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ABSTRACT. This paper introduces the unsupervised assignment flow that couples the assignment flow for su-
pervised image labeling [ÅPSS17] with Riemannian gradient flows for label evolution on feature manifolds. The
latter component of the approach encompasses extensions of state-of-the-art clustering approaches to manifold-
valued data. Coupling label evolution with the spatially regularized assignment flow induces a sparsifying effect
that enables to learn compact label dictionaries in an unsupervised manner. Our approach alleviates the require-
ment for supervised labeling to have proper labels at hand, because an initial set of labels can evolve and adapt
to better values while being assigned to given data. The separation between feature and assignment manifolds
enables the flexible application which is demonstrated for three scenarios with manifold-valued features. Ex-
periments demonstrate a beneficial effect in both directions: adaptivity of labels improves image labeling, and
steering label evolution by spatially regularized assignments leads to proper labels, because the assignment flow
for supervised labeling is exactly used without any approximation for label learning.
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1. INTRODUCTION

1.1. Motivation. Geometric methods based on manifold models of data and Riemannian geometry are
nowadays widely employed in image processing and computer vision [TS16]. For example, covariance de-
scriptors play a prominent role [TS16, CS16]. Covariance descriptors are typically applied to the detection
and classification of entire images (e.g. faces, texture) or videos (e.g. action recognition), or as descriptors
of local image structure. An important task in this context is to compute a codebook of covariance descrip-
tors that can be used for solving a task at hand like, e.g., image classification by nearest-neighbor search
[CSBP13], or image labeling [KAH+15] using the codebook descriptors as labels.

The recent work [HHLS16] introduced a state-of-the-art method for computing such codebooks. After
embedding descriptors into a reproducing kernel Hilbert space [HSS08], given data are approximated by a
kernel expansion, and a sparse subset can be determined by `1-regularization of the expansion coefficients.
This method works entirely in feature space, however, and ignores the spatial structure of codebook assign-
ments to data, which is unfavorable in connection with image labeling. Figure 1.1 illustrates why the spatial
structure of label assignments should also drive the evolution of labels in feature space for unsupervised
label learning, if the resulting labels are subsequently used for supervised image labeling for which spatial
regularization is typically enforced as well.

We show in this paper how the approach of [ÅPSS17] to spatially regularized label assignment can be
combined with basic clustering approaches after extending the latter to feature manifolds, to perform un-
supervised label learning from manifold-valued feature data through spatially regularized label assignment.
Our approach is consistent and natural in that the very same approach [ÅPSS17] for supervised image la-
beling is also used for the unsupervised learning of proper labels for this task.

1.2. Related Work, Contribution. The classical approach for the unsupervised learning of feature proto-
types (‘labels’) is the mean-shift iteration [FH75, CM02], which iteratively seeks modes (local peaks) of the
feature density distribution through the averaging of features within local neighborhoods. This has been gen-
eralized to manifold-valued features by [SM09], by replacing ordinary mean-shifts by Riemannian (Fréchet,
Karcher) means [Kar77]. The common way to take into account the spatial structure of label assignments is
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FIGURE 1.1. Importance of spatially regularized assignments for label learning. (a)
Input data: a synthetic image corrupted by Gaussian noise. (b) + (c) The classical two-
step approach of clustering in feature space first (panel b) followed by supervised label
assignment (panel c) performs poorly, despite spatial regularization. (d) By coupling label
evolution and spatially regularized assignment both the label set and the labeled image can
be drastically improved. (e) Ground truth labeling and label set. Label sets resulting from
(b), (d) and (e) are depicted below the respective image labeling results.

to augment the feature space by spatial coordinates, e.g. by turning a color feature (r, g, b) into the feature
vector (x, y, r, g, b). This merge of feature space and spatial domain has a conceptual drawback, however:
the same color vector (r, g, b) observed at two different locations (x1, y1, r, g, b), (x2, y2, r, g, b) defines two
different feature vectors, and hence, these two feature vectors may be assigned to different prototypes dur-
ing clustering despite containing the same color information. Furthermore, clustering spatial coordinates
into centroids by mean-shifts (together with the features) differs from unbiased spatial regularization as per-
formed by variational approaches, graphical models or the assignment flow approach of [ÅPSS17], where
regularization does not depend on the location of centroids and the corresponding shape of local density
modes.
We introduce a novel approach which has the following properties:

(i) The approach incorporates and performs unsupervised learning of manifold-valued features, hence-
forth called labels. The approach applies to any feature manifold [SM09] for which the corresponding
operations defined below like, e.g., Riemannian means are well-defined and computationally feasi-
ble. Experiments using S1-valued data (2D orientations), SO(3)-valued data (orthogonal frames) and
features on the positive definite matrix manifold (covariance descriptors) illustrate our approach.

(ii) The evolution of labels (unsupervised learning) is driven by spatially regularized assignments which
are not biased toward any spatial centroids. This is accomplished by applying the smooth geometric
assignment approach to image labeling recently introduced by [ÅPSS17].

(iii) The smooth settings of both (i), (ii) enable to define a smooth coupled flow

(Ṁ, Ẇ ) = V(M,W ) (1.1)

where Ṁ denotes the evolution of labels and Ẇ the evolution of spatially regularized label assignments
that interact through a coupling vector field V . Concrete instances of (1.1) are (4.35), (4.38) and
(4.40). This interaction keeps both domains (i) and (ii) separate and hence enables to apply flexibly
our approach to various feature manifolds, using the same regularized assignment mechanism.

A preliminary version of this paper [ZZr+18] introduced the approach called ‘coupled flow A’ in this paper.
The present paper elaborates this conference paper in many ways as illustrated by Figure 1.2, including a



4 A. ZERN, M. ZISLER, S. PETRA, C. SCHNÖRR

generalization to a one-parameter family of coupled flows and a more comprehensive experimental evalua-
tion.

1.3. Organization. After introducing notation from differential geometry and providing mathematical back-
ground on divergence functions in Section 2, three basic clustering concepts are summarized in Section 3.
While greedy-based k-center clustering (Section 3.3) will only serve as a preprocessing step, soft-k-means
clustering (Section 3.1) and divergence-based EM-iteration (Section 3.2), which perform classical label evo-
lution by mean-shift iteration, will be building blocks for subsequent methods (see Figure 1.2). First, these
two methods are adjusted to manifold-valued data (Section 4.1.1 and 4.1.2), and then each of them is mod-
ified and coupled with the assignment flow (Section 4.2) that induces a sparsifying effect through spatial
regularization. Coupling with soft-k-means leads to the ‘coupled flow A’ (Section 4.3.1), while coupling
with EM-iteration leads to the new ‘coupled flow B’ (Section 4.3.2). Afterward, we provide a more general
natural definition of a one-parameter family of unsupervised assignment flows (Section 4.3.3) that smoothly
interpolates both coupled flows and includes them as special cases. Numerical integration of the unsuper-
vised assignment flow is discussed in Section 4.4. Section 5 deals with particular feature manifolds that will
be used as case studies and numerical experiments in Section 6.

soft k-means (Sec. 3.1) divergence-based EM (Sec. 3.2) k-center clustering (Sec. 3.3)

soft k-means onM (Sec. 4.1.1) divergence-based EM onM (Sec. 4.1.2)

assignment flow (Sec. 4.2)

unsupervised assignment flow (Sec. 4.3.3)

coupled flow A (Sec. 4.3.1) coupled flow B (Sec. 4.3.2)
: adaption of method
: preprocessing for

FIGURE 1.2. Organization of this paper: Three basic clustering algorithms are summa-
rized in Section 3. To of them, soft-k-means clustering and divergence-based EM-iteration,
are generalized to feature data taking values in a Riemannian manifoldM and coupled with
the (spatially regularized) assignment flow. A smooth interpolation of the resulting coupled
flow A and coupled flow B finally defines the unsupervised assignment flow.

1.4. Basic Notation. We set [n] = {1, 2, . . . , n} for n ∈ N and 1 = (1, 1, . . . , 1)> with dimension depend-
ing on the context. Euclidean vectors are enumerated by superscripts with components indexed by subscripts
xi = (xi1, . . . , x

i
d)
> ∈ Rd. 〈·, ·〉 denotes the Euclidean inner product 〈u, v〉 =

∑
i∈[d] uivi of two vectors

or the Frobenius inner product 〈A,B〉 = tr(A>B) for matrices. Throughout the paper, the symbols I, J
denote

I : set of data indices,
J : set of label indices,

(1.2)
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with cardinalities |I| and |J |. The relation A � 0 (A � 0) indicates that a symmetric matrix A = A> is
positive (semi-) definite. The (d− 1)-dimensional probability simplex is denoted by

∆d =
{
x ∈ Rd : xi ≥ 0, i ∈ [d], 〈1, x〉 = 1

}
⊂ Rd. (1.3)

For strictly positive probability vectors 0 < p, q ∈ ∆n, we denote componentwise multiplication and division
efficiently by pq and p

q , respectively. It will be convenient to denote the exponential function with vectors as
argument in two alternative ways,

exp(x) = ex
def
= (ex1 , . . . , exd)>, (1.4)

and similarly with log(x) and strictly positive vectors x > 0. (M, g) generally denote some Riemannian
manifoldM with metric g, whereas S,W,Ps denote specific Riemannian manifolds defined in the subse-
quent sections. In this context, the symbols

expM,p : exponential map of manifoldM – cf. (2.5)
Expp : α-expontial map (with α = 1) of the open simplex S – cf. (4.16)
expp : lifting map onto S – cf. (4.18)

with subscript denote (exponential) maps of M or S in particular and should not be confused with the
exponential function (1.4) that is uniquely denoted without subscript.

2. BACKGROUND

This section collects background material required in this paper. Section 2.1 covers basic notion of dif-
ferential geometry. We recommend [Lee13, Jos17] for further reading. Section 2.2 recalls the notion of a
divergence function. Such functions are used in applications in lieu of the squared Riemannian distance if
evaluating the latter is computationally too involved. See [Bas13] for a survey and [AC10] for a mathematical
account. Concrete divergence functions are considered in Section 5.

2.1. Basic Notions from Differential Geometry. Let (M, g) be a Riemannian manifold with metric g.
We denote the tangent and cotangent space at p ∈ M by TpM and T ∗pM. F(M) denotes the set of
smooth functions f : M → R, and X(M) denotes the set of all smooth vector fields, i. e. smooth sections
X : M→ TM of the tangent bundle TM. Subscripts Xp ∈ TpM indicate the evaluation of a vector field
X ∈ X(M). Further, X∗(M) denotes the set of all smooth covector fields (i. e. one-forms). df ∈ X∗(M)
denotes the differential of a function f ∈ F(M) and df(X) and dfp(v) its action on X ∈ X(M) and
v ∈ TpM. We use both notations

g(X,Y ) = 〈X,Y 〉g, X, Y ∈ X(M) (2.1)

when evaluating the metric. The Riemannian gradient of a function f ∈ F(M) is the vector field

grad f ∈ X(M) (2.2a)

defined by

〈grad f,X〉g = df(X) = Xf, ∀X ∈ X(M). (2.2b)

Let ĝ denote the linear tangent-cotangent isomorphism1

ĝ : X(M)→ X∗(M), ĝ(X)(Y )
def
= g(X,Y ), ∀X,Y ∈ X(M) (2.3)

that associates with a vector field X the covector field ĝ(X) = g(X, ·). Then by (2.2b),

grad f = ĝ−1(df) (2.4)

1The maps ĝ and ĝ−1 are sometimes denoted with [ and ] in the literature (‘musical isomorphism’). We stick to the notation
from [Lee13] here.
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The exponential map at p

expM,p : Vp →M, v 7→ expM, p(v)
def
= γv(1) (2.5a)

is defined on

Vp = {v ∈ TpM : γv is defined on [0, 1]} (2.5b)

in terms of the geodesic γv(t) through p = γv(0) with velocity v = γ̇v(0).
The weighted Riemannian mean [Jos17, Def. 6.9.1] of a collection p1, . . . , pn ∈M of points with respect

to weights w = (w1, . . . , wn) ∈ ∆n is the point q ∈M satisfying

Jw(q) = inf
p∈M

Jw(p), Jw(p) =
1

2

∑
i∈[n]

wid
2
g(pi, p), (2.6)

where dg(q, p) denotes the Riemannian distance, i.e. the infimum of the length of all smooth paths connecting
q and p onM. We have [Jos17, Lemma 6.9.4]

gradp Jw = −
∑
i∈[n]

wi exp−1M,p(pi) ∈ TpM (2.7a)

and hence the optimality condition for q∑
i∈[n]

wi exp−1M,q(pi) = 0. (2.7b)

This equation is typically solved by the mean shift (fixed point) iteration

q(t+1) = expM,q(t)

(∑
i∈[n]

wi exp−1M,q(t)
(pi)

)
, t = 1, 2, . . . (2.8)

with a suitable initialization q(0).

2.2. Divergence Functions. Bregman divergences are distance-like functions of the form

Dφ : domφ× int(domφ)→ R+, Dφ(x, y) = φ(x)− φ(y)− 〈∇φ(y), x− y〉, (2.9)

induced by smooth convex functions φ : Rd → R of Legendre type [CZ97, BB97]. The second argument
of Dφ is admissible only in the interior of the domain of φ, where φ is continuous differentiable with finite
gradient∇φ. Divergences Dφ satisfy

Dφ ≥ 0 and Dφ(x, y) = 0 ⇔ x = y, (2.10a)

∇2
xDφ(x, y) � 0, ∀x ∈ int(domφ). (2.10b)

The former property shows that Dφ behaves like a distance, but symmetry Dφ(x, y) = Dφ(y, x) is not
required and generally does not hold. The second property (2.10b), i. e., the Hessian is positive definite,
shows that Dφ can be used to define a Riemannian metric in order to turn an open subset of a Euclidean
space into a manifold.

More generally, given a d-dimensional Riemannian manifold (M, g), a function Dφ : M×M→ R+ is
a proper divergence function defined onM if, for any chart U ⊂M with local coordinates x : U → Rd and
p, q ∈ U , the function

D̃φ

(
x(p), x(q)

)
= Dφ(p, q) (2.11a)

satisfies (2.10a) and recovers the positive definite metric tensor by

Dφ(p, q) ≈ 1

2

∑
i,j∈[d]

gij(p)zizj , (2.11b)
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for z = x(q)− x(p) and small ‖z‖.
Two further facts are relevant to the present paper. First, the function Dφ(p, q) = 1

2dg(p, q)
2 defines a

canonical divergence function on a Riemannian manifold (M, g) in terms of the squared Riemannian dis-
tance d2g. Secondly, alternative divergence functions Dφ satisfying (2.11) are required in many applications,
that serve as surrogate functions in (2.6) for the squared Riemannian distance d2g(pi, p) and are easier to
evaluate computationally. Concrete divergence functions in connection with unsupervised label learning are
studied in Section 5.

Likewise, in information geometry, the Riemannian (Levi-Civita) connection is replaced by another affine
connection in order to define a divergence function through affine geodesics and corresponding squared
distances. We refer to [AN00, section 3.4], [AC10] and [AJLS17, section 4.4] for background and further
details. A concrete application is provided by the assignment manifold (Section 4.2) and corresponding
concepts defining the assignment flow in Section 4.2.

3. BASIC CLUSTERING

We briefly summarize in this section the basic iterative schemes
• soft-k-means clustering in Euclidean spaces (Section 3.1),
• clustering using mixture distributions, divergence functions and the EM-algorithm (Section 3.2), and
• greedy-based clustering in metric spaces (Section 3.3).

The first two approaches will be generalized to manifold-valued data (features) in Section 4.1 and coupled
with the assignment flow for spatial regularization in Section 4.3.

Greedy-based k-center clustering applies to any metric space, in particular to manifolds with the Riemann-
ian distance or a suitable divergence as a surrogate distance function. The method has linear complexity and
comes along with a performance guarantee. Hence, this method is suited for fast data selection in a prepro-
cessing step, to obtain an overcomplete codebook (set of prototypes) as initialization for manifold-valued
clustering, which subsequently optimizes and sparsifies this codebook in a computationally more expensive
way.

3.1. Euclidean Soft-k-Means Clustering. The content of this paragraph can be found in numerous papers
and textbooks. We merely refer to the survey [Teb07] and to the bibliography therein.

Given data vectors x1, . . . , x|I| ∈ Rd, we consider the task of determining prototype vectors

M = {m1, . . . ,m|J |} ⊂ Rd (3.1)

by minimizing the k-means criterion2

E(M) =
∑
i∈I

min
j∈J
‖xi −mj‖2 =

∑
i∈I

vecmin(Di(M)
)
, (3.2)

where
Di(M) =

(
Di1(M), . . . , Di|J |(M)

)
=
(
‖xi −m1‖2, . . . , ‖xi −m|J |‖2

)
(3.3)

and
vecmin(z) = min

j∈[d]
{z1, . . . , zd}, z ∈ Rd, d ∈ N. (3.4)

Soft-k-means is based on the smoothed objective

Eε(M) = −ε
∑
i∈I

log
(∑
j∈J

exp
(
− ‖x

i −mj‖2

ε

))
, ε > 0 (3.5)

2The symbol ‘k’ is commonly used in the literature. We prefer in this paper, however, the more specific symbol J as index set
for prototypes and use k (like i, j etc.) as free index.
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which results from approximating the inner minimization problem of evaluatingE(M) using the log-exponential
function [RW09, p. 27] with smoothing parameter ε. Similar to the basic k-means algorithm, soft-k-means
clustering solves the stationarity conditions

∇mjEε(M) = 0, j ∈ J (3.6)

by fixed point iteration in terms of iteratively computing the soft-assignments

piε,j(M) =
exp

(
−Dij(M)/ε

)∑
k∈J exp

(
−Dik(M)/ε

) , qjε,i(M) =
piε,j(M)∑
k∈I p

k
ε,j(M)

, i ∈ I, j ∈ J (3.7a)

with the so-called mean shifts

mj =
∑
i∈I

qjε,i(M)xi, j ∈ J. (3.7b)

The distributions
piε(M) ∈ ∆|J |, i ∈ I (3.8)

given by (3.7a) represent the soft-assignments piε,j(M) of each data point xi, i ∈ I to each prototypemj , j ∈
J , whereas the distributions

qjε(M) ∈ ∆|I|, j ∈ J (3.9)

determine the convex combinations of data points that determine each prototypemj by the mean shift (3.7b).
Iterating the two steps (3.7) evolves the prototypesM until they reach a local minimum of the objective (3.5).

3.2. Divergence Functions and EM-Iteration. An alternative and widely applied approach to clustering
utilizes class-conditional distributions p(x; θj), j ∈ J and a corresponding mixture distribution

p(x; Γ) =
∑
j∈J

πjp(x; θj) (3.10)

as data model, with parameters

Γ = (θ, π), θ = (θ1, . . . , θ|J |), π = (π1, . . . , π|J |)
> ∈ S, (3.11)

with the relative interior of the probability simplex

S def
= rint ∆|J | = {p ∈ R|J | : pj > 0, j ∈ J, 〈1, p〉 = 1}. (3.12)

Clustering amounts to estimate the parameters Γ. Since the log-likelihood function corresponding to (3.10)
is usually involved, maximizing a lower bound through the EM-iteration (EM: expectation-maximization) is
the method of choice,

p(j|xi; Γ(t)) =
π
(t)
j p(xi; θ

(t)
j )∑

l∈J π
(t)
l p(xi; θ

(t)
l )

, j ∈ J (E-step, soft-assignment) (3.13a)

π
(t+1)
j =

1

|J |
∑
i∈I

p(j|xi; Γ(t))

θ
(t+1)
j = arg max

θj

∑
i∈I

p(j|xi; Γ(t)) log p(xi; θj)
, j ∈ J. (M-step) (3.13b)

for some initialization Γ(0). We refer to [MP00] for background and further details.
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Banerjee et al. [BMDG05] studied the case where the class-conditional distributions p(x; θj) of (3.10)
belong to an exponential family of distributions [BN78] and, in particular, their representation in terms of a
Bregman divergence function Dφ. Then the resulting data model (3.10) reads

p(x; Γ) =
∑
j∈J

πj exp
(
−Dφ(f(x), ηj)

)
bφ(x), (3.14)

where f denotes a sufficient statistics regarded as a feature vector, the factor bφ accounts for normalization
and ηj = ∇ψ(θj) is determined by θj through conjugation of the convex log-partition function ψ(θj) =
log
∫
X p(x; θj) dx. The corresponding EM-updates read

p(j|xi; Γ(t)) =
π
(t)
j exp

(
−Dφ(f(xi), η

(t)
j )
)∑

l∈J π
(t)
l exp

(
−Dφ(f(xi), η

(t)
l )
) , j ∈ J (E-step, soft-assignment) (3.15a)

π
(t+1)
j =

1

|J |
∑
i∈I

p(j|xi; Γ(t))

η
(t+1)
j = arg min

ηj

∑
i∈I

νj|i(Γ
(t))Dφ

(
f(xi), η

(t)
j

), j ∈ J. (M-step) (3.15b)

νj|i(Γ
(t)) =

p(j|xi; Γ(t))∑
k∈I p(j|xk; Γ(t))

. (3.15c)

Moreover, since the Bregman divergence Dφ is induced by a convex function φ of Legendre type, the pa-
rameters ηj , j ∈ j can be updated by the mean-shifts

η
(t+1)
j =

∑
i∈I

νj|i(Γ
(t))f(xi), j ∈ J. (3.16)

We exploit the above connection to divergence functions in Sections 4.1.2 and 4.3.2.

3.3. Greedy-Based k-Center Clustering in Metric Spaces. We adopt a simple greedy algorithm from
[HP11] as a preprocessing step for data reduction, due to the following properties:

• It works in any metric space (X, dX),
• it has linear complexity O(|J ||I|) with respect to the problem size |I| which can be large,
• it comes along with a performance guarantee.

The task of k-center clustering is as follows. Given data points

XI = {x1, . . . , x|I|} ⊂ X, (3.17)

the objective is to determine a subset

M = {m1, . . . ,m|J |} ⊂ XI (3.18)

that solves the combinatorially hard optimization problem

E∗∞ = min
M⊂XI ,|M |=|J |

E∞(M), E∞(M) = max
x∈XI

dX(x,M), (3.19)

where dX(x,M) = minm∈M dX(x,m). This problem is approximated by a greedy iteration: Starting with
a randomly chosen point m1 ∈ XI , the remaining |J | − 1 points m2, . . . ,m|J | are selected by choosing
mk+1 ∈ XI with the largest distance to the pointsm1, . . . ,mk. This greedy strategy possesses the following
performance guarantee: The resulting set M is a 2-approximation of the optimum (3.19), i. e. E∞(M) ≤
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2E∗∞. We refer to [HP11, Thm. 4.3] for the proof. As a consequence, the subset M of |J | points is almost
uniformly distributed in XI as measured by the metric dX . Figure 3.1 provides an illustration.

We note that the performance guarantee follows by the triangle inequality, while the complexity is inde-
pendent of the properties of a metric space. We will later apply this algorithm in the context of clustering on
a Riemannian manifoldM, where we have given a smooth (symmetric) divergence function D onM. Most
of these divergence functions are squared distances, so that the performance guarantee also holds in this
case. One exception might be the rotation-invariant dissimilarity (5.24). Nevertheless, the greedy k-center
clustering is applicable but without having a performance guarantee. We will use greedy k-center clustering
as preprocessing in order to get an overcomplete set of labels as initial labels for the clustering approaches
described in the next section.

FIGURE 3.1. Approximation of the k-center clustering objective (3.19). LEFT: 10.000
points on the sphere regarded as manifold equipped with the cosine distance. RIGHT: 200
prototypes determined with linear runtime complexity by metric clustering are almost uni-
formly located in the data set, which qualifies them for unbiased initializations of compu-
tationally more involved nonlinear prototype evolutions. This works in any metric space,
in particular on feature manifolds using the Riemannian distance or computationally less
expensive divergence functions.

4. COUPLING CLUSTERING ON MANIFOLDS AND SPATIALLY REGULARIZED ASSIGNMENT

We reformulate in Section 4.1 the iterative schemes of Sections 3.1 and 3.2 in order to cope with manifold-
valued data. Both schemes will be coupled in Section 4.3 with the assignment flow that is presented in
Section 4.2. This results in two novel schemes for spatially regularized label (prototype) learning from
manifold-valued data. Finally, we define in Section 4.3.3 the unsupervised assignment flow as smooth inter-
polation of the flows corresponding to both schemes, depending on a single interpolation parameter.

4.1. Manifold-Valued Clustering. We generalize the basic iterative clustering schemes of Sections 3.1 and
3.2 to manifold-valued data.

4.1.1. Manifold-Valued Soft-k-Means Iteration. Let (M, g) be a smooth Riemannian manifold and let

{z1, . . . , z|I|} ⊂ M (4.1)

be given data. We assume a smooth divergence function to be given (cf. Section 2.2)

D : M×M→ R, (x, y) 7→ D(x, y) (4.2)

that replaces the Riemannian distance dg in order to compute Riemannian means more efficiently or even
in closed form. We just use the symbol “D” and omit the subscript of (2.9), because what follows applies
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to various scenarios and to any corresponding concrete divergence function D. Examples are provided in
Section 5.

We consider the task to determine a set of prototypes

M = {m1, . . . ,m|J |} ⊂ M (4.3)

by minimizing an objective function analogous to the soft-k-means objective (3.5),

Eε(M)
def
= Eε(m

1, . . . ,m|J |) = −ε
∑
i∈I

log

(∑
j∈J

exp
(
− D(zi,mj)

ε

))
, ε > 0. (4.4)

We next generalize the conditions (3.6). Let djEε(M) denote the differential of the function
mj 7→ Eε(m

1, . . . ,mj , . . . ,m|J |). Then

djEε(M) =
∑
i∈I

exp
(
− D(zi,mj)

ε

)∑
l∈J exp

(
− D(zi,ml)

ε

)︸ ︷︷ ︸
def
=piε,j(M)

djD(zi,mj) =
∑
i∈I

piε,j(M)djD(zi,mj), j ∈ J, (4.5)

where the assignment probability vectors piε(M) ∈ ∆|J | play the same role as in eqns. (3.7a) and (3.8).
They can be interpreted as weight functions depending on the prototypes M : setting temporarily wi =
piε,j(M), i ∈ I , implies that eq. (4.5) has the same structure as the equation on the right of (2.6) after applying
the differential on both sides, where we take into account that divergence functions D(·, ·) behave like
squared distances (Section 2.2). Applying formula (2.4), we obtain the gradients and optimality conditions

(gradEε)j(M) = ĝ−1
(
djEε(M)

)
=
∑
i∈I

piε,j(M)ĝ−1
(
djD(zi,mj)

)
= 0, j ∈ J. (4.6)

Comparing with (3.6) shows that, in the Euclidean case, the mean shift operation (3.7b) is defined by nor-
malized weights qjε,i(M) due to (3.7a), conforming to the much more general situation (2.7). While nor-
malization in (3.7a) is a consequence of the squared Euclidean distance of the objective (3.5), this may or
may not happen in (4.6), depending on the particular manifoldM, metric g and divergence function D at
hand. Because subdividing each optimality condition (3.6) by the corresponding normalization factor in (3.7)
does not change the condition, however, and because mean-shift on manifolds is performed with normalized
weights, we define

piε,j(M) =
exp

(
− D(zi,mj)

ε

)∑
l∈J exp

(
− D(zi,ml)

ε

) , qjε,i(M) =
piε,j(M)∑
k∈I p

k
ε,j(M)

, i ∈ I, j ∈ J (4.7)

and in turn the mean shift (fixed point) iteration

(mj)(t+1) = expM,(mj)(t)

(∑
i∈I

qjε,i(M
(t))ĝ−1

(
djD((mj)(t), zi)

))
, j ∈ J (4.8)

analogous to (2.8). Section 5 provides concrete examples for divergence functions on manifolds.
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4.1.2. Manifold-Valued EM-Iteration. We consider again the situation (4.1)–(4.3) and adopt the clustering
approach of Section 3.2. Iteration (3.15) generalizes to

p(j|zi;M (t)) =
π
(t)
j exp

(
−D(zi, (mj)(t))

)∑
l∈J π

(t)
l exp

(
−D(zi, (ml)(t))

) , j ∈ J (E-step, soft-assignment) (4.9a)

π
(t+1)
j =

1

|J |
∑
i∈I

p(j|zi;M (t))

(mj)(t+1) = arg min
mj

∑
i∈I

νj|i(M
(t))D

(
zi, (mj)(t)

), j ∈ J. (M-step) (4.9b)

νj|i(M
(t)) =

p(j|zi;M (t))∑
k∈I p(j|zk;M (t))

. (4.9c)

Note that we apparently ignore here the connection to class-conditional distributions p(x; θj) of the expo-
nential family that formed the basis for the EM-iteration (3.15). This is not the case, however. Indeed,
optimization problem (4.9b) which determines each prototype mj by minimizing the expected value of a
squared distance-like function conforms to the updates (3.15b) and (3.16) of the expectation parameter
ηj = ∇ψ(θj) = Eθj [fi], where the expectation is with respect to p(x; θj) and the sufficient statistics fi(x).

In order to solve problem (4.9b), we proceed analogously to (4.6). Examples with concrete choices of
D(·, ·) are worked out in Section 5.

4.2. Supervised Assignment Flow. In this section, we review the assignment flow introduced in [ÅPSS17].
An overview of more recent work can be found in [Sch19]. For the (information) geometric aspects of the
probability simplex, we refer to [AN00, Section 2.5].

Let data be given by (4.1) together with fixed labels (prototypes) (4.3). The index set I corresponds
to pixel locations i ∈ I and extracted features zi, i ∈ I , whereas the index set J enumerates the labels
(class representatives, prototypes) mj , j ∈ J . After fixing a suitable divergence function (4.2), the distance
vectors

Di(M) =
(
D(zi,m1), . . . , D(zi,m|J |)

)
∈ R|J |, i ∈ I (4.10)

are defined. The approach [ÅPSS17] is based on the relatively open probability simplex of strictly positive
vectors

S = {p ∈ R|J | : pj > 0, j ∈ J, 〈1, p〉 = 1} (4.11)

with the uniform distribution as barycenter,

1S
def
=

1

|J |
1|J |, (barycenter of S) (4.12)

that becomes a Riemannian manifold when equipped with the Fisher-Rao metric

gp(u, v) =
∑
j∈J

ujvj
pj

, u, v,∈ T0, p ∈ S, (4.13)

where T0 denotes the tangent space

T0
def
= T1SS = {v ∈ R|J | : 〈1, v〉 = 0}, p ∈ S (4.14)
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that we will work with throughout this paper, in lieu of the tangent spaces TpS = {u = v
p : v ∈ T0}, p ∈ S

that are equivalent up to the normalization. We denote by

Rp : R|J | → T0, d 7→ Rp(d)
def
= (Diag(p)− pp>)d = p(d− 〈p, d〉1), p ∈ S (4.15)

a family of linear mappings onto T0 parameterized by p.
Adopting the α-connection with α = 1 from information geometry as introduced by Amari and Chentsov

[AN00, Section 2.3], affine geodesics and a corresponding exponential map are given by

Exp: S × T0 → S, (p, v) 7→ Expp(v)
def
=

pe
v
p

〈p, e
v
p 〉
. (4.16)

These geodesics are not length minimizing unlike the geodesics induced by the Riemannian (Levi-Civita)
connection, but they closely approximate them [ÅPSS17, Prop. 3] and are computationally more convenient
to work with. In particular, unlike exponential maps in general (cf. (2.5)), the map Expp is defined on the
entire space T0 and has the inverse [ÅPSS17, Appendix]

Exp−1 : S × S → T0, (p, q) 7→ Exp−1p (q) = Rp log
q

p
, (4.17)

with Rp given by (4.15). The composition of (4.16) and (4.15) defines the map3

expp
def
= Expp ◦Rp : R|J | = T0 ⊕ R1→ S, z 7→ pez

〈p, ez〉
, p ∈ S. (4.18)

These mappings apply to assignment vectors

Wi ∈ S, i ∈ I, (4.19)

associated with each pixel i ∈ I that represent the a posteriori probabilities

Wij = Pr(j|zi), i ∈ I, j ∈ J. (4.20)

The assignment vectors form the row vectors of the assignment matrix

W =


...

W>i
...

 =
(
· · · W j · · ·

)
∈ W ⊂ R|I|×|J |++ , (4.21)

whose column vectors are denoted by W j , j ∈ J . Due to (4.19), W ∈ W is regarded as point on the

W def
= S × · · · × S (|I| times) (assignment manifold) (4.22)

with tangent space
T0

def
= T0 × · · · × T0 (|I| times) (4.23)

and the corresponding mappings

1W
def
= (1S , . . . ,1S) ∈ W (barycenter) (4.24a)

RW (Z)
def
=
(
RW1(Z1), . . . , RW|I|(Z|I|)

)
∈ T0, W ∈ W, Z ∈ R|I|×|J | (4.24b)

ExpW (V )
def
=
(

ExpW1
(V1), . . . ,ExpW|I|(V|I|)

)
∈ W, W ∈ W, V ∈ T0 (4.24c)

and expW ,Exp−1W similarly defined based on (4.18), (4.17).

3Note that the symbol expp does not contain the subscript S in order to distinguish it from the definition (2.5) for general
manifolds M
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We assume neighborhoods
Ni = {k ∈ I : ik ∈ E} ∪ {i}, i ∈ I (4.25)

to be defined around each pixel i ∈ I , formally given by a graph G = (I, E) with pixel indices I as vertex
set and edges E defining (4.25). We associate with each neighborhoodNi weights {wik : k ∈ Ni} satisfying

wik > 0,
∑
k∈Ni

wik = 1, ∀i ∈ I. (4.26)

These weights parameterize the regularization property of the assignment flow and are assumed to be given.
We refer to [HSPS19] for an approach to learn these parameters from data. (4.25) and (4.26) define the
geometric mean of assignment vectors [ÅPSS17, Lemma 5]

Gwi (W )
def
= ExpWi

( ∑
k∈Ni

wik Exp−1Wi
(Wk)

)
= expWi

(
log

∏
k∈NiW

wik
k

Wi

)
, i ∈ I, (4.27)

which defines – specifically for the assignment manifold (4.22) – a closed-form solution to the general
equation (2.7b) that can be computed efficiently.

Using this setting, the assignment flow accomplishes image labeling as follows. Based on (4.10)

D = (D1, . . . , D|I|) ∈ R|I|×|J | (distance vectors) (4.28)

are defined and mapped to

L(W ) = expW (D) ∈ W, (likelihood vectors) (4.29a)

Li(W )
def
=

Wie
− 1
ρ
Di

〈Wi, e
− 1
ρ
Di〉

, ρ > 0, i ∈ I, (4.29b)

where ρ is a user parameter to normalize the distances induced by the specific features fi at hand. This
representation of the data is regularized by geometric smoothing (4.27) to obtain the

S(W ) ∈ W, Si(W )
def
= Gwi

(
L(W )

)
, i ∈ I, (similarity vectors) (4.30)

which in turn evolves the assignment vectors Wi, i ∈ I through the

Ẇ = RW
(
S(W )

)
, W (0) = 1W . (assignment flow) (4.31)

We refer to [ÅPSS17] and [Sch19] for further details and a discussion of the assignment flow (4.31):
each assignment vector Wi(t) ∈ S converges to an ε-neighborhood of some vertex (unit vector) ej ∈
{0, 1}|J |, j ∈ J of the closure S and in this sense uniquely assigns a corresponding label j ∈ J to each
datum zi, i ∈ I .

4.3. Coupling the Assignment Flow and Label Evolution on Feature Manifolds. We show in this section
how combining the assignment flow (4.31) and the schemes of Section 4.1 results in coupled flows that
simultaneously perform

• label evolution on a feature manifold, and
• spatially regularized label assignment to given data.

Coupling the assignment flow with the scheme of Section 4.1.1 defines the coupled flow (CFa) in Section
4.3.1, whereas coupling the assignment flow with the scheme of Section 4.1.2 defines the coupled flow
(CFb) in Section 4.3.2. Comparing (CFa) and (CFb) in Section 4.3.3 shows that the latter flow subsumes the
former one and hence defines the unsupervised assignment flow.
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4.3.1. Spatially Regularized Soft-k-Means on Feature Manifolds. Minimizing the objective function (4.4)
induces the assignment probabilities

piε,j(M) =
exp

(
− 1

εD(zi,mj)
)∑

l∈J exp
(
− 1

εD(zi,ml)
) , i ∈ I, j ∈ J (4.32)

due to (4.5). Regarding the assignment flow, the variablesWij play the same role, see (4.20). The assignment
flow (4.31) for Wij reads

Ẇij(t) = Wij(t)
(
Sij
(
W (t)

)
−
∑
l∈J

Wil(t)Sil
(
W (t)

))
, i ∈ I, j ∈ J, (4.33)

where the right-hand side comprises the similarity vectors Si(W ), i ∈ I , whose j-th component due to
(4.30), (4.27) and (4.29) is given by

Sij(W ) =
L̃Ni,j

〈1, L̃Ni〉
, L̃Ni,j =

( ∏
k∈Ni

Lkj(W ;M)
)wik

(4.34a)

=

( ∏
k∈Ni

(
Wkj〈

Wk, e
− 1
ρ
Dk(M)〉

)wik)
exp

( ∑
k∈Ni

wik
D(zk,mj)

ρ

)
.

(4.34b)

This expression makes explicit how spatial regularization through averaging the given data (in terms of
distance vectors) over local neighborhoods, is part of the vector field that drives the assignment flow. As a
consequence, label assignments induced by W (T ), T � 0, are spatially more coherent.

Hence, we propose to replace in (4.8) the normalized assignment variables piε,j(M) given by (4.32), where
no spatial regularization is involved, by the normalized assignment variables qjε,i(W ) defined below by
(4.35). The resulting coupled flow (CFa) that simultaneously performs label evolution and label assignment
reads

(CFa)



ṁj(t) = −α
∑
i∈I

qjε,i(W )ĝ−1
(
djD(zi,mj)

)
, mj(0) = mj

0, α > 0, j ∈ J,

qjε(W ) =
W j

〈1,W j〉
, j ∈ J

Ẇi(t) = RWi(t)

(
Si
(
W (t)

))
, Wi(0) = 1S , i ∈ I,

(4.35)

with W j due to (4.21) and user parameter α that enables the adjust the time scale of the label flow induced
by ṁj(t), j ∈ J relative to the assignment flow induced by Ẇi(t), i ∈ I .

4.3.2. Spatially Regularized EM-Iteration on Feature Manifolds. The scheme of Section 4.1.2 and the up-
date formulas (4.9) suggest an alternative coupling of label evolution and the assignment flow. Equation
(4.29b) reads

Lij(W ;M) =
Wije

− 1
ρ
D(zi,mj)∑

l∈JWile
− 1
ρ
D(zi,ml)

, (4.36)

which agrees with the right-hand side of (4.9a), except for the scaling parameter ρ and the assignment
variables Wij in place of the mixture coefficients πj . Indeed, since there is no interaction between different
spatial locations i ∈ I on the right-hand side of (4.36), Lij(Wi;M) can be interpreted as local posterior
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probability of label j given the observation zi, in agreement with the left-hand side of (4.9a). Likewise,
applying the first update equation of (4.9b) to (4.36) yields

W
(t+1)
ij =

1

|I|
∑
i∈I

Lij(W
(t);M (t)), j ∈ J (4.37)

which does not depend on i ∈ I . We therefore take into account spatial regularization by replacing the
mixture coefficients πj , j ∈ J by the variables Wij , i ∈ I, j ∈ J , that are governed by the assignment flow
and hence do spatially interact. The resulting coupled flow (CFb) reads

(CFb)



ṁj(t) = −α
∑
i∈I

νj|i
(
W (t),M(t)

)
ĝ−1
(
djD(zi,mj(t))

)
, mj(0) = mj

0, α > 0, j ∈ J,

νj|i(W,M) =
Lij(W ;M)∑
k∈I Lkj(W ;M)

, Lij(W ;M) =
Wije

− 1
ρ
D(zi,mj)∑

l∈JWile
− 1
ρ
D(zi,ml)

,

Ẇi(t) = RWi(t)

(
Si
(
W (t)

))
, Wi(0) = 1S , i ∈ I,

(4.38)
where W (t) depends on M through (4.34).

4.3.3. Unsupervised Assignment Flow. We examine the relation between the coupled flows (CFa) (4.35)
and (CFb) (4.38). Comparing Lij(W ;M) given by (4.38) with qjε,i(W ) given by (4.35) shows due to∑

l∈JWil = 1, i ∈ I and

Wij = lim
ρ→∞

Lij(W ;M) (4.39a)

that

qjε,i(W ) = lim
ρ→∞

νj|i(W,M). (4.39b)

We conclude that (CFa) is a special case of (CFb). Since the scaling parameter ρ plays a unique role
in (4.29), however, we propose to parameterize Lij(W ;M) of (4.38) in the same way, but with another
independent parameter σ > 0 replacing ρ, in order to ‘interpolate’ smoothly between the coupled flows
(CFa) and (CFb) in the sense of (4.39).

As a result, the final form of our approach, called unsupervised assignment flow (UAF), reads

(UAF)



ṁj(t) = −α
∑
i∈I

νj|i
(
W (t),M(t)

)
ĝ−1
(
djD(zi,mj(t))

)
, mj(0) = mj

0, α > 0, j ∈ J,

νj|i(W,M) =
Lσij(W ;M)∑
k∈I L

σ
kj(W ;M)

, Lσij(W ;M) =
Wije

− 1
σ
D(zi,mj)∑

l∈JWile
− 1
σ
D(zi,ml)

, σ > 0,

Ẇi(t) = RWi(t)

(
Si
(
W (t)

))
, Wi(0) = 1S , i ∈ I,

(4.40)
with user parameters α > 0 controlling the relative speed of label vs. assignment evolution, and parameter
σ > 0 as just discussed.

As already mentioned in Section 3.3, the greedy k-center clustering provides an overcomplete set of labels
in a preprocessing step which is used as an initial condition {mj

0}j∈J for the prototype component of the
unsupervised assignment flow (4.40).
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4.4. Geometric Numerical Integration. In this subsection, we detail the iterative scheme that is used in
Section 5 for numerically integrating the unsupervised assignment flow (4.40). We rewrite these equations
more compactly in the form

Ẇi(t) = RWi(t)Fi
(
W (t),M(t)

)
, Wi(0) = 1S , i ∈ I, (4.41a)

ṁj(t) = Gj
(
W (t),M(t)

)
, mj(0) = mj

0, j ∈ J, (4.41b)

where the dependency of Fi(W,M) = Si(W ) on M is implicitly given via the distance vectors (4.10) and
the dependency of the similarity vectors on these distance vectors – cf. (4.29) and (4.30).

In order to uniformly evaluate our approach for various feature manifolds M, we simply use the Rie-
mannian explicit Euler scheme for integrating the prototype evolution flow (4.41b), i. e.,

(mj)(t+1) = expM,(mj)(t)

(
hGj

(
W (t),M (t)

))
, j ∈ J, (4.42)

with step size h > 0, and expM,mj is defined by (2.5) for the Riemannian manifoldM. In order to numer-
ically integrate the assignment flow (4.41a), we adapt the geometric implicit Euler scheme from [ZSPS19].
It amounts to solving the fixed point equation

V (t+1) = hΠT0F
(

expW (t)

(
V (t+1)

)
,M (t+1)

)
, (4.43)

by an iterative inner loop, where ΠT0 denotes the orthogonal projection onto the tangent space (4.23), fol-
lowed by updating

W (t+1) = expW (t)

(
V (t+1)

)
. (4.44)

Here, expW denotes the map given by (4.18) and (4.24).

5. CASE STUDIES: LABEL LEARNING ON FEATURE MANIFOLDS

In the preceding section, we derived the unsupervised assignment flow (4.40) for a general feature man-
ifold M together with a geometric numerical integration scheme. In the following three subsections, we
illustrate the approach by working out details of three concrete feature manifolds. These scenarios will be
evaluated numerically in the experiments section 6.

5.1. SO(3)-Valued Image Data: Orthogonal Frames in R3. In this subsection, we study clustering on the
Lie group SO(n) of n× n rotation matrices. This is a smooth Riemannian manifold whose tangent space at
R ∈ SO(n) is given by

TRSO(n) = {RΩ: Ω ∈ so(n)}, (5.1)
where so(n) = {Ω ∈ Rn×n : Ω> = −Ω} denotes the Lie algebra of SO(n), and with the Riemannian metric
given by the Frobenius inner product gR(A1, A2) = tr(A>1 A2). Based on the matrix exponential expm and
logarithm logm [Hig08], the corresponding exponential and logarithmic maps read

expSO(n),R(RΩ) = R expm(Ω), logSO(n),R1
(R2) = R1 logm(R>1 R2), (5.2)

and the Riemannian distance is given by

dSO(n)(R1, R2) = ‖ logm(R>1 R2)‖F . (5.3)

In the specific case n = 3, well known formulas in closed form are available [Hig08]. By Rodrigues’ for-
mula, the matrix exponential of A ∈ so(3) is given by

expm(A) = I + sinc(a)A+ 1
2 sinc2(a2 )A2, a =

√
1
2 tr(A>A), (5.4)

with the sinc-function

sinc(x) =

{
sin(x)
x , x 6= 0

1, x = 0.
(5.5)
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The matrix logarithm of R ∈ SO(3) with tr(R) = 1 + 2 cos(θ), |θ| < π is given by

logm(R) =
1

2 sinc(θ)
(R−R>). (5.6)

Moreover, the Riemannian distance can be evaluated without computing the matrix logarithm or an eigen-
value decomposition as

dSO(3)(R1, R2) =
√

2 arccos

(
tr(R>1 R2)− 1

2

)
, R1, R2 ∈ SO(3). (5.7)

Regarding the clustering of data {Ri}i∈I ⊂ SO(n), we use the canonical divergence function D(R1, R2) =
1
2dSO(n)(R1, R2)

2. As a result, the flow of the (UAF) (4.40) for the prototypes Sj ∈ SO(n) takes the form

Ṡj(t) = α
∑
i∈I

νj|i
(
W (t), S(t)

)
LogSj(t)(Ri) = α

∑
i∈I

νj|i
(
W (t), S(t)

)
Sj(t) logm(Sj(t)

>Ri), j ∈ J.

(5.8)
Discretizing this flow due to (4.42) yields the multiplicative update scheme

S
(t+1)
j = S

(t)
j expm

(
αh
∑
i∈I

ν
(t)
j|i logm

((
S
(t)
j

)>
Ri

))
, j ∈ J. (5.9)

5.2. Orientation Vector Fields. We consider the task of clustering orientation vector fields in the two-
dimensional space. We regard these vector fields as maps from the image domain into the angle space R

/
πZ,

i. e., we identify the line {λ(cos θ, sin θ)> : λ ∈ R} ⊂ R2 with the angle θ ∈ [0, π). Let q : R → R
/
πZ be

the quotient map θ 7→ θ mod π. Rather than operating directly on the quotient manifold R
/
πZ, we work

with representatives of its elements in R. In particular, a flow on the quotient manifold will be given by
q(ϑ(t)), where ϑ(t) is a flow in R. For any two representatives θ1, θ2 ∈ R, the induced distance is given by

d(θ1, θ2) = dM(q(θ1), q(θ2)) = min
ϕ∈πZ

|θ1 − θ2 + ϕ| ∈ [0, π2 ], (5.10)

and we have d(θ1, θ2) = 0 if and only if q(θ1) = q(θ2). For the unsupervised assignment flow (4.40), we
choose the canonical divergence functionD(x, y) = 1

2

(
dM(x, y)

)2 onM. By (5.10), this corresponds to the
dissimilarity function D(θ1, θ2) = 1

2

(
d(θ1, θ2)

)2 for representatives θ1, θ2 ∈ R. This dissimilarity function
is differentiable if q(θ1) 6= q(θ2 + π

2 ), i. e., if the minimizer ϕ∗ ∈ arg minϕ∈πZ |θ1 − θ2 + ϕ| is unique. In
this case, we have ∂

∂θ2
D(θ1, θ2) = θ2 − θ1 − ϕ∗. Now, denoting {θi}i∈I ⊂ R the representatives of given

orientations at pixels i ∈ I and denoting by {ϑj}j∈J ⊂ R the representatives of the prototype orientations
(labels), the label evolution of (4.40) takes the form

ϑ̇j(t) = α ·

(∑
i∈I

νj|i
(
W (t), ϑ(t)

)(
θi − ϕ∗ij(t)

)
− ϑj(t)

)
with ϕ∗ij(t) ∈ arg min

ϕ∈πZ

∣∣θi−ϑj(t)+ϕ
∣∣. (5.11)

Since this flow evolves in R|J |, it can be numerically integrated using classical integration schemes. As
mentioned above, the corresponding prototype flow inM = R

/
πZ then is given by q(ϑj(t)), j ∈ J .

5.3. Feature Covariance Descriptors Fields. We consider data given as covariance region descriptors,
as introduced in [TPM06]. Details of the corresponding unsupervised assignment flow are worked out in
Section 5.3.1. In Section 5.3.2, we generalize the representation to obtain descriptors that are invariant with
respect to rotations of the image domain.
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5.3.1. Basic Approach. We consider feature maps f : I → Rs extracted from a given 2D image u : I → Rc

with c channels by taking partial derivatives channel-wise, e. g. ux = ∂u
∂x and uxy = ∂2u

∂x∂y . A typical example
used in our experiments is

i 7→ f i =
(
u, ux, uy, uxx,

√
2uxy, uyy

)>
∈ R6c (5.12)

where (x, y)> denote the image coordinates at pixel i ∈ I . The corresponding covariance descriptor Ci with
respect to a pixel neighborhood N (i) ⊂ I is given by

Ci =
∑

j∈N (i)

ωij(f
j − f̄ i)(f j − f̄ i)> + εId with f̄ i =

∑
j∈N (i)

ωijf
j , 0 < ε� 1, (5.13)

where ωi = (ωij)j∈Ni ∈ ∆|N (i)| are weights. We add the identity matrix with a very small ε to ensure
that all descriptors are positive definite, which otherwise may not hold in particular cases like homogeneous
“flat” image regions.

Now we consider the task of clustering given covariance descriptors as points on the Riemannian manifold
of symmetric positive definite matrices [Bha06]

Ps
def
=
{
X ∈ Rs×s : X = X>, X is positive definite

}
(5.14)

endowed with the Riemannian metric gX(U, V ) = tr(X−1UX−1V ) on each tangent space TXPs ={
U ∈ Rs×s : U> = U

}
. The Riemannian gradient of a function F : Ps → R is given by gradF (X) =

X∂F (X)X ∈ TXPs, where the symmetric matrix ∂F (X) denotes the Euclidean gradient of F at X , and
matrices X and ∂F (X) are multiplied as usual. Denoting the prototypes (labels) by {Λj}j∈J ⊂ Ps, the
label flow of (4.40) reads

Λ̇j(t) = −α
∑
i∈I

νj|i
(
W (t),Λ(t)

)
Λj(t)∂2D

(
Ci,Λj(t)

)
Λj(t), j ∈ J, (5.15)

where D(X,Y ) is a proper divergence on Ps as discussed below, and ∂2D(X,Y ) denotes its Euclidean
gradient with respect to Y . In the following, we discuss possible choices of D. An obvious choice is the
canonical divergence induced by the Riemannian distance

DR(X,Y ) =
1

2
dPs(X,Y )2 =

1

2

∑
k∈[s]

(
log λk(X,Y )

)2
, (5.16)

which involves all generalized eigenvalues λk(X,Y ) of the matrix pencil (X,Y ). Considering thatD(Ci,Λj)
has to be computed for each pair of datum Ci and prototype Λj at each point of time when integrating the
flow, the computation of the generalized eigenvalues would be very expensive computationally. As a more
efficient alternative to DR, we consider the Stein divergence [Sra13]

DS(X,Y ) = log det
(
X+Y

2

)
− 1

2 log det(XY ), (5.17a)

∂2DS(X,Y ) =
1

2

((
X+Y

2

)−1 − Y −1) . (5.17b)

It involves the determinant and the inverse of a positive definite matrix, which both can be efficiently com-
puted using the Cholesky decomposition. Moreover, it is shown in [Sra13] that DS is a squared distance.
Based on the choice D = DS , equation (5.15) takes the form

Λ̇j(t) =
α

2

(
Λj(t)− Λj(t)Qj(t)Λj(t)

)
with Qj(t) =

∑
i∈I

νj|i
(
W (t),Λ(t)

)(Ci + Λj(t)

2

)−1
. (5.18)
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Taking the exponential map expPs,X(U) = X
1
2 expm

(
X−

1
2UX−

1
2

)
X

1
2 into account, with expm denoting

the matrix exponential, and discretizing the flow with the Riemannian explicit Euler scheme (4.42), gives the
prototype update for the Stein divergence

Λ
(t+1)
j = Λ̃j expm

(
αh

2

(
I − Λ̃jQ

(t)
j Λ̃j

))
Λ̃j with Λ̃j =

(
Λ
(t)
j

) 1
2
. (5.19)

5.3.2. Rotational Invariance. We additionally constructed a dissimilarity function on Ps that is invariant
under rotations of the image domain. In contrast to the Stein divergence, this dissimilarity function takes the
special structure of covariance descriptors into account and hence depends on the underlying feature map.
We consider the feature map in (5.12) as an example.

Let u, ũ : R2 → R denote two gray value images that are related by an Euclidean transformation(
x̃
ỹ

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
+

(
x0
y0

)
, θ ∈ [0, 2π) (5.20)

of the image domain, i. e. ũ(x̃, ỹ) = u(x, y). Their derivatives transform as(
ũx
ũy

)
= R1(θ)

(
ux
uy

)
,

 ũxx√
2ũxy
ũyy

 = R2(θ)

 uxx√
2uxy
uyy

 , (5.21)

with rotation matrices R1(θ) ∈ SO(2) and R2(θ) ∈ SO(3) given by

R1(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, R2(θ) =

 cos2 θ −
√

2 cos θ sin θ sin2 θ√
2 cos θ sin θ cos2 θ − sin2 θ −

√
2 cos θ sin θ

sin2 θ
√

2 cos θ sin θ cos2 θ

 .

(5.22)
It follows that covariance descriptors of u : I → Rc with the feature map (5.12) transform as C̃ = R(θ)CR(θ)>,
with a rotation matrix R(θ) ∈ SO(s). Setting

R def
=
{
R(θ) : θ ∈ [0, 2π)

}
, (5.23)

it turns out thatR is a one-dimensional subgroup of SO(s), i. e. R(θ1 + θ2) = R(θ1)R(θ2). Eventually, we
construct the rotation-invariant dissimilarity function by minimizing over the Lie group action ofR, i. e.

DS,R(X,Y )
def
= min

R∈R
DS

(
X,RY R>

)
= min

R∈R
DS

(
R>XR,Y

)
. (5.24)

If ∂2DS(R∗>XR∗, Y ) = (R∗>XR∗+Y )−1− 1
2Y
−1 is the same for allR∗ ∈ arg minR∈R DS

(
R>XR,Y

)
,

thenDS,R(X,Y ) is differentiable in Y and the derivative is given by ∂2DS,R(X,Y ) = ∂2DS(R∗>XR∗, Y )
[BS13, Theorem 4.13+Remark 4.14]. This holds in particular if R∗ is unique for a given pair (X,Y ).
Using the divergence DS,R, equation (5.15) yields the same prototype update formulas (5.18) and (5.19) as
for the Stein divergence, except for the modification

Qj(t) =
∑
i∈I

νj|i
(
W (t),Λ(t)

)(Rij(t)>CiRij(t) + Λj(t)

2

)−1
(5.25)

with Rij(t) ∈ arg minR∈RDS

(
R>CiR,Λj(t)

)
.

Remark. We conclude this section with further comments on the invariant dissimilarity function (5.24).
(1) We point out again that R due to (5.23) (and its existence) depends on the feature map f . For the

specific case (5.12) considered above, a transformation of the form C̃ = R(θ)CR(θ)> exists since
all derivatives up to a given order are involved. Furthermore, R is a subgroup of SO(s) due to the
proper normalization of the mixed derivatives (note the factor

√
2).
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(2) Evaluating (5.24) amounts to solve a one-dimensional smooth but non-convex problem. We omit the
details.

(3) The dissimilarity function DS,R is not a divergence function as introduced in Section 2.2, since
DS,R(X,Y ) = 0 does not imply X = Y , but only [X]R = [Y ]R with [X]R = {RXR> : R ∈ R}.
Unfortunately, this cannot be fixed by considering the quotient Ps

/
∼ with X ∼ Y if and only

if X ∈ [Y ]R, since Ps
/
∼ does not have a manifold structure (e.g., the equivalence class of the

identity matrix is a singleton). Nevertheless, we can plug in DS,R into our approach that can be
used with any differentiable dissimilarity function. The resulting prototypes are then representatives
{Λj}j∈J ⊂ Ps of classes [Λj ]R.

(4) The set of pairs (X,Y ) ∈ Ps×Ps, for whichDS,R(X,Y ) is not differentiable, is negligible [RW09,
Theorem 10.31]. But even for such pairs one can choose some optimal Rij(t) in (5.25), such that
the prototype flow remains well-defined.

6. NUMERICAL EXAMPLES

In this section, we demonstrate and compare the proposed unsupervised assignment flow (UAF) us-
ing several synthetic and real-world images and different feature manifolds, as detailed in Section 5. As
described in Section 4.4, the geometric numerical integration of the (UAF) was carried out using the geo-
metric implicit Euler scheme for the assignment component of the flow and a Riemannian explicit Euler
scheme for the prototype component of the flow. For both schemes, we used the fixed step size h = 0.1 in
all experiments. Additionally we adopted in our implementation the renormalization step from [ÅPSS17]
with ε = 10−10 for the assignment component, to avoid numerical issues for assignments very close to the
boundary of simplex ∆|J | = S. Uniform weights (wik) were used for regularizing the assignments through
geometric averaging (4.27). The integration process terminated when the average entropy of the assignment
component dropped below 10−3 which indicates almost unique assignments (probability vectors are close
to unit vectors) and in turn that the weights νj|i(W,M) for the prototype evolution become stationary as
well. We initialized the assignment component of the unsupervised assignment flow with the uninformative
barycenter (all labels are equiprobable). The initial prototypes were determined by greedy k-center metric
clustering as discussed in Section 3.3, in order to obtain an almost uniformly sampled dictionary from the
input data. The number of labels |J | was chosen large enough to start with an overcomplete dictionary.

6.1. Parameter Influence. This experiment discusses the influence of the two model parameters σ and
α of the (UAF) as defined by (4.40). Parameter σ determines the trade-off between the influence of the
assignments (spatial regularization) and the influence of the distances in the feature space on the weights
νj|i(W,M) which govern the label evolution. σ = ∞ results in the coupled flow (CFa) where the weights
νj|i(W,M) solely depend on the assignments, whereas σ = ρ gives coupled flow (CFb) which incorporates
both the spatially regularized assignment and the distances in the feature space, into the dictionary update
step. In general, the impact of spatial regularization on the evolution of labels evolution decreases with
decreasing values of σ, and the influence of the distances in feature space on the evolution of labels is even
stronger for σ < ρ.

Parameter α controls the relative speed of the evolution of labels vs. assignments. If α is set too small,
i. e., if the evolution of labels is too slow, then hardly any label evolution occurs at all during the period the
assignment evolution so that the resulting assignment is effectively comparable to the supervised assignment
flow [ÅPSS17] based on the initial set of labels. On the contrary, if α is set too large, labels adapt too fast
to the current assignment, which may be undesirable especially if the assignment is still too close to the
uninformative barycenter in the initial phase of its evolution.



22 A. ZERN, M. ZISLER, S. PETRA, C. SCHNÖRR

input (UAF) σ = 0.001 (CFb) σ = ρ = 0.1 (CFa) σ =∞

α
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FIGURE 6.1. Influence of the parameters σ and α. The figure illustrates the influence of
the parameters σ and α on the unsupervised assignment flow (UAF) in terms of the resulting
labelings. From the smooth input image (left panel, top), the initial prototypes (|J | = 8) are
extracted by greedy k-center clustering and assigned by the nearest neighbor (NN) rule. The
right panel shows the labelings returned by the (UAF), for different values of σ and α, after
termination of the coupled evolution of labels and assignments. We observe for increasing
values σ and α that regions are “attracted” toward the center of the image domain, since
label colors are increasingly averaged through the spatially regularized assignments.

In order to visualize clearly the role of σ and α, we consider in this section the RGB color space as feature
space. The demonstrated effects carry over to the other non-trivial feature manifolds, of course. We used a
|N | = 3×3 neighborhood size for geometric spatial regularization and fixed the number of labels to |J | = 8.

Figure 6.1 illustrates the above discussion for an academic computer-generated color image with a smooth
strong gradient, which was generated such that from left-to-right the red channel is increasing and the blue
channel is decreasing, whereas the green channel is increasing from top to bottom. The boosted labels
adaption (for larger α), and the impact of spatial regularization is illustrated by the cell sizes of the final
Voronoi diagram relative to the initial configuration.
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input (UAF) σ = 0.001 (CFb) σ = ρ = 0.1 (CFa) σ =∞
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FIGURE 6.2. Influence of the parameters σ and α. Results of the (UAF) are shown that
reproduce for a real image the effects illustrated by Figure 6.1. Each labeling is additionally
shown using false colors to ease the perception of differences. We observe for increasing σ
an increasing impact of spatial regularization, whereas for increasing α labels adapt faster
along with the size of the spatially regularized regions.
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FIGURE 6.3. Effect of spatial regularization. We compare the proposed (UAF) to k-
means clustering and k-center clustering, respectively, and demonstrate the effect spatial
regularization, parameterized by increasing neighborhood sizes used for geometric averag-
ing, on the resulting label statistics and label assignments. The histogram bars are colored
by the corresponding labels, and their heights indicate the relative amount of assigned pix-
els. We observe that as the scale (neighborhood size) of spatial regularization increases, the
label set quickly becomes more sparse.

Figure 6.2 demonstrates the same effects for a real image. The partitions corresponding to the unsuper-
vised image labelings are additionally displayed using false colors in order to highlight the differences. The
interpretation of the results for different values of σ and α is analogous to the effects shown by Figure 6.1.

Specifically, we observe that for a small value σ = 0.001 (column (UAF)), which increases the influence
of the distances in the feature space, the resulting labeling preserves fine scales (e.g., see left coral in Figure
6.2) in comparison to the other extreme choice σ = ∞ (column (CFa)), where the influence of the spatial
regularization through the assignments in the image domain is maximal and hence fine scales are removed
from the resulting labeling. The intermediate parameter choice σ = ρ = 0.1 (column (CFb)) shows a good
compromise between the effects caused by the two extreme values of σ.

The influence of parameter α controlling the relative speed of label and assignment evolution can be seen
row-wise. For small α = 0.1, the adaption of the prototypes is quite limited. For the choice α = 1.0,
we observe a good compromise between label evolution and spatial regularization through the assignment
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flow. Finally, a very large value α = 5.0 results in strong spatial regularization, since the labels are adapting
relatively fast to the current assignments and consequently the regions assigned to labels grow faster.

6.2. Effect of Spatial Regularization. Figure 6.3 illustrates the effect of spatial regularization performed
by the (UAF) on the evolution of both labels and label assignments, by comparing to basic k-means clus-
tering and to greedy-based k-center clustering (Section 3.3), respectively, where no spatial regularization is
involved at all. The parameter values α = 1.0 and σ =∞ were used.

Comparing k-means with k-center clustering shows that k-means clustering selects a more uniform quan-
tization for the feature data, whereas the greedy k-center clustering rather picks more extremal points in

input ground truth (CFa) (CFb)

|N
|=

1
×

1

hierarchical
clustering k-center + NN

|N
|=

3
×

3
|N
|=

5
×

5

(4 labels) (8 labels)

FIGURE 6.4. Unsupervised label learning for SO(3)-valued image data. Rotation ma-
trices are color coded by the scheme adopted from [KMBB15]. Each label (orthogonal
frame, rotation matrix) is also depicted as trihedron by Figure 6.5 using as background the
false color used here. The input data were generated from ground truth as described in the
text. Hierarchical clustering with generalized Ward’s linkage criteria produces a noisy la-
beling result. The panel ‘k-center + NN’ depicts the nearest neighbor assignments of the
8 labels which are selected from the input data by greedy k-center clustering (Section 3.3)
and are used as initialization for (UAF). Panels on the right depict both the labels and the
assignment of these labels by the two versions (CFa) and (CFb) of the unsupervised assign-
ment flow (UAF). Spurious labels “die out” and, for a reasonably large neighborhood size
used for spatial regularization, high-quality labelings are determined simultaneously. The
resulting labels are visualized by Figure 6.5.
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the feature space which subsequently serve as initial prototypes for (UAF). The remaining panels demon-
strate that spatial regularization quickly sparsifies the label set as the scale (neighborhood size) of spatial
regularization increases.

6.3. Case Studies: Label Learning on Feature Manifolds. In this section, we demonstrate the “plug in
and play” property of the unsupervised assignment flow (UAF) by applying it to the scenarios worked out in
Section 5. In principle, any Riemannian feature manifold can be used provided a corresponding divergence
function D(·, ·) and the exponential map admit a computationally feasible evaluation of the (UAF) through
the numerical scheme (4.42).

We next consider the scenarios of Section 5 in turn.

6.3.1. SO(3)-Valued Image Data: Orthogonal Frames in R3. Figure 6.4 depicts ground truth data in terms
of orthogonal frames assigned to each pixel i ∈ I and visualized with false colors. Each ground-truth label
is also shown as trihedron by Figure 6.5.

The input data (Figure 6.4) were generated by independently sampling for each pixel i ∈ I a vector
ni ∼ N (0,

√
0.5I3), determining a corresponding random skew-symmetric matrix Ω(ni) ∈ so(3), and by

replacing the ground-truth value Ri by Ri expm(Ω(ni)).
We compare our method with hierarchical agglomerative clustering [Mül11]. As linkage criterion, we

used the generalized Ward’s criterion as presented in [Bat88], i. e., we replaced the squared Euclidean dis-
tance in the classical Ward’s method by the Riemannian distance. This linkage criterion worked best in our
experiments. We chose the threshold for this method such that we get the same number of clusters as in

ground truth

hierarchical
clustering

(CFa)

(CFb)

k-center
(initialization)

FIGURE 6.5. Label visualization for SO(3) data. Each label corresponding to the results
depicted by Figure 6.4 is shown here as trihedron, using the false colors of Figure 6.4 as
background colors here. The labels obtained by hierarchical clustering are close to the
ground truth labels but also deviate significantly, as is clearly visible in the first column.
In addition, the label assignments in the spatial domain cannot cope with the noise of the
input data. As for (CFa) and (CFb), three labels of the initial label set (last row) “died out”
during the unsupervised assignment flow evolution, whereas the remaining ones converged
to values quite close to ground truth.
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the ground truth. The labels were determined by computing the Riemannian mean within each cluster. The
noisy clustering result (Figure 6.4) affects the computation of labels as can be seen in Figure 6.5.

As initialization for our method, we determined by greedy-based k-center clustering (Section 3.3) an
overcomplete set of |J | = 8 prototypes as shown by Figure 6.5. The corresponding nearest neighbor (NN)
assignments are shown by Figure 6.4. They clearly illustrate the need for spatially regularized assignments,
not only for determining a reasonably coherent partition of the image domain but also for affecting label
evolution, in order to determine proper labels enabling to find such a partition by assignment.

The labelings generated by unsupervised assignment flow (UAF) are shown by Figure 6.4, for the param-
eters σ = ρ = 1.0 and σ = ∞ corresponding to the specific versions (CFa) and (CFb) of the (UAF), and
using different neighborhood sizes |N | ∈ {1× 1, 3× 3, 5× 5} for spatial regularization. The relative speed
parameter α for the prototype evolution flow was set to the natural value α = 1 (cf. Section 6.1). The results
show that, for both flows (CFa) and (CFb), spurious labels “die out” whereas the remaining labels converge
to values quite close to ground truth (Figure 6.5). Specifically, for the large green background region, two
labels close to the ground truth label are recovered due to the initial fluctuations within a large spatial region.

We point out that the only essential parameter value required for a reasonable result is the scale (neigh-
borhood size) of spatial regularization.

6.3.2. Orientation Vector Fields. Given a grayscale image (Figure 6.6) we estimated orientations of local
image structure from local gradient scatter matrices. Orientations are encoded at each pixel by the angle
between the horizontal axis and the smallest eigenvector. The resulting data take values in R

/
πZ ∼= S1

after identifying antipodal points. Figure 6.6 shows the nearest neighbor assignments of the initial |J | = 8
prototypes determined by greedy k-center clustering from the noisy input data, together with labels and label
assignments of the versions (CFa) and (CFb) of the unsupervised assignment flow (UAF) corresponding to
the parameter choices σ = ρ = 0.1 and σ =∞. The relative speed parameter α for the prototype evolution
was set to α = 0.5, and |N | = 5× 5 neighborhoods were used for spatial averaging.
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or
ie

nt
at

io
n

da
ta

ov
er

la
y

0 π
4

π
2

3π
4

π

FIGURE 6.6. Unsupervised label learning from orientation vector fields. Orientations
are extracted from the grayscale image, using the spectral decomposition of local scatter
matrices of the image gradient, and represented as elements of R

/
πZ ∼= S1 as described in

the text. Using a corresponding distance function, the unsupervised assignment flow learns
both proper labels, including their number, and label assignments for encoding the noisy
input data.
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Both flows managed to position a label correctly in the neighborhood of 0 ∼= π (visualized in red) and
only required seven labels to properly encode the data by labeling.

input image DS
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assignment withDS DS,R
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FIGURE 6.7. Unsupervised learning of rotationally invariant labels from covariance
descriptors. The input data are covariance descriptors (5.13) extracted from the input image
which comprises a texture rotated in steps of 15 degrees. Both labels and label assignments
are pixelwise visualized using false colors in the panels on the right (only color differences
matter, rather than the colors themselves). The unsupervised assignment flow (CFa) to-
gether with the rotationally invariant Stein divergence DS,R returns a small set of labels that
encodes local image structure irrespective of its orientation. By contrast, using the Stein
divergence DS is less effective.

6.3.3. Feature Covariance Descriptor Fields. We demonstrate the application of the unsupervised assign-
ment flow to the manifold of positive definite matrices. For a given input image, we extracted the covariance
descriptor using the feature map (5.12) and |N | = 5 × 5 in (5.13). We applied version (CFa) of the un-
supervised assignment flow to a synthetic and a real world image, i. e. setting σ = ∞ ensuring a strong
effect of spatial regularization on label evolution. Initial sets of |J | = 10 labels were determined by metric
clustering, to ensure interpretation of the results visualized by false colors. Due to the higher dimension
of the feature space of this scenario, a larger value α = 10 of the relative speed parameter controlling the
prototype evolution turned out to be useful for both test instances.

Figure 6.7 depicts a synthetic image with a texture rotated in steps of 15 degrees. |N | = 3× 3 neighbor-
hoods were used for spatial averaging and the constant of (5.13) was set to ε = 10−5 to ensure strict positive
definiteness even in completely homogeneous regions of this computer-generated image. Initial prototypes
were extracted from the input data using the greedy k-center clustering using the Stein divergenceDS and its
rotation-invariant version DS,R, respectively. The experiments below should not only demonstrate another
feature manifold that can be flexibly handled using the proposed unsupervised assignment flow, but they
should also assess if numerical results display the rotational invariance of DS,R that holds by construction
mathematically (Section 5.3.2).
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FIGURE 6.8. Comparing the Stein divergence DS with its rotationally invariant vari-
ant DS,R. Using the covariance descriptors illustrated by Figure 6.7, the panels on the
left show pixelwise the distances to some fixed (arbitrary) label. Contrary to the uniform
distances DS,R, the distance DS strongly depends on the orientation of the texture. On the
right-hand side, the optimal rotation angles are shown corresponding to the evaluation of
DS,R. These angles accurately recover rotations of the texture.

input image DS DS,R

k
-c

en
te

r
+

N
N

(C
Fa

)

FIGURE 6.9. Unsupervised learning of covariance descriptor labels through label as-
signment. The depicted results were obtained for the real input image on the left and are
analogous to the results of the synthetic scenario depicted by Figure 6.7. The local as-
signments of initial labels (top row on the right) highlight that metric clustering completely
ignores the spatial structure of the input data. The results returned by the unsupervised as-
signment flow (CFa), therefore, are impressive (bottom row): labels and label assignments
jointly evolve so as to capture the spatial image structure. While the distance DS is sensitive
to orientations of texture, the distance DS,R is not: the final labels and label assignments
(bottom right) basically partition the image into wooden texture independent of the ori-
entation of the wooden boards (encoded with red), nails and similar line structures in the
background (encoded with green), the hammers (light-blue) and oriented wooden texture
(blue), independent of the local orientation of these textures.
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FIGURE 6.10. Comparing the Stein divergenceDS with its rotationally invariant vari-
ant DS,R. The depicted results correspond to the scenario of Figure 6.9 and are analogous
to the results shown by Figure 6.8 for the synthetic scenario illustrated by Figure 6.7. The
top row shows the pixelwise distances between each covariance descriptors extracted from
the image of Figure 6.9 and a fixed prototype located at the pile of nails on the right. While
the distance DS considerably differs between two piles of nails due to the different orien-
tations, the rotationally-invariant distance DS,R is more uniform. The bottom row displays
pixelwise the optimal rotation angle that determines DS,R. Up to unavoidable local errors
of these locally computed estimates, the distance DS,R recovers the local orientation of the
real texture in the input image (bottom right).

The six panels on the right of Figure 6.7 show columnwise the results of local label assignments (k-center
+ NN) and the assignments after label evolution performed by (CFa), respectively, using either distance DS

or DS,R. Regarding the results depicted by the center column, greedy k-center clustering was performed
using DS,R, while the nearest neighbor (NN) assignment and (CFa) were performed using DS, in order to
highlight the difference between DS and DS,R based on the same initial prototypes.

The result shows that using DS,R leads to an unsupervised labeling of all textures with a single label
only. Thus, depending on the application, using DS,R instead of the basic Stein divergence DS can lead
to more compact label dictionaries determined by the proposed unsupervised assignment flow. Figure 6.8
underlines this finding from a different angle. The two panels on the left display pixelwise the distances
DS and DS,R to some fixed (arbitrary) reference descriptor. The two images show quantitatively that DS is
highly non-uniform, unlike DS,R. The panel on the right of Figure 6.8 visualizes for each pixel the optimal
angle minimizing (5.24) over (5.23), that has to be determined for the evaluation of DS,R. One can clearly
see how the rotations of the textures of the input image of Figure 6.7 are recovered. This may be useful for
some applications as well.

Figure 6.9 depicts a real-world image. We used |N | = 5 × 5 neighborhoods for spatial averaging and
ε = 10−7 for the constant of (5.13) to ensure strict positive definiteness of the covariance descriptors.
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Analogous to Figure 6.7, we compared the nearest neighbor (NN) assignment and the result returned by
(CFa) with respect to the Stein divergence DS and its rotationally invariant version DS,R, respectively.

We observe that the rotationally invariant feature representation together with the unsupervised assignment
flow (DS,R / (CFa); panel bottom-right) leads to an unsupervised label representation of the input data that
basically partitions the image into wooden texture independent of the orientation of the wooden boards
(encoded with red), nails and similar line structures in the background (encoded with green), the hammers
(light-blue) and oriented wooden texture (blue).

Analogous to Figure 6.8, Figure 6.10 (first row) shows the pixelwise distances to a fixed label (located
at the right pile of nails) for the distances DS and DS,R, respectively. Comparing the distances to the
two piles of nails illustrates once again and quantitatively the rotational invariance of DS,R. The bottom
row of panels shows the corresponding optimal rotation angles corresponding to the evaluation of DS,R, as
defined by (5.24). These angles recover the relative orientation of the textures which may be useful for some
applications.

7. CONCLUSION

We proposed the unsupervised assignment flow for performing jointly label evolution on feature man-
ifolds and spatially regularized label assignment to given feature input data. The approach alleviates the
requirement for supervised image labeling to have proper labels at hand, because an initial set of labels can
evolve and adapt to better values while being assigned to given data.

The derivation of our approach highlights that it encompasses related state-of-the-art approaches to unsu-
pervised learning: soft-k-means clustering and EM-based estimation of mixture distributions with distribu-
tions of the exponential family as mixture components (class-conditional feature distributions). We gener-
alized these approaches to manifold-valued data and defined the unsupervised assignment flow by coupling
label evolution with the assignment flow adopted from [ÅPSS17]. We suggested greedy k-center clustering
for determining an initial label set that works with linear complexity in any metric space and with fixed
approximation error bounded from above.

The separation between feature evolution and spatial regularization through assignments enables the flex-
ible application of our approach to various scenarios, provided some key operations (divergence function
evaluation, exponential map) are computational feasible for the particular feature manifold at hand. We
demonstrated this property for three different scenarios and showed that coupling the evolution of labels and
assignments has beneficial effects in either direction. The approach involved two parameters whose role is
well understood. As a consequence, the only essential parameter is the neighborhood size used for spatial
regularization.

Our unsupervised learning approach is consistent in that the very same approach that is used for supervised
labeling is used for label learning, without need to resort to approximate inference due to the complexity of
learning, as is the case, e.g., for learning with graphical models.

A key property of our approach is the sparsifying effect of spatial assignment regularization on unsuper-
vised label learning. Our future work will study this property in connection with label learning from the
assignment flow itself, in terms of patches of assignments at coarser spatial scales. Furthermore, all ex-
periments in this paper were conducted using uniform weights (wik)k∈Ni for the spatial regularization of
assignments (cf. Eq. (4.27)). Learning these weights from data in order to represent the spatial context of
typical feature occurrences as prior knowledge has been studied recently [HSPS19]. Working out a mathe-
matically consistent way to extend this approach to unsupervised scenarios, as studied in the present paper,
defines an exciting modeling problem.
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[Sch19] C. Schnörr, Assignment Flows, Variational Methods for Nonlinear Geometric Data and Applications (P. Grohs,

M. Holler, and A. Weinmann, eds.), Springer (in press), 2019.
[SM09] R. Subbarao and P. Meer, Nonlinear Mean Shift over Riemannian Manifolds, Int. J. Comp. Vision 84 (2009), no. 1,

1–20.
[Sra13] S. Sra, Positive Definite Matrices and the Symmetric Stein Divergence, CoRR arXiv:1110.1773 (2013).



UNSUPERVISED ASSIGNMENT FLOW 33

[Teb07] M. Teboulle, A Unified Continuous Optimization Framework for Center-Based Clustering Methods, J. Mach. Learning
Res. 8 (2007), 65–102.

[TPM06] O. Tuzel, F. Porikli, and P. Meer, Region Covariance: A Fast Descriptor for Detection and Classification, Proc. ECCV,
Springer, 2006, pp. 589–600.

[TS16] P.K. Turaga and A. Srivastava (eds.), Riemannian Computing in Computer Vision, Springer, 2016.
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(A. Zern) IMAGE AND PATTERN ANALYSIS GROUP, HEIDELBERG UNIVERSITY, GERMANY

E-mail address: artjom.zern@iwr.uni-heidelberg.de

(M. Zisler) IMAGE AND PATTERN ANALYSIS GROUP, HEIDELBERG UNIVERSITY, GERMANY

E-mail address: zisler@math.uni-heidelberg.de

(S. Petra) MATHEMATICAL IMAGING GROUP, HEIDELBERG UNIVERSITY, GERMANY

E-mail address: petra@math.uni-heidelberg.de
URL: https://www.stpetra.com
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