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Abstract We propose a robust variational model for the restoration of images
corrupted by blur and the general class of additive white noises. The key idea
behind our proposal relies on a novel hard constraint imposed on the residual
of the restoration, namely we characterize a residual whiteness set to which
the restored image must belong. As the feasible set is unbounded, solution
existence results for the proposed variational model are given. Moreover, based
on theoretical derivations as well as on Monte Carlo simulations, we provide
well-founded guidelines for setting the whiteness constraint limits. The solution
of the non-trivial optimization problem, due to the non-smooth non-convex
proposed model, is efficiently obtained by an Alternating Directions Method
of Multipliers (ADMM), which in particular reduces the solution to a sequence
of convex optimization sub-problems. Numerical results show the potentiality
of the proposed model for restoring blurred images corrupted by several kinds
of additive white noises.
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1 Introduction

During the image acquisition and transmission processes, degradation effects
such as those due to blur and noise always occur. One of the main goals of
image processing is to eliminate these unwanted effects and to recover clean
images from the acquired blurred and noisy images. Over the years, one of
the most studied class of noises is that of additive, independent identically
distributed (in short i.i.d.) noises, which affect all the pixels by independent
random corruptions coming from the same distribution [9]. This class includes
important noises such as those characterized by Gaussian [39], uniform [17],
Laplacian [35] and Cauchy [42] distributions, which can be found in many
applications, such as e.g. medical and astronomic imaging [9,28]. For any of
these noise distributions, ad hoc variational models have been devised in the
past for image restoration; see [9]. However, in many practical applications it
is difficult to know a priori the noise distribution and, in any case, the noise
might be the outcome of several sources thus giving raise to mixed noise models
[24] with very specific/complex distributions.

To overcome these inherent difficulties, in this paper we propose a robust
variational model aimed at restoring gray level images corrupted by blur and
by the generic wide class of additive white - or uncorrelated - noises [9], which
include i.i.d noises as a particular case and whose precise definition will be
given later. Since an extension to color images would require some different
definitions of our variational model, see [16], we postpone the analysis to color
images to a future work. Without loss of generality, we consider images with
a square d × d domain. The discrete model of the image degradation process
we consider in this paper reads as

g = Ku + n , (1)

where u, n, g ∈ Rd2 represent column-major vectorized forms of the unknown
uncorrupted image, unknown noise realization and observed corrupted image,
respectively, and where K ∈ Rd2×d2 is a known linear blurring operator. Given
K and g, and under the assumption that the additive noise process is white,
our goal is to solve the ill-conditioned - or even numerically singular, depending
on K - inverse problem of recovering an as accurate as possible estimate u∗ of
the unknown clean image u.

The proposed variational model, referred to as TV-W, is as follows:

u∗ ← arg min
u∈Wα

TV(u) , TV(u) :=

d2∑
i=1

‖(∇u)i‖2 , (2)

where TV(u) represents the discrete Total Variation semi-norm of image u
and (∇u)i ∈ R2 denotes the discrete gradient of image u at pixel i. We chose
the TV regularizer for its popularity and effectiveness but potentially any
other regularizer could be used as well, such as nonlocal TV [18], TVp [23] or
fractional TV [13]. The key novelty behind our proposal is the feasible setWα,
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referred to as the residual whiteness set – or, in short, simply the whiteness
set – that will be formally defined and widely analyzed in Section 4.

Coarsely speaking,Wα contains restored images u∗ for which the associated
residue images g−Ku∗ resemble the realization of a white noise process. This is
motivated by the fact that, according to the considered degradation model (1),
the residue image g−Ku is exactly equal to n – the realization of a white noise
process – when u is the target uncorrupted image we aim to recover. Hence,
the idea is that, by explicitly constraining the restoration residual g−Ku∗ to
resemble a white noise realization, the restored image u∗ is effectively pushed
towards the target uncorrupted image u, independently of the actual noise
distribution.

As pointed out in the paper, the potentiality of the proposed model is
twofold:

a) it can be used effectively for the restoration of images corrupted by blur
and the large class of additive white noises, under mild assumptions on the
noise distribution;

b) it holds the potential for obtaining restorations of quality similar if not
superior to that achievable by variational models containing data fidelity
terms suitably constructed for a specific noise distribution.

With the aim of highlighting potentiality b) above, in Figure 1 we show
some restoration results obtained on a photographic image containing neat
edges and also some texture (a). The image has been synthetically corrupted
by space-invariant Gaussian blur and strong additive white Gaussian noise (b)
and then restored by using both a classical TV-`2 - or ROF - variational model
(c) and the proposed TV-W model (d). From visual inspection of Figures 1(c)-
(d), one can observe the quality improvement provided by our model, especially
in correspondence of textured regions (see, e.g., the central skyscraper).

The proposed constrained variational model (2) is non-smooth due to the
TV objective function and non-convex due to the feasible whiteness set Wα

(non-convexity ofWα will be demonstrated in Section 5). Non-convex problems
raise difficulties from an optimization point of view, due to the fact that in gen-
eral there is no guarantee that the numerical optimization algorithm converges
to the global optimum. For what concerns the latter difficulty, however, in lit-
erature it has been shown that many approaches specifically devised for convex
optimization can also be effectively used in the non-convex setting under ap-
propriate conditions/assumptions, e.g. the augmented Lagrangian approach,
the gradient projection method, the forward-backward splitting algorithm, the
majorization-minimization approach, the graph cut method, the iPiano algo-
rithm and the ADMM; for an overview, we refer the reader to [1,5,2,36,41,37]
and the references therein. In this paper, we propose an ADMM-based iterative
algorithm [46] for solving our non-convex non-smooth minimization problem
(2). This choice allows us to reduce the solution of (2) to the solution of a
sequence of easier, convex and efficiently solvable minimization sub-problems.

The paper is organized as follows. In Section 2 we introduce basic defini-
tions on white noise processes, and in Section 3 we discuss the distributions
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(a) (b)

(c) (d)

Fig. 1 Restoration results obtained by using the TV-`2 (c) and the proposed TV-W (d)
variational models on an approximately piecewise constant and slightly textured photo-
graphic image (a) corrupted by space-invariant Gaussian blur and additive white Gaussian
noise (b).

related to some important cases of additive white noises considered in this
paper. In Section 4 we formally define and then analyze the residual white-
ness set Wα, which constitutes the key ingredient in our proposal. Section 5
is devoted to the proof of existence of solutions for the proposed TV-W varia-
tional model. The ADMM-based iterative algorithm used to numerically solve
the model is illustrated in Section 6 and numerical results are presented in
Section 7. Conclusions are drawn in Section 8.

1.1 Related Work

Various image restoration strategies have been proposed in literature, but in-
variably they make strong assumptions about the properties of the image
and, in particular, of the degradation process including the noise characteris-
tics. Hence, some of these methods lack the generality to be easily applied in
practical cases where, e.g., the noise distribution is a priori unknown or too
complex to be dealt with explicitly. In this section, we briefly review some
early approaches which exploit, more or less explicitly, the noise statistics to-
gether with the properties of the restoration residual in order to improve the
restoration results.
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In [6], where the popular Nonlocal means (NLM) algorithm for image de-
noising has been proposed, the properties of the denoising residual, referred
to as the ”method noise”, have been used to design the NLM regularizer and,
then, to visually evaluate a posteriori the accuracy of the obtained denoised
images. In [12], the authors demonstrated how many full-reference image qual-
ity measures, e.g. the mean-squared-error and the structural similarity index,
can be estimated from the residual image without the reference image. This
suggests how the information contained in the residual image is strongly cor-
related with the quality of the restoration.

During the years, the statistical properties of the residual - including its
distribution and its whiteness - have been also used for the selection of the regu-
larization parameter of unconstrained variational models for image restoration,
see e.g. [52], [53] and [19]. For instance, a bilevel programming approach has
been proposed in [19] to optimize the choice of the regularization parameters
for denoising images corrupted by additive Gaussian noise. In particular, the
method relies on testing Gaussianity of the residuals of the denoising process.

In [4], the authors introduce an unsupervised, information-theoretic, adap-
tive filter (UINTA) for image denoising which adapts automatically to the
statistics of the input image. In practice, the filter implicitly implements a
general-purpose regularizer which does not assume any particular smoothness
constraint on the target uncorrupted image, similarly to what we do in this
paper by the proposed general-purpose fidelity term based on only the noise
whiteness property. For what concerns noise, in [4] only additive i.i.d. Gaus-
sian noise is considered. Similarly to [4], other works have been proposed [14,
45] where the Stein’s unbiased risk estimator (SURE) has been exploited for
robust denoising of images corrupted by additive Gaussian i.i.d. noise. The
method relies on a patch-based learning of the unknown uncorrupted image
prior - that is, of a patch-based regularizer - which allows a robust estimation
of the noise-free image.

In [25] the authors were the first to propose a variational model contain-
ing a penalty term devoted to promote whiteness of the residue image. The
model in [25] was specifically aimed to perform denoising of images corrupted
by additive white Gaussian noise. Then, an extensions of [25] to the image
deblurring problem has been proposed in [26], where whiteness of the residue
image is enforced through a hard instead of a soft constraint. Compared to the
work in [26], the proposal in this work exhibits several important novelties.

First, in [26] the whiteness constraint was defined in the frequency domain
(based on the normalized cumulative periodogram), whereas here we impose
whiteness in the space domain (based on the sample auto-correlation). This
choice yields a constrained variational model which is more easily tractable
than the one in [26] from a numerical point of view.

Second, the whiteness bounds in the frequency domain could only be chosen
empirically based on a computationally heavy Monte Carlo approach. Here,
instead, we are able to theoretically characterize the statistics of the sample
auto-correlation values, thus obtaining explicit expressions for the whiteness
bounds in the space domain. Monte Carlo simulations are in this case carried
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out only for an off-line empirical validation of the derived expressions. The
existence of closed-form formulas for the whiteness bounds in the space domain
not only allows for a much computationally lighter approach but also yields a
parameter-free variational model, which only requires knowledge of the noise
standard deviation.

Third, a theoretical proof of the existence of solution(s) to the new model
is provided - see Proposition 2.

Last but not the least, the new model is suitable to entail a large class of
additive white noises, under mild assumptions on the noise distribution, while
the model in [26] was only proposed to restore images corrupted by additive
white Gaussian noise.

We finally remark that this work is an extended version of the preliminary
proceeding paper in [27].

2 Basics on white noise processes

The statistical version of the degradation model in (1) with images in matrix-
form is

G[i, j] = v [i, j] + N [i, j] , [i, j] ∈ Ω := {1, . . . , d}2 , (3)

with capital letters indicating random quantities and where v[i, j] := (K u)[i, j]
denotes the value of the blurred image at pixel [i, j]. In particular, the additive
noise is modeled as a d×d discrete random process N := {N [i, j] : [i, j] ∈ Ω }
with N [i, j] denoting the scalar random variable modeling noise at pixel [i, j].
This means that different images of the same subject under the same blurring
operator will differ due to the inherently random nature of the noise.

We introduce in the following some basic definitions, which will be useful in
the construction of the whiteness set and in the derivation of related theoretical
results.

Definition 1 A d×d discrete random process N is said to be weak stationary
if the following three conditions are satisfied:

· E(N [i, j]2) is finite, ∀[i, j] ∈ Ω,
· E(N [i, j]) = E(N [i+ l, j +m]), ∀[l,m],
· Cov(N [i1, j1], N [i1 + l, j1 +m]) = Cov(N [i2, j2], N [i2 + l, j2 +m]), ∀[l,m],

where E and Cov denote the expectation and covariance operators, respec-
tively.

In other words, Definition 1 states that stationary processes must have
three features: finite variance, constant mean and the covariance that depends
only on the two-dimensional lag denoted by [l,m].

Definition 2 The ensemble auto-correlation of a weak stationary process N
is a function ρN which maps any lag [`,m] into a scalar value given by

ρN [l,m] = E
(
N [i, j]N [i+ l, j +m]

)
. (4)



Whiteness constraints in a unified variational framework for image restoration 7

Definition 3 A d× d discrete random process N is said to be white if it is

– weak stationary;
– zero-mean;
– uncorrelated, that is

ρN [l,m] =

{
σ2
n if [l,m] = (0, 0)

0 otherwise
, [l,m] ∈ Θ := {−(d− 1), . . . , d− 1}2 ,(5)

where σ2
n represents the variance of the 2D random process.

Equation (5) says that a white noise process is characterized by zero values
of the auto-correlation function at all non-vanishing lags.

Given a single realization n := {n[i, j] ∈ R : [i, j] ∈ Ω } ∈ Rd×d of the noise
process N , that is the series of noise values corrupting the particular observed
image according to the deterministic degradation model in (1), the sample
auto-correlation of n is a function rn mapping all the possible lags [l,m] ∈ Θ
into a scalar value given by

rn[l,m] :=
1

d 2

(
n ? n

)
[l,m] =

1

d 2

(
n′ ∗ n

)
[l,m]

=
1

d 2

d∑
i,j=1

n[i, j]n[i+ l, j +m] , [l,m] ∈ Θ , (6)

where ? and ∗ denote the 2-D discrete correlation and convolution operators,
respectively, and where n′(i, j) = n(−i,−j).

Clearly, for (6) being defined for all lags [l,m] ∈ Θ, the noise realization n
must be padded with at least d− 1 samples in all directions, that is boundary
conditions for the noise realization have to be chosen.

In this paper, we assume that the noise process n is periodic, such that ?
and ∗ in the definition (6) of the sample auto-correlation function indicate
circular correlation and circular convolution, respectively. This assumption
yields symmetry properties of the sample auto-correlation function, such that
the only informative lags belong to the following subset Θ of Θ defined in (5):

Θ := {0, . . . , d− 1}2. (7)

Therefore, in the rest of the paper we consider the restriction of the sample
auto-correlation function to the domain Θ.

With the further assumption that the noise process is ergodic, i.e. any
ensemble statistical properties of the process can be estimated from a single,
sufficiently long, random sample of it, it can be demonstrated that the sample
auto-correlation rn is a good estimate of the ensemble auto-correlation ρN ,
see [16]. In particular, we have:

lim
d→∞

rn[l,m] = ρN [l,m] =

{
σ2
n for [l,m] = [0, 0]

0 for [l,m] ∈ Θ0 := Θ \ {0, 0} ,
(8)
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A set of white noise realizations can thus be defined in the spatial domain
by constraining the values of the sample auto-correlation function rn in (6) to
lie within a band around the theoretical limit which, in accordance with (8),
is given by the ensemble auto-correlation ρN in (4).

3 Variational models for popular additive white noises

In this section, we characterize the distributions of the popular additive white
noises considered in this paper and discuss how these distributions lead to
variational models containing different data fidelity terms.

A commonly used paradigm for image restoration is the probabilistic Max-
imum A Posteriori (MAP) approach [9]: the restored image is obtained as the
maximizer of the posterior probability of the unknown clean image u given the
observed image g and the blurring operator K, considered as a deterministic
parameter. In formulas:

u∗ ← arg max
u∈Rd2

Pr(u|g;K) = arg min
u∈Rd2

{− log Pr(u)− log Pr(g|u;K)} , (9)

where (9) follows by applying the Bayes’ rule, by dropping the evidence term
Pr(g) since it does not depend on u, and by reformulating maximization as a
minimization of the negative logarithm. The two terms Pr(u) and Pr(g|u;K)
represent the prior and the likelihood, respectively [22]. The prior term em-
bodies prior knowledge on the unknown clean image u, typically in the form
of smoothness constraints. The likelihood term encodes information on the
observation model and forces closeness of the estimate u∗ to the observed data
g according to such model. For what concerns the prior, a common choice is
to model the unknown image u as a Markov Random Field (MRF) [50], such
that the image can be characterized by its Gibbs prior distribution, whose
general form is:

Pr(u) =
1

Z

d2∏
i=1

exp
(
− αVci(u)

)
=

1

Z
exp

(
− α

d2∑
i=1

Vci(u)

)
, (10)

where α > 0 is the MRF parameter, {ci}d
2

i=1 is the set of all cliques (a clique is a
set of neighboring pixels) for the MRF, Vci is the potential function defined on
the clique ci and Z is the partition function, that is a function not depending
on u which allows for the normalization of the prior. Choosing as potential
function at the generic i-th pixel the magnitude of the discrete gradient at
the same pixel, i.e. Vci(u) := ‖(∇u)i‖2, the Gibbs prior in (10) reduces to the
popular TV prior:

Pr(u) =
1

Z
exp

−α d2∑
i=1

‖(∇u)i‖2

 =
1

Z
exp(−αTV(u)) . (11)
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Using the TV prior in (11) can be regarded as implicitly assuming that the
gradient magnitude at each pixel of the unknown clean image, ‖(∇u)i‖2, fol-
lows a half-Laplacian (or exponential) distribution, whose probability density
function (pdf) is given by:

Pr(x;α) =

{
α exp (−αx ) for x ≥ 0

0 for x < 0
, (12)

where α > 0 is called the scale parameter of the distribution.
For what regards the likelihood term in (9), by assuming that noise is

additive independent identically distributed - which is a common choice and,
as previously highlighted, is a stronger assumption than that of noise being
white - then we have:

Pr(g|u;K) =

d2∏
i=1

Pr(gi|u;K) . (13)

Replacing the the TV prior (11) and the likelihood (13) into the MAP
inference formula (9), one gets:

u∗ ← arg min
u∈Rd2

 ln (Z) + αTV(u) −
d2∑
i=1

ln [Pr(gi|u;K)]


← arg min

u∈Rd2

TV(u) +
1

α

d2∑
i=1

ln

[
1

Pr(gi|u;K)

] . (14)

where in (14) we dropped the constant term ln(Z) and divided the objective
function by the positive constant α. Substituting any specific noise distribu-
tion, the MAP inference formula in (14) turns into an unconstrained variational
model of the form

u∗ ← arg min
u∈Rd2

{TV(u) + µF(u;K, g)} , (15)

where the functional F(u;K, g) and the positive constant µ are commonly
referred to as the data fidelity term and the regularization parameter.

The choice of the regularization parameter µ is crucial for obtaining a good
reconstruction of the image; in fact, a too small value of µ would lead to an
over-regularized (over-smoothed) image while if the value is too large, a poor
reduction of noise would be observed. As we will see later, the proposed vari-
ational model somehow circumvents the use of this regularization parameter
by introducing a feasible set which depends only on the whiteness bounds.

Some important examples of distributions of additive white noises are the
uniform, the Gaussian, the Laplacian and the Cauchy. In Table 1 we report, for
any of these distributions, the expressions of the probability density function
(pdf), of the variance and of the associated fidelity term F(u;K, g) and reg-
ularization parameter µ one obtains by applying the MAP derivation above.
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Here, we can see that each noise model has its own MAP-based fidelity term,
therefore the a-priori knowledge of the noise distribution is required in order
to apply one of the classical variational models. The Gaussian noise has been
extensively studied partially since it produces simple and very tractable noise
models and partially due to the celebrated central limit theorem in proba-
bility theory. The uniform noise [17] mainly appears as a statistical model of
quantization errors, thus it is common during the digital acquisition [44]. The
Laplacian and Cauchy noises model impulsive corruptions. Laplacian noise is
somehow related with the impulse noise [35], where the main difference be-
tween these two noise models is that in the Laplacian case all the pixels are
corrupted while in the impulse noise some pixels are noisy free. Cauchy noise
is a degradation more impulsive than the Laplacian noise, which appears in
atmospheric and underwater acoustic noises, radar and sonar applications,
air turbulence, wireless communication system, biomedical images, synthetic
aperture radar (SAR) images, see [42] and references therein. Cauchy and
Gaussian noises belong to the class of alpha-stable distributions, character-
ized by a bell-shaped pdf.

Table 1 Popular additive (zero-mean) white noise distributions and some properties.

Distribution pdf p(x) Variance Fidelity F(u;K, g) µ

Uniform
1

2a
χ

[−a,a] (x) a2/3 ı[0,a] (‖Ku− g‖∞)
1

α

Gaussian
1

√
2πσ2

exp

(
−
x2

2σ2

)
σ2 1

2
‖Ku− g‖22

1

ασ2

Laplace
1

2b
exp

(
−
|x|
b

)
2b2 ‖Ku− g‖1

1

α b

Cauchy
1

π

γ

γ2 + x2
not finite

∑
i

log
(
γ2 + (Ku− g)2i

) 1

α

For an accurate description of these noise models we refer the reader to [8,
9,17,35,39,42,44] and the references therein.

To highlight the differences between the considered distributions, in Figure
2 we show the pdfs of the Uniform, Gaussian, Laplace and Cauchy distribu-
tions with zero-mean and unit-variance. Comparing the pdfs, we can see that
Cauchy pdf has the highest tails, which means that for large values the den-
sity approaches zero slower than the other distributions, i.e. rare events have
the probability to occur more often. Therefore, Cauchy is the most impulsive
among the considered noises, Laplace is more impulsive than Gaussian and
the uniform pdf has no tails.

It is worth highlighting that Cauchy distribution does not have finite vari-
ance. Since in our assumptions (see Section 4) the variance has to be finite,
from now on we consider a modified version of the Cauchy distribution: the
truncated Cauchy distribution with scale parameter γ > 0, [7], whose pdf
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Fig. 2 Plots of zero-mean, unit-variance pdfs for the distributions in Table 1.

reads as

p(x) =
(
2γ arctan(L/γ)

(
1 + (x/γ)2

))−1
if |x| ≤ L, p(x) = 0 if |x| > L ,

where L > 0 defines the finite support [−L,L] of the pdf. Note that it is
reasonable to consider the truncated version of the Cauchy pdf since in practice
the range of images is always a finite interval, in our case [0, 1]. However, for
this distribution the fidelity term is unknown and it will be matter of future
studies.

In Figure 3 we show some examples of noisy images corrupted by additive
white uniform, Gaussian, Laplacian, and truncated Cauchy noise with the
same standard deviation. The noisy images are computed by using the equation
(1) with K the identity, i.e. they are given by a sum of the original image and
a realization of a random variable which is Gaussian, Laplacian, uniform and
Cauchy distributed, respectively. We can observe that Cauchy noise is the most
impulsive one, where some pixels are totally corrupted, while some others are
not so corrupted, Laplace is less impulsive than the Cauchy one, but it still
has some peaks which are bigger than the Gaussian distribution.

Furthermore, one could also consider the Poisson and the multiplicative
noises. Poisson noise is a signal dependent noise, which can be found in many
applications, in particular astronomic and medical imaging. As pointed out
in [32], the noisy image obtained by applying the Anscombe root transforma-
tion to an image corrupted by Poisson noise, can be treated as additive white
Gaussian noise. The multiplicative noise generally appears in synthetic aper-
ture radar (SAR), ultrasound imaging, laser images, and so on. As suggested
in [3], and the references therein, one can apply the log-transformation in order
to obtain a noise model that corresponds to the white additive noise. In this
paper, we do not focus on the Poisson and multiplicative noises, but we point
out that by using the above preliminary transformations, the proposed model
works also for these two noise models.
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Fig. 3 Noisy images corrupted by additive white noise: Uniform, Gaussian, Laplacian and
truncated Cauchy, with the same variance.

4 Whiteness constraints

In this section, we formally define the residual whiteness setWα, which repre-
sents the key novelty behind our proposed variational model (2). First, based
on the asymptotic property (8) of the sample auto-correlation of a white noise
realization, we define Wα. Then, in order to provide well-grounded basis to
this definition and to the choice of the whiteness bounds - i.e., the limits
of the whiteness set - in subsections 4.1-4.2 we statistically characterize the
sample auto-correlation values of a white noise realization and then validate
empirically the given theoretical results by means of some Monte Carlo simula-
tions. Finally, in subsection 4.3 we give an explicit expression for the whiteness
bounds.

First, based on (2), we define the noise whiteness set as follows:

Wα :=
{
n ∈ Rd×d : −wα ≤ rn[l,m] ≤ wα ∀ [l,m] ∈ Θ0

}
. (16)

We notice that only the auto-correlation values at non-zero lags are con-
strained. In fact, the auto-correlation at lag [0, 0] represents the variance of
the noise realization, which is not related to the whiteness of the process.
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In our restoration model, we impose that the residue image of the restora-
tion Ku − g ∈ Rd2 resembles the realization of a white noise process, that
is the residual belongs to the whiteness set Wα defined in (16). Hence, the
whiteness set in our model (2) takes the form

Wα :=
{
u ∈ Rd

2

: −wα≤ rmat(Ku−g)[l,m] ≤ wα ∀ [l,m]∈Θ0

}
, (17)

with

rmat(Ku−g)[l,m] =
1

d2

(
mat(Ku− g) ? mat(Ku− g)

)
[l,m] (18)

denoting the auto-correlation of the residue image and mat(v) ∈ Rd×d indi-
cating the matrix formed column-wise by taking the elements of the vector
v ∈ Rd2 . To simplify notations, in the rest of the paper we drop the mat(·)
symbol when applied to the operands of the 2D correlation binary operator ?
or to the subscript of the sample auto-correlation, such that v ? w stands for
mat(v) ?mat(w) and rv stands for rmat(v) when v, w ∈ Rd2 .

The non-negative scalar wα in (17), referred to as the whiteness bound,
represents a degree of freedom which allows to set the actual size of the white-
ness set or, equivalently, the probability that the sample auto-correlation of
a white noise realization belongs to the whiteness set. In order to justify the
fact that a unique symmetric bound is used in (17) for any lag pair [l,m] and
to provide a founded insight on how such bound must be set, in the next two
subsections we characterize the sample auto-correlation of a white noise real-
ization from a statistical point of view. In particular, in Subsection 4.1 we give
theoretical results concerning the distribution of the sample auto-correlation
values, whereas in Subsection 4.2 we provide empirical evidence of such re-
sults by means of suitable Monte Carlo simulations. Based on these results, in
Subsection 4.3 we finally suggest a simple yet sound strategy for choosing the
value of the whiteness bound wα in (17).

4.1 Statistical characterization of the sample-autocorrelation

The sample auto-correlation defined in (6) is related to a given realization n of
the random process N , hence it is clearly a deterministic quantity. However,
since here we want to analyze the statistics of the sample auto-correlation,
we need to consider it as a random quantity depending on the random pro-
cess N instead of on the deterministic realization n. We thus introduce the
random variables RN [l,m] which, according to definition (6) of the sample
auto-correlation, are defined as

RN [l,m] =
1

d 2

d∑
i,j=1

N [i, j]N [i+ l, j +m] , [l,m] ∈ Θ0 , (19)

where, with respect to (6), we clearly replaced the realized, deterministic values
n[·, ·] with the associated random variables N [·, ·].
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In Proposition 1 below we give results on the distribution of the sample
auto-correlation values of a white noise process.

Proposition 1 Let N be a d × d white random process with distribution
having (finite) variance σ2

n and let N be stationary to the fourth order and
with finite fourth order moments. Then, as the dimension d tends to +∞,
the random variables RN [l,m] representing the sample auto-correlation at any
non-zero lag [l,m] are asymptotically uncorrelated and their limiting distribu-
tion is a Gaussian distribution defined as follows:

RN [l,m] ∼ G(0, σ2
r), σr =

σ2
n

d
, [l,m] ∈ Θ0 . (20)

Proof First, by using the central limit theorem for dependent stationary pro-
cesses, see [15, Thm 2A], we have that, as the dimension d tends to +∞,
the distribution of any random variable RN [l,m] defined in (19) approaches a
Gaussian distribution.

As far as the expected value of the random variables RN [l,m] is concerned,
based on definition (19) and on linearity of the expectation operator, we have

E (RN [l,m]) = E

 1

d 2

d∑
i,j=1

N [i, j]N [i+ l, j +m]


=

1

d 2

d∑
i,j=1

E (N [i, j]N [i+ l, j +m]) = 0 ∀[l,m] ∈ Θ0 , (21)

where the last equality in (21) comes from whiteness of the random process
N - see previous Definitions 2 and 3.

For what finally concerns the variances and covariances of the random
variables RN [l,m], the asymptotic results given in the proposition statement
can be obtained based on the well known Bartlett’s formula - see [10, Chapters
2 and 7].

4.2 Monte Carlo simulations

In this section we provide empirical evidence of the theoretical asymptotic
results stated in Proposition 1 by means of suitable Monte Carlo simulations.
The simulations have been carried out in Matlab, and the experimental setting
is as follows. For a given dimension d, a given distribution among the zero-
mean Uniform, Gaussian, Laplace, (truncated) Cauchy and balanced mixed
Uniform-Gaussian distributions, and a given standard deviation σn of the dis-
tribution, we generated pseudo-randomly a large number – namely, 20000 – of
realizations n ∈ Rd×d from the d × d white noise random process having the
selected distribution with variance σ2

n. Then, for each realization n we com-
puted the sample auto-correlation rn according to definition (6) and, finally,
we constructed, for each lag [l,m], the normalized histogram of the obtained
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20000 sample auto-correlation values. We remark that, as the number of gener-
ated samples/realizations tends to +∞, the constructed histograms approach
the theoretical distributions of the sample auto-correlation values, that is the
distributions of the random variables RN [l,m] defined in (19). Hence, if the
number of considered realizations is sufficiently large (we noticed that increas-
ing the number of realizations beyond 20000 does not change significantly the
histograms), the obtained histograms can be utilized to check the validity of
theoretical results given in Proposition 1.

Fig. 4 First column: plots of the theoretical pdfs (solid red lines) and of the measured
normalized histograms for the five considered white noise distributions, namely Uniform,
Gaussian, Laplacian, Cauchy and mixed Uniform-Gaussian, from top to bottom. Columns 2-
4: theoretical asymptotic pdfs (solid red lines) - see Proposition 1 - and measured normalized
histograms of the autocorrelation values for lag [l,m] = [3, 4] and image dimensions d = 32,
d = 512 and d = 1024, respectively.

In Figure 4 we show the results of the Monte Carlo simulations for one
auto-correlation lag, namely [l,m] = [3, 4] (for other lags, results are similar),
and for a noise standard deviation σn = 5. In particular, in the first column
we show the five theoretical pdfs (solid red lines) from which we extracted the
white noise samples and also the normalized histograms (in blue) of the noise
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samples we actually generated. The good accordance between the pdfs and
the histograms allows to validate the procedures used to extract the samples.
In columns 2-4 we report the normalized histograms (in green) of the gen-
erated sample auto-correlation values rn[3, 4] together with the theoretical,
asymptotic pdfs (solid red lines) - see results in Proposition 1 - for increasing
dimension d ∈ {32, 512, 1024} of the generated d×d noise realizations. One can
observe how, as the dimension d increases, the empirical histograms approach
(more or less quickly, depending on the noise distribution) the asymptotic
theoretical zero-mean Gaussian pdf with standard deviation σr, as stated in
Proposition 1. In case of Cauchy noise, the empirical validation of this impor-
tant theoretical result requires that the dimension of the sample realizations is
increased to d = 1024 to better appreciate the Gaussian-shaped distribution,
as illustrated in Figure 4 (fourth row).

We remark that the more impulsive is the white noise process - that is, the
highest are the tails of the noise distribution - the slower is the convergence of
the empirical pdf to the theoretical, asymptotic one.

4.3 Setting the whiteness bound wα

Since according to Proposition 1 and to Monte Carlo simulations the distribu-
tion of the sample auto-correlation of a white noise realization at any non-zero
lag can be well approximated - for sufficiently and reasonably large images -
by a zero-mean Gaussian with standard deviation σr given in (20), it results
natural the choice of using a unique symmetric bound for any lag in the def-
inition (17) of our whiteness set. Moreover, the whiteness bound wα in (17)
can be simply set according to the formula

wα = ασr, (22)

such that the whiteness coefficient α ≥ 0 allows to directly set the probability
that the sample auto-correlation of a white noise realization at any given non-
zero lag falls inside the whiteness set. In fact, due to the fact that the limiting
distribution is Gaussian, there is a well known one-to-one relationship between
α and the probability that the sample auto-correlation values belong to the
interval [−wα,+wα], we refer the reader to [34] for more details. For instance,
setting α = 2 yields a whiteness set W2 which represents the smallest size set
containing, for any lag, about 95% of all the possible realizations of white noise
processes. It is worth remarking that the choice of the whiteness coefficient α
should not depend on the value of σr and, hence, on the dimension d of the
considered images or on the value σn of the noise standard deviation.

5 Existence of solutions

In this section we investigate the existence of solutions to the proposed varia-
tional model (2), which is not straightforwardly derivable due to properties of
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the feasible whiteness set Wα defined in (17)–(18). In the following, 1 denotes

the (column) vector of all ones in Rd2 , em the m-th element of the canonical

basis of Rd2 ,
{
x(k)

}
the one-sided infinite sequence

{
x(k)

}
k∈N with N the set

of natural numbers.

First, we give some useful definitions.

Definition 4 (unbounded sequence) A sequence
{
x(k)

}
⊂ Rn is unbounded

if and only if lim
k→∞

∥∥x(k)
∥∥

2
= +∞.

Definition 5 (unbounded set) A set S ⊆ Rn is unbounded if and only if
it contains (at least) one unbounded sequence.

Definition 6 (coercive function) A function f : Rn → R is coercive over
an unbounded set S ⊆ Rn if and only if lim

k→∞
f
(
x(k)

)
= +∞ for any unbounded

sequence
{
x(k)

}
⊂ S.

In Lemma 1 and Lemma 2 below, whose proofs are postponed to the ap-
pendix, we analyze the feasible set and the cost function of the constrained
minimization problem (2) associated to our proposal, respectively, then solu-
tion existence results for the problem are provided in Proposition 2.

Lemma 1 For any real α ≥ 0, the whiteness set Wα ⊂ Rd2 defined in (17)–
(18) is closed, unbounded and non-convex.

Lemma 2 The Total Variation objective function TV : Rd2 → R defined in
(2) is proper, continuous, convex, bounded from below by zero and coercive

over the (unbounded) whiteness set Wα ⊂ Rd2 defined in (17)–(18), for any
real α ≥ 0.

The result in the following final proposition, which is the one of our main
interest, follows directly from Lemma 1 and Lemma 2.

Proposition 2 The constrained minimization problem defined in (2) admits
at least one solution.

6 Applying ADMM to the proposed model

In this section, we illustrate the ADMM-based [46] iterative algorithm used
to numerically solve the proposed constrained minimization problem (2) with
the feasible set Wα defined in (17).

Towards this aim, first we resort to the variable splitting technique and
introduce three auxiliary variables r ∈ V , s ∈ V and t ∈ Q, with V := Rd2

and Q := R2d2 , such that model (2) is rewritten in the following equivalent
form:

{u∗, t∗, r∗, s∗} ← arg min
u,t,r,s


d2∑
i=1

‖ ti ‖2 + ıB(r, s)


s.t. : t = Du, r = Ku− g, s = Ku− g , (23)
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where D := (DT
h , D

T
v )T ∈ R2d2×d2 , ti :=

(
(Dhu)i , (Dvu)i

)T ∈ R2 represents
the discrete gradient of image u at pixel i, and ıB is the indicator function of
the feasible set B for the variables r and s defined by

B :=
{

(r, s) ∈ V × V : − wαd2 ≤ r ? s ≤ wαd2
}
, (24)

where ıB(r, s) takes the value 0 for (r, s) ∈ B and +∞ otherwise.
The auxiliary variable t is introduced to transfer the discrete gradient op-

erator (∇u)i out of the non-differentiable term ‖ · ‖2. The variables r and s
play the role of the restoration residue Ku−g within the whiteness constraint
(17) so that constraint (24) is now imposed on r and s. The rationale of
introducing these two auxiliary variables which are defined to be equal, is to
guarantee convexity of all the related subproblems.

To solve (23), we define the augmented Lagrangian functional

L(u, t, r, s;λt, λr, λs) =

d2∑
i=1

‖ ti ‖2 + ıB(r, s)

− 〈λt , t−Du 〉 +
βt
2
‖ t−Du ‖22

− 〈λr , r − (Ku− g) 〉 +
βrs
2
‖ r − (Ku− g) ‖22

− 〈λs , s− (Ku− g) 〉 +
βrs
2
‖ s− (Ku− g) ‖22 ,(25)

where βt, βrs > 0 are scalar penalty parameters and λt ∈ Q, λr, λs ∈ V are
the vectors of Lagrange multipliers associated with the linear constraints in
(23). We used a common penalty parameter βrs for the variables r and s since
they represent the same quantity, namely the restoration residue.

Given the previously computed (or initialized for k = 0) vectors uk, sk, λkt ,
λkr and λks , the k-th iteration of the proposed ADMM-based iterative scheme
[46] applied to the solution of the saddle-point problem related to the func-
tional (25) reads as follows:

tk+1 ← arg min
t∈Q

L(uk, t, rk, sk;λkt , λ
k
r , λ

k
s) (26)

rk+1 ← arg min
r∈V

L(uk, tk+1, r, sk;λkt , λ
k
r , λ

k
s) (27)

sk+1 ← arg min
s∈V

L(uk, tk+1, rk+1, s;λkt , λ
k
r , λ

k
s) (28)

uk+1 ← arg min
u∈V

L(u, tk+1, rk+1, sk+1;λkt , λ
k
r , λ

k
s) (29)λk+1

t

λk+1
r

λk+1
s

 ←

 λkt − βt
(
tk+1 − Duk+1

)
λkr − βrs

(
rk+1 − (Kuk+1 − g)

)
λks − βrs

(
sk+1 − (Kuk+1 − g)

)
 . (30)

In the following subsections we show how to solve the four minimization
sub-problems for the primal variables t, r, s and u, respectively. Although the
minimization sub-problems are all strictly convex and admit a unique solution,
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convergence of the overall ADMM algorithm is clearly not guaranteed. We
postpone the analysis of convergence of the proposed ADMM scheme to a
future extended version of this work.

6.1 Solving the sub-problem for t

The minimization sub-problem for t in (26) can be written as follows:

tk+1 ← arg min
t∈Q


d2∑
i=1

‖ti‖2 − 〈λ
k
t , t−Duk〉 +

βt
2

∥∥t−Duk∥∥2

2

 , (31)

and the solution is obtained by the following closed-form shrinkage operators:

tk+1
i = max

{
‖qki ‖2 −

1

βt
, 0

}
qki
‖qki ‖2

, i = 1, . . . , d2 , (32)

where 0 · (0/0) = 0 is assumed, and the constant vectors qki ∈ R2 are defined
as

qki :=
(
Duk

)
i
+

1

βt

(
λkt
)
i
, i = 1, . . . , d2 . (33)

The overall cost of this subproblem is linear in the number of pixels d2.

6.2 Solving the sub-problems for r

The minimization sub-problem for r in (27) is as follows:

rk+1 ← arg min
r∈V

{
ıB(r, sk)−

〈
λkr , r −

(
Kuk − g

)〉
+
βrs
2

∥∥r − (Kuk − g)∥∥2

2

}
← arg min

r∈Bkr

{
1

2

∥∥ r − vkr∥∥2

2

}
, (34)

that is, the solution rk+1 of (34) is given by the Euclidean projection of the
constant (with respect to the optimization variable r) vector

vkr := Kuk − g +
1

βrs
λkr (35)

onto the convex feasible set

Bkr :=
{
r ∈ V : − wαd2 ≤ r ? sk ≤ wαd2

}
. (36)

An efficient solver for the quadratic problem (34)–(36) is given in Section 6.5.
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6.3 Solving the sub-problems for s

The minimization sub-problem for s in (28) is as follows:

sk+1 ← arg min
s∈V

{
ıB(rk+1, s)−

〈
λks , s−

(
Kuk − g

)〉
+
βrs
2

∥∥s− (Kuk − g)∥∥2

2

}
← arg min

s∈Bks

{
1

2

∥∥ s− vks∥∥2

2

}
, (37)

that is, the solution sk+1 of (37) is given by the Euclidean projection of the
constant (with respect to the optimization variable s) vector

vks := Kuk − g +
1

βrs
λks (38)

onto the convex feasible set

Bks :=
{
s ∈ V : − wαd2 ≤ rk+1 ? s ≤ wαd2

}
. (39)

An efficient solver for the quadratic problem (37)–(39) is given in Section 6.5.

6.4 Solving the sub-problem for u

The minimization sub-problem for u in (29) can be re-written as follows:

uk+1 ← arg min
u∈V

{
−
〈
λkt , t

k+1 −Du
〉

+
βt
2

∥∥tk+1 −Du
∥∥2

2

−
〈
λkr , r

k+1 − (Ku− g)
〉

+
βrs
2

∥∥rk+1 − (Ku− g)
∥∥2

2

−
〈
λks , s

k+1 − (Ku− g)
〉

+
βrs
2

∥∥sk+1 − (Ku− g)
∥∥2

2

}
.

The above quadratic minimization problem can be solved for uk+1 by com-
puting the solution of the following d2 × d2 linear system:(

DTD + 2
βrs
βt
KTK

)
u = DT

(
tk+1 − 1

βt
λkt

)
+

βrs
βt
KT

(
rk+1+ sk+1− 1

βrs
λkr −

1

βrs
λks + 2g

)
.(40)

The coefficient matrix of the linear system in (40) is symmetric positive defi-
nite, highly sparse and, under the assumption of periodic boundary conditions
for u, block-circulant with circulant blocks. Hence, at each ADMM iteration
the linear system in (40) can be solved by one forward and one inverse FFT,
each at a cost of O(d2 log d2). We remark that symmetric or anti-symmetric
boundary conditions could be assumed as well, thus simply replacing FFT with
fast cosine or sine transforms and retaining the same computational complex-
ity.
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6.5 Computing projection

In this subsection, we are interested in solving efficiently quadratic programs
of the form of the sub-problems for r and s , see equations (34) and (37). Let
v ∈ V and m ∈ V be given (vectorized) images and b ∈ R+ a given scalar
positive bound. We want to solve:

x∗ = arg min
x∈Sx

{
1

2
‖x− v‖22

}
, (41)

where Sx ⊆ V is the convex feasible set

Sx = {x ∈ V : − b ≤ m ? x ≤ b } , (42)

with ? denoting the 2-D circular correlation operator.

In order to solve (41), we use the ADMM procedure. By introducing the
auxiliary variable y ∈ V , (41) can be rewritten in the following equivalent
form:

{x∗, y∗} = arg min
x,y∈V

{
ıSy (y) +

1

2
‖x− v‖22

}
s.t. : y = Mx , (43)

where Sy ⊆ V is the convex feasible set

Sy = { y ∈ V : − b ≤ y ≤ b } , (44)

and M ∈ Rd2×d2 is the matrix associated with the linear operator correspond-
ing to the circular correlation with the image m. To solve (43)–(44), we define
the augmented Lagrangian functional

Lp(x, y;λp) = ıSy (y) +
1

2
‖x− v‖22 − 〈λp , y−Mx 〉 +

βp
2
‖ y−Mx ‖22 , (45)

where βp > 0 is a scalar penalty parameter and λp ∈ V is the vector of
Lagrange multipliers associated with the system of linear constraints in (43).

In the following we outline a standard ADMM iterative procedure applied
to solve (45).

Given the previously computed (or initialized for j = 0) vectors xj , and λjp,
the j-th iteration of the proposed ADMM-based iterative scheme [46] applied
to the solution of problem (43)–(44) reads as follows:

yj+1 = arg min
y∈V

Lp(xj , y;λjp) (46)

xj+1 = arg min
x∈V

Lp(x, yj+1;λjp) (47)

λj+1
p = λjp − βp

(
yj+1 − Mxj+1

)
(48)
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In particular, the minimization sub-problem for y in (46) is as follows:

yj+1 = arg min
y∈V

{
ıSy (y)−

〈
λjp, y −Mxj

〉
+
βp
2

∥∥y −Mxj
∥∥2

2

}
= arg min

y∈V

{
ıSy (y) +

βp
2

∥∥∥∥ y − (Mxj +
1

βp
λjp

)∥∥∥∥2

2

}

= arg min
y∈Sy

{
1

2

∥∥ y − zj∥∥2

2

}
, (49)

that is, the solution yj+1 of (49) is given by the Euclidean projection of the
constant (with respect to the optimization variable y) vector

zj := Mxj +
1

βp
λjp (50)

onto the convex set Sy defined in (44), which represents a box-constraint for
y, such that the projection admits the closed-form solution

yj+1 = min
{

max
{
zj , −b

}
, b
}
. (51)

Given the augmented Lagrangian functional in (45), the minimization sub-
problem for x in (47) is as follows:

xj+1 = arg min
x∈V

{
1

2
‖x− v‖22 +

〈
λjp,Mx

〉
+
βp
2

∥∥yj+1 −Mx
∥∥2

2

}
, (52)

where constant terms have been omitted. We notice that (52) is a quadratic
minimization problem whose first-order optimality conditions lead to the fol-
lowing linear system:(

1

βp
I +MTM

)
x =

1

βp
v +MT

(
yj+1 − 1

βp
λjp

)
, (53)

such that the new iterate is obtained as follows:

xj+1 =

(
1

βp
I +MTM

)−1
1

βp
v︸ ︷︷ ︸

ṽ

+

(
1

βp
I +MTM

)−1

MT︸ ︷︷ ︸
C̃

(
yj+1 − 1

βp
λjp

)
.

(54)

The vector ṽ and the matrix C̃ in (54) are constant during iterations, hence
they are computed once and for all at the beginning. In particular, (54) is
solved by FFT.



Whiteness constraints in a unified variational framework for image restoration 23

6.6 ADMM-based minimization algorithm

To summarize previous results, in Algorithm 1 we report the main steps of
the proposed ADMM-based iterative scheme used to solve the minimization
problem (23)–(24) associated to our restoration model (2) with the whiteness
set defined in (17)–(18).

Recently, many works have been proposed to study the convergence prop-
erties for the ADMM-based algorithms for non-convex optimization prob-
lems, see [21,30,43,47]. Nevertheless the convergence of our proposed ADMM
scheme, which presents a non-convex non-smooth objective with multiple vari-
able splitting and multiple penalty parameters, is not easy to derive relying
on the results presented so far. We thus postpone the investigation on the
theoretical convergence of our ADMM scheme to a future dedicated work.
However, we will provide some evidence of the numerical convergence in the
experimental section.

Algorithm 1 ADMM-based iterative scheme for the solution of problem (23)–
(24)

inputs: observed corrupted image g ∈ Rd2 , noise standard deviation σn

output: approximate solution u∗ ∈ Rd2 of (2)–(17)

parameters: MODEL: whiteness coefficient α ≥ 0→ whiteness bound wα by (22)

ADMM: penalty parameters βt, βrs, βp > 0

1. initialization: u(0) = b, ρ(0) = 0

2. for k = 0, 1, 2, . . . until convergence do:

3. · update primal variables:

4. · compute tk+1 by (33)–(32)

5. · compute rk+1 by computing the projection (34)–(36)

6. · compute sk+1 by computing the projection (37)–(39)

7. · compute uk+1 by solving the linear system (40)

8. · update dual variables:

9. · compute

λk+1
t = λkt − βt

(
tk+1 − Duk+1

)
λk+1
r = λkr − βrs

(
rk+1 − (Kuk+1 − g)

)
λk+1
s = λks − βrs

(
sk+1 − (Kuk+1 − g)

)
10. end for

11. u∗ = uk+1
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7 Numerical Experiments

This section is devoted to evaluate the effectiveness of the proposed TV-
W restoration model (2) when applied to images synthetically corrupted by
space-invariant Gaussian blur and additive white noises of different types
among uniform (AWUN), Gaussian (AWGN), Laplacian (AWLN) and trun-
cated Cauchy (AWCN). We consider three test images - geometry (256× 256
pixels), skyscrapers (256 × 256 pixels) and checkboard (200 × 200 pixels)
- which contain flat regions, neat edges and textures. The experiments have
been carried out on test problems where, in accordance with the considered
degradation model (1), the synthetically corrupted images were obtained by
blurring the original image (the blur kernel is created through the MATLAB
command fspecial(’Gaussian’,band,sigma)) and then adding a realiza-
tion of white noise with standard deviation σn. In particular, we compare the
performance of our TV-W model with that of the unconstrained variational
model

u∗ ← arg min
u∈Rd2

{TV(u) + λF(u;K, g)} , (55)

that is the model having the same TV regularizer and a suitable fidelity term
according to the noise type - see Table 1 - referred to as TV-F model. More pre-
cisely, for AWGN-corrupted images we used the TV-`2 model implemented by
the ADMM-based algorithm contained in the software package freely available
at [49]. For AWLN-corrupted images, we solved the TV-`1 model by imple-
menting the ADMM-based algorithm presented in [48], for AWCN-corrupted
images we used the code provided by the authors of [42], while for AWUN-
corrupted images we implemented an ad hoc ADMM-based algorithm for solv-
ing the TV-`∞ model. For all the examples, the regularization parameter λ of
the TV-F model (55) has been hand-tuned so that the solution satisfies the
discrepancy principle, that is the variance of the residue image g −Ku∗ must
be (approximately) equal to the variance σ2

n of the synthetically added noise.
In the interest of a fair comparison, for all the examples in our TV-W model
we set the standard deviation σr of the residue image auto-correlation - see
the definition of σr in Section 4.1 - by taking the true value σ2

n of the noise
variance.

For what concerns the computation of the whiteness bound by (22), numer-
ical tests indicated that the performance of TV-W are quite robust to choices
of the whiteness coefficient α. Hence, we fixed α = 2.5 for all the experi-
ments. We used the following parameters for the ADMM algorithm: βt = 200,
βrs = 150, βp = 1. As approximate solution u∗ of all the image restoration
problems we consider uk obtained as soon as two successive iterates satisfy the
condition

δk :=
‖uk − uk−1‖2
‖uk−1‖2

< 10−4, (56)

or after a maximum number of 500 iterations.
Finally, since the TV-W model is non-convex, it is also worth mentioning

the initial iterate of the ADMM algorithm which can affect the final results. In
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general, good performance has been obtained using the constant image with
gray level equal to the average of the observed corrupted image g as the initial
iterate. For what concerns the tests on images corrupted by Cauchy noise, a
detailed discussion can be found in [33]. In this case, we set as initial iterate
of the ADMM algorithm the result of a simple median filter applied to the
observed corrupted image.

The quality of the corrupted and restored images is measured by the
Blurred Signal-to-Noise Ratio (BSNR) and the Improved Signal-to-Noise Ratio
(ISNR):

BSNR(u, g) = 10 log10

‖Ku− E[Ku]‖22
‖Ku− g‖22

, ISNR(u, g, u∗) = 10 log10

‖g − u‖22
‖u∗ − u‖22

,

where u, g, u∗ ∈Rd2 are the uncorrupted, corrupted and restored images, re-
spectively, and where E[Ku] represents the mean gray level of image Ku. The
ISNR provides a measure of the quality of the restored image: a high ISNR
value indicates that u∗ is an accurate approximation of u.

For a quantitative assessment, in Table 2 we report the results obtained
with one noise realization for each of the discussed white noise distributions. In
particular, we report in Table 2 the restoration results obtained for the test im-
ages geometry, skyscrapers and checkboard corrupted by different Gaussian
blurs, namely with kernels defined by parameters band = 7, sigma = 1.5 for
geometry and checkboard and band = 5, sigma = 1.5 for skyscrapers, and
by AWUN, AWGN, AWLN, AWCN with standard deviations σn ∈ {5, 10}. In
the columns labeled TV-F and TV-W we report the ISNR values achieved by
the compared models. For TV-W we also display, in parenthesis, the standard
deviation (or, better, the l2-norm) of the residue image, in formulas ‖g−Ku∗‖2.
From the results in Table 2, we can state that the proposed general-purpose
TV-W model significantly outperforms the specific TV-F models for all the
considered examples. It is worth noting that the standard deviations of the
residue images of the TV-W model are always approximately equal to the
standard deviation of the noise corruption, even if no explicit constraint on
this quantity is contained in the whiteness set Wα in (17).

The numerical experiments carried out clearly indicate that the proposed
TV-W model holds the potential not only for dealing effectively with additive
white noises of unknown distribution but also for yielding restorations of higher
quality than those obtainable by noise-specific models, especially for images
containing textures.

To provide further evidence of that, in Figures 5-8 we show qualitative,
visual restoration results obtained on the geometry test image corrupted by
AWUN, AWGN, AWLN and AWCN of standard deviation σn = 10, respec-
tively. Together with the original and the corrupted images (first column), we
report in the second column of Figures 5-8 the restored images obtained by
the TV-F (top) and TV-W (bottom) models, and in the third column the as-
sociated residue images. From a visual inspection of the restored and residue
images, one can notice how the TV-W model well recovers the textured re-
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σn = 5 σn = 10

IMAGE NOISE BSNR TV-F TV-W BSNR TV-F TV-W

geometry

AWUN 19.55 3.10 4.98 (5.04) 13.54 2.26 4.95 (10.03)

AWGN 19.54 2.42 5.02 (5.04) 13.54 1.08 5.04 (10.03)

AWLN 19.57 3.14 5.01 (5.03) 13.55 1.44 4.96 (10.00)

AWCN 19.60 4.26 6.09 (5.01) 13.57 3.78 7.60 (9.99)

skyscrapers

AWUN 18.39 1.40 1.92 (5.06) 12.37 1.14 1.44 (10.09)

AWGN 18.37 1.14 1.88 (5.07) 12.35 0.63 1.47 (10.09)

AWLN 18.40 1.46 1.88 (5.07) 12.38 0.84 1.45 (10.09)

AWCN 18.26 2.04 2.48 (5.19) 12.26 1.54 2.36 (10.20)

checkboard

AWUN 23.48 8.52 10.28 (5.06) 17.46 6.43 8.78 (10.09)

AWGN 23.47 8.16 10.06 (5.07) 17.47 5.68 8.43 (10.09)

AWLN 23.46 8.23 10.05 (5.00) 17.44 6.34 8.29 (10.00)

AWCN 23.49 10.08 10.44 (5.00) 17.48 8.19 9.37 (10.00)

Table 2 ISNR values obtained by restoring the test images geometry, skyscrapers, and
checkboard.

gions while the residuals produced by the TV-F models contain parts of the
textures which, hence, are not present in the restored images.

Fig. 5 Visual restoration results for the geometry test image corrupted by blur and AWUN
of standard deviation σn = 10. First column: original image (top) and corrupted image
(bottom). Second and third column: restored and residue images with TV-F (top) and TV-
W (bottom) models, respectively.
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Fig. 6 Visual restoration results for the geometry test image corrupted by blur and AWGN
of standard deviation σn = 10. First column: original image (top) and corrupted image
(bottom). Second and third column: restored and residue images with TV-F (top) and TV-
W (bottom) models, respectively.

In order to highlight more clearly the ability of the proposed TV-W model
in dealing effectively with additive white noises characterized by unknown,
possibly complex distributions, we present a further example consisting in
the restoration of the checkboard test image corrupted by space-invariant
Gaussian blur of parameters band = 7, sigma = 1.5, and by a balanced mixture
of AWUN, AWGN and AWLN of total standard deviation σn = 20 - that is,
the additive mixed noise corruption is the sum of the realizations of AWUN,
AWGN and AWLN having the same standard deviation equal to 20

√
3/3. Since

the fidelity term associated - according to the MAP principle - with this kind of
mixed noise is potentially very complicated and, indeed, has not been derived
so far, we compare the performance of our TV-W model with those of the three
models TV-`∞, TV-`2 and TV-`1 which represent the best MAP-based choices
associated with the separate AWUN, AWGN and AWLN noise components,
respectively. In Figure 9 we show the original image, the corrupted image and
the restored images computed by the four compared models together with the
associated ISNR values. It appears evident also from these results how the
proposed TV-W model can potentially provide high quality restorations for
images corrupted by additive white noises characterized by a wide range of
distributions.

As previously stated, the key idea of our proposal consists of a new general-
purpose fidelity term (in the form of a residual whiteness constraint) that can
be coupled with whichever regularizer. In this paper we have considered the
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Fig. 7 Visual restoration results for the geometry test image corrupted by blur and AWLN
of standard deviation σn = 10. First column: original image (top) and corrupted image
(bottom). Second and third column: restored and residue images with TV-F (top) and TV-
W (bottom) models, respectively.

σn = 10

IMAGE BSNR TIK-F TIK-W TV-W

geometry 13.54 0.80 3.92 5.04

skyscrapers 12.35 0.53 1.21 1.47

checkboard 17.47 1.49 2.65 8.43

Table 3 ISNR values obtained by restoring the test images geometry, skyscrapers, and
checkboard using the Tikhonov instead of the TV regularizer.

popular TV regularizer, hence in the previous experiments we compared our
TV-W model with models containing the same TV regularizer and suitable
fidelity terms according to the specific noise corruption. We are confident that
by replacing the TV regularizer in TV-W with more powerful regularizers
such as, e.g., TVp [23], nonlocal TV [18], nonlocal means [6], IBM3D [29],
and RED [51], higher quality results can be achieved. However, in order to
emphasize the capabilities of the proposed fidelity term, it is clarifying to test
the performance of the variational model obtained by coupling it with a basic
well-known Tikhonov regularizer, that is

u∗ ← arg min
u∈Wα

‖Du‖22 , (57)

where D is the same first-order finite difference matrix as in (23). Table 3
reports the ISNR results obtained by model (57), referred to as TIK-W, the
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Fig. 8 Visual restoration results for the geometry test image corrupted by blur and AWCN
of standard deviation σn = 10. First column: original image (top) and corrupted image
(bottom). Second and third column: restored and residue images with TV-F (top) and TV-
W (bottom) models, respectively.

unconstrained model obtained by coupling the Tikhonov regularizer with the
`2 fidelity term (TIK-F), and the proposed TV-W model (reported also in Ta-
ble 2), when applied to the restoration of the three test images geometry,
skyscrapers and checkboard corrupted by space-invariant Gaussian blur
(same parameters band and sigma as in the previous examples) and by AWGN
of standard deviation σn = 10. The results confirm that replacing the ideal
MAP-based fidelity term with the proposed whiteness constraint yields to a
remarkable improvement of the restoration quality. In Figure 10 we show the
restored and residue images obtained by applying the TIK-F and TIK-W mod-
els to the geometry test image. By visual inspection we notice how in spite
of the very basic regularizer used our whiteness constraint allows to restore
effectively the textured regions such that the residue image resembles a white
noise image.

Finally, in order to assess the good performance of the proposed TV-W
model with respect to the state-of-the-art for image deblurring, we compared
it with the IBM3D method [29] on some of the previous examples. By the
way of illustration, in Figure 11 we show the restored images obtained by our
TV-W model (left) and by the IBM3D method (right). We notice that even if
the ISNR values are slightly worse, from a visual inspection we can appreciate
the better quality of our restored image.

We conclude this section by presenting an empirical investigation on the
numerical convergence of the proposed ADMM-based minimization scheme.
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(a) original (b) degraded (BSNR = 11.45) (c) TV-`∞ (ISNR = -8.65)

(d) TV-`1 (ISNR = 3.78) (e) TV-`2 (ISNR = 3.98) (f) TV-W (ISNR = 6.38)

Fig. 9 Restoration results for the checkboard test image corrupted by space-invariant Gaus-
sian blur of parameters band = 7, sigma = 1.5, and by a balanced mixture of AWUN, AWGN
and AWLN of total standard deviation σn = 20.

Towards this aim, in Figure 12 we report some convergence plots concerning
the test image geometry corrupted by space-invariant Gaussian blur of pa-
rameters band = 7, sigma = 1.5, and by AWGN of standard deviation σn = 5
(left column) and by AWLN of standard deviation σn = 5 (right column);
results associated to the second and third rows of Table 2. In particular, the
plots in the first and the second row of Figure 12 represent the logarithm of
the relative change δk of the iterates defined in (56), and the values of the
objective function defined in (2), versus the iteration index k for the first 2000
iterations of Algorithm 1. The plots in Figure 12 indicate the good conver-
gence behavior of the proposed ADMM-based Algorithm 1. In particular, it is
worth observing from the plots in the first row that less than 100 iterations
are required to drop below the stopping criterion threshold defined in (56). To
finally investigate the robustness of the ADMM-based Algorithm to the choice
of the initial guess - which is important due to non-convexity of the proposed
model - we run the algorithm on the same examples considered in Table 2
by using the observed image g instead of its average as the ADMM initial
guess. We observed that at numerical convergence (after 4000 iterations) the
achieved ISNR values associated to the restored images for the two different
initial guesses differ by less than 10−3. This could indicate that, at least in the
considered cases, the same local minimizer has been achieved.
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Fig. 10 Visual restoration results for the geometry test image corrupted by blur and AWGN
of standard deviation σn = 10. First column: original image (top) and corrupted image
(bottom). Second and third column: restored and residue images with TIK-F (top) and
TIK-W (bottom) models, respectively.

Fig. 11 Visual restoration results for the geometry test image corrupted by space-invariant
Gaussian blur of parameters band = 7, sigma = 1.5 and by AWGN of standard deviation
σn = 10. (left) restored image with TV-W, ISNR = 5.82, and (right) restored image with
IBM3D, ISNR =6.01.

8 Conclusions

We presented a new robust variational model for the restoration of gray level
images corrupted by blur and by the general class of additive white noises.
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Fig. 12 Empirical convergence related to the test image geometry corrupted by space-
invariant Gaussian blur of parameters band = 7, sigma = 1.5 and by AWGN of standard
deviation σn = 5 (left column) and by AWLN of standard deviation σn = 5 (right column).

This class includes important noises such as those characterized by Gaussian,
uniform, Laplacian and Cauchy distributions, which can be found in many
applications, such as e.g. medical and astronomic imaging.

The proposed constrained model is non-smooth and non-convex and the
feasible set - referred to as the whiteness set - contains restored images u such
that the associated residue images Ku− g resemble the realization of a white
noise process. We provided well-founded guidelines for setting the whiteness
constraint limits, in particular we derived theoretical and empirical results on
the distribution of the sample auto-correlation values. The variational model
is solved by an efficient ADMM-based algorithm which reduces the solution to
a sequence of convex optimization sub-problems. Experimental comparisons
with the variational models having suitable fidelity terms demonstrate the
effectiveness of the proposed model, especially for images with textured parts.

The main advantage of our proposal is that it provides a unified frame-
work for deblurring images corrupted by white noises characterized by any
finite-variance distribution. This is of particular importance since in most real
applications the physics of image acquisition yields noise distributions which
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are difficult to be known a priori and, in any case, can be very complex as
they are the outcome of several noise sources.

Future work will investigate theoretical convergence of the proposed ADMM
numerical scheme. Furthermore, the possibility to extend the model to deal
with Poisson and multiplicative noises and to color images will also be con-
sidered. The extension to Poisson and multiplicative noises should be quite
straightforward by using the Anscombe transformation and log-transformation,
respectively; while the generalization to color images is not obvious, mainly
due to the per-pixel inter-channel correlation.
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APPENDIX

Proof of Lemma 1.

Proof First, we notice that the whiteness set Wα ⊂ Rd2 defined in (17)–(18)
is given by the intersection of

(
d2 − 1

)
different sets, namely

Wα =
⋂

[l,m]∈Θ0

W(l,m)
α , (58)

where Θ0 ⊂ Z2 is defined in (8) and

W(l,m)
α =

{
u ∈ Rd

2

: −wαd2≤ (Ku− g)T S
(l,m)

(Ku− g) ≤ + wαd
2
}
.(59)
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Any matrix S
(l,m) ∈ Rd2×d2 in (59) is given by the symmetric part of the

matrix S(l,m) ∈ Rd2×d2 representing the 2D circular (l,m)-shift operator, that
is the operator which circularly shifts the elements of a d× d matrix of l rows

and m columns. It is easy to verify that matrices S
(l,m)

are all indefinite, hence

the associated sets W(l,m)
α in (59) are closed and can be non-convex. It clearly

follows that the whiteness setWα in (58) is closed (since intersection of closed
sets) and can be non-convex.

According to Definition 5, in order to prove that Wα is unbounded it is
sufficient to demonstrate that there exists an unbounded sequence

{
u(k)

}
⊂

Wα. After recalling that the blur matrix K can be strongly ill-conditioned or
even numerically singular but in purely mathematical sense it is invertible, we
consider the following sequences:{
u(k)

}
:=
{
K−1

(
g + s(k)

)}
,
{
s(k)

}
:=
{
ν(k)em

}
,
{
ν(k)

}
⊂ R unbounded.

(60)
Such sequences are unbounded, in fact

lim
k→+∞

∥∥u(k)
∥∥

2
= lim

k→+∞

∥∥K−1
(
g + s(k)

)∥∥
2

= lim
k→+∞

∥∥K−1g + ν(k)K−1em
}∥∥

2

= lim
k→+∞

∥∥∥∥ν(k)

(
1

ν(k)
K−1g + K−1em

)∥∥∥∥
2

= lim
k→+∞

(∣∣ν(k)
∣∣ ∥∥K−1em

∥∥
2

)
=
∥∥K−1em

∥∥
2

lim
k→+∞

∣∣ν(k)
∣∣ = +∞

. (61)

To prove that the unbounded sequences in (60) belong to the whiteness set
in (17)–(18), we derive the expression of rKu(k)−g, that is the sample auto-
correlation of the residue image associated to the generic term of the sequences:

rKu(k)−g =
1

d2

(
Ku(k) − g

)
?
(
Ku(k) − g

)
=

1

d2
s(k) ? s(k)

=
1

d2

(
ν(k)em

)
?
(
ν(k)em

)
=

(
ν(k)

)2
d2

em ? em

=

(
ν(k)

)2
d2

mat(e1) ,

that is

rKu(k)−g[l,m] =

{(
ν(k)

)2
/d2 for [l,m] = [0, 0]

0 for [l,m] ∈ Θ0

∀ k ∈ N . (62)

It follows from (61), (62) and (17)–(18) that any sequence
{
u(k)

}
defined as

in (60) is unbounded and belongs to the whiteness set Wα for any real α ≥ 0.
This implies that Wα is unbounded.

Finally, in order to demonstrate that Wα in (17)–(18) is non-convex, it is
sufficient to prove that, for any given real α≥ 0, there always exist two images
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uα, vα ∈ Rd2 belonging to Wα and a scalar γ ∈ (0, 1) such that the image
zα := γ uα + (1− γ) vα do not belong to Wα. By taking{
uα := K−1

(
g + 2 d

√
ρα ep

)
vα := K−1

(
g + 2 d

√
ρα eq

) with p, q ∈ {1, . . . , d2}, p 6= q, ρα > wα,

(63)
and, according to the choice γ = 1/2,

zα :=
1

2
uα +

1

2
vα = K−1 (g + d

√
ρα (ep + eq)) , (64)

we have

rKuα−g[l,m] = rKvα−g[l,m] = 0 ∀ (l,m) ∈ Θ0 (65)

and

rKzα−g[l,m] =
1

d2

((
Kzα − g

)
?
(
Kzα − g

))
[l,m]

=
1

d2
((d
√
ρα (ep + eq)) ? (d

√
ρα (ep + eq))) [l,m]

= ρα ((ep + eq) ? (ep + eq)) [l,m]

= ρα (ep ? ep + eq ? eq + ep ? eq + eq ? ep) [l,m]

= ρα
(
mat(e1) + mat(e1) + ep ? eq + eq ? ep

)
[l,m]

=


2 ρα for [l,m] = [0, 0]

ρα for [l,m] ∈
{

[l̄, m̄], [−l̄,−m̄]
}

for some [l̄, m̄] 6= [0, 0]

0 otherwise

.(66)

Since ρα > wα by assumption, then zα does not belong to Wα, and the proof
is completed.

Proof of Lemma 2.

Proof The fact that the discrete TV semi-norm function is proper, continuous,
convex and bounded from below by zero is well known and immediate to verify.
It is also well known that the TV function is not coercive over its entire domain
Rd2 . To prove that the TV function is coercive over the unbounded whiteness
setWα ⊂ Rd2 defined in (17)–(18), first we outline the set of all the unbounded

sequences
{
u(k)

}
⊂ Rd2 for which the TV function is not coercive, that is for

which lim
k→∞

TV
(
u(k)

)
< +∞, then we demonstrate that such sequences are not

contained into Wα.
Let us define the matrix D := (DT

h , D
T
v )T ∈ R2d2×d2 with Dh, Dv ∈ Rd2

the coefficient matrices of linear finite difference operators approximating the
horizontal and vertical partial derivatives of image u, respectively. Then, the
TV semi-norm of u defined in (2) can be regarded as the composition of a
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linear map D : Rd2 → R2d2 with coefficient matrix D and a suitable nonlinear
function G : R2d2 → R, that is

TV(u) = G(D(u)) , D(u) := Du, G(v) :=

d2∑
i=1

‖(vi, vi+d2)‖2 . (67)

We now study coerciveness of the function G above. As it is immediate to
verify that

G(v) =

d2∑
i=1

‖(vi, vi+d2)‖2 ≥
∥∥ (v1, v2, . . . , v2d2)

∥∥
2

= ‖v‖2 , (68)

for any unbounded sequence
{
v(k)

}
⊆ R2d2 - that is, according to Definition

4, any sequence satisfying
∥∥v(k)

∥∥
2

k→∞−−−−→ +∞ - we have that

lim
‖v(k)‖

2

k→∞−−−−→+∞
G
(
v(k)

)
≥ lim
‖v(k)‖

2

k→∞−−−−→+∞

∥∥v(k)
∥∥

2
= +∞ , (69)

that is the function G is coercive over its entire domain R2d2 .
For what concerns the linear operator D, clearly the kernel of the coefficient

matrix D has dimension 1 and is given by

ker(D) =
{
u ∈ Rd

2

: u = ν 1, ν ∈ R
}
. (70)

Since for any vector u ∈ Rd2 there always exists only one pair of vectors
u1 ∈ ker(D), u2 ∈ (ker(D))⊥ such that u = u1 + u2, then any unbounded

sequence
{
u(k)

}
⊆ Rd2 can be additively split as follows{

u(k)
}

=
{
u

(k)
1

}
+
{
u

(k)
2

}
,
{
u

(k)
1

}
⊆ ker(D),

{
u

(k)
2

}
⊆ (ker(D))

⊥
, (71)

where either
{
u

(k)
1

}
or
{
u

(k)
2

}
is unbounded. In case that

{
u

(k)
2

}
is unbounded,

then clearly
{
Du

(k)
2

}
is also unbounded and, due to coerciveness of the function G,

TV
(
u

(k)
2

)
= G

(
Du

(k)
2

)
tends to ∞. On the other hand, any unbounded

{
u

(k)
1

}
is mapped by D into a null (bounded) sequence. It follows that all the un-
bounded sequences for which the TV function is not coercive are of the form{

u(k)
}

=
{
u

(k)
2 + ν(k) 1

}
, (72)

with
{
u

(k)
2

}
⊂ Rd2 any bounded sequence and

{
ν(k)

}
⊂ R any (scalar) un-

bounded sequence.
We now prove that no unbounded sequence of the form (72) belongs to the

whiteness setWα in (17)–(18), for any real α ≥ 0. According to definition (18)
of the residual sample auto-correlation, we have:
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rKu(k)−g =
1

d2

(
Ku(k) − g

)
?
(
Ku(k) − g

)
=

1

d2

(
K
(
u

(k)
1 + ν(k) 1

)
− g
)
?
(
K
(
u

(k)
1 + ν(k) 1

)
− g
)

=
1

d2

(
ν(k)K1+Ku

(k)
1 − g

)
?
(
ν(k)K1 +Ku

(k)
1 − g

)
. (73)

Since the blur PSF is typically energy-preserving, which implies that the sum
of the elements of each row of the blur matrix K is equal to one, then K1 = 1.

Moreover, since K is bounded, the sequence c(k) := Ku
(k)
1 −g is bounded. From

(73) we have

rKu(k)−g[l,m] =
1

d2

((
ν(k)1+ c(k)

)
?
(
ν(k)1+ c(k)

))
[l,m]

=
1

d2

((
ν(k)

)2
1 ? 1 + ν(k) 1 ? c(k) + ν(k) c(k) ? 1+ c(k) ? c(k)

)
[l,m]

=
1

d2

(ν(k)
)2
d2 mat(1) + 2 ν(k)

 d2∑
i=1

c
(k)
i

mat(1) + c(k) ? c(k)

[l,m]

=
1

d2

(ν(k)
)2
d2 + 2 ν(k)

 d2∑
i=1

c
(k)
i

+
(
c(k) ? c(k)

)
[l,m]


=
(
ν(k)

)21 +
2

d2ν(k)

 d2∑
i=1

c
(k)
i

+

(
c(k) ? c(k)

)
[l,m]

d2
(
ν(k)

)2
 . (74)

As the sequence c(k) ⊂ Rd2 is bounded and the sequence ν(k) ⊂ R is un-
bounded, the second and third terms within parenthesis in (74) both repre-
sent bounded sequences in R (more precisely, they both tend to zero as k
approaches +∞). Hence, we have that

lim
k→+∞

rKu(k)−g[l,m] = lim
k→+∞

(
ν(k)

)2
= +∞ ∀ [l,m] ∈ Θ0. (75)

It thus follows from (75) that unbounded sequences of the form (72) do not
belong to the whiteness setWα in (17) for any real α ≥ 0, at least for k greater
than a certain value. This implies coercivity of the TV function over Wα and
concludes the proof.
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