.9 0.95 1 1.05 1.1
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d
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n
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DGTV, optimal c

0.05 noise

0.1 noise

0.25 noise

Fig. 1: Optimal values for various images and different
noise-level for the DGTV method.

A similar experiment for the parameter α in the DGTGV
method from section 2.2 revealed that all these optimal val-
ues are close to 1, cf. figure 2a. For α > 1, the change in the
norm distance is minimal, hence, the denoised image will
be similar to the denoised image with α = 1. Smaller values
α < 1 lead to worse reconstructions. Therefore, we use a

default value of α = 1. For the MTGV method from sec-
tion 2.3 we report the results of the optimization of the pa-
rameter α in figure 2b and we see that values around α = 2

seem optimal (while the variance is larger than for DGTGV).
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(a) Optimal α for various images with different noise-levels in the
DGTGV method.
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(b) Optimal α for various images with different noise-levels in the
MTGV method.

Fig. 2: Optimal α values according to relative norm distance
between u and the original image u† for various images and
different noise-levels.
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5.2 Quality and runtime of MTGV and DGTGV

Table 1 collects results on the reconstruction quality (mea-
sured in PSNR) and the runtime of the two-stage method
DGTGV and the MTGV method. In table 1a we compared
the two-stage method DGTGV and the MTGV denoising
method with the best possible α (i.e. we calculated an opti-
mal value of this parameter for each image, noise-level and
method) and the default δ1 as estimated from the images. In
table 1b we compared both methods with the default α val-
ues, i.e. α = 1 for DGTGV and α = 2 for MTGV (again
with δ1 estimated from the image).

In both comparisons the PSNR values differ only slightly
from each other showing that the default values always lead
to results close to the optimal ones. Moreover, the two-stage
method DGTGV consistently gives slightly lower PSNR val-
ues than MTGV. The difference in PSNR is so small, that
the resulting images are very similar to each other (cf. fig-
ures 3, 4, 5 for some examples).

In tables 1c and 1d we compare different run-times: First,
we used Chabolle-Pock’s primal dual method for both steps
of the DGTGV method separately, i.e. the gradient denois-
ing as a pre-step, after that the actual image denoising and
MTGV in table 1c. It can be seen that the two-stage method
DGTGV is faster (usually by a factor of 2 or 3). In all cases
we used a tolerance value of 10−3 for the relative primal-
dual gap as a stopping criterion. Table 1d also shows run-
times for inexact preconditioned Douglas-Rachford method.
Here we set the tolerance for the primal-dual gap to 10−2

since, this already gave better or comparable PSRN values (a
phenomenon which we can not explain theoretically). How-
ever, even with this larger tolerance, the DR-method is only
faster for large noise level and the MTGV method.

5.3 Comparison of different formulations

The TGV minimization problem (10), the MTGV minimiza-
tion problem (9) and the MTGV minimization problem with
variable change (15) have the same solution parameter u if
we choose δ1 = ‖u0 − uTGV‖2 and α = 2, where uTGV is
the solution of (10). For the first two problems, we used the
algorithms of Douglas-Rachford and Chambolle-Pock. The
latter one is an O(1/k) primal-dual algorithm with constant
step sizes (see [7]), namely

yn+1 = (I + σ∂G∗)−1(yn + σK(2xn − xn−1))

xn+1 = (I + τ∂F )−1(xn − τK∗yn+1)

For MTGV with variable change we only show the results
for the Douglas-Rachford algorithm, since the Chambolle-
Pock algorithm was much slower for this problem. In fig-
ure 6 we compare iteration number and time needed to ob-
tain the desired accuracy of the image. Since the duality gap

(a) u† (b) u0

(c) DGTGV (d) MTGV

Fig. 3: Comparison of DGTGV and MTGV method of affine
image with default α value; noise factor 0.1.

is not suitable to compare different minimization problems,
the tolerance is given by ‖u−u

TGV‖2
‖uTGV‖2

. The reference value

uTGV is obtained by solving (10) with 1000000 iterations
of Chambolle-Pock (τ = 0.004, σ = 1

τ‖K‖2 , ‖K‖2 = 12).
The algorithms are tested with the image eye (256x256) cor-
rupted by Gaussian white noise of mean 0 and variance 0.1.
The stepsizes of the algorithms are chosen by trial and error:

– CP TGV: τ = 0.008, σ = 1
τ‖K‖2 , ‖K‖2 = 12,

– CP MTGV: τ = 0.004, σ = 1
τ‖K‖2 , ‖K‖2 = 12,

– DR TGV: s = 60, t = 0.28,
– DR MTGV: s = 60, t = 0.1,
– DR MTGV (var. change): s = 60, t = 0.04.

The optimal stepsize depends on the accuracy needed. The
Douglas-Rachford algorithm is used in an inexact manner.
The linear operator is approximated by two iterations of the
preconditioned conjugate gradients method, where the pre-
conditioners are given by (24) and (25). In figure 6 we can
see that the algorithms for TGV and MTGV are competitive.
The variable change leads to much slower algorithms.

5.4 Inexactness for the Douglas-Rachford method

The Douglas-Rachford iteration in general allows inexact
evaluation of the operators as long as the error stays sum-
mable, see e.g. [9]. We made experiments with MTGV, us-
ing a few iterates of the conjugate gradient method with and
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Image(noise factor)

affine(0.05)
affine(0.1)
affine(0.25)

eye(0.05)
eye(0.1)
eye(0.25)

cameraman(0.05)
cameraman(0.1)
cameraman(0.25)

moonsurface(0.05)
moonsurface(0.1)
moonsurface(0.25)

barbara(0.05)
barbara(0.1)
barbara(0.25)

DGTGV MTGV
best α

37.26 38.30
32.58 33.97
27.74 28.41

31.34 31.64
28.94 29.37
26.26 26.98

30.57 30.79
27.14 27.32
23.20 23.34

30.69 30.87
28.46 28.73
26.08 26.38

28.35 28.66
24.91 25.14
22.34 22.48

(a) PSNR values
for best possible α

according to each
method.

DGTGV MTGV
default α

37.07 38.25
32.66 33.65
26.80 27.87

31.32 31.49
28.95 29.28
26.09 26.89

30.53 30.78
27.09 27.32
23.15 23.26

30.68 30.77
28.46 28.65
26.04 26.36

28.35 28.49
24.91 25.06
22.34 22.46

(b) PSNR values
for default α values
according to each
method.

DGTGV DGTGV DGTGV MTGV
(grad.) (img.) (all)

0.12 0.06 0.17 0.20
0.15 0.05 0.19 0.25
0.27 0.04 0.31 0.39

0.14 0.16 0.30 0.91
0.23 0.18 0.41 0.93
0.67 0.16 0.83 1.53

0.30 0.15 0.46 1.28
0.38 0.16 0.54 1.38
0.73 0.16 0.89 1.81

0.14 0.16 0.30 0.84
0.28 0.17 0.45 0.93
0.65 0.15 0.80 1.52

1.19 0.58 1.77 10.98
1.03 0.60 1.63 7.46
1.94 0.75 2.69 7.33

(c) Time in seconds (Chambolle-
Pock).

DGTGV MTGV

0.18 0.28
0.20 0.30
0.44 0.34

0.46 1.21
0.83 1.08
1.66 1.26

0.80 1.79
1.03 1.55
1.51 1.43

0.52 1.17
0.72 1.08
1.46 1.26

3.40 9.67
4.66 7.53
8.03 6.04

(d) Time in seconds
(Douglas-Rachford).

Table 1: 1a, 1b: PSNR values of DGTGV and MTGV methods with best possible α value and default values for each
method; 1c: Time in seconds for DGTGV and MTGV methods implemented with Chambolle-Pock, for the DGTGV both
steps also separately; 1d: Time in seconds for both methods implemented with Douglas Rachford.

(a) u† (b) u0

(c) DGTGV (d) MTGV

Fig. 4: Comparison of DGTGV and MTGV method of affine
image with best possible α value; noise factor 0.25.

without preconditioning (see figure 7).The algorithms are
tested with the image eye (256x256) corrupted by Gaussian
white noise of mean 0 and variance 0.1. The stepsizes of

(a) u† (b) u0

(c) DGTGV (d) MTGV

Fig. 5: Comparison of DGTGV and MTGV method with
best possible α value; noise factor 0.1.

the Douglas-Rachford iteration are chosen by trial and er-
ror: s = 120, t = 0.1. The Douglas-Rachford iteration is
very slow for one or two iterations of CG without precon-
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Fig. 6: Runtime TGV vs. MTGV.

ditioning. It does not even converge for three iterations of
CG without preconditioning. Using the preconditioners as
proposed in section 4.2 we obtain very good convergence of
Douglas-Rachford for any number of iterations of PCG. In
figure 7 we can see that preconditioning is crucial for the
method to converge. After 300 iterations all inexact algo-
rithms have caught up with the exact one regarding the it-
eration count, while only one or two iterations perform best
regarding the computational time.

6 Conclusion

We investigated variants of variational denoising methods
using total-variation penalties and an estimate of the image
gradient. First, this provides a natural and, at least to us, new
interpretation of the successful TGV method. The reformu-
lation with a constraint for the discrepancy term ‖u− u0‖2
(which also works for all other norms) together with our em-
pirical observations allows for variational denoising meth-

ods that are basically parameter free and we mainly inves-
tigated the methods DGTGV and MTGV. Since the gradi-
ent of u0 is even more noisy that u0 itself, our experiments
in Section 5 show, that it is still useful to use a denoised
version of ∇u0 as estimate for ∇u†. Indeed, we obtained
that the two-stage method DGTGV sacrifices only little de-
noising performance for a substantial gain in speed. Put dif-
ferently, solving the two denoising problems for the gradi-
ent and the image is significantly easier, than solving the
combined MTGV problem and the denoising result is still
good. This qualifies the two-stage DGTGV as an alternative
to MTGV (and hence, TGV) as a denoising method.

Another part of the investigation involved the Douglas-
Rachford method for these problems. Here we could de-
rive natural preconditioners for the linear sub-problems and
show that they greatly improve the overall speed of the method,
especially in the inexact case. However, the overall runtime
was only better than the simpler primal-dual method by Cham-
bolle and Pock in case of large noise.

A Appendix

A.1 Discretization

We equip the space of M × N images with the inner product and in-
duced norm

〈u, v〉 =
M∑
i=1

N∑
j=1

ui,jvi,j , ‖u‖2 =

 M∑
i=1

N∑
j=1

u2i,j

 1
2

.

For u ∈ RM×N we define the discrete partial forward derivative (with
constant boundary extension uM+1,j = uM,j and ui,N+1 = ui,N as

(∂1u)i,j = ui+1,j − ui,j , (∂2u)i,j = ui,j+1 − ui,j .

The discrete gradient ∇ : RM×N → RM×N×2 is defined by

(∇u)i,j,k = (∂ku)i,j .

The symmetrized gradient E maps from RM×N×2 to RM×N×4. For
simplification of notation, the 4 blocks are written in one plane:

Ev =
1

2

(
∇v + (∇v)T

)
=

(
∂1v1

1
2
(∂1v2 + ∂2v1)

1
2
(∂1v2 + ∂2v1) ∂2v2

)
.

The norm ‖| · |‖1 in the space RM×N×K reflects that for v ∈
RM×N×K we consider vi,j as a vector in RK on which we use the
Euclidean norm:

‖|v|‖1 :=
M∑
i=1

N∑
j=1

|vi,j | with |vi,j | :=

(
K∑
k=1

v2i,j,k

) 1
2

.

The discrete divergence is the negative adjoint of∇, i.e. the unique
linear mapping div : RM×N×2 → RM×N , which satisfies

〈∇u, v〉 = −〈u,div v〉, for all u, v.

The adjoint of the symmetriced gradient is the unique linear mapping
E∗ : RM×N×4 → RM×N×2, which satisfies

〈E v, p〉 = 〈v, E∗ p〉, for all v, p.
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(a) Convergence of MTGV without preconditioning according to num-
ber of iterations.
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(c) Convergence of MTGV without preconditioning according to time
in seconds.
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Fig. 7: A comparisson of the MTGV method with and without preconditioning according to iterations and time.

A.2 Prox operators and duality gaps for considered
problems

In order to calculate experiments with the methods proposed in the pre-
vious sections, in this section we will state all primal and dual function-
als according to a general optimization problem minx F (x)+G(Kx)
along with a study of the corresponding primal-dual gaps and possi-
bilities to ensure feasibility of the iterates throughout the program by
reformulation of the problems by introducing a substitution variable.
We also give the proximal operators needed for the Chambolle-Pock
and Douglas-Rachford algorithm.

A.2.1 DGTV

In section 2 we formulated a two- staged denoising method in two
ways. First, as a constrained version (4) and (5). In this formulation
we get the primal functionals for the first problem (4)

F (v) = I‖|∇u0− · |‖1≤δ2(v),

G(ψ) = ‖|ψ|‖1
(27)

with operator K = E . The dual problems, in general written as

max
y
−F ∗(−K∗y)−G∗(y)
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are

F ∗(t) = δ2‖|t|‖∞ + 〈t,∇u0〉,
G∗(q) = I‖| · |‖∞≤1(q)

(28)

with operator K∗ = E∗. The primal-dual gap writes as

gap(1)
DGTV(v, q) = I‖|∇u0− · |‖1≤1(v) + ‖| E v|‖1
+ δ2‖| E∗ q|‖∞ − 〈E

∗ q,∇u0〉+ I‖| · |‖∞≤1(q).
(29)

The proximal operators are

proxτF (v) = proj‖|∇u0− · |‖1≤δ2
(v),

proxσG∗(q) = proj‖| · |‖∞≤1(q).
(30)

For the second problem within DGTV, we have the denoising prob-
lem of the image with respect to the denoised gradient v̂ as output of
the previous problem, cf. problem (5). There, the primal functionals
with K = ∇ are

F (u) = I‖u0− · ‖2≤δ1(u)

G(φ) = ‖|φ− v̂|‖1
(31)

and the corresponding dual functionals write as

F ∗(s) = δ1‖s‖2 + 〈u0, s〉
G∗(p) = I‖| · |‖∞≤1(p) + 〈v̂, p〉.

(32)

Hence, the primal-dual gap for this problem is

gap(2)
DGTGV(u, p) = I‖u0− · ‖2≤δ1(u) + ‖|∇u− v̂|‖1

− 〈u0,∇∗ p〉+ I‖| · |‖∞≤1(p) + 〈v̂, p〉.
(33)

The proximal operators are given by

proxτF (u) = proj‖u0− · ‖2≤δ1
(u)

proxσG∗(p) = proj‖| · |‖∞≤1(p− σv̂).
(34)

A.2.2 DGTGV

We reformulate problem (6) by using a substitution w = ∇u0 − v,
also considered in section 3, where we calculated another duality gap.
Hence, we get the primal functionals for the gradient denoising prob-
lem with operator K = E as

F (w) = ‖|w|‖1
G(ψ) = α‖| E ∇u0 − w|‖1.

(35)

Therefore, the dual functionals write as

F ∗(t) = I‖| · |‖∞≤1(t)

G∗(q) = I‖| · |‖∞≤α(q) + 〈E ∇u0, q〉.
(36)

With that the primal-dual gap is

gap(1)
DGTGV(w, q) = ‖|w|‖1 + α‖| E ∇u0 − w|‖1
+ I‖| · |‖∞≤1(E∗ q) + I‖| · |‖∞≤α(q) + 〈E ∇u0, q〉.

(37)

The proximal operators are, with Moreau’s identity for the first one,

proxτF (w) = w − τ proxτ−1F∗(τ
−1w)

= w − τ proj‖| · |‖∞≤1(τ
−1w)

proxσG∗(q) = proj‖| · |‖∞≤α(q − τ E ∇u0).

(38)

For the second problem, we already derived all functionals, gaps and
proximal operators in subsection A.2.1, equations (31)–(34).

A.2.3 CTGV

The Morozov type constrained total generalized variation denoising
problem was formulated in section 2.3 (cf. (12)). For this formulation
the primal functionals are

F (u,w) = I‖u−u0‖2≤δ1(u) + I‖| · |‖1≤δ2(w),

G(φ) = ‖|φ|‖1
(39)

with block operator

K = E
(
∇ − Id

)
. (40)

The corresponding dual functionals are

F ∗(s, t) = δ1‖s‖2 + 〈s, u0〉+ δ2‖|t|‖∞,
G∗(q) = I‖| · |‖∞≤1(q)

(41)

with dual block operator

K∗ =

(
∇∗
− Id

)
E∗ . (42)

The proximal operators are accordingly given by

proxτF (u,w) =

(
proj‖ ·−u0‖2≤δ1

(u)

proj‖| · |‖1≤δ2(w)

)
,

proxσG∗(q) = proj‖| · |‖∞≤1(q)

(43)

and the primal-dual gap writes as

gapCTGV(u,w, q) =

‖| E(∇u− w)|‖1 + I‖ ·−u0‖2≤δ1(u) + I‖| · |‖1≤δ2(w)

+ δ1‖∇∗ E∗ q‖2 − 〈∇
∗ E∗ q, u0〉

+ δ2‖| E∗ q|‖∞ + I‖| · |‖∞≤1(q).

(44)

A.2.4 MTGV

In section 2.3 we defined the MTGV optimization problem (9) as a sort
of mixed version between the TGV (10) and the CTGV (12) problems.
Thus, the primal functionals are

F (u, v) = I‖ ·−u0‖2≤δ1(u),

G(φ, ψ) = ‖|φ|‖1 + α‖|ψ|‖1
(45)

with the block operator

K =

(
∇ − Id
0 E

)
. (46)

Accordingly, the dual functionals are

F ∗(s, t) = δ1‖s‖2 + 〈s, u0〉+ I{0}(t),

G∗(p, q) = δ2‖|p|‖∞ + I‖| · |‖∞≤1(q)
(47)

and the dual operator

K =

(
∇∗ 0
− Id E∗

)
. (48)

The proximal operators are given by

proxsF (u, v) = (proj‖ ·−u0‖2≤δ1
(u), v)

proxtG∗(p, q) = (proj‖| · |‖∞≤1(p),proj‖| · |‖∞≤α(q))
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and the gap function is given by

gapMTGV(u, v, p, q) =

‖|∇u− v|‖1 + α‖| E(v)|‖1 + I{‖ ·−u0‖2≤δ1}(u)

+ δ1‖∇∗ p‖2 − 〈p,∇u0〉+ I{0}(p− E
∗ q)

+ I{‖| · |‖∞≤α}(p) + I{‖| · |‖∞≤1}(q).

To circumvent the feasibility problem, as introduced in 3 one can use
the modified gap function

gapMTGV(u, v, q̃) =

≤ ‖|∇u− v|‖1 + α‖| E(v)|‖1 + I{‖ ·−u0‖2≤δ1}(u)

+ δ1‖∇∗(E∗ q̃)‖2 − 〈E
∗ q̃,∇u0〉+ I{‖| · |‖∞≤1}(q̃),

where q̃ := q

max

(
1,
‖| E∗ q|‖∞

α

) .

A.2.5 TGV:

For TGV (10) we have the primal functionals

F (u, v) =
1

2
‖u− u0‖22

G(φ, ψ) = α1‖|φ|‖1 + α0‖|ψ|‖1,

with the same block operator (46). The corresponding dual functionals
are

F ∗(s, t) =
1

2
‖s‖22 + 〈s, u0〉+ I{0}(t),

G∗(p, q) = I{‖·‖∞≤α1}(p) + I{‖| · |‖∞≤α0}(q)

and the dual operator is (48). The proximal operators are given by

proxtF (u, v) =

(
u+ tu0

1 + t
, v

)
proxtG∗(p, q) = (proj‖| · |‖∞≤α1

(p),proj‖| · |‖∞≤α0
(q))

and the gap function is given by

gapTGV(u, v, p, q) = α1‖|∇u− v|‖1 + α0‖| E(v)|‖1

+
1

2
‖u− u0‖22 +

1

2
‖∇∗ p‖22 − 〈p,∇u0〉+ I{0}(p− E

∗ q)

+ I{‖|·|‖∞≤α0}(p) + I{‖|·|‖∞≤α1}(q).

To circumvent the feasability problem, as introduced in 3 one can use
the modified gap function

gapTGV(u, v, q̃) = α1‖|∇u− v|‖1 + α0‖| E(v)|‖1

+
1

2
‖u− u0‖22 +

1

2
‖∇∗(E∗ q̃)‖22 − 〈E

∗ q̃,∇u0〉

+ I{‖|·|‖∞≤α1}(q̃).

where q̃ := q

max

(
1,
‖| E∗ q|‖∞

α

) .

A.3 Projections

The projections used for the algorithms are

proj‖·−u0‖2≤δ
(u) = u0 +max

(
δ

‖u− u0‖2
, 1

)
· (u− u0),

proj‖|·|‖∞≤δ(v) =
v

max(1, |v|
δ
)
,

with |v| =
(∑d

k=1 v
2
k

) 1
2 in the pointwise sense.

The idea how to project onto an mixed norm ball, i.e. ‖| · |‖1,
can be found with in [24]. There the author developed an algorithm to
project onto an l1-norm ball and after that onto a sum of l2-norm balls.
The projection itself cannot be stated in a simple closed form.
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