Journal of Mathematical Imaging and Vision (2022) 64:968-992
https://doi.org/10.1007/s10851-022-01100-3

®

Check for
updates

Image Reconstruction in Light-Sheet Microscopy: Spatially Varying
Deconvolution and Mixed Noise

Bogdan Toader'3#( . Jérome Boulanger? - Yury Korolev? - Martin O. Lenz'® . James Manton? .
Carola-Bibiane Schonlieb? - Leila Muresan'4>

Received: 8 August 2021 / Accepted: 23 April 2022 / Published online: 14 June 2022
© The Author(s) 2022

Abstract

We study the problem of deconvolution for light-sheet microscopy, where the data is corrupted by spatially varying blur and
a combination of Poisson and Gaussian noise. The spatial variation of the point spread function of a light-sheet microscope is
determined by the interaction between the excitation sheet and the detection objective PSF. We introduce a model of the image
formation process that incorporates this interaction and we formulate a variational model that accounts for the combination
of Poisson and Gaussian noise through a data fidelity term consisting of the infimal convolution of the single noise fidelities,
first introduced in L. Calatroni et al. (STAM J Imaging Sci 10(3):1196-1233, 2017). We establish convergence rates and
a discrepancy principle for the infimal convolution fidelity and the inverse problem is solved by applying the primal-dual
hybrid gradient (PDHG) algorithm in a novel way. Numerical experiments performed on simulated and real data show superior
reconstruction results in comparison with other methods.

Keywords Deconvolution - Light-sheet microscopy - Poisson and Gaussian noise - Primal—dual hybrid gradient - Numerical

methods

1 Introduction

Light-sheet microscopy is a fluorescence microscopy tech-
nique that enables volumetric imaging of biological samples
at high frame rate with better sectioning and lower photo-
toxicity in comparison with other fluorescent techniques.
This is achieved by illuminating a thin slice of the sample
using a sheet of light and detecting the emitted fluores-
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cence from this plane with another objective perpendicular
to the plane of the sheet. A schematic representation of a
light-sheet microscope is shown in Fig. 1. Other microscopy
techniques present certain disadvantages. For example, wide-
field microscopy [1] illuminates the whole sample using a
single objective and achieves only very limited sectioning,
while confocal microscopy [1] allows improved sectioning
by utilising a pinhole to discard out-of-focus light, at the cost
of higher photo-toxicity and reduced frame rate. Light-sheet
microscopy avoids these downsides by only selectively illu-
minating the slice of the sample being imaged. In this way,
less photo-toxicity damage is induced and, therefore, imag-
ing of living samples over a longer period of time is possible.
The combination of lower photo-toxicity, better sectioning
capabilities and faster image acquisition led to light-sheet
microscopy being recognised as “Method of the Year” by
Nature Methods in 2014 [2].

The focus of the present manuscript is on deconvolution
techniques for light-sheet microscopy data. In this context,
deconvolution refers to the computational method of revers-
ing the effect of blurring in the image acquisition process
due to the point spread function (PSF) of the microscope
[3-5]. Specifically, the PSF of an imaging system repre-
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Fig. 1 Schematic of a light-sheet microscope, showing the illumination and the detection directions. The interaction of the light-sheet with the
detection PSF leads to a spatially varying overall PSF and decreasing of the pixel intensities away from the centre in the horizontal direction

sents its response to a point object. In general, knowledge
of the PSF can be modelled mathematically and calibrated
using bead data (samples containing small spheres of known
dimensions), and then used in the formulation of a forward
model of the image formation, which can then be inverted,
for example using optimisation methods, to reconstruct the
original, deblurred object [6].

However, in the case of light-sheet microscopy, simply
knowing or estimating the PSF of the detection objective
is not sufficient, since the overall response of the system
to a point source is also influenced by the excitation light-
sheet used to illuminate the slice. The overall PSF could
be approximated by the detection PSF in the region where
the illumination sheet is focused. However, the detection
PSF becomes more distorted and loses intensity away from
the focus of the excitation light-sheet, an effect illustrated
in Fig. 1, so this approach is not accurate. Therefore, we
address this problem as a case of spatially varying deconvo-
lution [7,8], where the variation of the system’s overall PSF
is determined by the interaction between the detection PSF
and the light-sheet. We note that, in general, the detection
PSF itself can be spatially varying due to optical aberrations
in the sample, a problem that is not specific to light-sheet
microscopy. We do not address this source of variability in
this work, although such a spatially varying detection PSF
could in principle be incorporated in our method.

Two examples of acquired data are shown in Fig. 2. We can
see in both cases the effect of the spatially varying light-sheet:
the image is sharper in the centre and blurry on the sides, with
the amount of blur growing with the horizontal distance from
the centre. In addition, the fluorescence intensity of imaged

beads in Fig. 2a is unevenly distributed despite imaging a
homogeneous sample of beads, with the centre of the image
being brighter than the left and right sides. The aim of our
work is to correct these effects.

1.1 Contribution

We propose a method for deconvolution of 3D light-sheet
microscopy data that takes into account the spatially varying
nature of the PSF and is scalable to the dimensions typical to
biological samples imaged using light-sheet microscopy—
4.86 GB per 3D 16-bit stack of 2048 x 2048 x 580 voxels.

Our approach is based on a new model for image for-
mation that describes the interaction between the light-sheet
and the detection PSF which replicates the physics of the
microscope. Then, we formulate an inverse problem where
the forward operator is given by model of the image forma-
tion process and which takes into account the degradation
of the data by both Gaussian and Poisson noise as an infi-
mal convolution (a concept that will be defined in Sect. 3)
between an L? term and a Kullback—Leibler divergence term,
following [9]. The proposed variational problem is solved
by applying the Primal Dual Hybrid Gradient (PDHG) algo-
rithm [6,10,11] in a novel way. Finally, we exploit the noise
model to automatically tune the balance between the data
fidelity and regularisation resorting to a discrepancy princi-
ple. We obtain convergence rates in a Bregman distance for
the infimal convolution fidelity from [9] under a standard
source condition.

In our numerical experiments, we first show how this
method performs on simulated data, where the ground truth
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(a) 0.5um multi-colour Tetraspeck microspheres (slice)

Fig. 2 Examples of light-sheet microscopy data of dimensions
665.6 um x 665.6 um: beads in a and Marchantia thallus in b. We show
for both samples maximum intensity projections on the x —y plane in the
top row and on the x — z plane in the bottom row, with the bead intensity
shown in log scale for increased contrast. The effect of the light-sheet is
visible along the horizontal direction (the x axis), as the image is sharp
and has higher intensity in the centre, where the sheet is focused, while
the quality of the image decreases away from the centre. The blurring

is known, then we apply our method to two examples of
data from experiments: an image of fluorescent beads and a
sample of Marchantia. In both cases, we see that the decon-
volved images show improved contrast, while outperforming
deconvolution using only the constant detection PSF.

1.2 Related Work

Before describing in more detail our approach to the decon-
volution problem, we give a brief overview of the literature on
spatially varying deconvolution in the context of microscopy
and how our work relates to it.

Purely data-driven approaches estimate a spatially varying
PSFin alow dimensional space (for scalability reasons) using
bead images [7,8,12]. This is usually not application specific
and can be included in a more general blind deconvolution
framework. Similarly, the work in [13] involves writing the
spatially varying PSF as a convex combination of spatially
invariant PSFs. The algorithm alternates between estimat-
ing the image and estimating the PSF. In a similar vein,
the authors of [14] approach the problem of blind decon-
volution by defining the convolution operator using efficient
matrix-vector multiplication operations. This decomposition
is similar to the discrete formulation of our image formation
model. These methods optimise over the (unknown) operator
in addition to the unknown image. Related to these results is
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(b) Membrane labelled Marchantia (maximum intensity projection)

effect of the light-sheet in the z direction is particularly noticeable in the
X — z projections in the bottom row. Another source of blur observed,
especially in the bead image (left) is given by optical aberrations due to
the sample imaging medium. The Marchantia image has been acquired
using samples from Dr. Alessandra Bonfanti and Dr. Sarah Robinson
using the genetic line provided by Prof. Sebastian Schornack and Dr.
Giulia Arsuffi at the Sainsbury Laboratory Cambridge University

[15], where the authors consider the models from [12] and
[14] under the assumption that the blurring operator is known
and given as a sum of weighted spatially invariant operators.
They exploit this structure of the operator and use a Douglas—
Rachford-based splitting to solve the optimisation problem
efficiently. A different data-driven approach is presented in
[16], where a deep artificial neural network is used to learn
the spatially varying PSF from simulated data obtained using
a forward model of the microscope. While these approaches
are more general than our method, we consider that using
the knowledge of the image formation process in the forward
model is advantageous for the reconstruction of light-sheet
microscopy data.

A number of groups consider the problem of recon-
struction from multiple views in the context of light-sheet
microscopy. In [17], the problem of multi-view reconstruc-
tion under a spatially varying blurring operator for 3D
light-sheet data is considered. They divide the image into
small blocks where they perform deconvolution using spa-
tially invariant PSFs estimated from beads (and interpolated
PSFsinregions where there are no beads). In [ 18], the authors
extend the Richardson-Lucy algorithm to the multi-view
reconstruction problem in a Bayesian setting. While it allows
for different PSFs for each view (estimated using beads), this
work does not consider spatial variations of the PSF. While
using data from multiple views improves the quality of the
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reconstruction, these approaches are agnostic to the physics
of the microscope.

The approach taken in [19,20] involves directly measuring
the spatially varying PSF in different regions of the field
of view using an additional hardware module installed with
the microscope, and then deconvolving the image in each
region using the measured PSF. In particular, [20] employs
a sophisticated tiling-based deconvolution method based on
the Richardson—Lucy algorithm and a formulation similar to
a convolutional neural network in order to avoid artefacts
usually caused by stitching tiles deconvolved with different
PSFs.

Taking an approach similar in spirit to ours, the authors
of [21] model the effective PSF of a light-sheet micro-
scope, which is then plugged into a regularised version of
the Richardson—Lucy algorithm for deconvolution. However,
while they model the detection PSF and the light-sheet sep-
arately, they assume the effective PSF of the microscope
is spatially invariant and the point-wise product of the two
PSFs. In contrast, we do not take this simplifying step in our
modelling, as we consider that the relationship between the
two PSFs plays in important role in the resulting blur of the
image.

The work of Guo et al. [22] uses a modified Richardson—
Lucy algorithm implemented on GPU to improve the speed
of convergence, further improved by the use of a deep neural
network, which is a promising approach.

Moreover, in [23] the authors introduce an image for-
mation model similar to the one described in the present
manuscript. However, the regions of the resulting PSF where
the light-sheet is out of focus are discarded, hence approx-
imating the overall PSF with a constant PSF and then
performing deconvolution using the ADMM algorithm. In
Cueva et al. [24], a mathematical model which takes into
account image fusion with two-sided illumination is derived
from first principles. However, it is restricted to 2D and they
do not apply the method to real data.

Lastly, regarding the mixed Gaussian—Poisson noise
fidelity, our method follows the infimal convolution varia-
tional approach described in [9], with the additional light-
sheet blurring operator. The same inverse problem, without
the blurring operator, is solved in [25] albeit using an ADMM
algorithm for the minimisation.

1.3 Paper Structure

The paper is organised as follows. In Sect. 2, we introduce
a mathematical model of the image formation process in a
light-sheet microscope. This model describes how the sam-
ple is blurred by the excitation illumination together with the
detection objective PSF. Optical aberrations of the system are
modelled using Zernike polynomials in the detection PSF,
which we discuss in Sect. 2.3. In Sect. 3, we define the math-

ematical setting for the deconvolution problem and we state
an inverse problem using a data fidelity as an infimal convo-
lution of the individual Gaussian and Poisson data fidelities.
We discuss convergence rates and a discrepancy principle for
choosing the regularisation parameter in Sect. 2.1. In Sect. 4,
we describe how PDHG is applied to this inverse problem,
with details of the implementation of the proximal opera-
tor and the convex conjugate of the joint Kullback-Leibler
divergence. Finally, we validate our method with numeri-
cal experiments both with simulated and real data in Sect. 5,
before concluding and giving a few directions for future work
in Sect. 6.

2 Forward Model

The first contribution of the current work is a model of
the image formation process in light-sheet microscopy. By
modelling the excitation light-sheet and the detection PSF
separately and their interaction in a way that replicates the
physics of the microscope, we are able to accurately sim-
ulate the spatially varying PSF of the imaging system. We
then incorporate this knowledge as the forward model in an
inverse problem, which we solve to remove the noise and blur
in light-sheet microscopy data. In this section, we describe
the image formation process and the PSF model.

2.1 Image Formation Model

A light-sheet propagated along the x direction is focused by
the excitation objective at an axial position z = zg and the
local light-sheet intensity [/ is modelled by the incoherent
point spread function (PSF) of the excitation objective. The
sample with local density of fluorophores u emits photons
proportionally to the local intensity / of the light-sheet. These
photons are then collected by a detection objective, whose
action on the illuminated sample is modelled as a convolution
with its PSF . For clarity, see Fig. 3 for the directions of the
axes. Finally, the sensor conjugated with the image plane
2o collects photons and converts them to digital values for
storage. Consequently, the recorded image is corrupted by a
combination of Gaussian and Poisson noise. We can see here
again how the local variation of the light-sheet will result
in a spatially varying blur and spatially varying illumination
intensity in the captured image. This process is then repeated
for each z( to obtain the measured data f.

More specifically, we model u, f, [ and h as functions
defined on  C R3, a rectangular domain of dimensions

Q x @y x Q (inpm) with @ = [— %, L] [~ Dy

[—%, %] For the sample u, the light-sheet / and the detec-
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Fig. 3 Coordinate axes showing the light-sheet beam direction along
the x axis and the detection direction along the z axis

tion objective PSF £, the measured data f is given by:

fx,y,2) = /// u(s,t,w — I, t,whkx —s,y

—t, —w)dsdtdw. 2.1

The detection PSF 4 is given by

h(x,y,z)

iz [ (/)2 —k2—K2 2ix(is
= ‘// 8o * pz(kx, Kky)e SR A ezm(x*x_'—'()'y)dlcxdicy‘

(2.2)

2

and the light-sheet [ is the y-averaged beam PSF /pe,:

lpeam (X, y, 2)

. 9 2
N ‘// policz, rey)e™ ™V O ’”fe”"(“ﬂ“»‘y)d/czdxy’ ,

(2.3)

where n is the refractive index, Aj, A; are the wave lengths
corresponding to the detection objective and light-sheet
beam, respectively, and g, represents Gaussian blur. Lastly,
pz(kx, ky) and po(kz, ky) are the pupil functions for the
detection PSF and the light-sheet beam, respectively, both
given by:

e¥m¢ for /x2 4 y2 < NA; /A,

] 2.4)
0 otherwise,

p(ﬁ('xv y) =

for their respective wave lengths, A; = A, or A; = A;, and
numerical apertures, NA; = NAj, or NA; = NA;, where the
phase for the light-sheet pupil pg is equal to zero and the
phase for the detection PSF pupil pz is an approximation of
the optical aberrations written as an expansion in a Zernike
polynomial basis. The Gaussian blur g, in (2.2) is a technical
detail that enables better fitting of the detection PSF 4 to the

@ Springer

optical aberrations seen in bead data, an idea introduced in
[26]. More details about the pupil functions and the aberration
fitting using Zernike polynomials and the Gaussian blur g,
will be given in Sect. 2.3. In general, the NA of the excitation
sheet is much lower than the NA of the detection lens. We
note that the overall process is not translation invariant and
cannot be modelled by a convolution operator.

Note that both the detection PSF 4 and the light-sheet PSF
have a similar formulation derived from:

PSF(x, y, 2)

2
2imz, [(n/hi)2—Kk2—k2 ;i ,
_ ‘// ks, ky)e iz, [(n/Ai)*—Ki—k; e2tﬂ(KXX+K)r})dede

)

2.5)

which includes the pupil function for modelling aberrations
and a defocus term before taking the Fourier transform (see,
for example [27,28]). In addition, the actual light-sheet which
illuminates a slice of the sample is obtained by rapid scanning
of the illumination beam, which we model by y-averaging
the illumination PSF lp.4, given in (2.3) and repeating it in
the y direction for the full length of the sample.

In practice, the image formation process modelled by (2.1)
is discretised at the point of recording by the camera sensor
in the xy plane and by the step size of the light-sheet in the
z direction. If the camera has a resolution of N, x N, pixels
and the light-sheet illuminates the sample at N, distinct steps,
the model (2.1) becomes:

fi,j,k— XX:ZZZ’A’W‘“ J k' — kht =i’ j—j' ks (2.6)

/1]/]=

foralli = 1,. Nx,]_l Ny,k_l

a normahsatlon constant C, where i, f.l,he RNX
are the discretised versions of u, f, [, h, respectively. Simi-
larly, the sampling performed by the camera sensor leads to a
discretisation of the Fourier space and the use of the discrete
Fourier transform in the PSF and light-sheet models (2.2) and
(2.3). Lastly, in our implementation we normalise h so that

, N, and
X Ny x N

Ny N, 7 . .
ZINZ"I > j=1 2k=1 hi.jk = 1 and choose the normalisation
constant C so that the norm of the resulting operator is equal
to one.

2.2 Derivation of the Model

Let [, u, h be defined as in Sect. 2.1, with & and [ centred at
the origin and / translation invariant in the y direction and
symmetric around the yz plane. For a fixed z¢ € [—%, %],
we take the following steps, which replicate the inner work-
ings of a light-sheet microscope:
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1. Image the sample at z = zp: centre the sample u at zp and
multiply the result with the light-sheet /:

F(x,y,z;20) =u(x,y,z—2z0) - l(x,y,2), 2.7

2. Convolve with the objective PSF h:

C(x,y,z;z0)
= F(x,y,z;20) * h(x,y,2)

= /// F(s,t,w; zo)h(x —s,y —t,z — w)dsdtdw,
(2.8)

3. Sliceatz = 0:

fx,y,20) =[C(x,y,2;520)],—0 (2.9)

which leads to:

fx,y,20) = /// u(s, t,w —zo)l(s, t,wyh(x — s,y

—t, —w)dsdrdw. (2.10)

This is the same as model (2.1), where we substitute z for zg.
Note that, if there are no aberrations in % or other sources of
asymmetry in the z direction, we could simply write h(x —
s,y —t, w) instead.

For a discretisation of the domain using a 3D grid with
Ny x Ny pixels and N, light-sheet steps, the forward model
can be computed by following the three steps above for each
k =1,..., N;, where we perform the convolutions using
the fast Fourier transform (FFT), resulting in a number of
O(N« N, Nz2 log(Nx Ny N;)) operations.

Alternatively, we can rewrite the last integral above as:

f(x,y,zo>=/K<x,y, w)*h(r,y, —wydw,  (2.11)
where
K(xvy’w)=l(x,y,w)u(xay,w—20), (212)

and the convolution in (2.11) is a 2D convolution in (x, y):

Kx,y,w)*h(x,y, —w)

= // K(s,t,whx —s,y —t, —w)dsdt. (2.13)

In terms of numbers of FFTs performed on a discretised
Ny x Ny x N, grid, this alternative formulation requires
O(N, Nysz log(N,Ny)) operations.

2.3 Point Spread Function Model

While both the light-sheet profile and the detection PSF are
based on the same model of a defocused system (2.5) intro-
duced in [27], note that our definition of % in (2.2) includes
an additional convolution operation with a Gaussian g, and
a pupil function pz with a nonzero phase. Let us turn to why
this is the case.

It is well known that optical aberrations hamper results
based on deconvolution with theoretical PSFs. In light-sheet
microscopy, the effect of aberrations is more visible away
from the centre, as shown for example in the bead image in
Fig. 2, or in the more detailed example beads in Fig. 4. It
is, therefore, required that we model the (spatially invariant)
aberrations of the detection lens.

The general PSF model (2.5), with the phase of the pupil
function equal to zero, does not take optical aberrations into
account and therefore it is not an accurate representation of
the objective PSF h. For example, a PSF calculated using
(2.5) with zero phase of the pupil and the parameters of the
detection objective, shown in Fig. 5, does not resemble the
actual bead images in the data in Fig. 4.

There has been extensive work on the problem of phase
reconstruction in the literature [26,29,30], but here we take
a more straightforward approach using Zernike polynomi-
als to include aberrations in the PSF [31], as follows. Let
h, be the objective PSF calculated using (2.5) with Zernike
polynomials in the phase of the pupil function:

hy(x,y,7;¢)

2imz [ (n/hp)2—k2—k2 9;
= ‘/f pZ(Kme;C)e 2,/ (n/Ap)* =k )EZtrr(Kxxﬁ—Kvy)dede i

(2.14)

2

where p;(ky, ky; ¢) is the pupil function with Nz Zernike
polynomials in the phase:

Pz(Kx, ky; ©)

. N
A EAaien) o fi2 g < NA/Apy 15

0, otherwise,
andc = [cq, ..., cNZ]T are coefficients corresponding to the
polynomials for some integer Nz > 0.

Moreover, let /1,5, be the blurred PSF obtained by convolv-
ing h, with a Gaussian g, with width o':

hep(x,y,2¢,0) = hz(x,y,2;¢) * g5 (2.16)

This allows us to obtain a better approximation of the objec-
tive PSF [26]. The parameters ¢ and o are calculated by
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(a) Central bead, with minimal aberration
(maximum intensity projections)

(b) Peripheral bead, with strong aberration
(maximum intensity projections)

(c) Light sheet profile
(slice showing an x — z plane)

Fig.4 Examples of beads and light-sheet profile. The bead in a is cropped from the centre of Fig. 2a and the bead in b is cropped from the right-hand
side of Fig. 2a. The maximum intensity projections are taken in the x — y plane (top left), the z — y plane (top right) and the x — z plane (bottom

left)

Fig.5 Objective PSFused in our model, with no aberrations (maximum
intensity projections taken in the same way as in Fig. 4)

solving the least-squares problem

min ||z (c, o) % b — hpeaall3 @17

subjectto ¢ € [-Bz, Bz1", 0 > 0, (2.18)
for some Bz > 0, where /.44 is a bead image containing the
aberrations that one wants to capture in the fitted detection
PSF (for example the bead in Fig. 4b) and b is equal to one
inside the sphere of the radius equal to the radius of the bead
(a parameter that is provided) and zero outside the sphere.
This takes into account the non-negligible size of the beads
used to generate the data.

In the implementation of the fitting procedure, we nor-
malise both the bead image /pe,q and the simulated PSF /4,
by their maximum values before calculating their error, and

@ Springer

we include two additional parameters, scaling and shift, to
ensure a better fit of the intensity values (not shown here for
simplicity of the presentation).

The best choice of the number of Zernike polynomial
basis elements Nz and the boundary Bz of the coefficients
¢ depend on the data hp.,y and how well the fit is required to
be in the deconvolution step. In general, at least the first 15
Zernike polynomials are needed to capture the main optical
aberrations such as spherical and astigmatism. In our experi-
ments, for the bead shown in Fig. 4b, we found that Nz = 15
and B = 3 are an appropriate choice. The Zernike polyno-
mials used and their resulting corresponding coefficients are
shown in Table 1 and in Fig. 6. The resulting PSF is the
detection PSF model (2.2) and is shown in Fig. 7.

Finally, we note that a more thorough approach to choos-
ing the Zernike basis is possible, by using multiple bead
images for fitting the Zernike coefficients and comparing
the quality of the fit for different values of Nz and Byz.
Alternatively, one could average multiple beads and perform
the fitting procedure described above on the averaged bead.
In both cases, it is worth mentioning that, since the optical
aberrations vary within the sample image, we would only
be able to fit the general shape of the PSF rather than the
sharper features present in each bead, effectively fitting the
low frequency information in the beads. In the end, this would
achieve a similar effect to the Gaussian blur g, that we use in
the fitting process. Moreover, one can employ more advanced
techniques such as the ones described in [26,29,30] for esti-
mating the pupil function, which can be plugged in to our
image formation model. However, such an analysis focused
on the pupil function is beyond the scope of the present work.
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Table 1 The first 15 Zernike Polynomials (in polar coordinates) and
their coefficients used in /.

Z; Polynomial cj

Zi 0 cos 6 —0.7763
Z> psind —0.0460
Z3 202 —1 —2.3608
Z4 p2 cos 26 —1.3001
Zs 02 sin 26 0.2024
Zs (3p% —2)pcosb —0.3999
Z7 (Bp? —2)psinb 0.0348
Z3 6p* —6p% +1 —1.2112
Zo p3 cos 360 —0.1521
Z1o p3 sin 36 —0.0466
Zu (4p? —3)p? cos 26 —0.0930
Zi (4p2 —3)p?sin 26 0.0427
Z13 (10p* = 1202 + 3)pcosd —0.0117
Z1a (10p* — 12p% + 3)p sin O —0.0581
Zis 2000 —30p* + 120 — 1 —0.0633

Zs Z7
Zio Zy
Zi4 Zis
Fig.6 The Zernike polynomials used in the PSF /, with image range
(-1, 1]

Zi3

2.4 Convolution with Spatially Varying Kernel

Having introduced the image formation model for a light-
sheet microscope (2.1) as well as the models for the indi-
vidual PSFs, it is worth expanding on the source of spatial
variability that we tackle in this work.

First, note that with a change of variable w — w + z, we
can rewrite the model (2.1) as:

fx,y,2) = /// u(s, t,w)l(s,t,w+z2)h(x —s,y —t,
—w — z)dsdrdw,

so f(x, y, z)isthe convolution of u(x, y, z) with the spatially
varying kernel h(x, y, z; s, t, w):

fx,y,2) = ///u(s,t, w)h(x,y,z; 5, t, w)dsdrdw,

(2.19)
where
fz(x, v, z; 8, t,w) =I(s,t,w+2)h(x —s,y—t,—w —2)
(2.20)
gives the expression of a kernel Z(x, y, z; -, -, -) which varies

with its centre (x, y, 7).

Therefore, the model presented in this section describes
the spatial variation of the overall PSF of the system h,asa
consequence of the interaction between the light-sheet beam
PSF [ and the detection PSF /. We highlight that / and & are
not themselves spatially varying. By the process described
in Sect. 2.2, this interaction (and spatial variability) is mod-
elled explicitly. This is in contrast to approaches such as [16],
where the spatial variability of the PSF is learned from the
data and encoded in the black-box mechanism of an artificial
neural network.

In practice, a second source of spatial variability of the
PSF may be the detection PSF £, due to the optical aberra-
tions that can vary within the sample image. As described in
Sect. 2.3, in this work we do not account for this potential
spatial variability of &, and we fit one pupil function to the
bead data.

3 Inverse Problem
3.1 Problem Statement

In this section we formally state the inverse problem of
deblurring a light-sheet microscopy image. Let @ C R be a
bounded Lipschitz domain and let L: L”(Q2) — L2(Q) be
the forward operator defined by (2.1). Here 1 < p < 3/2is
chosen such that the embedding of the BV space is compact
[32]. Clearly, L is linear.

We consider the following inverse problem

Lu=f, (3.1
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(b) Fitted PSF h_, no blur (maximum intensity
projections)

(a) Bead image data (maximum intensity
projections)

(¢) Fitted PSF h with Gaussian blur
(maximum intensity projections)

Fig.7 Fitted PSF using Zernike polynomials. In panel ¢, we can see the benefits of using the Gaussian blur g, in obtaining an accurate approximation

of the bead in a

where f € L%(Q) is the exact (noise-free) data. As out-
lined in Sect. 2.1, the measurements in light microscopy are
corrupted by a combination of Poisson and Gaussian noise.
More precisely, the measurement is given by f = v 4+ w,
where v ~ Pois( f ) is a Poisson distributed random variable
with mean f and w represents additive zero-mean Gaus-
sian noise. We do not model Gaussian noise statistically and
instead, in the spirit of (deterministic) variational regulari-
sation, assume that w € L?() is a fixed perturbation with
IIwIILz(Q) < o for some known o > 0. Poisson noise is
typically modelled using the Kullback—Leibler divergence as
the data fidelity term [33,34].

Let us give a brief justification of the inverse problem for-
mulation described in this section [9,35], from a Bayesian

perspective. First, by using the Poisson and Gaussian prob-
(Lu)ve—(Lu)

ability density functions, we have that p(viu) = o

—v

2
1
1) ,
and p(flv) = N G/, and from Bayes’ theorem
and conditional probability:

o vl ) = PEWPCIOP@). 32
p(f)
where we used that p(f|u,v) = p(f|v). Moreover, we

assume that the prior is a Gibbs distribution p(u) = e~ ®)
for a convex functional 7 (1), which we will introduce later.
To obtain a maximum a posteriori estimation of u and v (i.e.
maximise the posterior distribution p(u, v|f)), we take the
minimum of the negative log of (3.2) and, after discarding the
denominator p( f) and using the Stirling approximation for
the factorial log v! = vlog v — v, we obtain the minimisation
problem:

1 v
arg min,, ,, aj(u)+—2||f—v||2+v log —+Lu—v, (3.3)
’ 20, Lu

@ Springer

where the first term is the regularisation term and the remain-
ing terms form the data fidelity term.

We will now describe the formal mathematical setting for
(3.3) in the context of variational regularisation. This will
allow us to show well-posedness of the model, establish con-
vergence rates of the solution with respect to the noise in the
measurements and to introduce a discrepancy principle for
choosing the value of the regularisation parameter «.

First, note that in (3.3), we can perform the minimisation
over v only on the data fidelity part of the objective, which
can be written as an infimal convolution of the two separate
Gaussian and Poisson fidelities. The infimal convolution of
two functionals ¢, ¢» on L2 is defined as':

(p10e2) (f) = (3.4)

v

inf {g1(f = v) +p(v)},
eL2(Q)

for f € L2(). Therefore, we define the following data
fidelity term, as proposed in [9]:

inf
velZ (Q)

_ 1 _
o(f. f) = {5 If = vlI; + Dre(v, f)} NGE)

for f € L2(R2) and f € L (), where L}*(Q) denotes
the positive cone in L1"2() (that is, functions f € L2(Q)
such that f > 0 a.e.) and D, denotes the Kullback—Leibler

! There is a geometric interpretation of the infimal convolution.
Given two functions ¢, ¢ on €2, the epigraph (the set of all points
lying on or above the graph of a function) of their infimal convo-
lution ¢;CJg, is the sum of the epigraphs of ¢ and ¢,. This can
be easily seen if we rewrite the definition (3.4) as (¢10p2)(f) =
inf {p1 () + @2(V)|u, v € Q,u+v=f}
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divergence, which we define as follows

I (f(x) — v(x) + v(x) log %) dx,

ifv, f>0A [qudx = [, fdx =1,

+o00,
Jo vx)(logv(x) — log f(x))dx,

=1 ifv, f>0A [qudx = [, fdx =1,

+OO,

Dk (v, f) =

otherwise,

(3.6)

otherwise.

We note that |fQ v(x) log v(x)dx| < oo forv € L2, since L2
is continuously embedded into the Orlicz space LlogL of
functions of finite entropy [36,37]

LlogL(£2)
={f e LYQ): /Qlf(X)I(IOng(X)I)erx < 00},(3.7)

where (-)4+ = max{-, 0} denotes the positive part.
A proof of the following result can be found in [9], but we
provide it here for readers’ convenience.

Proposition 3.1 (Exactness of the infimal convolution) For
any f € Ll+ such that fQ fdx = 1, there exists a unique
solution v* = v*(f) of (3.5), that is, the infimal convolution
is exact. Moreover, the functional ®(f,-): L> — R, U
{400} is proper, convex and lower semicontinuous.

Proof Fix f € L} such that [, fdx = 1. Then, (3.5) is the
infimal convolution of the following two functionals on L2

¢(8) = x12 (8) + Dxr(g. f).

1 2 2
Vg =5 ligliz. gL,

where x denotes the characteristic function. The function ¢
is proper, convex, non-negative and lower semicontinuous,
while  is proper, convex, lower semicontinuous and coer-
cive. Therefore, by [38, Prop. 12.14], the infimal convolution
is exact and is itself a proper, convex and lower semicontin-
uous function. Uniqueness follows from strict convexity of

Y. ]

Now we turn our attention to the lower semicontinuity of
the functional ® (-, f) in its first argument.

Proposition 3.2 (Lower semicontinuity) Forany f € Li(Q)
such that fQ fdx = 1 the functional ®(-, f): LY(Q) —
R4 U {400} is lower semicontinuous.

Proof We have

(g, f)=inf

1
{— If = vl + DKLw,g)}
vel2(@) 2

1

b If—v*g ”iz + D (v(g), 8)
1

P e

+ [ o) og ) = og o + e
where ¢ € L'(Q), v*(g) is as defined in Proposition 3.1
and C ;= {g € LL(Q): fQ gdx = 1}. The characteristic

function is lower semicontinuous because C is closed in L!
and the rest is lower semicontinuous by [9, Thm. 4.1]. O

The following fact is easily established.

Proposition 3.3 The operator L: LP () — L1(Q) defined
in (2.1) is continuous for any p > 1. Moreover, ifl and h are
non-negative and have overlapping support:

supp(!) N supp(h) # &,

then 1 ¢ N (L), where 1 is the constant one function and
N (L) is the null space of L.

Proof By (2.1), we have

Lu(x,y,z)

:/I(Sat’w)h(x_Svy_tvw)u(svtaw_Z)d/”LSl‘U)a
Q

where dugsy = dsdrdw. Noting that the light-sheet PSF
! and detection PSF h are bounded from above by some
C1, Cy > 0, we have that:

Ll

.
-,

(x—s,y—t,w + 2u(s, t, w)dugy

/l(s,t,w)h(x—s,y—t,w)u(s,t,w—z)duszw dftxy;
Q

/ I(s,t,w + 2)h
Q

deyz
(byw =w —z)

= CICZf ‘/ u(s,t, w/)d:ustw’
QIJQ

=C1C2 || ‘/ u(s,t, w/)d,u.vtw’
Q

dlbcyz

=C lullLr .
where in the last inequality we applied Holder’s inequality
and C(p) is a constant that depends on p (as well as C; » and

2). Hence, we obtain the first claim.
For the second claim, we observe that

L1(x,y,z) = / I(s,t,w)h(x —s,y —t, w)digy > 0.
Q
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Consider TV-minimising solution is positive, i.e. ”¥v > (0 a.e. Due to

/ L1(x,y, Z)dﬂxyz
Q
= / / I(s,t,w)h(x —s,y —t, wW)dgwdibiys
QJa

and let By, C supp! N supp k. Then, since both / and & are
non-negative on €2, from the last equality above we have that:

/Q L1Gx, v, D)djiny. = / I, v, D, v, Ddjinye > O,
B

which proves the second claim. O

Remark 3.1 Our setting with the measured data f € L2(Q)
differs slightly from [9], where f € L°°(£2) was assumed.

We will consider the following variational regularisation
problem

min  ®(f, Lu) +aJ (1),
uell (Q)

(3.8)
where @ is the infimal convolution fidelity as defined in (3.5),
J: LP — Ry U {400} is a regularisation functional, o €
R+ is a regularisation parameter and 1 < p < 3/2. Without
loss of generality, we assume that fQ fdx = 1.

As the regulariser 7, we choose the total variation [39]

Jw)=TV() = sup
£€CS(Q,RY)

lElloo=<1

/ u div(€)dx.
Q

By the Rellich—Kondrachov theorem, the space

BV(Q) :={u e LY(Q): TV(u) < oo},
lullgy := llull 1 +TV(w),
is compactly embedded into L?(2) for 1 < p < 3/2 and

continuously embedded into L3/?(£2) since 2 C R>. There-
fore, we consider TV: L? — R U {400}

sup  [qudiv(§)dx, u € BV(Q),
00 3
V@ = |G
o0, i€ LP(Q)\BV(Q).

We will denote by u?v the TV-minimising solution of
(3.1), i.e. a solution that satisfies

Luty = f and TV(uly) < TV(u) forall u s.t. Lu = f.

The existence of such solution is obtained by standard argu-
ments [40]. We will make the reasonable assumption that the

@ Springer

the positivity of the kernels involved in (2.1), it is clear that
ujfv > 0 implies Lujrv =f=>0.

Since by Proposition 3.1 the infimal convolution (3.5) is
exact, we can equivalently rewrite (3.8) as follows

1
min = || f = vl + Dg(v. Lu) + o J ().
uel? (@) 2

velZ (Q)

(3.9)

Existence of minimisers in (3.8) and (3.9) is obtained by
standard arguments [9, Thm. 4.1].

Proposition 3.4 Each of the optimisation problems (3.8) and
(3.9) admits a unique minimiser.

We will also need the following coercivity result.

Proposition 3.5 The functional ®(f,-): L'(Q) — R, U
{400} is strongly coercive with exponent 2, i.e. there exists
a constant C > 0 such that

O(f,8)=Clig— [}, gL' (.

Proof Using Pinsker’s inequality for the Kullback-Leibler
divergence, we get

. 1

®(f, g) = inf ~llv—fI7?, + Dxr(v, g)
veLi 2

. 1 2 2

z inf, 2o = fl2 +llg — vl

=2C inf [lv— I +llg — vl
vely

for some C > 0. Note that Pinsker’s inequality assumes that
f,g& > 0andinfgy fdx = fQ gdx = 1, which we ensure by
definition in (3.6).

Now, using the inequality %(a +b)? < a? + b? that holds
for all a, b € R and the triangle inequality, we obtain the
claim

(f, ) =C inf (llv— flpr +llg - vIILl)2

2
vely

. 2
= C inf flv—f+g—vl

veLy

=Clg—fIIF:.

3.2 Convergence Rates

Our aim in this section is to establish convergence rates
of minimisers of (3.8) as the amount of noise in the data
decreases. But first we need to specify what we mean by the
amount of noise in our setting.
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We argue as follows. Since the noise in the measure-
ment is generated sequentially, i.e. photo-electrons are first
counted by the sensor leading to a Poisson noise and later
they are collected by the electronic circuit generating an
additive Gaussian noise, for any exact data f there exists
7 ~ Pois(f) such that Dg;(Z, f) < y, where y > 0
depends on the exposure time 7 and vanishes as t — 00
[33]. Further, there exists w € L?(Q) with |wll> < og
such that f = z + w. Since z > 0 is feasible in (3.5), we get
the following upper bound on the fidelity term (3.5) evaluated
at the measurement f and the exact data f

_ 1 _
®(f. ) = 5 If =27 + Dre . f)

1 o
= 5 Wl + Dre G, f)

2

[0}
7‘; +y. (3.10)

IA

The standard tool for establishing convergence rates are
Bregman distances associated with the regulariser 7. We
briefly recall the necessary definitions.

Definition 3.1 Let X be a Banach space and 7 : X — Ry U
{400} a proper convex functional. The generalised Bregman
distance between x, y € X corresponding to the subgradient
q € 37 (y) is defined as follows

Df’7(x,y) =J@) =T — (g, x—y).

Here 0.7 (v) denotes the subdifferential of 7 at y € X. If,
in addition, p € 9.7 (x), the symmetric Bregman distance
between x, y € X corresponding to the subgradients p, g is
defined as follows

D7 (x,y) :=D%(x, ) + D (y,x) = (p —q,x — y).

To obtain convergence rates, an additional assumption
on the regularity of the TV-minimising solution, called
the source condition, needs to be made. We use the following
variant [41].

Assumption 3.1 (Source condition) There exists an element
u' e L®() such that

g =L"u' e 8J(u¥v).

3.2.1 Parameter Choice Rules

Let us summarise what we know about the fidelity function
® as defined in (3.5), the regularisation functional TV and

the forward operator L:

— ®(f, ) is proper, convex and coercive (Proposition 3.5)
in L'(Q);

— @, -) is jointly convex [42] and lower semicontinuous
(Propositions 3.1 and 3.2);

- ®(f,g)=0ifandonlyif f = g;

- TV: LI(Q) — R U {+o00} is proper, convex and lower
semicontinuous [32] and its null space is given by
N(TV) = span{l1}, where 1 denotes the constant one
function;

— TV is coercive on the complement of its null space in
L'(e) [32;

- L: LP(Q) — LYQ) is continuous and N (TV) N
N (L) = {0} (Proposition 3.3).

Using these facts and slightly modifying the proofs from
[43], we obtain the following

Theorem 3.2 (Convergence rates under a priori parameter
choice rules) Let assumptions made in Sect. 3.1 hold and let
the source condition (Theorem 3.1) be satisfied at the TV-
minimising solution ujl;\,. Let ug,y be asolution of (3.8) and
let o be chosen such that

a(og,y) = 0(oG + /7).

Then,

.
DLy (ttog.y» ) = O(06 + /7),

where " = L*u" is the subgradient from Theorem 3.1 and
oG,y > 0are as defined in (3.10).

Proof The proof is similar to [43, Thm. 3.9]. O

In a similar manner, we can obtain convergence rates for an
a posteriori parameter choice rule known as the discrepancy
principle [44-46]. Let f be the noisy data and § > O the
amount of noise such that @ ( f , ) < §,where ®isasdefined

2

in (3.5). In our case, § = GTG + y by (3.10). The discrepancy
principle amounts to selecting « = «/(f, §) such that
pga = sup{a > 0: ®(Lu®, f) < 6}, (3.11)
where u® is the regularised solution corresponding to the
regularisation parameter « and t > 1 is a parameter.

Again, slightly modifying the proofs from [43], we obtain
the following

Theorem 3.3 (Convergence rates under the discrepancy prin-
ciple) Let assumptions made in Sect. 3.1 hold and let the
source condition (Theorem 3.1) be satisfied at the TV-
minimising solution u%v. Let usg,, be a solution of (3.8)
with a chosen according to the discrepancy principle (3.11).
Then,

.
Dl (o y» i) = 006 + /7),
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where " = L*u' is the subgradient from Theorem 3.1 and
oG,y > 0are as defined in (3.10).

Proof The proof is similar to [43, Thm. 4.10]. O

4 Solving the Minimisation Problem

4.1 PDHG for Infimal Convolution Model

In practice, due to the joint convexity of the Kullback—
Leibler divergence, we solve the minimisation problem (3.9),
where we treat the reconstructed sample # and the Gaussian
denoised image v jointly and, in addition, we impose lower
and upper bound constraints on u and v by including the
corresponding characteristic functions in the objective:

) 1
minae TV(u) + — || f — v3 + Dir(v, Lu)
u,v 20-G

+ X1y ey ([, 011, “.1)
Note that the objective function in (4.1) is a sum of convex
functions (the Kullback-Leibler divergence Dky is jointly
convex [47]), and therefore is itself convex. We then write
the problem (4.1) as:

min G(w) + ) Hi(Liw),

4.2)
i=1
where we solve for w = [z], m = 3 and:
u
G(w) = 11 1 ([v]) (43)
Hi () = ! I-— 7l Ly =[01] 4.4
1 - 2(}’(2; 2 1= ) .
LO
Hy(w) = Dgr(v, u), Ly = [0 1} , 4.5)
VvV, 0
H3() =al-ll, Ly=|V,0[, (4.6)
V.0

where L is the forward operator corresponding to the image
formation model from Sect. 2.1.

Rather than solving the problem (4.2) directly, a com-
mon approach is to reformulate it as a saddle point problem
using the Fenchel conjugate G*(y) = sup,(z,y) — G(2).
For proper, convex and lower semicontinuous function G,
we have that G** = G, so (4.2) can be written as the saddle

@ Springer

point problem

m
min sup G(w)+ (v Lix) — H} (),
Viyeeos Ym i=1

4.7)

and by swapping the min and the sup and applying the def-
inition of the convex conjugate G*, one obtains the dual of
(4.2):

4.8)
Y1seeos Ym

m m
max —G* (— > L;‘yi> =Y HF ().
i=1 i=1
The saddle point problem (4.7) is commonly solved using the
primal-dual hybrid gradient (PDHG) algorithm [6,10,11],
and by doing so, both the primal problem (4.2) and the dual
(4.8) are solved. We apply the variant of PDHG from [48],
which accounts for the sum of composite terms H; o L;. Given
an initial guess for (wo, ¥1.0, - - ., Ym,0) and the parameters
0,7 > 0,and p € [¢,2 — €] for some € > 0, each iteration
k > 0 consists of the following steps:

m
L. Wiy :=prox g(wg — T Z L7yix)s
i=1
W1 = PkWrt1 + (1 — pr)we,
Vi=1,...,m:

Vik+1 1= ProX, (yik +0Li Qg — wi))
4. Vi=1,...,m:

Yidk+1 = pYik+1 + (1 = p)yik. (4.9)
where for a proper, lower semicontinuous, convex function
G, prox, s is its proximal operator, defined as:

. 1
prox,(y) := argmin, {Eﬂx - yII% + G(x)} . (4.10)

The iterates (wi)ken and (yix)ken (0 = 1,...,m) are
shown to converge if the parameters o and t are chosen such
that ot || Y7L, LYL;|| <1 (see [48, Theorem 5.3]). In step
3 in (4.9), we use Moreau’s identity to obtain prox, - from

prOXH’_ /o .

Prox, i+ () + 0 prox g, /o (y/0) = y. @.11)

As a stopping criterion, one can use the primal-dual gap,
i.e. the difference between the primal objective cost at the
current iterate and the dual objective cost at the current (dual)
iterate:

Dpd(w’ )’1, ,)’m)
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—G<w)+ZH<L w) + G*(— ZL*yZHZH*(yl

i=1 i=1
(4.12)

Due to strong duality, optimality is reached when the primal—
dual gap is zero, so a practical stopping criterion is when the
gap reaches a certain threshold set in advance.

Lastly, note that the optimisation is performed jointly over
both u and v, which introduces a difficulty for the term
H>(Low) in Step 3 above, as this requires the proximal
operator of the joint Kullback—Leibler divergence Dgz (u, v).
Similarly, the computation of the primal—dual gap in (4.12)
requires the convex conjugate of the joint Kullback-Leibler
divergence. We describe the details of these computations in
Sects. 4.2 and 4.3, respectively.

4.2 Computing the Proximal Operator of the Joint
Kullback-Leibler Divergence

When writing the optimisation problem in the form (4.2),
it is common that the functions G and H; (i = 1,...,m)
are “simple”, meaning that their proximity operators have
a closed-form solution or can be easily computed with high
precision. This is certainly true for G and H, but not obvious
for the joint Kullback-Leibler divergence.

First, for discrete images u = lug, ...,
unl?, [vi, ..., vy]%, the definition (3.6) becomes:

N
D = R '
kr(v, 1) ZM] v]—i—v]logu] (4.13)
j=1
and then:
w112
* * 1 1 u “
Prox,, p,, (u*, v*) = argmin,, , Dgz(u, v) + 2 [v] - [U*] s

N
. vj
= argmin,, , E uj—vj—l—vjlogu—i
j=l :
1
—[(uj—u ) +(vj—v )]

2y
N
Z argmin, . ®(u;, v;), (4.14)
where we define the function ® as:
vj
D(uj,vj):=u;—v;+ vjlog;
J
1 2 2
o L ) @ = @)

To find the minimiser of ®(u;, v;), we let its gradient be
equal to zero:

Bujd>(uj, vj) =0
8qu)(uj, vj) =0
1 —

—
logv;

vj 1 *
Yplw;—uw)=0
vy . (4.16)
—logu; + y(j—v)) = 0
In the second equation, we write u ; as a function of v j» which
we substitute in the first equation to obtain:

1—e 70 4 1 (vjey(”f v u*) =0
v j (4.17)

The first equation is then solved using Newton’s method,
where the iteration is given by:

SO 0 g s
J&ED b Y T ve ” St uj

J 7 1 o8 _x
e V(v (k))ey —v7)

D41+
4.18)

4.3 Computing the Convex Conjugate of the Joint
Kullback-Leibler Divergence

We compute the convex conjugate of the discrete joint
Kullback-Leibler divergence Dy (v, u) in (4.13) for u, v €
(1, 1Y

* * % u u*
Dy (v",u™) = sup || )— DirL(v, u)
U,uE[ll,lz]N v v

N

= sup Zuju;‘-+vjv;f
vauellnbIV i

Vj
—uj+v;—vjlog—
uj

N
=> sup  W(vj.uy, (4.19)
j=1 vj,uj€ll,lz]
where W is defined as:
(vj,uj;) = ujui +vjv; —uj+vj —v; og;. (4.20)

J

To solve the optimisation problem on the last line in (4.19),
we write the KKT conditions (where we use u, v instead of
uj, vj to simplify the notation:

4
VW, u)+ Y wiVei(v,u) =0,
i=1

(4.21a)

@ Springer
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Fig. 8 Ground truth (top row) and measured images (middle row),
shown using maximum intensity projections in each axis direction,
except for the tissue images, where slices in each axis direction are

gi(v,u) <0, Vi=1,...,4, (4.21b)
wi >0, Vi=1,...,4, (4.21c)
nigiv,u) =0, Vi=1,...,4. (4.21d)

where the functions g; correspond to the bound constraints:

(4.222)
(4.22b)

g1(v,u) =u—b;
g, u)=v—1b;

@ Springer

shown. The axes of the plots are shown in the panel in the bottom row,
with the missing axis in each panel being the direction in which the
maximum intensity projection (or slice) is taken

g, u) = —u+ly; (4.22¢)
ga(v,u) =—v+1; (4.22d)
Noting that (4.21a) is equivalent to:
v
—ut+1——+pu —pu3=0, (4.23a)
u
—v* +logv —logu + py — g =0, (4.23b)
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we solve the last two equations by using the complementarity
conditions (4.21d) for cases when the Lagrange multipliers
J4; are Zero or NONzero.

5 Numerical Results

In this section, we describe a number of numerical exper-
iments that illustrate the performance of our deconvolution
method. We start with four examples of simulated data, where
we are able to quantify the reconstructed image in relation
to the known ground truth image. Then, we show how our
method performs on microscopy data, where we reconstruct
an image of spherical beads and a sample of a Marchantia
thallus. In the experiments with microscopy data, we com-
pare our method with two standard approaches of performing
shift-invariant deconvolution, one where the convolution ker-
nel is the detection PSF and one where the convolution kernel
is the point-wise multiplication of the detection PSF with the
light-sheet.

5.1 Simulated Data

We consider four images of size 128 x 125x64:a5x5 x5 grid
of beads where the effect of the light-sheet in the z coordinate
and the shape of the objective PSF are noticeable, a piecewise
constant image of “steps” where the Poisson noise affects
each step differently based on intensity, and an image that
replicates realistic biological samples of tissue. These are
shown in the top row of Fig. 8.

To obtain the measured data, we proceed as follows. Given
the ground truth image u, the forward operator described in
Sect. 2.1 is applied to obtain the blurred image Lug. The
parameters for the forward model are taken to be those of
the microscope used in the experimental setup and are given
in Table 2. Then, the image is corrupted with a mixture of
Poisson and Gaussian noise. For the vectorised image Luy,
at each pixel i = 1,..., N, the Poisson noise component
follows the Poisson distribution with parameter (Lug); and
the additive Gaussian component has zero mean and standard
deviation og = 10. The original image, which has intensity
in [0, 1] is scaled so that the intensity of Lug is in [0, 2000],
to replicate a realistic scenario for the Poisson noise intensity.
The resulting simulated measured data is shown in the bottom
row of Fig. 8.

We compare the reconstruction obtained using the pro-
posed approach, which we will refer to as LS-IC (light-sheet-
infimal convolution), with the reconstructions obtained by
using an L? data fidelity term instead of the infimal convolu-
tion term, or using a convolution operator corresponding to
the objective PSF instead of the light-sheet forward model
from Sect. 2.1. Specifically, we compare the solution of (4.1)

Table 2 Forward model parameters used in Sect. 5

Parameter Value Description, units

n 1.35 Refractive index

NAp 1 Numerical aperture (objective lens)
NA; 0.25 Numerical aperture (light-sheet)

An 0.525 Wave length (objective lens), pm
Al 0.488 Wave length (light-sheet), pm

DX, 0.3250 Pixel size (x), pm

px, 0.3250 Pixel size (y), pm

step, 1 Light-sheet step size (z), pm

with the solutions to the following problems, all solved using
PDHG as described in Sect. 4:

. 1
qpava»+Z;Wf—Hmé+meMvaFx
G
(PSF-L2)

1
mina TV (u) + — || f = vl3 + Dgr(v, Hu) ~ (PSF-IC)
u,v 2GG

+ X0, g2~ ([u, "),

. 1
qpava»+Zﬁwf—Lm6+XWMMvafx
G
(LS-L2)

where H is the convolution operator with the detection objec-
tive PSF &, as given in (2.14).

For each test image and each method above, the PDHG
parameters p and o used are given in Table 3 and t is set
tor =1/0| >0, L7 L;|| to ensure convergence according
to Theorem 5.3 in [48]. As a stopping criterion, we used the
primal—dual gap (4.12), normalised by the number of pixels
N and the dynamic range of the measured image f:

6D

with a threshold of 10~° and a maximum number of 10,000
iterations.

The results of the four methods applied to the test images
are given in Fig. 9 and quantitative results are given in Table 4.
For each test image and each method, the regularisation
parameter has been chosen to optimise the normalised /2 error
and the structural similarity index (SSIM), respectively.
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Table 3 Values of the PDHG parameters p and o used in the numerical experiments with simulated data

Method LS-IC LS-L2 PSF-IC PSF-L2

Image Beads Steps Tissue Beads Steps Tissue Beads Steps Tissue Beads Steps Tissue
o 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.9 0.9 0.9

o 0.0001 0.0001 0.00001 0.0001 0.001 0.0001 0.0001 0.0001 0.0001 0.0001 0.001 0.0001

We note that PSF-L2 and PSF-IC perform particularly
poorly, highlighting the importance of an accurate represen-
tation of the image formation model instead of simply using
the detection objective PSF as the forward operator. Com-
paring LS-IC and LS-L2, we see better results when using
the infimal convolution data fidelity for the beads and the
steps image, both visually and quantitatively. The deblurring
is performed better on the beads image, while on the steps
image we see a better denoising effect, especially along the
edges in the image. For the tissue image, both fidelities give
comparable results, but as we see in Fig. 10, when the ground
truth is not known, choosing « using the discrepancy princi-
ple gives a better result for the infimal convolution model.

The reconstructions shown in Fig. 10 are obtained by
applying the discrepancy principle corresponding to each
method. For LS-IC, we choose a value of « such that it satis-
fies a variation of the discrepancy principle given in (3.11),
where we enforce that the single noise fidelities are bounded
by their respective noise bounds, rather than the sum of the
fidelities being bounded by the sum of the noise bounds, as
stated in (3.11). While both versions give good results, we
found the former to give more accurate reconstructions. Here,
the bound on the Poisson noise is set to %, motivated by the
following lemma from [49], which gives the expected value
of the Kullback—Leibler divergence:

Lemma5.1 Let Yg be a Poisson random variable with
expected value 8 and consider the function:

Yp
F(Yp) =2{Yﬁ1°g<g> + B8 — Yﬁ}.

Then, for large B, the following estimate of the expected value
of F(Yg) holds:

EIF(Yp)] = 1+0 (%) .

One last observation worth making about the results in
Figs. 9 and 10 is about the square shape of the reconstructed
beads (the first column of both figures). By looking care-
fully at the ground truth bead image in Fig. 8, one can see
that the beads are almost square to begin with, due to the
small dimensions of the image. The finer details that make
them appear round are lost in the blurring process which, in
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combination with the total variation regulariser used in the
deconvolution algorithm, leads to this detail not being present
in the reconstruction, thus making them square. Moreover,
the sharpening of their edges is an expected effect of the total
variation regularisation, which could be avoided by using a
different regularisation technique. However, this is beyond
the scope of this article.

The experiments were run using Matlab version R2020b
Update 2 (9.9.0.1524771) 64-bit in Scientific Linux 7.9 on a
machine with Intel Xeon E5-2680 v4 2.40 GHz CPU, 256 GB
memory and Nvidia P100 16 GB GPU. The running times,
averaged over 5 runs for each method and each image, are
given in Table 5.

5.2 Light-Sheet Data

In this section, we show the results of applying LS-IC to
a cropped portion of the full resolution images in Fig. 2.
Specifically, we select a cropped beads image of 1127 x 111 x
100 voxels and a cropped Marchantia image of 1127 x 156 x
100 voxels.

For comparison, we also run PSF-L2 on the same images.
In addition, we run an alternative light-sheet deconvolu-
tion method, where we perform shift-invariant deconvolution
using a PSF & obtained by point-wise multiplication of the
detection PSF £, in (2.14) and the light-sheet [, effectively
clipping i by the width of the light-sheet. Therefore, the
problem we solve, which we denote by PSF-L2-clip is:

. 1 -
mina TV(@) + — | f = Hull3 + xjo g~ ([, v1").
u 20'G
(PSFE-L2-clip)

where H is the convolution operator with the PSF h =
h; - 1. A justification of this method is given by a simplified
image formation model where we assume that the light-sheet
has constant width (in the z direction) and constant intensity
throughout the full sample, or in a region of interest where
deconvolution is performed, as it is done for example in [21].
We run each method on both images for up to 6000 iter-
ations, with a normalised primal-dual gap of 107° as a
stopping criterion. The parameters for the image formation
model used are the same as in Table 2 and the PDHG param-
eters are given in Table 6.
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Fig.9 Reconstruction on
simulated data with
regularisation parameter « such
that best MSE is achieved for
each method and each image.
Shown as maximum intensity
projections, except for tissue,
where slices in each direction in
the centre of the sample are
shown. The axes are as shown
in the bottom row of Fig. 8. First
row: PSF-L2. Second row:
PSF-IC. Third row: LS-L2.
Fourth row: LS-1C

Table 4 Results of the numerical experiments on simulated data, with
the regularisation parameter « chosen to optimise the normalised /»
error and the SSIM, respectively

Image Beads Steps Tissue

Error metric [ SSIM [ SSIM [ SSIM
PSF-L2 1.74 0.845 0499 0.561 1.57 0.592
PSF-1C 1.54 0.844 0324 0.659 1.65 0.582
LS-L2 0282 0982 0.055 0971 0301 0.951
LS-IC 0258 0983 0012 0998 0349 0.931

The results of the deconvolution are shown in Figs. 11
and 13 for the beads image and the Marchantia image,
respectively. In both figures, we first show the position of
the light-sheet in the first row (due to the cropping, this is
no longer centred), the measured data in the second row,
followed by the PSF-L2, the PSF-L2-clip and the LS-IC
reconstructions on the third, fourth and fifth rows, respec-
tively. The regularisation parameter & was chosen in all four
cases visually such that a balance is achieved between the
amount of regularisation and the noise in the reconstruction.

In the beads image in Fig. 11, we note that LS-IC performs
better than PSF-L2 and PSF-L2-clip at reversing the effect
of the light-sheet. This is most obvious in the zy plane on the
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Fig. 10 Reconstruction on
simulated data with
regularisation parameter o
chosen to satisfy the discrepancy
principle (3.11). Shown as
maximum intensity projections,
except for tissue, where slices in
each direction in the centre of
the sample are shown. The axes
are as shown in the bottom row
of Fig. 8. First row: PSF-L2.
Second row: PSF-IC. Third row:
LS-L2. Fourth row: LS-1C

Table5 Running times for each method and each simulated test image,
averaged over 5 runs, in seconds

Image Beads Steps Tissue
PSF-L2 233 1793 903
PSF-IC 689 1077 1805
LS-L2 2913 2194 2273
LS-IC 972 601 850

The minimisation is stopped when the primal-dual gap is lower than
1079 or the maximum number of 10,000 iterations is reached

@ Springer

right-hand side of the image, where the length of the beads
in the z direction has been reduced to a greater extent than
in the PSF-L2 and the PSF-L2-clip reconstructions. In addi-
tion, the beads appear less blurry in the LS-IC reconstruction
in the right-hand side of the xy plane. We also note that
PSF-L2-clip fails to properly reverse the effects of the opti-
cal aberrations in the beads. This is not unexpected, as the
information related to the aberrations is lost when the detec-
tion PSF is clipped by setting its upper and lower extremities
to zero. The extent to which this happens depends on the
width of the light-sheet: as the light-sheet becomes wider,
the overall PSF approaches the detection PSF, in which case
the deconvolved image will be the same as the reconstruction
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Table 6 Values of the PDHG

amet. d d in th Method LS-IC PSF-L2 PSF-L2-clip
parame.z ers p an. o use ! n the Image Beads Marchantia Beads Marchantia Beads Marchantia
numerical experiments with real
data 0 05 0.7 0.9 0.9 0.9 0.9
0.0001 0.0001 0.01 0.001 0.01 0.001

Fig. 11 Reconstruction results for the light-sheet bead image, shown data. Third row: PSF-L2 with « = 0.1. Fourth row: PSF-L2-clip with
as maximum intensity projections. The axes are as shown in the bottom a = 0.7943. Fifth row: LS-IC with o = 0.0046
row of Fig. 8. First row: The fitted light-sheet profile. Second row: The
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using PSF-L2. We show the bead images in 3D in Fig. 12,
where the effect of the deconvolution in the z direction is
more significant in the LS-IC reconstruction than in both
the PSF-L2 and the PSF-L2-clip reconstructions, namely the
beads are shorter in the z direction.

In the Marchantia reconstruction in Fig. 13, we see a sim-
ilar effect of better sharpening in the z direction, most easily
seen in the right-hand side and bottom projections in each
panel (maximum intensity projections in the zy and the xz
planes, respectively). In particular, we see additional artefacts
in the PSF-L2-clip reconstruction: horizontal lines (parallel
with the xy plane), likely due to the clipping of the detec-
tion PSEF. Moreover, the 3D rendering of the Marchantia
sample in Fig. 14 shows smoother cell edges in the LS-1C
reconstruction compared to the other methods. Specifically,
the PSF-L2 reconstruction contains reconstruction artefacts
that are non-existent in the LS-IC reconstruction (indicated
by the yellow arrows), while the PSF-L2-clip reconstruction
contains areas where the blur has not been fully removed
(for example at the same locations indicated by the yellow
arrows), where the edges are not as sharp as in the LS-IC
reconstruction.

Lastly, we reiterate that the strength of our proposed
method is given by the physically accurate modelling of the
interaction between the detection PSF and the light-sheet.
This allows one to model the optical aberrations as part of
the detection PSF (with no requirements on how this should
be done), as well as the spatial dependence of the width and
the intensity of the light-sheet and to combine them in an
image formation model that does not require approximating
using a light-sheet with constant width and intensity. As we
see in the numerical experiments shown in this section, such
approximation, while faster and less expensive computation-
ally, leads to loss of information and results that are at most
locally accurate.

6 Conclusion

In this paper, we introduced a novel method for performing
deconvolution for light-sheet microscopy. We start by mod-
elling the image formation process in a way that replicates
the physics of a light-sheet microscope, which is achieved by
explicitly modelling the interaction of the illumination light-
sheet and the detection objective PSF. Moreover, the optical
aberrations in the system are modelled using a linear com-
bination of Zernike polynomials in the pupil function of the
detection PSF, fitted to bead data using a least squares pro-
cedure. We then formulate a variational model taking into
account the image formation model as the forward operator
and a combination of Poisson and Gaussian noise in the data.
The model combines a total variation regularisation term and
a fidelity term that is an infimal convolution between an L2

@ Springer

Fig.12 3D rendering of the beads data and reconstruction images using
Imaris Viewer 9.7.2. First row: The data. Second row: PSF-L2 with
o = 0.1. Third row: PSF-L2-clip with o = 0.7943. Fourth row: LS-IC
with o = 0.0046

term and the Kullback-Leibler divergence, introduced in [9].
In addition, we establish convergence rates with respect to the
noise and we introduce a discrepancy principle for selecting
the regularisation parameter « in the mixed noise setting. We
solve the resulting inverse problem by applying the PDHG
algorithm in a non-trivial way.

The results in the numerical experiments section show
that our method, LS-IC, outperforms simpler approaches
to deconvolution of light-sheet microscopy data, where one
does not take into account the variability of the overall PSF
introduced by the light-sheet excitation, or the combina-
tion of Gaussian and Poisson noise. In particular, numerical
experiments with simulated data show superior reconstruc-
tion quality in terms of the normalised /% error and the
structural similarity index, not only by optimising over the
regularisation parameter « given the ground truth, but also
with an a posteriori choice of « using the stated discrep-
ancy principle. On bead data, the reconstruction obtained
using LS-IC shows a more significant reduction of the blur
in the z direction compared to PSF-L2, where the light-sheet
variations and the Poisson noise are not taken into account.
Moreover, reconstruction of a Marchantia sample with LS-
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Fig. 13 Reconstruction results for the Marchantia sample, shown as
slices in each direction in the centre of the sample. The axes are as
shown in the bottom row of Fig. 8. First row: The fitted light-sheet pro-

IC shows fewer artefacts than the PSF-L2 reconstruction, as
well as sharper cell edges and smoother cell membranes.

Future work includes applying this technique to a broader
range of samples and using it to answer questions of biolog-
ical interest. To do so, we see a number of potential future
directions that this work can take:

file. Second row: The data. Third row: PSF-L2 with « = 0.1. Fourth
row: PSF-L2-clip with « = 0.1. Fifth row: LS-IC with « = 0.0005

1. Adapting the discrepancy principle given in (3.11) for
choosing the regularisation parameter « to real data sets,
like the ones in Sect. 5.2.

2. Improving the running time of the method potentially by
means of randomised approaches.

3. Investigating other regularisation terms.
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Fig. 14 3D rendering of the Marchantia data and reconstruction images
using Imaris Viewer 9.7.2. First row: The data. Second row: PSF-L2 with
a = 0.1. Third row: PSF-L2-clip with o« = 0.1. Fourth row: LS-IC
with ¢ = 0.0005

4. Making the technique available to other users as a more
user-friendly tool.
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