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Abstract
The G 0 distribution is an apt model for speckled data, such as SAR imagery, because it possesses the ability to characterize
areas with different degrees of texture. In the monopolarized case, this distribution depends on three parameters: the texture,
the scale, and the number of looks. The first one is related to the roughness of the image, so its estimation deserves special
attention. This paper proposes and compares estimation methods of the texture parameter in intensity format. We treat the
multilook case. The proposal is to estimate this parameter by minimizing the triangular distance between the G 0 density and
an estimate of the underlying density function using asymmetric kernels. We assess the properties of these estimators with
analytic results and simulation. We use actual images to evaluate the performance of our proposal.

Keywords Synthetic aperture radar · Parameter estimation · Kernel estimation · Minimum-distance estimator · Texture
analysis

1 Introduction

Remote sensing with synthetic aperture radar (SAR) data
has become a vital tool for environmental studies because it
produces high-resolution images of targets and landscapes.
It has several advantages over optical and infrared systems
due to its ability to acquire images independently of the sun-
light and weather conditions. For this reason, these images
have a wide range of practical applications: environmental
monitoring [8,53], and earthquake study to map the surface
deformation [57], among others.

Nevertheless, SAR images have the disadvantage of hav-
ing speckle noise, which appears from the use of coherent
illumination [59]. This kind of noise is a characteristic
of technologies that employ coherent illumination, such
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as microwaves, sonar, laser, and ultrasound. Speckle noise
makes the analysis and interpretation of this kind of image a
challenging task.

The multiplicative model has been successfully used in
modeling SAR images. It describes the observed data as
the product of two statistically independent random vari-
ables representing, respectively, the target information and
the speckle noise. In this context, the G 0 model has proved
to describe textured and extremely textured areas better than
other models [27,34]. Three parameters index this model:
one directly associated with the texture, other being a scale
parameter, and the third related to the signal-to-noise ratio.

The texture is of paramount importance, as it describes
the target roughness locally. In particular, it can be related to
the number of elementary backscatterers [58] and, as such,
its estimation is essential.

Several works have studied parameter estimation under
the G 0 model. Among the estimation techniques available,
moments (or analogy) and maximum likelihood estimators
are among the most popular.

Refs. [18,52] describe attempts to improve the perfor-
mance of these estimators concerning bias and mean squared
error using either resampling or analytic procedures. More
recently, using a connection between the Mellin transform,
several estimators based on logcumulants and logmoments
have been proposed in [4,10,32].
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Bustos et al. [11] and Allende et al. [2] studied the per-
formance of maximum likelihood estimators under the G 0

model for amplitude data, showing that they critically lose
robustness formoderatedoutliers in extremely textured areas,
whereas in textureless areas this occurs for severe outliers. As
expected, the lack of robustness ismore pronounced for small
samples. They proposedM andAMestimators for the texture
with good performance under contamination, but they suffer
from numerical problems, especially with small samples.

Tison et al. [51] showed that estimators based on logcu-
mulants are well-suited to model amplitude single-look data
from urban areas, where very large values are frequently
observed. Nevertheless, that work overlooks the fact that
estimation under the G 0 distribution is more sensitive to very
small values rather than to extremely large ones. In this work,
we explore this fact and propose suitable solutions using ker-
nels.

A good estimator should have good behavior if the data
come from the assumed model, and it should not present
large deviations against small perturbation from the assumed
model. In this sense, Refs. [14,28] are recent attempts at
obtaining robust estimators for the textured parameter of the
G 0 model for intensity data.

In general, the approach is to find the parameters that min-
imize dissimilarity measures (d) between the actual density
function fθ , which depends on the θ parameter, and an esti-
mation of the underlying density function ̂f . These are the
minimum-distance estimators (MDE), defined as:

̂θ = arg min
θ∈Ω

d( fθ , ̂f ), (1)

where θ ∈ Ω is the parameter to be estimated, and Ω is the
parameter space. In this oncoming, two elements are needed:
a measure of distance and ̂f .

Wolfowitz [54,55] studied this class of estimators and
showed that, under general conditions, they are strongly
consistent. Beran [6] proposed an MDE estimator using
Hellinger’s distance between a theoretical model and a non-
parametric density estimator using symmetric kernels. The
work showed that this estimator is asymptotically efficient
for certain parametric families of densities. Parr and Schu-
cany [39] show that, under certain conditions, the MDE
estimator between the empirical distribution function and
theoretical distribution function is strongly consistent. Cao
et al. [12] proposed to minimize a distance between the the-
oretical density function and ̂f using the classic symmetric
kernel estimator to estimate f . They showed, under specific
considerations, the strong consistency of these estimators,
and studied its asymptotic normality for the L2 metric.

Refs. [40,43] presented nonparametric kernel estimators
using symmetric kernels, but when the function to be esti-
mated has bounded support, this kind of estimators may

assign probability mass outside the support [49], leading to
biased estimations in a neighborhood of the boundary. Some
authors aim to use asymmetric kernel estimators to solve
this problem. Chen [16,17] presented Beta and Gamma (Γ )
kernels. Scaillet [47] introduced the inverse Gaussian (IG)
and reciprocal inverse Gaussian (RIG) kernels. Bouezmarni
and Scaillet [7] proved the consistency under the Γ , IG and
RIG kernels. Jin and Kawczak [31] proposed the Birnbaum–
Saunders (BS) and Lognormal (LN) kernels. Ref. [21] also
treats these kernels. These estimators vary their shape accord-
ing to the observation. This feature allows obtaining different
degrees of smoothing [47], and, as they do not assign weight
outside the density function support, they are free of bound-
ary bias [17].

In the last decade, concepts related to information the-
ory have gained interest in image processing. In particular,
several measures have been proposed to reflect the close-
ness among the models that describe samples. Especially the
concept of stochastic divergence has found applications in
areas as diverse as signal and image processing [5], automatic
region detection in SAR imagery [36,48], speckle filters [41],
as contrast measures. Unsupervised classification strategies
were applied to polarimetric synthetic aperture radar (Pol-
SAR) images in [13].

Cassetti et al. [14] proposed an MDE estimator for the
texture parameter of the G 0 model and assessed different
stochastic distances with a nonparametric estimation of the
underlying density function using histograms. Gambini et
al. [28] proposed to estimate f using the IG asymmetric
kernel with a bandwidth chosen empirically; they found the
estimator by minimizing Eq. (1) by inspecting a grid of val-
ues of α. The authors concluded that the triangular distance
is the best suited for this problem, and showed that their
proposal outperforms the logcumulant estimator in terms of
mean squared error, bias, convergence, and robustness. So,
the results were promising, with venues for improvement
which are explored in this work.

In this paper, we improve the Gambini et al. [28] proposal.
We use Γ and LN kernels instead of the IG kernel, showing
that the latter presents a larger integrated mean square error
and a higher percentage of non-convergence cases than the
others. Regarding bandwidth choice, we use Least Squared
Cross-Validation (LSCV) [45] for bandwidth selection in
place of the empirical selection. Furthermore,we use a search
algorithm to find the minimum of theMDE estimator instead
of a loop through a grid of α values.

Wecompare the performanceof the proposed estimator for
the texture parameter of the G 0 model for intensity data with
maximum likelihood (ML) and logcumulants (LC) meth-
ods in terms of convergence, bias and mean squared error
and sensitivity to contamination. We obtain excellent results,
especially for small sample sizes.
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The rest of the paper unfolds as follows: Section 2 recalls
the main features of the G 0 model for intensity data.

Section 3 presents the discussion of estimation with
stochastic distances and asymmetric kernels. Section 4
presents the main results of the Monte Carlo study. Section 5
shows an application of our proposal to actual SAR images.
Section 6 concludes the article discussing promising direc-
tions for future research.

2 The G 0 Model

The return in monopolarized SAR images can be modeled
as the product of two independent random variables, one
corresponding to the backscatter X , and other to the speckle
noise Y . In this manner, Z = XY represents the return Z in
each pixel under the multiplicative model.

The speckle noise in intensity format Y is modeled as a
Γ distributed random variable with unitary mean and shape
parameter L ≥ 1, the number of looks, while the backscatter
X is considered to obey a Reciprocal of Gamma law. These
assumptions give rise to the G 0 distribution for the return Z .
Given the mathematical tractability and expressive power of
the G 0 model [34,35] it represents an attractive choice for
SAR data modeling.

The density function for intensity data is given by

fG 0(z) = LLΓ (L − α)

γ αΓ (−α)Γ (L)
· zL−1

(γ + zL)L−α
, (2)

where −α, γ, z > 0 and L ≥ 1. The r -order moments are

E(Zr ) =
(γ

L

)r Γ (−α − r)

Γ (−α)

Γ (L + r)

Γ (L)
, (3)

provided α < −r , and infinite otherwise.
Mejail et al. [34] proved a relationship between G 0 dis-

tributions and the Fisher–Snedecor F law. With this result,
using standard functions available in most computational
statistics environment as, for instance, the R programming
language and environment [42], the cumulative distribution
function of a G 0(α, γ, L) distributed random variable Fα,γ,L

can be obtained as

Fα,γ,L(z) = ϒ2L,−2α(−αz/γ ), (4)

for every z > 0, where ϒ2L,−2α is the cumulative distribu-
tion function of a Fisher–Snedecor random variable with 2L
and −2α degrees of freedom. This relationship is useful for
obtaining the quantiles and entropy, among other features of
this distribution.

It is essential to achieve accurate and robust estimates of
α because it is related to the target’s texture. Values close to

zero (α ∈ (−3,−1)) suggest extreme texture, as in urban
areas. As the value decreases, the texture is also reduced
going, usually, from α ∈ (−6,−3] in forest zones up to
α ∈ (−∞,−6) in textureless targets, e.g., pasture or crops.
So, its estimation deserves special attention.

Maximum likelihood estimation is the classical approach
for parametric estimation of a density function because it
has optimal asymptotic properties in terms of bias and vari-
ance, and well-known asymptotic distributional properties.
To reduce our discussion to a single parameter, we based
the forthcoming analysis on the condition of unitary mean,
i.e., E(Z) = 1, which links the texture and the brightness
parameters:

γ ∗ = −α − 1. (5)

Let Z1, . . . , Zn be an independent random sample of finite
size n from the G 0(α, γ ∗, L) distribution. A maximum like-
lihood estimator of α for L known, denoted α̂ML, is any value
in (−∞,−1) that maximizes the loglikelihood function:

α̂ML = arg min
α∈(−∞,−1)

logΓ (L − α)

− α log(−1 − α) − logΓ (−α)

+ α − L

n

n
∑

i=1

log(−1 − α + LZi ). (6)

Notice that we are interested in finite sample size cases, for
which we do not have to take into account the possibility of
infinite distributional variance. We limit the search space to
cases with finite distributional mean by avoiding the region
[−1, 0).

We employed the L-BFGS-B version of the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) method [33] to find the
optimum of this function taking as a starting point α0 the
alpha moment estimator when it exists. Otherwise we con-
sider α0 = −1.5. This algorithm is a quasi-Newton type
optimization method that allows box constraints and is
widely used in Computer Graphics and Scientific Comput-
ing [23]. These methods do not need the Hessian matrix but
use an approximation that is updated in each iteration and,
thus, they only require the function and its gradient.

Function (6) is, in general, unimodal, but, depending on
the sample, it may be monotonically decreasing or flat [25].
This behavior is responsible for the failure of algorithms to
converge to a global maximum.

3 Minimum-Distance Estimator and
Asymmetric Kernels

The minimum-distance estimator (MDE) approach is a non-
parametric methodology that proposes estimators by finding
the value of the parameters that make the theoretical model
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as close as possible to the information provided by the sam-
ple. There are two elements involved: one is the measure of
distance that allows quantifying proximity, and the other is
the information that comes from the sample.

Regarding the sample information, some measures link
the empirical distribution function and the theoretical model,
and others measure the discrepancy between a nonparamet-
ric estimate of the underlying density function and the actual
density. In general, the distribution function is absolutely
continuous, so it may be convenient to consider MDE esti-
mators in terms of the density function.

Information theory provides divergence measures to dis-
criminate between density functions in a statistical sense.
Salicrú et al. [46] proposed a family of such measures, called
(h, φ)-divergences, that includes theKullback–Leibler diver-
gence, the φ-divergences presented by Csiszár [19], and
the generalizations of the J - and R-divergences defined by
Taneja [50], among others. These (h, φ)-divergences can be
easily turned into distances, and into statistical tests.

Cassetti et al. [14] used the notion ofminimizing a stochas-
tic distance to propose a new estimator for the α parameter
in the G 0 model. This estimator is defined as

α̂n = arg min
α∈Ω

d( fG 0 , ̂fn), (7)

where Ω is the parameter space, d is a dissimilarity measure
or stochastic distance between the theoretical density func-
tion fG 0 and a nonparametric estimator ̂fn of the underlying
density function. The authors used histograms to compute ̂fn ,
and assessed the Hellinger, Bhattacharyya, Rényi, and Trian-
gular distances. They chose the Triangular distance because
it presented the best performance.

The Triangular distance is defined as:

dT( fV, fW) =
∫

S

(

fV(x) − fW(x)
)2

fV(x) + fW(x)
dx, (8)

where fV and fW are two density functions with common
support S.

Gambini et al. [28] estimated the underlying density func-
tion with asymmetric kernels. In particular, the authors used
the IG kernel, defined in subsection 3.1. In this work, we
use Γ and LN kernels because they outperform the IG ker-
nel: they have less integrated mean quadratic error and fewer
cases of non-convergence than the IG kernel.

3.1 Gamma, Lognormal and Inverse Gaussian
Kernels

Classical density estimation with kernels usually uses sym-
metric kernels. However, when the density has bounded
support, such estimators present boundary bias. This bias

appears because the symmetric kernels assign weight out-
side the support when the estimation takes place near the
boundary.

Let Z = Z1, . . . , Zn be a random sample of size n, from
an unknown density probability function f with positive sup-
port, an estimate of the underlying density function is:

̂fb(z) = 1

n

n
∑

i=1

Kθ(z,b)(Zi ),

where K is the asymmetric kernel, b is the bandwidth and
θ(z, b) is the parameter vector.

Among the many available asymmetric kernels, we used
the Γ and LN kernels defined, for every t > 0, as:

KΓθ(z,b) (t) = 1

Γ ( zb + 1)b
z
b+1

t−z/b exp{−t/b}, (9)

KLNθ(z,b) (t) = 1

t
√
2πb

exp

{

−
(

log t − log z − b2
)2

2b2

}

,

(10)

respectively, for t, z, b > 0.
As mentioned in Section 3, Gambini et al. [28] used the

inverse Gaussian kernel defined as

KIG(t; zi , b) = 1√
2πbt3

exp
{

− 1

2bzi

( t

zi
+ zi

t
− 2

)}

.

(11)

The rationale for using these kernels is the following: the
G 0 model embeds the Γ −1 distribution; the G H model (also
used for describing SAR data; cf. [26]) considers the IG
distribution to model the backscatter; the Lognormal dis-
tribution is a widely used empirical model to describe SAR
data [29].

The bandwidth is a sensitive choice in nonparametric
density estimation. Gambini et al. [28] chose, empirically,
b = n−1/2/5. In this work, we propose the Least Square
Cross-Validation [56] (LSCV) method to find an appropriate
value.

Figure 1 shows an estimation example of the G 0 model.
We generated a sample from aG 0 distribution of size n = 25,
L = 8, α = −5 and γ = 4. The solid black line is the
actual density function. These kernels fit reasonably well the
theoretical density function, even for a small sample size. The
IG kernel presents a good approximation to the true density
function at the center of the function, although with heavier
tails. The Γ and LN kernels show a better fit, the latter with
higher kurtosis than the other kernels.

It is essential to have measures that quantify the quality
of the estimation. We used the integrated mean square error
(MISE) because it measures the average behavior of the esti-
mator on different samples. It is defined as
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Fig. 1 ̂fG 0 for L = 8, α = −5, γ = 4 and n = 25 using Γ , LN, and
IG kernels, and LSCV for bandwidth selection

MISE( ̂fb(Z1, . . . , Zn)) =E

[∫

R

(

̂fb(z, Z1, . . . , Zn) − f (z)
)2

]

.

(12)

It is important to note that these kernel estimators are free
of boundary bias and achieve the convergence rate n−4/5 for
the MISE. The scale parameter is set such that the expected
value of the return Z is one. This condition leads to the fol-
lowing relation γ ∗

0 = −α − 1.

3.2 Logcumulant Estimator

The relationship between the moments of a random vari-
able and its characteristic function, related to the Fourier
transform of the probability density function, is well-known.
When the moments of order k exist, they can be calculated
through the derivatives of order k of the characteristic func-
tion.

In the same sense, Nicolas et al. [37] defined the first char-
acteristic function of the second kind as theMellin transform
of its density when it has positive support.

Gambini et al. [28] show that the LC estimator for the α

parameter of the G 0 distribution, under the relationship (5),
is the solution of

1

n

n
∑

i=1

log zi = − log
L

−α̂LC − 1
+ Ψ 0(L) − Ψ 0(−α̂LC).

(13)

The right term of equation (13) is a monotone decreasing
function of α. Therefore, this equation has a single root or
none. This estimator is widely used in SAR image process-
ing. Refs [4,10,32] applied this methodology due to its nice
properties and good performance. More recently, Nogueira

et al. [38] used the LC estimator applied in an unsupervised
algorithm for SAR image segmentation.

We compare our proposal with LC and ML estimators
because these a commonplace in the literature.

3.3 Robustness Analysis—Stylized Samples

Among the desirable properties of a good estimator, resis-
tance to contamination is very important in practical appli-
cations. That is, it can produce reasonable estimations even
when a proportion of the data does not come from the
assumed model. This situation is of particular importance in
the case of small sample sizes, e.g., when using filters defined
on sliding windows of size 3×3, 5×5 or, for instance, 7×7.
These windows may contain data from areas with different
textures, for example, at the edges between different regions
or corner reflectors (features that produce a few very large
observations with respect to the background).

In image processing and analysis, it is difficult to grant
the underlying hypothesis under which the techniques being
employed hold, so the ability to perform well even under
deviations from these assumptions is a requirement.

In order to assess the robustness of the proposed estima-
tors, we consider different alternatives. The first one is to
consider that, in a small proportion ε, the data may suf-
fer deviations of the theoretical model. In this case, we
define random variables W ∼ G 0(α1, γ

∗
1 , L) and U ∼

G 0(α2, γ
∗
2 , L), where γ ∗

1 = −α1−1 and γ ∗
2 = −α2−1.We

consider the Bernoulli random variable B with a probability
of success ε indicating the contamination ratio. We define
Z = BU + (1− B)W by its cumulative distribution function
as εFα2,γ

∗
2 ,L(z)+ (1− ε)Fα1,γ

∗
1 ,L(z). This schema considers

that, on average, a small proportion ε of the data come from
the same family but with different parameters.

Sometimes a few pixels present an extremely high return
value. This phenomenon is produced by a double bounce of
the electromagnetic signal, or by a corner reflector, and is
one of the sources of contamination in SAR imagery. Such
outliers may provoke significant errors in the estimation, as
we show in an application to a real image. The return in such
can be modeled as Z = BC + (1− B)W , where C is a large
value, and B and W are defined as before.

A way of assessing how the estimator Tn(z1, . . . , zn)
behaves under contamination is by fixing n − 1 observa-
tions and allowing one to vary. This is the EIF—empirical
influence function, but it depends on the particular sample.
To avoid this, Andrews et al. [3] proposed using the i th

quantile of the assumed distribution as typical observations:
zi = F−1

(

(i − 1/3)/(n + 1/3)
)

, 1 ≤ i ≤ n − 1. This is
the SEIF—stylized empirical influence function that, among
others, was used by Rousseeuw and Verboven [44] for esti-
mation with very small samples and by Allende et al. [2] for
AM estimators of the texture under the amplitude G 0 law.
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(a)

(b)

Fig. 2 G 0(α, γ ∗, L) densities

The quantiles of a G 0(α, γ, L) random variable can be
obtained by ϒ−1

2L,−2α , the inverse of (4), also available in
most statistical computing environments.

4 Performance Analysis

This section presents empirical results about the quality of
estimators for the texture parameter under the G 0 distribu-
tion. We will consider that an algorithm converges if it finds
an estimate for α in the interval [−20,−1].

Figure 2 shows the G 0 densities for α = {−20,−25},
γ = γ ∗, and L = {3, 8}. These densities are very similar
since the G 0 law converges in distribution to the Γ (L, L)

law when α → −∞ and γ = γ ∗ [24]. Thus, our approach
assumes that α takes values in the range of [−20,−1].

Many methods of image filtering and edge detection use
slidingmasks to estimate parameters. Thesemask are usually
of size 3×3, 5×5, 7×7, 9×9 and 11×11. For this reason,
we chose n = 9, 25, 49, 81 and 121 as the sample sizes to
perform the empirical analysis.

First of all, we evaluate the performance of the Γ , LN,
and IG kernels studying MISE and the percentage of non-
convergence cases, in order to choose the kernel that produces

the best fits of the data. We use the LSCV method to find the
bandwidth, and, for IG kernel, we also review the empirical
bandwidth (IGE) studied in Ref. [28].

Table 1 shows the values of ̂MISE and non-convergence
percent. It can be seen that IG and IGE present MISE values
of several orders of magnitude higher than the other kernels.
The same happens for non-convergence cases. The IG kernel
has the highest percentage of these cases compared to the Γ

and LN kernel.
Therefore, we chose Γ and LN kernels to estimate the

underlying density function.
The following analysis was performed through a Monte

Carlo experiment,which consists of 500 independent replica-
tions for each of several parameter values: L ∈ {3, 8} to con-
sider multilook case, α ∈ {−1.5,−3,−5,−8} to represent
different levels of texture, and n ∈ {9, 25, 49, 81, 121, 500}
to consider different scenarios of window sizes, and a large
sample situation.

Although the variance of aG 0-distributed randomvariable
is infinite when α > −2, cf. (3), we need to assess the behav-
ior of estimators in such cases. As noted by, among others
Ref. [15, Fig. 5], one should expect that extremely heteroge-
neous samples as, for instance, those from urban areas, are
described in this region of the parameter space.

Each replication produces estimates {̂α1, . . . , α̂500} with
which we compute the sample mean α̂ = (500)−1∑500

i=1 α̂i ,
the sample bias ̂B (̂α) = α̂−α, and the sample mean squared
error m̂se = (500)−1∑500

i=1 (̂αi − α)2.
We compare four estimators for the multilook case: α̂ML,

α̂LC, α̂Γ (Γ kernel) and α̂LN (LN kernel).
The performance of the proposed techniques is assessed

twofold: in pure and contamination cases.
We also assess the robustness of these estimators employ-

ing their Stylized Empirical Influence Functions (SEIFs) and
contaminating the data, as explained in subsection 3.3. The
estimators were also evaluated in terms of the percentage of
situations for which there was no convergence, and by their
computational cost. For α̂LN we also account, as a case of
non-convergence, for situations where no solution was found
for equation (13).

4.1 Computational Information

Table 2 shows the percentage of non-convergence cases for
L = 3; the situation for L = 8 yields similar values and, thus,
is not reported for brevity. It can be seen that the α̂ML and
α̂LC estimators have the highest values of lack of convergence
followed by α̂LN and α̂Γ .

Such a lack of convergence is more pronounced for homo-
geneous (α = −8) and textured (α = −5) areas. This issue
had been observed for amplitude data in [25] for α̂ML, and is
related to the decreasing curvature of the likelihood function.
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Table 1 Estimated MISE and
percentage of non-convergence
cases for L = 3

̂MISE % Non-convergence cases

α n Γ LN IG IGE α̂Γ α̂LN α̂IG α̂IGE

−1.5 9 0.41 0.81 6.12 41.33 0 0.4 0.4 0

25 0.12 0.18 2.46 17.02 0 0 0 0

49 0.08 0.54 1.16 9.67 0 0 0 0

81 0.06 0.08 0.75 6.13 0 0 0 0

121 0.06 0.08 0.53 4.00 0 0 0 0

−3 9 0.25 0.56 12.48 50.02 5.2 7.2 8 6.8

25 0.08 0.11 3.22 25.40 0.2 1 0.6 0.6

49 0.04 0.07 0.69 16.40 0 0.4 0 0

81 0.03 0.03 0.25 11.58 0 0 0 0

121 0.02 0.03 0.17 8.98 0 0 0 0

−5 9 0.24 0.43 15.32 63.38 9.6 13.2 17 13.2

25 0.07 0.09 4.65 32.94 3.4 5 2 1.6

49 0.04 0.06 0.68 24.41 1.4 1.2 1 0.4

81 0.03 0.03 0.29 18.91 0.4 0.8 0.2 0

121 0.02 0.02 0.18 15.92 0 0.2 0 0

−8 9 0.24 0.38 18.11 73.08 16.6 19 26.2 18

25 0.07 0.11 5.13 40.48 81.8 11 8.8 4.2

49 0.04 0.05 0.93 30.23 5 5.4 4.2 1.2

81 0.03 0.03 0.33 25.71 4.4 4 2 0.2

121 0.02 0.02 0.21 21.19 1.8 2 0.8 0.4

Table 2 Percentage of non-convergence cases, L = 3

α n α̂ML α̂Γ α̂LN α̂LC

−1.5 9 0 0 0.4 2.8

25 0 0 0 0.2

−3 9 13 5.2 7.2 28.4

25 1 0.2 1 11.4

49 0.2 0 0.4 3.8

81 0 0 0 2.4

121 0 0 0 0.2

−5 9 26.8 9.6 13.2 35.2

25 10 3.4 5 28.6

49 3.4 1.4 1.2 18.6

81 0.2 0.4 0.8 15.8

121 0.4 0 0.2 9.6

500 0 0 0 0.6

−8 9 39.6 16.6 19 44.2

25 28.6 9 11 36.4

49 18.4 5 5.4 31.6

81 12 4.4 4 27.2

121 5.8 1.8 2 24.6

500 0 0 0.2 9

Table 3 Mean system time for
uncontaminated data, L = 3 and
n = 81

ML Γ LN LC

0.003 1.87 1.87 0.003

Table 3 shows the mean system time, in seconds, for five
hundred replications for each estimator, considering α = −5
and sample n = 81. Albeit α̂Γ and α̂LN require much more
processing time than the others estimators, the former fail to
converge about half of the times that the last.

4.2 Simulation Results—Pure Cases

Figure 3 shows the bias and mean square error (MSE) for
uncontaminated data, L = 3, and varying sample size. The
results are shown in the semilogarithm scale. The iterations
considered are those where all methods converge.

We also plot the confidence interval of approximately 95%
level for each estimate, using the percentilemethod described
inRef. [9]. Thismethod consists in using the percentile (α/2)
and (1 − α/2) of the distribution of α̂. This method was
evaluated by [9] in the case where the underlying distribution
is exponential, where the symmetry of the distribution fails.
The author shows that this interval has a better performance
than using the normal approximation.

It can be seen that, for a fixed n and as α decreases, both
̂Bias and ̂MSE increase in most methods. It is important to
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(a) (b)

Fig. 3 Sample Bias and MSE with uncontaminated data and L = 3

(a) (b)

Fig. 4 Bias and MSE estimates for uncontaminated data and L = 8

Fig. 5 Sample density of estimators for α = −3 and L = 3

note that α̂ML and α̂LC on the one hand, and α̂Γ and α̂LN on
the other hand, have similar behavior in both bias andMSE in
most cases. This similar behavior can also be observed in the
confidence intervals: α̂ML and α̂LC produce wider intervals
than the other estimators, showing that they are less accurate
than MDE.

For extremely heterogeneous (α > −3) and heteroge-
neous areas (α ∈ (−6,−3]), the MDE estimators have a
better performance than the rest. For moderately heteroge-
neous areas, all methods have similar behavior; however,
MDE has a lower MSE. For homogeneous areas, α̂ML is the
one with the smallest bias, although the MSE is compara-
ble to the MDE estimators except for moderate size samples
where the MSE is the largest.

A similar analysiswas done for the case L = 8. Fig. 4a and
b shows that α̂ML has the best performance for homogeneous
areas in terms of bias, while α̂LN outperforms the rest in
extremely textured areas and with moderate texture.

Figure 5 shows estimates of the density of these estima-
tors for α = −3 and L = 3. As the sample size increase,
the mean of these estimators approaches the true value of
the texture parameter, and their distributions become more
symmetric. Moreover, from n = 49 onward the shape of the
α̂LN distribution is very similar to that of α̂ML.

In order to investigate the asymptotic behavior of these
estimators, we studied estimates of their density functions
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Fig. 6 Sample density of the estimators for n = 500

for n = 500 and all the texture parameters. The result of
this analysis is shown in Fig. 6, where the vertical blue lines
indicate the true value. Notice that the ranges of the y-axis
are different among the plots. The heavytailedness of these
densities is noticeable. For α = −1.5, all are quite con-
centrated around the true parameter value. As the texture
parameter reduces, the densities more spread. This issue has
been previously noted in Refs. [2,14,18,25], among others.

The estimator which suffers the least with the texture reduc-
tion is α̂ML, due to its optimal asymptotic properties.

Table 4 presents the skewness and kurtosis values for
simulated data and L = 3. The skewness is negative in
all the cases, except for α = −1.5 and n = 121, 500
for the α̂LN estimator. As the sample size increases, the
skewness decreases in absolute value. For textured andhomo-
geneous areas α̂ML, α̂Γ and α̂LN present similar asymmetry.
In extremely textured areas, α̂ML and α̂LC are more symmet-
ric than the other estimators. All the estimators present large
values of kurtosis in most cases, showing heavytailedness
and concentration around the mean, especially for extremely
and moderately textured zones.

Table 5 shows the variance of the estimators. It can be
seen the decrease in variance as the sample size increases.
For textured and homogeneous areas, the MDE estimators
present lower variance than the others for all sample sizes.
For n = 500, all variances are comparable except for α̂LC,
which has a larger value. This suggests that the asymptotic
variance of the MDE estimators accompanies that of α̂ML.

According to the study for data without contamination, we
conclude that MDE estimators are competitive against the
other estimators for uncontaminated data, and that they have

Table 4 Skewness and Kurtosis
for simulated data, L = 3

Skewness Kurtosis
α n α̂ML α̂Γ α̂LN α̂LC α̂ML α̂Γ α̂LN α̂LC

−1.5 9 −4.86 −3.75 −6.95 -8.67 42.51 26.45 70.19 98.31

5 −1.49 -1.91 −2.73 −5.03 6.27 8.58 20.79 47.22

49 −0.89 -1.91 −1.07 −2.42 3.80 9.58 5.25 14.47

81 −0.70 −2.23 −0.38 −1.55 3.42 12.21 4.16 7.76

121 −0.64 −3.02 0.31 −1.12 3.60 16.93 6.42 5.55

500 −0.38 −2.21 2.82 −0.51 3.16 8.41 11.47 3.54

−3 9 2.39 −2.36 −3.42 −3.38 10.28 11.25 17.03 15.95

25 −3.07 −4.64 −4.12 −2.99 15.68 37.20 26.88 13.94

49 −3.87 −4.54 −4.34 −3.70 30.93 43.69 31.26 22.17

81 −1.52 −1.84 −1.86 −3.09 6.52 9.81 9.28 15.13

121 −2.33 −1.36 −2.17 −4.09 15.12 6.88 15.10 33.19

500 −0.46 −0.53 −0.53 −1.29 3.29 3.31 3.33 6.21

−5 9 −1.94 −3.45 −2.64 -2.59 7.15 20.84 12.69 9.93

25 −1.69 −3.05 −2.68 −1.93 6.04 18.47 14.18 6.41

49 −1.82 −1.30 −2.99 −1.91 6.56 5.02 18.13 6.51

81 −2.17 −2.51 −2.07 −1.69 10.59 15.00 9.22 5.68

121 −2.21 −2.04 −2.01 −1.93 11.46 10.77 8.57 7.07

500 −0.93 −0.85 −1.10 −2.13 4.69 4.62 5.11 10.37

−8 9 -1.55 −2.68 −2.69 -2.20 4.83 14.01 11.81 8.00

25 −0.96 −2.50 −2.11 −1.67 3.29 13.58 8.68 5.12

49 −1.12 −2.17 −1.92 −1.50 3.63 9.71 7.90 4.65

81 −1.09 −1.82 −1.69 −1.35 3.52 8.34 7.35 4.21

121 −1.17 −1.35 −1.71 −1.26 4.15 5.38 7.07 4.27

500 −1.33 −1.26 −1.52 −1.35 6.21 6.11 7.39 4.50
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Table 5 Variance for simulated data, L = 3

Variance
α n α̂ML α̂Γ α̂LN α̂LC

−1.5 9 0.28 0.34 0.39 1.90

25 0.05 0.07 0.05 0.20

49 0.02 0.03 0.02 0.04

81 0.01 0.02 0.01 0.02

121 0.01 0.02 0.01 0.01

500 0.00 0.05 0.01 0.00

−3 9 5.58 2.21 5.30 8.03

25 5.03 2.46 2.40 5.90

49 1.62 0.85 1.31 3.93

81 0.54 0.39 0.44 3.28

121 0.36 0.23 0.27 1.67

500 0.06 0.05 0.07 0.19

−5 9 10.75 3.78 5.39 12.55

25 10.98 3.47 3.83 11.75

49 9.49 2.31 3.87 10.65

81 5.11 2.32 2.33 10.78

121 2.86 1.55 1.86 8.03

500 0.54 0.41 0.58 3.38

−8 9 16.17 3.65 6.92 11.56

25 13.94 4.50 6.28 15.44

49 15.18 5.05 5.75 13.45

81 13.25 5.32 5.09 15.29

121 10.02 4.50 5.25 12.02

500 3.27 1.95 2.72 10.24

better performance than the rest of the methods in some of
the cases evaluated; this improved performance is noticeable
with the α̂LN estimator.

4.3 Simulation Results—Stylized Samples

Figures 7 and 8 show the SEIFs for L = 3, n = 25 and,
α = −1.5,−3 and α = −5,−8, respectively. The red ticks
marks are the maximum and minimum theoretical quantiles,
i.e., F−1

α,γ ∗,L
(

2/(3n + 1)
)

and F−1
α,γ ∗,L

(

(3n − 4)/(3n + 1)
)

,
respectively. The horizontal line is the true value.

Again, for α = −3,−5,−8, we see a similar behavior
between α̂ML, α̂LC on the one hand, and α̂Γ and α̂LN on
the other hand. In extremely textured areas, α̂LN has the
best performance, while for z values lower than the last
quantile and for the rest of the textures, both α̂Γ and α̂LN

have a better performance compared to the other estimators.
Moreover, α̂ML does not converge for moderately heteroge-
neous and homogeneous zones, while α̂LC does not converge
for homogeneous zones. All estimators behave similarly for
large values of z. This behavior shows the sensitivity and loss
of robustness for α̂ML and α̂LC versus MDEs.

(a) (b)

Fig. 7 SEIF for α̂ML, α̂Γ , α̂LN, α̂LC para L = 3, n = 25 y α =
−1.5,−3

(a) (b)

Fig. 8 SEIF for α̂ML, α̂Γ , α̂LN, α̂LC para L = 3, n = 25 y α = −5,−8

(a) (b)

Fig. 9 SEIF for α̂ML, α̂Γ , α̂LN, α̂LC para L = 8, n = 25 y α =
−1.5,−3

(a) (b)

Fig. 10 SEIF for α̂ML, α̂Γ , α̂LN, α̂LC para L = 8, n = 25 yα = −5,−8

Figures 9a, b and 10a, b show the SEIFS for L = 8 and the
same values of n and α. The performance of the estimators
for this case is similar to that described for L = 3. It should
be mentioned that all methods converge for this case where
there is less presence of speckle noise.
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4.4 Simulation Results—Contamination Data

In the following, we show the performance, throughout the
bias and mean square error, of the estimators under contam-
ination. Figures 11 and 12 present these quantities under
contaminated data for L = 3 and L = 8, respectively. In
this case, we considered ε = 0.05

At this level of contamination, it can be seen more clearly
how the estimators are grouped by performance, α̂ML and
α̂LC have suchlike behavior, while the same happens with
α̂Γ and α̂LN. The difference is noticeable, both in bias and
in MSE, in favor of the MDE estimators for large values of
α. In the majority of the cases studied, the MDE estimators
have shorter intervals than the other estimators. In moder-
ately textured areas, allmethods are comparable, although the
MDE estimators have lowerMSE than the classical ones. For
homogeneous areas α̂ML and α̂LC have lower bias although
greater variability.

Fig. 13 Samples used to estimate α̂

5 Application to Actual Data

We applied the four estimation methods to an actual image
from the surroundings of Munich, Germany, obtained by the
E-SAR system [30] in L band, HH polarization, and inten-
sity format. This image has 300 × 250 pixels and mainly
comprises two different growth areas.

(a) (b)

Fig. 11 Bias and MSE for contaminated data, ε = 0.05 and L = 3

(a) (b)

Fig. 12 Bias and MSE for contaminated data, ε = 0.05 and L = 8
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The original image is single-look. To obtain comparable
multilook data, we computed new pixels averaging the inten-
sity values in 2×2 non-overlappingwindows. This technique
is known as pyramidal processing [1], and the resulting image
is multilook.

The number of looks, defined by E(I )2/Var(I ) in tex-
tureless areas, is not known, but it can be estimated by the
equivalent number of looks (ENL) using uncorrelated data

and the moment estimator ENL = 1/̂CV2, the reciprocal of
the sample coefficient of variation ̂CV = σ̂ /μ̂, where σ̂ is
the sample standard deviation and μ̂ the sample mean. In
order to find the ENL we selected manually four textureless
areas and calculated ENLi for i = 1, . . . , 4. The final ENL
is their average weighted by the size of the areas. We then
set ̂L = 3.21 in the analysis of the multilook image.

We found approximate confidence intervals at the 95%
level with bootstrap and the percentile method [20], using
2000 independent replications. This method uses the per-
centiles θ∗

(α) and θ∗
(1−α) of the distribution of ̂θ generated by

the bootstrap samples, where θ∗
(α) and θ∗

(1−α) are the sample

percentiles of the distribution of ̂θ . According to Efron and
Tibshirani [22], this method is preferable to the standard nor-
mal interval when there is evidence of non-normality. Since
our smallest sample size of interest is n = 9, and the number
of permutations is n! = 362880, we obtained the bootstrap
samples by uniform sampling 2000 permutations.

Figure 13 shows three samples: yellow, red, and blue. The
size of the first two is 16, and the latter has a size 12. The
red sample is a shift from the yellow one in a row of the
image data matrix, and the blue sample is contained within
the yellow sample.

Table 6 shows the estimates obtained with the four meth-
ods in each sample. It can be seen that the estimates differ
considerably in the yellow sample: both α̂ML = −7.21 and
α̂LC = −6.74 are compatible with a homogeneous zone,
while α̂Γ = −4.34 indicates that it is a heterogeneous one,
and α̂LN = −3.23 is on the limit of affirming whether the
area is heterogeneous or extremely heterogeneous.

On the one hand, both α̂ML and α̂LC have substantially
changed the estimations value between the yellow and the
red samples, indicating a different kind of textures. On the
other hand, α̂Γ and α̂LN changed their values, but the type of
zone they describe was not modified.

Table 6 also presents the bootstrap confidence intervals
for each of the cases studied. It is important to mention that
we only considered cases where the algorithm for the search
of the texture parameter estimate converges. The final boot-
strap sample size is indicated with the variable nb and it is
mentioned as effective sample size. It can be observed that
α̂LC and α̂ML methods yielded the smallest effective sample
sizes, and that the most accurate confidence intervals were
achieved by α̂LN. These results suggest that this last method
is the most dependable in terms of algorithm convergence.

Then, based on the results of the simulations obtained
for the SEIF corresponding to Fig. 7(b) and 7(b), that show
the lack of robustness of α̂ML and α̂LC when contaminated
with a small value, we re-estimate this parameter removing
the smallest observation that corresponds to a value 86%
lower than the average. Table 7 shows the estimates after this
censoring.

Again, it can be observed a significant change in the esti-
mated values of the α̂ML and α̂LC, giving now estimates
compatiblewith a homogeneous zone. This shows the robust-

Table 6 Estimates of α̂ML, α̂Γ ,
α̂LN and α̂LC for three samples
from the ESAR image, along
with their bootstrap confidence
intervals and effective bootstrap
sample sizes (nb)

Color n α̂ML α̂Γ α̂LN α̂LC

Yellow 16 −7.21 −4.34 −3.23 −6.74

[−17.4; −2.47] [−11.5; −1.88] [−9.40; −1.64] [−14.5; −1.86]
nb 1392 1894 1926 1250

Red 16 −3.04 −3.42 −2.12 −3.27

[−12.4; −1.72] [−10.3; −1.74] [−4.88; −1.43] [−12.0; −1.60]
nb 1924 1948 1988 1586

Blue 12 −4.62 −3.85 −2.35 −4.52

[−15.5; −1.88] [−11.9; −1.68] [−7.46; −1.44] [−14.4; −1.59]
nb 1615 1879 1968 1376

Table 7 Estimates of α̂ML, α̂Γ ,
α̂LN y α̂LC in the yellow sample
without the smallest
observation, along with their
bootstrap confidence intervals
and effective bootstrap sample
sizes (nb)

α̂ML α̂Γ α̂LN α̂LC

−5.73 −3.97 −3.13 −4.81

[−16.9; −2.21] [−12.0; −1.80] [−10.2; −1.644] [−15.0; −1.70]
nb 1538 1913 1940 1371
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Fig. 14 Five samples used to compare α̂ML, α̂Γ , α̂LN and α̂LC

−20

−15

−10

−5

9 25 49 81 12
1

n

α

Γ LC LN ML

Fig. 15 α̂ML, α̂Γ , α̂LN and α̂LC for corresponding samples to image 14

ness of the stochastic distance estimator against the α̂ML and
α̂LC estimators. The table also presents the bootstrap confi-
dence intervals and the effective sample sizes nb. We observe
the same behavior as before: α̂LN has the largest nb and the
shortest confidence interval.

Table 9 Length of bootstrap confidence intervals shown in Fig. 15

n α̂ML α̂Γ α̂LN α̂LC

9 – 11.86 12.12 –

25 14.74 10.94 10.20 14.14

49 3.94 3.25 2.28 9.65

81 1.38 1.09 1.03 2.75

121 0.85 0.77 0.83 1.31

We performed another analysis of the behavior of the esti-
mation methods with the five samples shown in Figure 14.
We chose nested squared samples of sides n = 9, 25, 49, 81
and 121. Figure 15 shows the estimates α̂ for each method
and each sample as functions of the sample size n.

Table 8 shows the estimates, along with the confidence
intervals and effective bootstrap sample sizes (denoted as nb).
It can be seen that α̂ML and α̂LC have similar performance,
and so have α̂LN and α̂Γ . For n = 9 none of the ML and
LC methods converge, thus the value −20. As the sample
size increases, the estimates stabilize, showing that the LN
method is the most stable while α̂ML and α̂LC are the most
unstable, giving poor estimates for small sample sizes. It can
also be observed that nb is smaller for MC and LC methods
for small sample sizes, suggesting that these techniques are
more prone to numerical instabilities in such cases.

In Table 9, we see the length of the confidence intervals
depicted in Fig. 15. In most cases, the ML and LC pro-
duce wider intervals than those from other methods. All the
widths decrease as the sample size increases; that is, esti-
mates become progressively more precise. It is noteworthy
that the shortest confidence interval corresponds to the LN
method in most cases. It should be noted that there is no

Table 8 Estimates of α̂ML, α̂Γ ,
α̂LN and α̂LC for five nested
samples from the ESAR image,
along with their bootstrap
confidence intervals and
effective bootstrap sample sizes
(nb)

Color n α̂ML α̂Γ α̂LN α̂LC

Yellow 9 −20.00 −7.97 −4.73 −20.00

– [−13.69; −1.83] [−13.74; −1.63] –

nb 857 1642 1740 947

Red 25 −10.31 −5.42 −4.30 −9.81

[−17.75; −3.02] [−13.22; −2.28] [−12.22; −2.02] [−16.30; −2.16]
nb 1332 1900 1957 1159

Blue 49 −3.07 −3.12 −2.44 −3.28

[−6.02; −2.08] [−5.24; −1.98] [−4.01; −1.73] [−11.54; −1.89]
nb 1997 1999 2000 1893

Green 81 −2.24 −2.15 −2.03 −2.45

[−3.20; −1.82] [−2.79; −1.70] [−2.65; −1.63] [−4.46; −1.70]
nb 2000 2000 2000 1997

Magenta 121 −2.04 −1.99 −2.05 −2.13

[−2.58; −1.73] [−2.43; −1.66] [−2.50; −1.67] [−2.99; −1.67]
nb 2000 2000 2000 2000
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Fig. 16 Nested samples with and without a corner reflector

confidence interval for the cases where ML and LC methods
did not converge. It is important to clarify that this analysis
is performed for small samples corresponding to the chosen
windows sizes.

Figure 16 shows the same ESAR image with a corner
reflector in a dark background. We selected nested samples
to estimate α; only the two largest (in yellow and red) include
the corner reflector. Table 10 shows the estimates, the con-
fidence interval, and the effective bootstrap sample size nb.
None of the estimators converge for n = 9. For the rest of
the sample sizes, LN estimator is the most stable. Further-
more, the LN estimator does not show any change between
the green sample and the yellow sample, which contain the
corner reflector. All the other methods showed changes in the
estimation by changing the type of texture from one sample
to another. That is the kind of stability sought for a good
estimator for these kinds of problems of image processing
and understanding. It is important to note that the confidence

intervals are larger than those presented in Table 8, a likely
effect of the corner reflector.

6 Conclusions

This work presented improvements to the MDE estimator
for the texture parameter of the G 0 model for intensity and
multilook data, with respect to the one studied in [28]. We
assessed two asymmetric kernels: Lognormal and Γ , along
with the LSCV method to obtain the bandwidth instead of
using a fixed one empirically chosen. We also implemented
an optimization procedure to find the minimum, maximum,
and the roots of the functions associated with each of the esti-
mators analyzed. We evaluated the kernels in the estimation
of the underlying density function in terms of MISE and the
percentage of non-convergence cases. We show that the IG
kernel, with fixed bandwidth obtained by LSCV, has higher
MISE in all of the studied cases and a higher percentage
of non-convergence cases in most of the instances analyzed
with respect to the one presented by the Γ and Lognormal
kernels. For these reasons, we chose the latter to pursue the
analysis.

A Monte Carlo study allowed us to verify that: a) On the
one hand, the ML and LCmethods have similar behavior; on
the other, the MDE estimators using LN and Γ kernels for
both uncontaminated and contaminated data perform well.
The SEIF function confirms this behavior. b) For uncontam-
inated and textured data, the MDE estimator is competitive
with respect to the ML and LC in terms of bias and MSE.
However, MDE outperforms ML and LC estimators in the
presence of contamination, either using Γ or LN kernels,
with the latter being the most stable. c) The percentage
of non-convergence cases presented by MDE estimators is
significantly larger than ML and LC estimators. d) The com-
putational time of the MDE estimators is significantly larger
than ML and LC estimators.

Table 10 Estimated α̂,
confidence intervals and
effective bootstrap sample size
(nb) in nested boxes

Color n α̂ML α̂Γ α̂LN α̂LC

Green 30 −13.04 −6.82 −7.76 20.00

[18.6; −3.56] [−14.7; −2.56] [−15.4; −2.5] –

nb 1131 1888 1816 1810

Yellow 81 −4.72 −5.09 −7.99 −4.29

[−10.8; −2.97] [−9; −2.82] [−14.4; −3.41] [−13.7; −2.43]
nb 1989 1992 1943 1893

Red 144 −6.94 −8.42 −8.53 −6.79

[−15.3; −4.40] [−13.5; −4.12] [−13.9; −4.12] [−16.6; −3.28]
nb 1956 1992 1943 1667
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MDE, together with the Lognormal kernel, showed the
best performance in the application to actual data, exceeding
ML and LC estimators.

MDE estimators have excellent properties measured by
their bias, mean square error, and the number of cases of
non-convergence. They are competitive with the ML estima-
tors and LC estimators in situations without contamination
and outperform these classical methods in the presence of
small contamination levels. MDE estimators have the best
performance in the presence of a reflector corner.

For these reasons, we conclude that it is advisable to use
α̂T with the LN kernel, especially when using small sam-
ples and/or in the presence of contaminated data. Although
the additional computational cost of this MDE estimator is
not negligible, its advantages are more important than this
increase in processing time.

All studies were made in the R platform and language for
statistical computing [42].
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