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Abstract

Planar ornaments, a.k.a. wallpapers, are regular repetitive patterns which exhibit translational symmetry
in two independent directions. There are exactly 17 distinct planar symmetry groups. We present a fully
automatic method for complete analysis of planar ornaments in 13 of these groups, specifically, the groups
called p6m, p6, p4g, p4m, p4, p31m, p3m, p3, cmm, pgg, pg, p2 and p1. Given the image of an ornament
fragment, we present a method to simultaneously classify the input into one of the 13 groups and extract
the so called fundamental domain (FD), the minimum region that is sufficient to reconstruct the entire
ornament. A nice feature of our method is that even when the given ornament image is a small portion
such that it does not contain multiple translational units, the symmetry group as well as the fundamental
domain can still be defined. This is because, in contrast to common approach, we do not attempt to first
identify a global translational repetition lattice. Though the presented constructions work for quite a wide
range of ornament patterns, a key assumption we make is that the perceivable motifs (shapes that repeat)
alone do not provide clues for the underlying symmetries of the ornament. In this sense, our main target is
the planar arrangements of asymmetric interlocking shapes, as in the symmetry art of Escher.

Keywords: ornaments, wallpaper groups, mosaics, regular patterns, Escher style planar patterns

1. Introduction

Planar ornaments, a.k.a. wallpapers, are repeti-
tive patterns which exhibit translational symmetry
in two independent directions. They form a tiling
of the plane. They are created by repeating base
unit in a predictable manner, using four primitive
planar geometric operations: translation, rotation,
reflection and glide reflection (Fig. 1). Using com-
binations of these primitive operations applied on
a base unit, different patterns can be generated.
An interesting fact is that the four primitive opera-
tions can be combined in exactly seventeen different
ways to tile a plane, forming the so called 17 Plane
Symmetry Groups [1].

We present an illustrative example in Fig. 2.
Firstly, observe that the pattern Fig. 2 (a) can be
generated by replicating the equilateral triangular
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Figure 1: 4 primitive operations.(a) Translation, (b) reflec-
tion, (c) glide reflection, (d) 4 types of rotational symmetry.

fragment depicted in Fig. 2(b) by 60◦ rotations in a
systematic manner. This equilateral triangle frag-
ment is the smallest fragment of the pattern that is
sufficient to construct the entire pattern in Fig. 2(a)
using four primitive operations. As such, it is re-
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Figure 2: An example. (a) The ornament image, (b) fun-
damental domain (FD), (c) unit cell (UC), (d) symmetries
and the relation between FD and UC, (e) symmetries, UC
and FD superimposed on the ornament image.

ferred as the fundamental domain (FD). Secondly,
by rotating the FD 120◦ twice around its top corner
and then rotating 180◦ around the middle point of
its base yields the rhombus depicted in Fig. 2(c).
This is the smallest translational unit; the pattern
in (a) can be generated by simply translating it
along two independent directions; hence, it is re-
ferred as the unit cell (UC). The abstracted unit
cell of the tile, the relation between the fundamen-
tal domain and the unit cell along with the sym-
metries, is shown in Fig. 2 (d). The blue hexagons
on the four corners of the rhombus indicate six-fold
rotation centers, and the red triangles and the pink
diamonds located on the centers and the side mid-
points of the two triangles forming the rhombus re-
spectively indicate three-fold and two-fold rotation
centers. In the final illustration (Fig. 2(e)) a sam-
ple cell is shown as superimposed on the original
ornament image.

Through a common naming provided by Crystal-
lographic notation, the presented example happens
to belong to a group called as p6, indicating six fold
rotations. In the Crystallographic notation, the re-
maining 16 groups are named as p1, pm, pg, cm,
p2, pmm, pmg, pgg, cmm, p3, p3m1, p31m, p4,
p4m, p4g and p6m. In Fig. 3, we depict the cell
structures of each of the 13 symmetry groups that
we are interested in.

In the group name, each character position de-
fines a group property: The first position is either
the letter p which stands for primitive cell or the

letter c which stands for centered cell. The prim-
itive cell is a unit cell with the centers of highest
order of rotation at the vertices. The centered cell
is encountered only in two cases (cm and cmm sym-
metry groups), and is chosen so that the reflection
axis is normal to one or both sides of the cell. The
digit that follows the letters p or c indicates the
highest order of rotation, whereas the letter charac-
ters m and g respectively stand for mirror and glide
reflections. When there are two positions contain-
ing either of m and g, it is understood that the first
reflection is normal to x axis and the second is at an
angle α. The digit denoting the highest order of ro-
tation in a symmetry group can take only values 1,
2, 3, 4, and 6. This restriction is introduced by the
crystallographic restriction theorem, which states
that the patterns repeating in two dimension can
only exhibit 180◦, 120◦, 90◦, and 60◦ rotations.

In the present paper, given an image fragment
from an ornament belonging to either of the men-
tioned 13 groups, we present a robust method to
extract the fundamental domain along with the un-
derlying symmetry operations. That is, we pro-
vide a complete analysis of an ornamental pattern
in 13 groups based on an image. An important fea-
ture of our computational scheme is even when the
given input image is only a small portion that a
full unit cell does not fit to image (e.g., Fig. 4(a)),
the symmetry group as well as the fundamental do-
main can still be defined. Of course, once the sym-
metry group and fundamental domain are defined,
it becomes trivial to deduce the translational unit
cell. We remark that most of the existing methods
rely on first discovering the underlying lattice via
a translational repetition structure. This requires
global calculations, e.g., autocorrelations. In con-
trast, we do not search for a translational repetition
or lattice. We directly look for local connections
among motifs (protiles) from which we deduce sym-
metry clues that are later integrated via a decision
tree.

Using a decision tree is indeed the classical
method for grouping tiles into symmetry groups
based on individual clues [2]; the classical decision
tree is depicted in Fig. 5; observe that the check
for mirror reflections dominate the yes/no question
set. The rational behind the given question se-
quence could be that it is easy for humans to spot
mirror reflection and rotational symmetries while
much harder to spot glides. While this is true, the
robustness in the computational case might not be
the same.
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Figure 3: Unit cell structures for 13 Wallpaper Groups. Darker regions indicate fundamental domains.

(a) (b) (c)

Figure 4: An example case for a pattern with few repeti-
tions. (a) Original ornament, (b) fundamental domain, (c)
unit cell (black quadrilateral). Observe that the ornament
fragment does not contain the full unit cell.

We propose an alternative decision tree, of which
details are given in § 3. Initially, we accumulate
indirect clues to mirror reflection as opposed to
searching for mirror reflection axis. We postpone
mirror reflection control till the last stage, and then
at the last stage use mirror reflection check about
the predicted axes only to eliminate possible false
alarms resulting from indirect clues. That is, we
use mirror reflection check only to eliminate false
alarms, not to catch missed ones. This means that
we are willing to sacrifice mirror reflections in order
not to wrongly assume that the tile has a mirror re-
flection. Our rational is as follows: If we only miss
the mirror reflection, say classify a p6m tile as p6,
we still get the correct unit cell and a redundant
(twice the size) fundamental domain. Hence, the
pattern can be correctly generated. If, however, we
falsely classify a p6 tile as p6m, then the extracted
fundamental domain is not sufficient, as we falsely
assume the existence of a mirror reflection. A conse-
quence of not searching for mirror reflection is that
we can only recognize groups that contain sufficient
symmetries other than mirror. This leaves out 4 of

the groups, pm, pmm, cm, pmg and gives us the 13
groups listed above. For the 13 groups, our goal is
to obtain the fundamental domain robustly up to a
mirror reflection.
In accumulating symmetry clues, we only resort to

local connections among motifs (protiles). Many of
the classical ornaments, such as those found in Is-
lamic art, are constructed from symmetric protiles
such as stars that provide a clue to the symmetry
group of the tile. In some works, the symmetries
of the protiles themselves are used as a clue to the
symmetry. However, we believe that inferring sym-
metries of the motifs are not robust due to possible
noise in motif extraction. Moreover, the ornament
artist may be using nearly symmetric motifs that
do not reflect the symmetries of the ornament it-
self (several such examples exist in Escher’s art).
Hence, we neither attempt to recover individual mo-
tifs correctly nor check their symmetries. Indeed,
we even expect the patterns we analyze contain
sufficient number of asymmetric motifs or at least
the most significant symmetries are not completely
swallowed by motifs having the same symmetry.

Motif asymmetry assumption is not as restric-
tive as it may strike at first. Consider two valid
examples shown in Fig. 6. The first one is of group
p6 and contains exactly three all symmetric pro-
tiles – brown, beige and gray– respectively having
six-fold, three-fold and two-fold rotational symme-
tries. That is, the ornament does not contain any
asymmetric motif and all three types of rotation
centers coincide with the motif centers. Neverthe-
less, the local relations among the two-fold rota-
tional symmetric gray motifs reveal both the six-
fold and three-fold rotational centers, providing suf-
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Figure 5: Classical decision tree.

ficient clues for p6. The second ornament, at a first
glance, might give the impression that it contains
only a single form that has all the symmetries of the
ornament itself, i.e., three-fold rotational symmetry
and mirror reflection. Nevertheless, due to texture,
there are also other detectable motifs in the form of
circles or circle fragments, of which local relations
provide clues for various three-fold rotation centers.
In general, our constructions can not handle orna-
ments of single motif such that the motif contains
all the symmetries of the symmetry group; for ex-
ample, a checkerboard pattern or a uniform pack
of triangles. We remark, however, that such orna-
ments are typically the most obvious ones to rec-
ognize. Furthermore, even for those class of orna-
ments, it is possible to identify the translation grid
though full analysis revealing FD can not be per-
formed.

The rest of the paper is organized as follows. § 2
is on related work. The Method details are given in
§ 3 and the results on 100 tile set is in § 4. Finally,
§ 5 is the Summary and Conclusion.

2. Related Work

Ornament patterns have always been a source of
curiosity and interest, not only in arts and crafts
but also other fields including mathematics, com-
putation, cultural studies etc. Early researchers
mostly examined ornaments in cultural contexts,

e.g., [3], with a goal of revealing social structures
and their interaction via dominant symmetries used
in the ornament designs of individual cultures or
geographical regions. In mathematics, the orna-
ment patterns are studied in terms of the groups
formed by the symmetry operations. Few examples
include [4, 5, 6]. The Dutch artist, Escher took a
particular interest in patterns formed by repeating
asymmetric shapes and discovered a local structure
leading to the same wallpaper patterns; his work
on symmetry is examined in [7]. Regular repeti-
tive patterns such as Wallpaper and Frieze groups
are even utilized in quite practical problems; for
example, to analyze human gait [8] or to achieve
automatic fabric defect detection in 2D patterned
textures [9, 10, 11].

In the general pool of works in computational
symmetry, the main focus has been finding symme-
try axes in single objects. Since a single object can
exhibit only mirror reflections and rotational sym-
metries, the efforts are heavily focused on reflec-
tions and rotations [12, 13, 14, 15, 16, 17, 18, 19]
or finding local symmetries a.k.a shape skeletons.
To our knowledge, [20, 21] are the only works that
address finding a glide reflection axis in an image,
though the goal is to study one dimensional ar-
rangements of symmetry, e.g., leaves. The works
targeting shape symmetry, whether directly from
an image or from a segmented region, fall out of
our focus. Our focus is on the symmetries of planar
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patterns formed by regular repetition of shapes via
four primitive geometric transformations.

Figure 6: Possible valid inputs.

In analyzing planar periodic patterns, transla-
tional symmetry, the most primitive repetition op-
eration, is encountered in several works on recurring
structure discovery [22, 23, 24, 25, 26]. The general
flow of such works is to detect visual words and
cluster them based on their appearance and spa-
tial layout. Among these works, [23, 24, 25] further
perform image retrieval based on the discovered re-
curring structures. In [23, 24] instead of directly us-
ing the recurring structures for image matching, the
authors first detect a translational repetition lattice
of an image. There can be multiple lattices for an
image. Thus, given a query image with various de-
tected lattices, they search a database for images
with equivalent lattices. In each search, the match-
ing score between two lattices is a product of two
measurements: the similarity of the grayscale mean
of the representative unit cell and the similarity of
the color histograms. In [27, 28] detection of de-
formed lattice in a given pattern is proposed. They
first propose a seed lattice from detected interest
points. Using those interest points a commonly oc-
curring lattice vectors are extracted. Subsequently,
the seed lattice is refined, and grown outward until
it covers whole pattern.

In [29], for translational symmetry, model based
lattice estimation is performed where the model
comparison for hypotheses generated via peaks of
the autocorrelation is implemented using approxi-
mate marginal likelihood.

Some works move further beyond computing a
translational lattice to address classifying repeated
patterns according to the 17 plane symmetry groups
(wallpapers) [30, 31, 32, 33, 34]. As a first step,
lattice detection is performed. After the lattice
detection step, sequence of yes/no questions are
answered, until the final symmetry group is de-

termined. Since the possible lattice types that
can be associated with are restricted by the sym-
metries the ornament pattern exhibits, detecting
the lattice types reduces the number of symme-
try groups. Though the lattice detection is com-
monly performed using peak heights in autocorre-
lation [30], in [31] an alternative peak detection al-
gorithm based on so called regions of dominance is
used to detect patterns translational lattice. The
region of dominance is defined as the largest circle
centered on the candidate peak such that no higher
peaks are contained in the circle. The authors ar-
gue that the region of dominance is more important
than the height of the peak. A Hough transform is
used to detect two shortest translation vectors that
best explains the majority of the point data. In
order to test whether a pattern has certain symme-
try, the conjectured symmetry is applied to entire
pattern and then the similarity between the orig-
inal image and the transformed one is computed.
The representative motif is chosen to be the most
symmetrical figure.

Recently, [35], combined lattice extraction and
point symmetry groups of individual motifs to anal-
yse Islamic patterns in mosaics. This method
specifically targets Islamic ornaments in which mo-
tifs such as n-stars typically provide clues to the
underlying plane symmetry group. As such, it is
not readily applicable if motifs can not be robustly
extracted or motifs do not reflect the symmetries.
In, [36], rotation groups are detected to analyze Is-
lamic rosette patterns.

It is also possible to perform a continuous char-
acterization of the ornament by comparing orna-
ment images. This is for example encountered in
[37], where ornament images are classified accord-
ing to a symmetry feature vector calculated based
on a prior lattice extraction and yes/no questions;
for lattice detection, they used method in [38]. In
[39], ornament images are directly compared in a
transformed domain after applying a global trans-
formation.

Note that among the works addressing planar
patterns, there are also several interesting works
on pattern synthesis, including how to generate an
ornament in a certain symmetry group, how to use
a given motif to tile the plane in a certain style, or
how to map a given wallpaper pattern to a curved
surface [40, 41].

5



3. The Method

Our symmetry detection system has three modules:
image processing module, local connectivity analy-
sis, and final symmetry detection. Each of them are
separately explained below.

3.1. Image Processing

The input to the image processing module is an ar-
bitrary ornament I which may be a noisy scanned
image or screen shot of a part of an ornament drawn
using a computer tool. That is, input ornament im-
ages are acquired in arbitrary imaging conditions.
The processing proceeds in three stages: gamma
correction, initial clustering, and refinement. At
the end of the refinement step, k binary images for
each ornament are obtained. These binary images
will be called masks for that ornament image.

The number of masks is a result of adaptive clus-
tering. Quite often, the number of masks coincides
with the number of colors in that ornament image.
This, however, is not always so because the image
processing module is not given the number of colors.

Gamma Correction. The first step of the im-
age processing module is gamma-correction [42] to
brighten the black lines and shadows. It is per-
formed on the Y component of xyY color space
using the following formula:

Yout = Ymin + (Ymax − Ymin) ∗ (
Y − Ymin

Ymax − Ymin
)γ

Resulting image depends on the γ parameter. If
one chooses γ < 1 then the lightness of an image
is higher than in original image and darker colors
have more contrast. When γ = 1 no effect on
original image is observed, while γ > 1 makes
colors darker than in original image.

Initial Clustering. The next step is an iterative
application of a clustering algorithm till the num-
ber of initial clusters drop below a pre-defined value
Nc. Here, we assume that the number of distinct
colors is less than Nc; hence, if the number of col-
ors is more, then some color groups are merged to
form bigger motif groups. For clustering, we use
fast and robust mean shift algorithm [43]. It pro-
duces clusters based on a given feature space. In
our case, the features are L ∗ a ∗ b∗ channels of the
gamma corrected image. The appealing feature of
this algorithm for us is that it does not require the

number of clusters to be specificied. (This is un-
like k-means). However, it requires a bandwidth
parameter which indirectly influence the number of
detected clusters. We automate the clustering pro-
cess by iteratively using mean shift clustering in-
creasing the bandwidth at each iteration as follows.

At the initial step, the bandwidth parameter for
mean shift algorithm is set to binit and the number
of clusters is observed. Then at each iteration, the
bandwidth is increased by bstep. For all our images
binit = Nc and bstep = binit/2. The iterations are
stopped whenever the number of clusters k drop
below Nc. The resulting k clusters are used to
define k binary images. The resulting bandwidth is
taken as the image dependent bandwidth estimate
b∗.

Refinement. The computation of initial clusters
as outlined above is performed in the color space.
Hence, spatial proximity of the pixels are not taken
into account. In the next stage, a sequential com-
bination of median filtering in the pixel space and
mean shift clustering in the color space are applied
iteratively for the fixed bandwidth b∗. The median
filtering is realized as follows: If a pixel of class ci
is surrounded by a pixel of class cj , it is assigned to
class cj , and L ∗ a ∗ b∗ channels of that pixel to the
cluster center of the cluster cj . This sequential ap-
plication of median filtering followed by mean shift
with fixed bandwith b∗ is performed only few times.
For all of our images, five iterations seemed suffi-
cient. More iterations may cause the components
of different colors to join.

Final clusters in the pixel space may have small
holes. These holes may result either from an in-
sufficient application of the iterative and sequen-
tial filtering step outlined above or simply from a
small feature such as an eye of a bird. To remove
holes, all background (foreground) connected com-
ponents with radius smaller than a given threshold
R are converted to foreground (background) pixels.
Performing elimination based on component radius
rather than component area is more reliable, be-
cause it might be the case that all (or some) of the
components join giving large areas causing the nec-
essary but separate components to be eliminated.

A sample result of the image processing module
is depicted in Fig.7.
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Figure 7: A sample result for image processing module.
The input ornament image (left) and three masks.

3.2. Local connectivity analysis I: from masks to
connections

The process of local connectivity analysis starts
with consistent keypoint detection on connected
components. An obvious means is to detect cen-
troid of each foreground component. However, this
will be very sensitive to the output of the image
processing module. Separate repeating motifs may
touch one another, for example. Furthermore, this
joining of the motifs may be inconsistent through-
out the ornament plane. What is important for the
purpose of further analysis is that the detected key-
points are consistent throughout the pattern. It is,
however, not critical whether they really coincide
with the true motif centers. Hence, we call these
keypoints as nodes.

Towards robustly locating nodes, a continuous la-
belling on each binary image, namely mask, is per-
formed, yielding a continuous image label∗, whose
values are in (−1, 1). The labelling stage is de-
tailed at the end of this subsection as a separate
paragraph. The nodes are calculated as the cen-
troids of the positive valued connected components
of the label∗ image. Some sample label images are
depicted in Fig.8. A node is merely a robustly com-
puted keypoint.

Once the nodes are detected, a graph called con-
nectivity graph is constructed via an iterative ex-
traction of local node relations. In the first itera-
tion, the minimal pairwise distance is found, and
then all connections with similar distances are ex-
tracted (using a fixed tolerance tol). In the next
iteration, excluding the extracted connections, next
minimal distance is computed to extract new con-
nections. After n iterations, connections of various
sizes are obtained. Note that the connections with
large distances are not much meaningful; at best
they provide redundant information. Hence, it is
better to keep n small. Neither the choice of the
parameter n nor the tolerance tol is critical, be-
cause we later re-classify the connections using the
mean shift algorithm.

Given a set of connections stored at the connec-
tivity graph, the connection length as the feature is

fed to the mean shift. A small and fixed bandwidth,
bc∗ is used. The number of connection groups as
discovered by the mean shift clustering could be
different than the initial n.

In Fig.9, a sample connectivity graph and indi-
vidual connection groups, discovered by clustering
using the connection length, is depicted.

Figure 8: Sample label images. Observe that the motif
centers obtain the highest values.

Continuous labelling on the binary masks.
For each mask of each ornament, each pixel p on
each foreground connected component is assigned
an initial label, label(0, p), reflecting whether or not
the probability of the pixel belonging to a centroid
is higher than that of the pixel belonging to the
component boundary. For this purpose, distance
from each foreground pixel to the nearest back-
ground pixel is computed, and then those which
have bigger distance than the half of the maximum
of all distances are assigned a positive constant a
where the others −a.

After this label initialization, a relaxation is per-
formed. In the relaxation step, the value is in-
creased (decreased) depending on whether the cur-
rent label at a pixel p is less (more) than the aver-
age of neighboring labels. Formula-wise, relaxation
is expressed as follows:

label(i+ 1, p) = label(i, p) + r ∗ relaxation
where r is the relaxation constant which we take as
positive, and the relaxation is

relaxation = Avg (label(i, p))−label(i, p)+label(0, p)
where the Avg (label(i, p)) is computed as the aver-
age of 4-neighboors. At convergence or after suffi-
cient number iterations, whichever comes first, the
continuous labelling of binary masks is achieved as

label∗(p)← label(K, p)

where K is last performed iteration.
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a b

Figure 9: Connectivity graph. (a) Extracted connections for each mask of the ornament, (b) connection groups.

3.3. Local connectivity analysis II: from connec-
tions to symmetry elements

The connection groups extracted as described above
are further analyzed in order to detect node rela-
tions. The way the nodes are related gives a hint on
various symmetry elements. Recall that the connec-
tions with small sizes are favored, since larger con-
nections repeat the same node relations at a larger
scale. Thus, the analyses begin with the connection
group of the smallest size and continue in ascending
order. The analyses are done as following.

Each individual connection group is divided into
connected graphs. Afterwards, each connected
graph is further analyzed independent of the other
connected graphs in the connection group. Given a
connected graph, the following decisions are made.

1 If a graph is a cycle graph, i.e., the nodes are
connected in a closed chain, then the proba-
bility of the graph being either equilateral tri-
angle, square or regular hexagon is computed
(Fig.10(top row)). The probability is the prod-
uct of ratios of polygon edges. Thus, if a graph
is constructed from the connection of three
(four, six) nodes, and the probability com-
puted as a product of its edge ratios is higher
than by chance ( i.e., 0.5), the center of the
triangle (square, hexagon) is taken as a center
of three-fold (four-fold, six-fold) rotation.

2 If the graph is acyclic then the nodes might
be related either by two-fold rotation (a graph
containing only two nodes) or glide reflec-
tion (a graph containing nodes connected in
a zigzag form) (Fig.10(bottom row)).

2a If the graph contains only two nodes, their
center is taken as the center of two-fold ro-

tation. Since two-node connections might
occur by accident, the two-fold centers are
accepted only if the number of nodes in-
volved in such connection in a connection
group is more than 60% of entire node
number in a mask.

2b If the graph contains more than three
nodes, the polynomial of order one is fit
to the given nodes. For a graph of zigzag
structure the line should pass through the
centers of the edges between two adjacent
nodes. In this case, the distances between
the centers of the edges of two adjacent
nodes and a line are computed. The
probability of the graph being of zigzag
structure is computed by taking the prod-
uct of the above distance ratios. If the
probability is more than 0.5, then there
is a glide reflection axis passing through
edge centers. On the contrary, if the
nodes themselves (not the edge centers)
lie on the fit polynomial, then this is a
line, representing translational symmetry.

Detecting implicit node relations. After defin-
ing symmetry centers, elimination of repeating
symmetry centers is performed. For example, if
from early connection group a point on a mask has
been marked as a center of four-fold rotation, and
the same point is again marked as four-fold rota-
tion center from subsequent connection group, the
later one is discarded. This means that a symmetry
center of one type is obtained only from one con-
nection group. However, the symmetry center of
one type may coincide with the symmetry centers
of other types. For example, the symmetry center
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Figure 10: Examplar connections. Top row illustrates
cyclic graphs, while acyclic ones are shown at the bot-
tom row. Equilateral triangles indicate three-fold rotations,
squares indicate four-fold rotations, and regular hexagons
indicate six-fold rotations. Two-point connections represent
two-fold rotations and zigzag structures indicate glide reflec-
tions.

marked as four-fold rotation center from some con-
nection group, may also be the symmetry center
of two-fold rotation derived from some other con-
nection group. A point in a mask may represent
multiple symmetry centers of the same type, if and
only if they are derived from the same connection
group. Thus, two three-fold rotation centers (dou-
ble triangle) at the same point might occur only
when those are detected from the same connection
group. Such repetitions are used to detect implicit
node relations. If there is a double triangle at a
point, this indicates that there is a six-fold rotation
around that point. Similarly, if there is double two-
fold (triple two-fold) rotation center at the point
this is an indicator of four-fold (six-fold) rotation
around that point if the angle between two-point
lines is 90◦ (60◦). Double glide reflection axes rep-
resent reflection symmetry which is perpendicular
to the glide reflection axis. Samples of such connec-
tions are shown in Fig.11.
Another case is paired two-point connections (see

Fig.12). They too indicate reflection symmetry.
Actual two-fold centers lie at the centers of those
paired lines. Moreover, they are the indicators of re-
flection axis passing through two-fold rotation cen-
ters. The algorithm detects them by computing the
minimal distance between two-fold rotation centers
and connecting nodes that are in this minimal dis-
tance from each other. If a graph of maximal degree
four is obtained then these are actual two-fold ro-
tation centers. However, if two-point connections
occur then these are paired two-fold rotation cen-
ters and are handled accordingly.

(a) (b)

(c) (d)

Figure 11: Implicit node relations. (a) Double two-fold ro-
tation centers, (b) triple two-fold rotation centers, (c) double
three-fold rotation centers, (d) double glide reflections.

Figure 12: Samples for paired two-fold connections. The
actual two-fold rotational centers lie at the centers of paired
lines.

Refinement. Notice that up to now the symme-
tries for each mask are detected. After these steps,
the algorithm yields a mask structure which con-
tains fields for various symmetry centers and their
classes. For example, if a mask contains three-fold
rotation centers, the structure contains their cen-
ters and classes. The class of symmetry element is
the number of connection group from which it was
extracted. Thus, all three-fold rotational centers
extracted from the same connection group are of
the same class. The next step is to collect all sym-
metries detected on individual masks. This is a nec-
essary step, since each mask may contain only one
class of some symmetry type, while a whole pattern
contains more classes of that symmetry type. Ini-
tially, all symmetries of the same type are collected
without considering their classes. Say, the three-
fold rotation centers extracted from all masks are
marked on an ornament. Then for each center, the
algorithm defines which classes fall into that partic-
ular center. Thus, if three-fold rotation centers of
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the first mask are of class 2, 5 for mask two and 3 for
mask three, the centers contain classes 2 and 5 (25),
2 and 3 (23), and, 5 and 3 (53). These numbers de-
fine the classes of the symmetry centers and they
are classified accordingly into three groups. This
example is illustrated in Fig.13. It might be the
case that the symmetry center is detected only for
one mask, and that center has not been detected for
another masks. Then this center forms a group on
its own, leading to fourth symmetry class. To elimi-
nate such groups, the algorithm counts the number
of centers of each class, sorts them in ascending
order, computes the minimal distance between the
nodes in one class, and beginning with the largest
class propagates its group to the nodes that are of
similar distance. This is done iteratively, until no
changes occur.

Once all the symmetry types are combined and

(a) (b)

(c) (d)

Figure 13: (a-c) An example of symmetries detected for
three masks of an ornament. For each mask one class of
three-fold rotation centers are detected. (d) when the sym-
metries of all three masks are collected, three classes of three-
fold rotation centers are obtained.

their classes are determined the maximal order of
rotation is defined. If no rotations are observed
then the maximal order of rotation is taken as 1
and it is checked whether the pattern contains glide
reflections. If no glide reflection observed then the
tile is of p1 group, i.e., contains only translational
symmetry. After defining the maximal order of ro-
tation, further elimination is done using the sym-
metry group information. Thus, if the maximal
order of rotation is four or six then there can be
only one class of two-fold rotation centers. If, er-

roneously, two classes were detected, the class in-
tersecting with the unit cell edges is left, the other
type is eliminated. If the maximal order of rotation
is six and there are more than one classes of three-
fold rotations, then the one intersecting with the
unit cell centers is left, and the others eliminated.

3.4. Final symmetry group detection

Individual cues in the form of symmetry elements as
described in the previous subsection are integrated
to yield the final symmetry group decision via a de-
cision tree which we propose for the reduced set of
13 groups, The tree is shown in Fig. 14. Comparing
our tree to the classical decision tree in Fig. 5, ob-
serve that mirror reflection checks are postponed to
be performed at the last stage and their number is
significantly reduced. Furthermore, with the excep-
tion of two-fold rotations case, a mirror reflection
check is performed only when other cues indirectly
imply it. For example, if the maximal order of rota-
tion is six and glide reflections or paired two-fold ro-
tations are detected, then a mirror reflection check
is in order. If the probability of mirror reflection
is calculated to be more than 0.5 then the orna-
ment is classified as belonging to p6m group and
else to p6 group. The reason has been explained
before in the Introduction section: An erroneously
detected mirror reflection is less desirable than a
missed one. In case of a missed mirror reflection,
the fundamental domain will just be twice as big as
it really should be, the half of it being the mirror
of the other half; hence, the whole pattern can be
correctly generated.

There is one exception: The case when two two-
fold classes are detected. In this case, there are two
possibilities. The first possibility is that the orna-
ment is of group pgg. The second possibility is that
the ornament is a cmm pattern formed by all mir-
ror symmetric protiles. In the latter case, the third
two-fold center for cmm is missed because it hap-
pens to be on the glide reflection axis and cannot
be captured from the connection graphs. Hence, a
cmm tile is classified as pgg due to a missed third
two-fold center. This is not tolerable because un-
like p6m versus p6 or p4m versus p4, the mirror
reflection is not the only distinction between the
two groups of cmm and pgg, hence, the fundamen-
tal domain is not correct up to a mirror. For this
reason, in the case of two two-fold centers, the mir-
ror reflection check is performed even if it is not
implied via indirect cues.
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Figure 14: Proposed decision tree.

Mirror Reflection. Mirror reflection checks are
performed on a single unit cell. Note that, in case
of rotational groups of three, four or six fold orders,
the unit cells of the regular and reflectional groups
are identical, the difference being in the fundamen-
tal domain. In the case of two-fold rotations, the
unit cell of the pgg group is employed. At any rate,
given a unit cell, all the objects lying in it are ex-
tracted using the masks of the ornament pattern.
Then the unit cell is divided into two along the ex-
pected reflection axis (based on group information).
For each object lying on both sides, the area (A),
the perimeter (P ), the distance of the object center
to the reflection axis (dRef), the distance of the
farthest point on the object to the reflection axis
(fdRef) and the point on the reflection axis which
is the closest to the object center (pRef) are com-
puted. A pair of objects, one from the first part of
the unit cell (obj1) and the other from the second
(obj2), is picked. The probability of the first object
being a reflection symmetry of the second object
is estimated via the product of the corresponding
feature ratios:

prob =
Aobj1

Aobj2
∗ Pobj1

Pobj2
∗ dRefobj1dRefobj2

∗ fdRefobj1fdRefobj2

∗ exp(
−d(pRefobj1,pRefobj2)

σ )

In all experiments, σ = 10. For each object in
the first part, the above probability is computed
for all its pairs. The highest score is picked. It
indicates with what probability the object has a

mirror object on the other side. Then, the mean
of all the highest scores in the first part is taken
to indicate with what probability the unit cell is
symmetrical along the given reflection axis. Note
that there might be more than one reflection axes
for a given symmetry group. The final probability
is the mean value computed for all reflection axes.

Unit Cell. Recall that, in all rotational groups,
the corners of the units cells are the points of
maximal order of rotation. With the exception of
p4g and pgg, the unit cell is readily constructed by
connecting the nearest maximal rotation centers of
the same class. For the two groups, p4g and pgg,
however, the maximal rotational symmetry center
appearing on the unit cell corners also appears
on the unit cell center. Therefore, for the latter
two groups, a point pt of certain class is chosen,
then four closest points to pt of similar class are
selected. Among these four points pt1 and pt4 are
selected such that the length of (pt, pt1) equals
to the length of (pt, pt4) and are in opposing
directions. Then the rest two points pt3 and pt2
should also be at equal distance to the point pt
and be in opposing directions. If all points are
exhausted, the algorithm reports a failure.

If there are no rotations but glide reflections,
then the lattice nodes are centers of two-point
connections of the zigzag structure with similar
directions. To detect a unit cell, a point (pt1)
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of particular class is chosen as a first node for
unit cell. Then two closest points (pt2 and pt3)
to pt1 are chosen so that the angle between lines
(pt1, pt2) and (pt1, pt3) is less than or equal to 90◦

and bigger than or equal to 60◦. The last point pt4
is chosen so that the angle between lines (pt4, pt2)
and (pt4, pt3) is equal to the angle between lines
(pt1, pt2) and (pt1, pt3), and the length of lines
(pt4, pt2) and (pt4, pt3) are equal to lines (pt1, pt3)
and (pt1, pt2), respectively. Recall that all lattice
nodes are of the same class. If no such points
detected, then another point is chosen as pt1 and
the same operations performed according to this
point. If all points have been exhausted, then the
algorithm reports a failure. If an ornament pattern
has neither rotations nor glide reflections then the
unit cell nodes are merely the motif centers.

Fundamental Domain. If the unit cell is suc-
cessfully constructed, then the fundamental domain
extraction is straightforward, recall Fig. 3. For ex-
ample, the fundamental domain for a p6 ornament
is 1/6th of its unit cell whereas it is 1/12th for a
p6m ornament. If, however, the algorithm reports a
failure during unit cell construction, then algorithm
returns to the stage before the attempt to construct
a unit cell to make use of all the previously collected
information on individual symmetries. (Note that
failure during unit cell construction may arise due
to lack of sufficient translational repetition.) Let us
explain the fundamental domain extraction step in
case of failure via an example.

Suppose only two centers of six-fold rotation (pt1,
pt2) are found, hence, the unit cell cannot be con-
structed. Assuming that this two centers are both
nodes of the same unit cell the distance rd between
these two points is computed. Since it is known
that the unit cell for ornaments with six-fold rota-
tions is composed of two equilateral triangles, there
should be a three-fold center (pt3) which is in a√

3rd distance from the both points. In order to
detect pt3, two circles of radius

√
3rd centering at

pt1 and pt2 are drawn. There will be two points at
which this two circles intersect. Any one of them
can be selected as pt3. In this manner, three points
indicating nodes of a fundamental domain are com-
puted. For the cases when more than two six-fold
rotations exist, two closest nodes are selected as pt1
and pt2. If, on the other hand, only one six-fold
rotation center (pt1) is found, then three-fold cen-
ters are searched. Then the fundamental domain is
extracted using the relation of six-fold center and

three-fold center (pt2) that is closest to the six-fold
center. A point pt3 is selected so that the length
(pt3, pt2) is equal to the length of (pt1, pt2) and
the angle between these two lines is 120◦. If no
three-fold centers are found then two-fold centers
are searched. Then the two-fold center (p) closest
to the six-fold center is used to extract the rest of
the fundamental domain. In this case pt2 is a point
which is equal to d(pt1, p) and in opposing direc-
tion. This new point is actually a six-fold center.
Then pt3 is found using the first case where two
six-fold centers are known. If no other symmetries
detected except for one six-fold center then algo-
rithm fails to detect the fundamental domain. Note
that it might be the case that two six-fold centers
are found in two different locations so that in be-
tween six-fold centers are missed by the algorithm.
In such cases the first case gives large fundamental
domain. If more than one type of symmetries de-
tected so that more than one cases described above
hold, then the fundamental domain is computed for
all of the cases. The final fundamental domain is
the one with the smallest region.

This approach is extended to other symmetry
groups using their own properties.

4. Experiments

4.1. Data

We formed a labelled ornament data set produced
under different imaging conditions by a variety of
ornament artists including the authors using iOrna-
ment tool [44]. This set is enriched with 14 repre-
sentative ornament fragments that are equivalent to
p1, p2,pg, pgg, p4, p4g, p3, p3m1, p31m if color per-
mutations are ignored. The total number of orna-
ments in the set add up to 100. In forming the data
set, we paid attention to cover a variety of styles in
terms of brush, color, tone, and motif choice. We
further paid attention that half of the ornaments
are mimicking Escher’s style with asymmetric in-
terlocking forms and the set contains enough rep-
resentative elements in each of the 13 groups.

4.2. Parameters

For all 100 ornaments, identical parameter values
are used as detailed below.

Gamma correction. γ is set to 0.5.
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Clustering. Nc is set to 10. For the refinement
stage, R is set to R = 0.3 ∗maxR, where maxR is
the maximum radius of the connected components.

Connection extraction. The connectivity graph
is constructed using n = 5 iterations with tol = 5.
The bandwidth fed to mean shift for connection
group clustering is set to bc∗ = 2.

4.3. Results

We first present our result on 14 representative or-
naments taken from Escher’s collection (Fig. 15).
For the first 12 out of 14 ornaments, depicted in
Fig. 15 (a) through (l), our method works success-
fully. In each group, (a) through (l), the first rows
show the original input. The second rows show the
detected symmetries, the unit cells and the funda-
mental domains superimposed on the input. The
third rows show the fundamental domains cut out
automatically from the original patterns. Unit cells
(in the forms as previously described in Fig. 3) are
shown by red quadrilaterals.

For illustration purposes, the region belonging to
the fundamental domain is made lighter while the
rest of the pattern is made slightly darker. In case
an ornament image is too small to fit a whole unit
cell in it, only the fundamental domain is shown.
Half of the cases (6 out of 12) are like this.

Notice that in some cases, (d)-(f), the letter m
of the group names are in red color. This is to in-
dicate that our method in these three cases missed
the mirror reflection. For none of these three ex-
amples, mirror reflection checks at the last stage
are performed because indirect clues did not imply
mirror reflection. As a result, the fundamental do-
mains are twice as big; though, the unit cells are
correct. Recall that in general mirror symmetry
can not cause any problems, since the centers of
the maximal order of rotations do not reside on the
centers of the respective protiles.

For the famous mariposas pattern (Fig. 15 (a))
only three three-fold rotation centers all from dif-
ferent classes are detected. For the second p4
tile (Fig. 15 (h)) only two four-fold rotation cen-
ters both from different classes are detected. Yet,
for both patterns we obtain enough information to
identify their symmetry groups and detect funda-
mental domains. The results in Fig. 15 (h)-(i) show
two-fold rotation centers that are detected in wrong
places. Nevertheless, since the symmetry group de-
pends on the maximal rotation order, incorrect two-
fold centers do not influence final decision.

For the last two ornaments, respectively in pgg
and pg groups, the collected cues are not sufficient.
In each case, only one of the glide axes are detected.
Hence, these two cases are inconclusive. The reason
for the failure is that it is harder to detect glides in
the absence of sufficient repetition. As we demon-
strate in later examples, detecting pg or pgg is pos-
sible when there are slightly more samples.

The rest of the results for the remaining 85 tiles
are organized as follows. (Note that the result for
one p6 ornament had been shown previously in the
Introduction.) To save space, 45 samples are placed
in the Appendix. They are split into three figures
each showing the results for 15 patterns. To be
illustrated in this section, 25 illustrative samples
from 8 groups of higher order rotations are selected.
The remaining 15 are selected from the remaining
5 groups. The patterns with higher order rotations
are further organized into two groups. The first one
contains the groups with triangular lattice struc-
tures (p6m, p6, p31m, p3m, p3); for these groups
the unit cell consists of two equilateral triangles.
The other contains the groups with square lattice
(p4m, p4g, p4). The results are respectively shown
in Figs. 16 and 17. Original ornaments are shown
in their full sizes whereas the ones depicting the re-
sults are cropped in order to make the symmetries,
unit cells and fundamental domains visible.

In all samples of the higher order rotation groups,
the symmetry groups are correctly identified, ex-
cept up to mirror reflection in some samples. Be-
cause a p31m ornament has two three-fold rotation
centers, it is automatically classified correctly with-
out a need for mirror reflection check. In our p6m
examples, the mirror reflections were implied as a
result of detected glides, so the flow in the decision
tree proceeded to mirror reflection check; hence, the
fundamental domains are correctly identified. The
fundamental domain for a p6m ornament is half the
size of a p6 one, and that of a p3m ornament is half
the size of a p3 one. This is because the other halves
can be obtained by mirror reflection. In our p3m
examples, the fundamental domains are double the
size they should be. This is because the samples
are classified as belonging to p3 as a consequence of
missed mirror reflections. Nevertheless, using the
generation the rules for the p3 group, instead of for
the p3m, the original tiles can still be recreated.

As for the two samples of p4m (Fig. 17), the first
one successfully passed the reflection double check
(implied via glides and then checked). But for the
second sample, the mirror reflection test is not per-
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(a) p3 (b) p3 (c) p31m (d) p3m (e) p3m (f) p3m

(g) p4 (h) p4 (i) p4 (j) p4g (k) p2 (l) p1

(m)
(n)

Figure 15: Symmetries detected for ornaments painted by Escher. Observe that although most of the images are small and
have few repetitions of the symmetries, we are able to find the fundamental domains. Having insufficient repetition seems to
pose a problem only to two glide group ornaments shown in the last row. The letter m in the group names under the ornaments
are shown in red if the mirror reflection is missed. In those cases, the fundamental domains are double the sizes they should
be.
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p6 p6 p6m p6m p6m

p3 p3 p3 p3 p3

p31m p31m p31m p3m p3m

Figure 16: Results for the ornaments with six- and three-fold rotations.

formed because indirect clues did not indicate its
existence. Hence, for this particular ornament of
the p4m group, the fundamental domain is double
the size that it should be. Similar to the previously
discussed cases of p3m ornaments, using the gener-
ation the rules for the p4 group, instead of for the
p4m, the original p4m pattern can still be recreated.

As for the p4g ornaments, their fundamental do-

mains are accurately identified. In this group of
ornaments, we observed that glide reflections are
easily detected, while for a human it is hard to per-
ceive this type of symmetry. For an ornament to
be classified to p4g group it is enough to detect one
class of four-fold rotation centers. Hence, mirror
reflection check is unnecessary.

25 more results on tiles with higher order rota-
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p4 p4 p4 p4m p4m

p4g p4g p4g p4g p4g

Figure 17: Symmetries detected for ornaments with four-fold rotations.

p6m p6m p6m p31m p31m p31m p3m

p3m p4m p4m p4g p4g p4g p4g

p4g p3m p31m p31m p4m p4m p4g

Figure 18: Fundamental domains for ornaments with mirror reflections.
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p2 p2 p2 p2 p2

pgg pgg pgg cmm cmm

pg pg pg p1 p1

Figure 19: Sample results for ornaments in p2, pgg, cmm, pg, p1 groups.

tions are given in Appendix Figs. A1 and A2. There
are in total 50 ornaments out of 100 with higher
order rotations (excluding Escher ornaments), and
21 of them contain mirror reflections. The de-
tected fundamental domains for these 21 ornaments
are given in Fig. 18. The fundamental domains
of the ornaments for which mirror reflections have
not been detected are framed in black boxes. Ob-

serve that for 5 ornaments, the mirror reflections
are missed. Hence, they are classified as belong-
ing to the corresponding reflection-less groups, and
their fundamental domains are double the sizes they
should be.

Fig. 19 shows results for the samples of the re-
maining five symmetry groups with lower order ro-
tations: p2, pgg, cmm, pg, p1. The first five orna-
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ments belong to p2 group. This group of ornaments
contain four distinct classes of two-fold symmetry
centers. The second and the third groups respec-
tively contain ornaments with two and three dis-
tinct classes of two-fold centers. Both of the groups
(pgg and cmm) have two distinct classes of glide
reflection axes perpendicular to each other. The
second sample of cmm group (yellow and purple
ornament) shows a case when the third class of the
two-fold centers is not detected. This is because we
employ two-point connections to indicate any bi-
nary connections, i.e., both the two-fold rotations
and the glide fragments forming zigzag structures.
In this particular cmm example, our algorithm de-
tects zigzag structures and defines them as glide
reflection axes. During this process, however, our
algorithm loses track of the two-fold rotations that
are also indicated by the same two-point connec-
tions.

In general, we observe that when two-fold rota-
tion centers lie on the glide axes and all the pro-
tiles are mirror symmetric (as in the case of the
present cmm sample), our algorithm loses track of
the one of the two-fold rotation centers. When one
of the two-fold rotation centers is lost, the symme-
tries of the cmm pattern becomes similar to the
symmetries of pgg one except for the mirror reflec-
tion symmetry: while the pgg group does not have
mirror reflections, the cmm group does. Thus, if
exactly two two-fold rotation centers detected, we
always need to perform mirror reflection check. For
the present cmm sample, checking for the mirror re-
flection identifies the correct group. We performed
further tests with 6 additional samples as presented
in the Appendix Fig. A3. With the help of mirror
reflection checks, our algorithm achieves pgg and
cmm separation.

Finally, the last row of Fig. 19 illustrates the re-
sults for ornaments without rotational symmetries.
If two distinct classes of glides which are all paral-
lel to each other are detected, then the ornament
is classified as pg. For the p1 group, the group of
pure translation symmetry, the algorithm detects
all grids or lines indicating translations.

5. Summary and Conclusion

We have presented a fully automated method to de-
tect the symmetry group and extract fundamental
domains of ornaments belonging to 13 symmetry
groups. We have focused on ornaments where mo-
tifs do not hint the symmetries of the underling

tiling, the pattern formed by repeating shapes. As
long as an ornament contains sufficient number of
motifs (protiles) that are either rotationally asym-
metric, or strongly concave, or at least less symmet-
ric than the higher order rotational symmetry of the
group, our method works. The asymmetry assump-
tion is not a serious restriction. Even in cases where
all motifs are symmetric, as long as they do not all
centered at the corners of the translational unit,
the method still works. If all motifs are symmet-
ric and centered at the corners of the translational
unit, our method can not determine the symmetry
group. Nevertheless, it is still possible to extract a
translational repetition lattice.

As a proof of concept, to show a range of orna-
ments for which our method works, we have com-
piled an ornament database of 100 images. In the
set, 14 of the ornaments are images painted by Es-
cher. All of them are classics, such as the famous
Mariposas, Angles and Damons and Lizards. The
remaining 86 ornament images are constructed via
iOrnament software either by the authors or by sev-
eral iOrnament artists.

Because we do not explicitly check for the exis-
tence of mirror symmetry, unless indirectly implied
by other clues, we sometimes miss mirror reflec-
tions. This causes for 3 groups (p6m, p4m, p3m)
to be classified as belonging to respective reflection-
less groups of lower symmetry (p6, p4, p3). Nev-
ertheless, since their fundamental domains (dou-
ble the sizes they should be) contain mirror re-
flected copies, recreation of the original patterns us-
ing the generation rule of the respective reflection-
less groups is possible. Indeed, this forms our mo-
tivation for postponing the hard mirror reflection
checks till they are implied by indirect clues, such
as glide reflections.
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The Appendix contains the results for the 45 orna-
ments that are not included in the main sections of
the paper. They are organized according to their
symmetry groups and placed in three figures.
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Figure A1: Remaining ornaments - 1
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Figure A2: Remaining ornaments - 2
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Figure A3: Remaining ornaments - 3
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