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Abstract

We present a method for the automatic assembly of apictorial jigsaw puzzles. This method relies
on integral area invariants for shape matching and an optimization process to aggregate shape
matches into a final puzzle assembly. Assumptions about individual piece shape or arrangement are
not necessary. We illustrate our method by solving example puzzles of various shapes and sizes.
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1 Introduction

We present a method for the automatic assembly
of jigsaw puzzles. Our approach is apictorial, using
only shape information provided by the bound-
aries of the pieces. The method has three basic
components:

1. Compute an integral invariant for each puz-
zle piece, encoding its shape independent of
position and orientation.

2. Compare integral invariants to determine
matches among pairs of pieces and measure the
quality of these matches.

3. Assemble the puzzle by aggregating these pair-
wise matches as consistently as possible.

The development of computational approaches
to the solution of jigsaw puzzles using only shape
information began as early as 1964, [1]. Much
of the ensuing work, e.g. [2–4], has focused on
traditional rectangular jigsaw puzzles, and lever-
ages assumptions about piece shape and puzzle

arrangement in the solving process. Key assump-
tions among these are that puzzle pieces are
four-sided with “indents” and “outdents” and that
there are corner and edge pieces which may be
identified and assembled separately from inte-
rior pieces. A notable exception is [5], where an
extended method of differential invariant signa-
tures, [6], and an intensive piece locking method
is utilized that can be effective in assembling both
standard (rectangular) and nonstandard puzzles,
[7, 8], without these usual assumptions. The
present work proceeds in the spirit of [5, 9],
eschewing structural information about the pieces
and their arrangement.

As observed in [4], apictorial jigsaw puzzle
assembly has two main difficulties: the geomet-
ric difficulty of reliably determining when pieces
fit together, and the combinatorial difficulty of
parsing the very large number of ways that the
collection of pieces can be assembled. To address
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the geometric difficulty we apply a matching pro-
cess which attempts to find the longest fits within
a threshold of shape similarity, using integral area
invariants to measure this similarity. We find that
this process can correctly identify entire match-
ing sides of rectangular pieces and provide visually
close fits in a wide variety of examples, eliminat-
ing the necessity of a piece-locking process like
that of [5]. To address the combinatorial difficulty
we characterize a puzzle assembly as the solution
to an optimization process, measuring the cost
of including a particular piece fit in this optimal
assembly via a combination of a local measure-
ment (based on quantities computed from the
fit itself) and a global measurement (based on
consistency of collections of piece fits).

The layout of the paper is as follows. Section
2 describes the acquisition and preprocessing of
the jigsaw puzzle data and outlines in Algorithm
1 a method for respacing the discrete curve infor-
mation that produces more reliable comparisons
of curve shapes. Section 3 recalls the definition of
the integral area invariant, and provides in Algo-
rithm 6 a way to compute this invariant exactly for
piecewise linear curves. Section 4 addresses piece
comparison and the alignment of integral invari-
ants used for finding the “best” fit between a pair
of puzzle pieces. In Section 5 the piece fits are
aggregated into a puzzle assembly, and the crite-
rion of cycle consistency is introduced to ensure
compatibility of collections of piece fits. Finally,
we illustrate our algorithmic approach through
various examples in Section 6. We motivate and
demonstrate our methods throughout the paper
on a simple 12 piece example puzzle, [10], shown
in Figure 1.

Fig. 1 The 12 piece puzzle used for examples throughout
the paper.

2 Puzzle data

The input to our algorithm is a collection of
ordered lists of points. Each element of the
collection represents a puzzle piece, and each
ordered list is a sampling of points around the
boundary of the puzzle piece. To obtain this
sampling of the boundary, each puzzle piece
is photographed via a photocopier, then pro-
cessed using image segmentation. In our computa-
tions, segmentation was done in Mathematica by
using MorphologicalBinarize to create a binary
image, and ComponentMeasurements to extract
the boundary after binarization. The same task
could be accomplished in Matlab using the com-
mand bwboundaries, or in other software using
edge detection or active contour methods, [11].
An example puzzle piece image and its segmented
boundary are shown in Figure 2.

Fig. 2 A puzzle piece image and its (unprocessed) bound-
ary curve.

The raw output of boundary points from seg-
mentation can be unevenly spaced. Since our
assembly method relies on comparing shape signa-
tures as a function of arclength, this raw output
must be resampled so that consecutive boundary
points are separated by the same fixed arclength.
This is accomplished via repeated linear interpola-
tion and resampling according to a fixed arclength
measurement. The idea of this method is sug-
gested in [5] and studied more carefully in [12],
where it is shown that this repeated interpolation
will indeed converge to an evenly spaced discrete
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curve. This method is a fundamental step in pre-
processing the data for shape comparison, and we
outline it in more detail in Algorithm 1.

Algorithm 1 Resampling a closed discrete curve by
a fixed arclength.

Input: An ordered collection of points p0, . . . , pn in
R2, with p0 = pn, representing a sampling of a closed
curve. Adjacent points should be distinct: pk 6= pk+1.

Output: An ordered collection of points q0, . . . , qm in
R2 representing a new sampling of the closed curve
satisfying ||qk+1− qk|| = δ, k = 0, . . . ,m− 1 for some
chosen distance δ.

1. Let d0 = 0 and recursively compute dk = ||pk−
pk−1||+dk−1 for k = 1, . . . n. dk is the piecewise
linear arclength distance from p0 to pk.

2. Compute the piecewise linear interpolating
function g : [0, dn] → [0, n] for the points
(dk, k), 0 ≤ k ≤ n. This function inverts the
arclength measurements, so that g(dk) = k.
Here we require pk 6= pk+1 in order for this
inverse to be well defined.

3. Compute the piecewise linear interpolating
function h : [0, n] → R2 for the discrete curve
points p0, . . . , pn.

4. Choose a fixed arclength δ and compute a new
collection of points q0, . . . , qm via qk = h(g(kδ))
for k = 0, 1, . . . ,m = bdn/δc. This is a new
sampling of the discrete curve, where points are
separated by a distance of δ.

5. Optionally, set qm+1 = q0 and repeat steps 1-4
using the new collection q0, . . . , qm+1 to further
smooth the discrete curve.
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Fig. 3 A noisy discrete curve and results after iterations
of Algorithm 1.

Example 2 We illustrate empirically the effect of
applying Algorithm 1 to a curve with widely varying
distances between points and added noise. This illus-
tration is shown in Figure 3. We choose 60 random
points on an ellipse, and add a small amount of noise
in the radial direction. After 1 iteration, the points are
nearly uniformly spaced by arclength. Further iteration
continues to smooth and shorten the curve. This short-
ening is an artifact of Step 4 in Algorithm 1, where a
small “leftover” part of the curve is discarded.

Remark 3 Because our goal is direct comparison
of puzzle piece boundaries, we sample all boundaries
using the same arclength, typically leaving a single
anomalous distance ||qm−q0|| 6= δ after applying Algo-
rithm 1. We did not encounter any issues arising from
this anomolous distance.

After obtaining the unprocessed puzzle piece
boundaries via segmentation, Algorithm 1 is
applied to each boundary for a predetermined
number of iterations and arclength distance δ.
The distance δ is chosen to balance the precision
of pairwise comparison of pieces with the com-
putational time needed for comparison. Using a
pixel’s length or width for the unit distance, val-
ues of δ in the range of 5 to 20 performed well for
all examples, based on puzzle piece images with
a resolution of 300 pixels per inch. The number
of iterations of Algorithm 1 to achieve a visually
acceptable balance of smoothness and accuracy
varied from 5 to 30, depending on the distance
δ. Figure 4 illustrates this visual selection process
at a resolution of δ = 20; 5 iterations results in
an accurate representation of the piece boundary,
while 30 iterations shows excessive smoothing.

3 Integral area invariants

To determine if two digital jigsaw puzzle pieces fit
together, we compare the shapes of their bound-
aries, searching for portions of each boundary that
are congruent under some rotation and translation
in the plane (the action of some element of the spe-
cial Euclidean group SE(2)). Invariants facilitate
this shape comparison by removing the freedom
of rotation and translation; puzzle matches can
be found via direct comparison of the invariants
rather than the pieces themselves. We focus on a



4

Fig. 4 A puzzle boundary with δ = 20 after 5 and 30
smoothing iterations.

simple integral invariant, the integral area invari-
ant, first introduced in [13] and studied for its
shape identification properties, [14].

Let p : S1 → R2 be a closed simple planar
curve, R the region enclosed by p, and ∂R the
boundary of R (which is also the image of p).

Definition 4 Let r > 0 and let Br(x) be the disk of
radius r centered at x. The integral area invariant (of
radius r) for p is given by

Ip(x) =

∫
Br(x)∩R

dA,

the area of the intersection of Br(x) and R. This
definition is illustrated in Figure 5.

The integral area invariant is invariant under
the action of SE(2). This means that

Ip(x) = Igp(gx) for all g ∈ SE(2),

where gp is the curve p transformed by g. By
virtue of this SE(2) invariance, the integral area
invariant provides shape information – informa-
tion about the image of p which is independent
of placement in the plane. Congruent curves must
have the same integral area invariants, but the
extent to which an integral area invariant uniquely
determines the curve up to congruence is the sub-
ject of ongoing research, [15–17]. It is enough for us

to know that, practically speaking, integral invari-
ants will help us identify when two curves have
very similar shape.

The integral area invariant makes sense for any
x in R2, but in practice, we will restrict the domain
to the image of p. With a parameterization of p
in hand, Ip can be interpreted as a function of the
parameter; for the curve p(s) in R2 we obtain the
real valued function Ip(s).

To use integral invariants for puzzle piece com-
parison, we adapt the above discussion to the
discrete setting. In the following, let p0, . . . , pn be
a collection of points in R2 representing a closed
curve without self-intersections, and p0 = pn. As
before, these points represent a sampling of the
outline of a puzzle piece. The discrete integral area
invariant is then defined at the points p0, . . . , pn
just as in Definition 4 by taking p to be the
piecewise linear interpolation of p0, . . . , pn.

We now outline an exact method for com-
puting this discrete version of the integral area
invariant. See also [18]. We will need to find the
area of a large polygon, for which we will use the
following classical formula, sometimes called the
shoelace formula.

Lemma 5 Suppose that q0, . . . , qn are the sequential
vertices of an n sided polygon, with q0 = qn. The area
of this polygon is given by the formula

1

2

∣∣∣∣∣
n∑
k=1

det

(
qk−1 qk

)∣∣∣∣∣ .
In the following discussion we take indices

modulo n and assume that the points outline the
curve in counter-clockwise orientation. Refer to
Figure 6 for an illustrations of the calculations.

Algorithm 6 Calculating the discrete integral area
invariant.

Input: A fixed radius r, and an ordered collection of
points p1, . . . , pn in R2 representing a closed curve
without self-intersections.

Output: The integral area invariant value Ip(pk)
where p is the piecewise linear interpolation of the
points p0, . . . , pn.

1. Let Br(pk) be the disk of radius r centered
at pk. Choose pk+ (respectively pk−) to be the
final point in the list pk, pk+1, . . . (respectively
pk, pk−1, . . .) contained in Br(pk).
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@R
<latexit sha1_base64="3opM9pUXTFR8OYsxD0DPuFoeEi0=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cqthbbUDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x0+agrQ8WHu/NzM68IJHCoOt+O6WV1bX1jfJmZWt7Z3evun/QNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX+f+wxPXRsTqHicJ9yM6VCIUjKKVHnsJ1SioJHf9as2tuzOQZeIVpAYFmv3qV28QszTiCpmkxnQ9N0E/y+cxyaeVXmp4QtmYDnnXUkUjbvxstvGUnFhlQMJY26eQzNTfHRmNjJlEga2MKI7MopeL/3ndFMNLPxMqSZErNv8oTCXBmOTnk4HQnKGcWEKZFnZXwkZUU4Y2pIoNwVs8eZm0z+qeW/duz2uNqyKOMhzBMZyCBxfQgBtoQgsYKHiGV3hzjPPivDsf89KSU/Qcwh84nz82jJCZ</latexit><latexit sha1_base64="3opM9pUXTFR8OYsxD0DPuFoeEi0=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cqthbbUDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x0+agrQ8WHu/NzM68IJHCoOt+O6WV1bX1jfJmZWt7Z3evun/QNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX+f+wxPXRsTqHicJ9yM6VCIUjKKVHnsJ1SioJHf9as2tuzOQZeIVpAYFmv3qV28QszTiCpmkxnQ9N0E/y+cxyaeVXmp4QtmYDnnXUkUjbvxstvGUnFhlQMJY26eQzNTfHRmNjJlEga2MKI7MopeL/3ndFMNLPxMqSZErNv8oTCXBmOTnk4HQnKGcWEKZFnZXwkZUU4Y2pIoNwVs8eZm0z+qeW/duz2uNqyKOMhzBMZyCBxfQgBtoQgsYKHiGV3hzjPPivDsf89KSU/Qcwh84nz82jJCZ</latexit><latexit sha1_base64="3opM9pUXTFR8OYsxD0DPuFoeEi0=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cqthbbUDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x0+agrQ8WHu/NzM68IJHCoOt+O6WV1bX1jfJmZWt7Z3evun/QNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX+f+wxPXRsTqHicJ9yM6VCIUjKKVHnsJ1SioJHf9as2tuzOQZeIVpAYFmv3qV28QszTiCpmkxnQ9N0E/y+cxyaeVXmp4QtmYDnnXUkUjbvxstvGUnFhlQMJY26eQzNTfHRmNjJlEga2MKI7MopeL/3ndFMNLPxMqSZErNv8oTCXBmOTnk4HQnKGcWEKZFnZXwkZUU4Y2pIoNwVs8eZm0z+qeW/duz2uNqyKOMhzBMZyCBxfQgBtoQgsYKHiGV3hzjPPivDsf89KSU/Qcwh84nz82jJCZ</latexit><latexit sha1_base64="3opM9pUXTFR8OYsxD0DPuFoeEi0=">AAAB8XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cqthbbUDbbTbt0swm7E6GE/gsvHhTx6r/x5r9x0+agrQ8WHu/NzM68IJHCoOt+O6WV1bX1jfJmZWt7Z3evun/QNnGqGW+xWMa6E1DDpVC8hQIl7ySa0yiQ/CEYX+f+wxPXRsTqHicJ9yM6VCIUjKKVHnsJ1SioJHf9as2tuzOQZeIVpAYFmv3qV28QszTiCpmkxnQ9N0E/y+cxyaeVXmp4QtmYDnnXUkUjbvxstvGUnFhlQMJY26eQzNTfHRmNjJlEga2MKI7MopeL/3ndFMNLPxMqSZErNv8oTCXBmOTnk4HQnKGcWEKZFnZXwkZUU4Y2pIoNwVs8eZm0z+qeW/duz2uNqyKOMhzBMZyCBxfQgBtoQgsYKHiGV3hzjPPivDsf89KSU/Qcwh84nz82jJCZ</latexit>

r
<latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit><latexit sha1_base64="D+vIjYIYiuYBqfGNJBmXYbUZJb0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/dIYz2</latexit>

Br(x)
<latexit sha1_base64="30lZlPIaH5uNmS1mAB8YqoxFNg4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquCHos9eKxgv2AdinZNNvGZpMlyYpl6X/w4kERr/4fb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcpP5nUeqNJPi3kxj6kd4JFjICDZWajcGqvp0PihX3Jo7B1olXk4qkKM5KH/1h5IkERWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LBY6o9tP5tTN0ZpUhCqWyJQyaq78nUhxpPY0C2xlhM9bLXib+5/USE177KRNxYqggi0VhwpGRKHsdDZmixPCpJZgoZm9FZIwVJsYGVLIheMsvr5L2Rc1za97dZaXeyOMowgmcQhU8uII63EITWkDgAZ7hFd4c6bw4787HorXg5DPH8AfO5w+/Yo6S</latexit><latexit sha1_base64="30lZlPIaH5uNmS1mAB8YqoxFNg4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquCHos9eKxgv2AdinZNNvGZpMlyYpl6X/w4kERr/4fb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcpP5nUeqNJPi3kxj6kd4JFjICDZWajcGqvp0PihX3Jo7B1olXk4qkKM5KH/1h5IkERWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LBY6o9tP5tTN0ZpUhCqWyJQyaq78nUhxpPY0C2xlhM9bLXib+5/USE177KRNxYqggi0VhwpGRKHsdDZmixPCpJZgoZm9FZIwVJsYGVLIheMsvr5L2Rc1za97dZaXeyOMowgmcQhU8uII63EITWkDgAZ7hFd4c6bw4787HorXg5DPH8AfO5w+/Yo6S</latexit><latexit sha1_base64="30lZlPIaH5uNmS1mAB8YqoxFNg4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquCHos9eKxgv2AdinZNNvGZpMlyYpl6X/w4kERr/4fb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcpP5nUeqNJPi3kxj6kd4JFjICDZWajcGqvp0PihX3Jo7B1olXk4qkKM5KH/1h5IkERWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LBY6o9tP5tTN0ZpUhCqWyJQyaq78nUhxpPY0C2xlhM9bLXib+5/USE177KRNxYqggi0VhwpGRKHsdDZmixPCpJZgoZm9FZIwVJsYGVLIheMsvr5L2Rc1za97dZaXeyOMowgmcQhU8uII63EITWkDgAZ7hFd4c6bw4787HorXg5DPH8AfO5w+/Yo6S</latexit><latexit sha1_base64="30lZlPIaH5uNmS1mAB8YqoxFNg4=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRahXsquCHos9eKxgv2AdinZNNvGZpMlyYpl6X/w4kERr/4fb/4bs+0etPXBwOO9GWbmBTFn2rjut1NYW9/Y3Cpul3Z29/YPyodHbS0TRWiLSC5VN8CaciZoyzDDaTdWFEcBp51gcpP5nUeqNJPi3kxj6kd4JFjICDZWajcGqvp0PihX3Jo7B1olXk4qkKM5KH/1h5IkERWGcKx1z3Nj46dYGUY4nZX6iaYxJhM8oj1LBY6o9tP5tTN0ZpUhCqWyJQyaq78nUhxpPY0C2xlhM9bLXib+5/USE177KRNxYqggi0VhwpGRKHsdDZmixPCpJZgoZm9FZIwVJsYGVLIheMsvr5L2Rc1za97dZaXeyOMowgmcQhU8uII63EITWkDgAZ7hFd4c6bw4787HorXg5DPH8AfO5w+/Yo6S</latexit>

Fig. 5 Visualization of the integral area invariant at a point x.

pk
<latexit sha1_base64="kPi8QuffR136jNXWOOh4rkG0frs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bp7ibsToQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ndLG5tb2Tnm3srd/cHhUPT7p2CgxjLdZJCPTC6jlUmjeRoGS92LDqQok7wbTu9zvPnFjRaQfcRZzX9GxFqFgFHMpHk4rw2rNrbsLkHXiFaQGBVrD6tdgFLFEcY1MUmv7nhujn1KDgkk+rwwSy2PKpnTM+xnVVHHrp4tb5+QiU0YkjExWGslC/T2RUmXtTAVZp6I4sateLv7n9RMMb/xU6DhBrtlyUZhIghHJHycjYThDOcsIZUZktxI2oYYyzOLJQ/BWX14nnau659a9h+ta87aIowxncA6X4EEDmnAPLWgDgwk8wyu8Ocp5cd6dj2VrySlmTuEPnM8fjLKN5g==</latexit><latexit sha1_base64="kPi8QuffR136jNXWOOh4rkG0frs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bp7ibsToQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ndLG5tb2Tnm3srd/cHhUPT7p2CgxjLdZJCPTC6jlUmjeRoGS92LDqQok7wbTu9zvPnFjRaQfcRZzX9GxFqFgFHMpHk4rw2rNrbsLkHXiFaQGBVrD6tdgFLFEcY1MUmv7nhujn1KDgkk+rwwSy2PKpnTM+xnVVHHrp4tb5+QiU0YkjExWGslC/T2RUmXtTAVZp6I4sateLv7n9RMMb/xU6DhBrtlyUZhIghHJHycjYThDOcsIZUZktxI2oYYyzOLJQ/BWX14nnau659a9h+ta87aIowxncA6X4EEDmnAPLWgDgwk8wyu8Ocp5cd6dj2VrySlmTuEPnM8fjLKN5g==</latexit><latexit sha1_base64="kPi8QuffR136jNXWOOh4rkG0frs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bp7ibsToQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ndLG5tb2Tnm3srd/cHhUPT7p2CgxjLdZJCPTC6jlUmjeRoGS92LDqQok7wbTu9zvPnFjRaQfcRZzX9GxFqFgFHMpHk4rw2rNrbsLkHXiFaQGBVrD6tdgFLFEcY1MUmv7nhujn1KDgkk+rwwSy2PKpnTM+xnVVHHrp4tb5+QiU0YkjExWGslC/T2RUmXtTAVZp6I4sateLv7n9RMMb/xU6DhBrtlyUZhIghHJHycjYThDOcsIZUZktxI2oYYyzOLJQ/BWX14nnau659a9h+ta87aIowxncA6X4EEDmnAPLWgDgwk8wyu8Ocp5cd6dj2VrySlmTuEPnM8fjLKN5g==</latexit><latexit sha1_base64="kPi8QuffR136jNXWOOh4rkG0frs=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48V7Ae0oWy2m3bp7ibsToQS+he8eFDEq3/Im//GpM1BWx8MPN6bYWZeEEth0XW/ndLG5tb2Tnm3srd/cHhUPT7p2CgxjLdZJCPTC6jlUmjeRoGS92LDqQok7wbTu9zvPnFjRaQfcRZzX9GxFqFgFHMpHk4rw2rNrbsLkHXiFaQGBVrD6tdgFLFEcY1MUmv7nhujn1KDgkk+rwwSy2PKpnTM+xnVVHHrp4tb5+QiU0YkjExWGslC/T2RUmXtTAVZp6I4sateLv7n9RMMb/xU6DhBrtlyUZhIghHJHycjYThDOcsIZUZktxI2oYYyzOLJQ/BWX14nnau659a9h+ta87aIowxncA6X4EEDmnAPLWgDgwk8wyu8Ocp5cd6dj2VrySlmTuEPnM8fjLKN5g==</latexit>

q+
<latexit sha1_base64="rRiXjcPJwGbeA/3y39lUE9upwiM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsLXQhrLZTtqlu5u4uxFK6F/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSy4sa777ZRWVtfWN8qbla3tnd296v5B20SJZthikYh0J6AGBVfYstwK7MQaqQwEPgTjm9x/eEJteKTu7SRGX9Kh4iFn1ObSY/+s0q/W3Lo7A1kmXkFqUKDZr371BhFLJCrLBDWm67mx9VOqLWcCp5VeYjCmbEyH2M2oohKNn85unZKTTBmQMNJZKUtm6u+JlEpjJjLIOiW1I7Po5eJ/Xjex4ZWfchUnFhWbLwoTQWxE8sfJgGtkVkwyQpnm2a2EjaimzGbx5CF4iy8vk/Z53XPr3t1FrXFdxFGGIziGU/DgEhpwC01oAYMRPMMrvDnSeXHenY95a8kpZg7hD5zPHyz5jac=</latexit><latexit sha1_base64="rRiXjcPJwGbeA/3y39lUE9upwiM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsLXQhrLZTtqlu5u4uxFK6F/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSy4sa777ZRWVtfWN8qbla3tnd296v5B20SJZthikYh0J6AGBVfYstwK7MQaqQwEPgTjm9x/eEJteKTu7SRGX9Kh4iFn1ObSY/+s0q/W3Lo7A1kmXkFqUKDZr371BhFLJCrLBDWm67mx9VOqLWcCp5VeYjCmbEyH2M2oohKNn85unZKTTBmQMNJZKUtm6u+JlEpjJjLIOiW1I7Po5eJ/Xjex4ZWfchUnFhWbLwoTQWxE8sfJgGtkVkwyQpnm2a2EjaimzGbx5CF4iy8vk/Z53XPr3t1FrXFdxFGGIziGU/DgEhpwC01oAYMRPMMrvDnSeXHenY95a8kpZg7hD5zPHyz5jac=</latexit><latexit sha1_base64="rRiXjcPJwGbeA/3y39lUE9upwiM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsLXQhrLZTtqlu5u4uxFK6F/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSy4sa777ZRWVtfWN8qbla3tnd296v5B20SJZthikYh0J6AGBVfYstwK7MQaqQwEPgTjm9x/eEJteKTu7SRGX9Kh4iFn1ObSY/+s0q/W3Lo7A1kmXkFqUKDZr371BhFLJCrLBDWm67mx9VOqLWcCp5VeYjCmbEyH2M2oohKNn85unZKTTBmQMNJZKUtm6u+JlEpjJjLIOiW1I7Po5eJ/Xjex4ZWfchUnFhWbLwoTQWxE8sfJgGtkVkwyQpnm2a2EjaimzGbx5CF4iy8vk/Z53XPr3t1FrXFdxFGGIziGU/DgEhpwC01oAYMRPMMrvDnSeXHenY95a8kpZg7hD5zPHyz5jac=</latexit><latexit sha1_base64="rRiXjcPJwGbeA/3y39lUE9upwiM=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsLXQhrLZTtqlu5u4uxFK6F/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSy4sa777ZRWVtfWN8qbla3tnd296v5B20SJZthikYh0J6AGBVfYstwK7MQaqQwEPgTjm9x/eEJteKTu7SRGX9Kh4iFn1ObSY/+s0q/W3Lo7A1kmXkFqUKDZr371BhFLJCrLBDWm67mx9VOqLWcCp5VeYjCmbEyH2M2oohKNn85unZKTTBmQMNJZKUtm6u+JlEpjJjLIOiW1I7Po5eJ/Xjex4ZWfchUnFhWbLwoTQWxE8sfJgGtkVkwyQpnm2a2EjaimzGbx5CF4iy8vk/Z53XPr3t1FrXFdxFGGIziGU/DgEhpwC01oAYMRPMMrvDnSeXHenY95a8kpZg7hD5zPHyz5jac=</latexit>

q�
<latexit sha1_base64="86E4QLAFt7AIghu4/iFIOd2PM3s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2FpoQ9lsJ+3S3U3c3Qgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBbcWNf9dkorq2vrG+XNytb2zu5edf+gbaJEM2yxSES6E1CDgitsWW4FdmKNVAYCH4LxTe4/PKE2PFL3dhKjL+lQ8ZAzanPpsX9W6Vdrbt2dgSwTryA1KNDsV796g4glEpVlghrT9dzY+inVljOB00ovMRhTNqZD7GZUUYnGT2e3TslJpgxIGOmslCUz9fdESqUxExlknZLakVn0cvE/r5vY8MpPuYoTi4rNF4WJIDYi+eNkwDUyKyYZoUzz7FbCRlRTZrN48hC8xZeXSfu87rl17+6i1rgu4ijDERzDKXhwCQ24hSa0gMEInuEV3hzpvDjvzse8teQUM4fwB87nDzADjak=</latexit><latexit sha1_base64="86E4QLAFt7AIghu4/iFIOd2PM3s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2FpoQ9lsJ+3S3U3c3Qgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBbcWNf9dkorq2vrG+XNytb2zu5edf+gbaJEM2yxSES6E1CDgitsWW4FdmKNVAYCH4LxTe4/PKE2PFL3dhKjL+lQ8ZAzanPpsX9W6Vdrbt2dgSwTryA1KNDsV796g4glEpVlghrT9dzY+inVljOB00ovMRhTNqZD7GZUUYnGT2e3TslJpgxIGOmslCUz9fdESqUxExlknZLakVn0cvE/r5vY8MpPuYoTi4rNF4WJIDYi+eNkwDUyKyYZoUzz7FbCRlRTZrN48hC8xZeXSfu87rl17+6i1rgu4ijDERzDKXhwCQ24hSa0gMEInuEV3hzpvDjvzse8teQUM4fwB87nDzADjak=</latexit><latexit sha1_base64="86E4QLAFt7AIghu4/iFIOd2PM3s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2FpoQ9lsJ+3S3U3c3Qgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBbcWNf9dkorq2vrG+XNytb2zu5edf+gbaJEM2yxSES6E1CDgitsWW4FdmKNVAYCH4LxTe4/PKE2PFL3dhKjL+lQ8ZAzanPpsX9W6Vdrbt2dgSwTryA1KNDsV796g4glEpVlghrT9dzY+inVljOB00ovMRhTNqZD7GZUUYnGT2e3TslJpgxIGOmslCUz9fdESqUxExlknZLakVn0cvE/r5vY8MpPuYoTi4rNF4WJIDYi+eNkwDUyKyYZoUzz7FbCRlRTZrN48hC8xZeXSfu87rl17+6i1rgu4ijDERzDKXhwCQ24hSa0gMEInuEV3hzpvDjvzse8teQUM4fwB87nDzADjak=</latexit><latexit sha1_base64="86E4QLAFt7AIghu4/iFIOd2PM3s=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2FpoQ9lsJ+3S3U3c3Qgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IBbcWNf9dkorq2vrG+XNytb2zu5edf+gbaJEM2yxSES6E1CDgitsWW4FdmKNVAYCH4LxTe4/PKE2PFL3dhKjL+lQ8ZAzanPpsX9W6Vdrbt2dgSwTryA1KNDsV796g4glEpVlghrT9dzY+inVljOB00ovMRhTNqZD7GZUUYnGT2e3TslJpgxIGOmslCUz9fdESqUxExlknZLakVn0cvE/r5vY8MpPuYoTi4rNF4WJIDYi+eNkwDUyKyYZoUzz7FbCRlRTZrN48hC8xZeXSfu87rl17+6i1rgu4ijDERzDKXhwCQ24hSa0gMEInuEV3hzpvDjvzse8teQUM4fwB87nDzADjak=</latexit>

u+
<latexit sha1_base64="jNORZ+r4MIDbnaq5v0jiulJfSWg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsB/QhrLZbtqlu5uwOxFK6F/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSyFRdf9dkpr6xubW+Xtys7u3v5B9fCobaPEMN5ikYxMN6CWS6F5CwVK3o0NpyqQvBNM7nK/88SNFZF+xGnMfUVHWoSCUcylZHBRGVRrbt2dg6wSryA1KNAcVL/6w4glimtkklrb89wY/ZQaFEzyWaWfWB5TNqEj3suopopbP53fOiNnmTIkYWSy0kjm6u+JlCprpyrIOhXFsV32cvE/r5dgeOOnQscJcs0Wi8JEEoxI/jgZCsMZymlGKDMiu5WwMTWUYRZPHoK3/PIqaV/WPbfuPVzVGrdFHGU4gVM4Bw+uoQH30IQWMBjDM7zCm6OcF+fd+Vi0lpxi5hj+wPn8ATMVjas=</latexit><latexit sha1_base64="jNORZ+r4MIDbnaq5v0jiulJfSWg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsB/QhrLZbtqlu5uwOxFK6F/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSyFRdf9dkpr6xubW+Xtys7u3v5B9fCobaPEMN5ikYxMN6CWS6F5CwVK3o0NpyqQvBNM7nK/88SNFZF+xGnMfUVHWoSCUcylZHBRGVRrbt2dg6wSryA1KNAcVL/6w4glimtkklrb89wY/ZQaFEzyWaWfWB5TNqEj3suopopbP53fOiNnmTIkYWSy0kjm6u+JlCprpyrIOhXFsV32cvE/r5dgeOOnQscJcs0Wi8JEEoxI/jgZCsMZymlGKDMiu5WwMTWUYRZPHoK3/PIqaV/WPbfuPVzVGrdFHGU4gVM4Bw+uoQH30IQWMBjDM7zCm6OcF+fd+Vi0lpxi5hj+wPn8ATMVjas=</latexit><latexit sha1_base64="jNORZ+r4MIDbnaq5v0jiulJfSWg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsB/QhrLZbtqlu5uwOxFK6F/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSyFRdf9dkpr6xubW+Xtys7u3v5B9fCobaPEMN5ikYxMN6CWS6F5CwVK3o0NpyqQvBNM7nK/88SNFZF+xGnMfUVHWoSCUcylZHBRGVRrbt2dg6wSryA1KNAcVL/6w4glimtkklrb89wY/ZQaFEzyWaWfWB5TNqEj3suopopbP53fOiNnmTIkYWSy0kjm6u+JlCprpyrIOhXFsV32cvE/r5dgeOOnQscJcs0Wi8JEEoxI/jgZCsMZymlGKDMiu5WwMTWUYRZPHoK3/PIqaV/WPbfuPVzVGrdFHGU4gVM4Bw+uoQH30IQWMBjDM7zCm6OcF+fd+Vi0lpxi5hj+wPn8ATMVjas=</latexit><latexit sha1_base64="jNORZ+r4MIDbnaq5v0jiulJfSWg=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsB/QhrLZbtqlu5uwOxFK6F/w4kERr/4hb/4bkzYHbX0w8Hhvhpl5QSyFRdf9dkpr6xubW+Xtys7u3v5B9fCobaPEMN5ikYxMN6CWS6F5CwVK3o0NpyqQvBNM7nK/88SNFZF+xGnMfUVHWoSCUcylZHBRGVRrbt2dg6wSryA1KNAcVL/6w4glimtkklrb89wY/ZQaFEzyWaWfWB5TNqEj3suopopbP53fOiNnmTIkYWSy0kjm6u+JlCprpyrIOhXFsV32cvE/r5dgeOOnQscJcs0Wi8JEEoxI/jgZCsMZymlGKDMiu5WwMTWUYRZPHoK3/PIqaV/WPbfuPVzVGrdFHGU4gVM4Bw+uoQH30IQWMBjDM7zCm6OcF+fd+Vi0lpxi5hj+wPn8ATMVjas=</latexit>

u�<latexit sha1_base64="2L3t7jjxUDQ5n1keSAEid9uQmx0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oQ9lsN+3S3U3YnQgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IJbCout+O6W19Y3NrfJ2ZWd3b/+genjUtlFiGG+xSEamG1DLpdC8hQIl78aGUxVI3gkmd7nfeeLGikg/4jTmvqIjLULBKOZSMrioDKo1t+7OQVaJV5AaFGgOql/9YcQSxTUySa3teW6MfkoNCib5rNJPLI8pm9AR72VUU8Wtn85vnZGzTBmSMDJZaSRz9fdESpW1UxVknYri2C57ufif10swvPFToeMEuWaLRWEiCUYkf5wMheEM5TQjlBmR3UrYmBrKMIsnD8FbfnmVtC/rnlv3Hq5qjdsijjKcwCmcgwfX0IB7aEILGIzhGV7hzVHOi/PufCxaS04xcwx/4Hz+ADYfja0=</latexit><latexit sha1_base64="2L3t7jjxUDQ5n1keSAEid9uQmx0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oQ9lsN+3S3U3YnQgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IJbCout+O6W19Y3NrfJ2ZWd3b/+genjUtlFiGG+xSEamG1DLpdC8hQIl78aGUxVI3gkmd7nfeeLGikg/4jTmvqIjLULBKOZSMrioDKo1t+7OQVaJV5AaFGgOql/9YcQSxTUySa3teW6MfkoNCib5rNJPLI8pm9AR72VUU8Wtn85vnZGzTBmSMDJZaSRz9fdESpW1UxVknYri2C57ufif10swvPFToeMEuWaLRWEiCUYkf5wMheEM5TQjlBmR3UrYmBrKMIsnD8FbfnmVtC/rnlv3Hq5qjdsijjKcwCmcgwfX0IB7aEILGIzhGV7hzVHOi/PufCxaS04xcwx/4Hz+ADYfja0=</latexit><latexit sha1_base64="2L3t7jjxUDQ5n1keSAEid9uQmx0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oQ9lsN+3S3U3YnQgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IJbCout+O6W19Y3NrfJ2ZWd3b/+genjUtlFiGG+xSEamG1DLpdC8hQIl78aGUxVI3gkmd7nfeeLGikg/4jTmvqIjLULBKOZSMrioDKo1t+7OQVaJV5AaFGgOql/9YcQSxTUySa3teW6MfkoNCib5rNJPLI8pm9AR72VUU8Wtn85vnZGzTBmSMDJZaSRz9fdESpW1UxVknYri2C57ufif10swvPFToeMEuWaLRWEiCUYkf5wMheEM5TQjlBmR3UrYmBrKMIsnD8FbfnmVtC/rnlv3Hq5qjdsijjKcwCmcgwfX0IB7aEILGIzhGV7hzVHOi/PufCxaS04xcwx/4Hz+ADYfja0=</latexit><latexit sha1_base64="2L3t7jjxUDQ5n1keSAEid9uQmx0=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBiyURQY9FLx4r2A9oQ9lsN+3S3U3YnQgl9C948aCIV/+QN/+NSZuDtj4YeLw3w8y8IJbCout+O6W19Y3NrfJ2ZWd3b/+genjUtlFiGG+xSEamG1DLpdC8hQIl78aGUxVI3gkmd7nfeeLGikg/4jTmvqIjLULBKOZSMrioDKo1t+7OQVaJV5AaFGgOql/9YcQSxTUySa3teW6MfkoNCib5rNJPLI8pm9AR72VUU8Wtn85vnZGzTBmSMDJZaSRz9fdESpW1UxVknYri2C57ufif10swvPFToeMEuWaLRWEiCUYkf5wMheEM5TQjlBmR3UrYmBrKMIsnD8FbfnmVtC/rnlv3Hq5qjdsijjKcwCmcgwfX0IB7aEILGIzhGV7hzVHOi/PufCxaS04xcwx/4Hz+ADYfja0=</latexit>

v
<latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit><latexit sha1_base64="Y1VFGg6QQHrr//k/0PvW2lPMVyo=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GPRi8cW7Ae0oWy2k3btZhN2N4US+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPx/dxvT1BpHstHM03Qj+hQ8pAzaqzUmPTLFbfqLkDWiZeTCuSo98tfvUHM0gilYYJq3fXcxPgZVYYzgbNSL9WYUDamQ+xaKmmE2s8Wh87IhVUGJIyVLWnIQv09kdFI62kU2M6ImpFe9ebif143NeGtn3GZpAYlWy4KU0FMTOZfkwFXyIyYWkKZ4vZWwkZUUWZsNiUbgrf68jppXVU9t+o1riu1uzyOIpzBOVyCBzdQgweoQxMYIDzDK7w5T86L8+58LFsLTj5zCn/gfP4A4zGM+g==</latexit>

✓
<latexit sha1_base64="PDgW1eqvO3mnpg92KyoMJvlifgk=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBA8hV0V9Bj04jGCeUCyhNnJbDJmdmaZ6RVCyD948aCIV//Hm3/jJNmDJhY0FFXddHdFqRQWff/bW1ldW9/YLGwVt3d29/ZLB4cNqzPDeJ1pqU0ropZLoXgdBUreSg2nSSR5MxreTv3mEzdWaPWAo5SHCe0rEQtG0UmNDg440m6p7Ff8GcgyCXJShhy1bumr09MsS7hCJqm17cBPMRxTg4JJPil2MstTyoa0z9uOKppwG45n107IqVN6JNbGlUIyU39PjGli7SiJXGdCcWAXvan4n9fOML4Ox0KlGXLF5oviTBLUZPo66QnDGcqRI5QZ4W4lbEANZegCKroQgsWXl0njvBJcVPz7y3L1Jo+jAMdwAmcQwBVU4Q5qUAcGj/AMr/Dmae/Fe/c+5q0rXj5zBH/gff4ApKGPKg==</latexit>

pk+
<latexit sha1_base64="hP6FqYym0iBXDVYJLYnXH/CmniM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsLXQhrDZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkorq2vrG+XNytb2zu5edf+gbZJMM95iiUx0J6SGS6F4CwVK3kk1p3Eo+UM4upn6D09cG5Goexyn3I/pQIlIMIpW6qRBPgrOJpWgWnPr7gxkmXgFqUGBZlD96vUTlsVcIZPUmK7npujnVKNgkk8qvczwlLIRHfCupYrG3Pj57N4JObFKn0SJtqWQzNTfEzmNjRnHoe2MKQ7NojcV//O6GUZXfi5UmiFXbL4oyiTBhEyfJ32hOUM5toQyLeythA2ppgxtRNMQvMWXl0n7vO65de/uota4LuIowxEcwyl4cAkNuIUmtICBhGd4hTfn0Xlx3p2PeWvJKWYO4Q+czx9yb4+Q</latexit><latexit sha1_base64="hP6FqYym0iBXDVYJLYnXH/CmniM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsLXQhrDZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkorq2vrG+XNytb2zu5edf+gbZJMM95iiUx0J6SGS6F4CwVK3kk1p3Eo+UM4upn6D09cG5Goexyn3I/pQIlIMIpW6qRBPgrOJpWgWnPr7gxkmXgFqUGBZlD96vUTlsVcIZPUmK7npujnVKNgkk8qvczwlLIRHfCupYrG3Pj57N4JObFKn0SJtqWQzNTfEzmNjRnHoe2MKQ7NojcV//O6GUZXfi5UmiFXbL4oyiTBhEyfJ32hOUM5toQyLeythA2ppgxtRNMQvMWXl0n7vO65de/uota4LuIowxEcwyl4cAkNuIUmtICBhGd4hTfn0Xlx3p2PeWvJKWYO4Q+czx9yb4+Q</latexit><latexit sha1_base64="hP6FqYym0iBXDVYJLYnXH/CmniM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsLXQhrDZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkorq2vrG+XNytb2zu5edf+gbZJMM95iiUx0J6SGS6F4CwVK3kk1p3Eo+UM4upn6D09cG5Goexyn3I/pQIlIMIpW6qRBPgrOJpWgWnPr7gxkmXgFqUGBZlD96vUTlsVcIZPUmK7npujnVKNgkk8qvczwlLIRHfCupYrG3Pj57N4JObFKn0SJtqWQzNTfEzmNjRnHoe2MKQ7NojcV//O6GUZXfi5UmiFXbL4oyiTBhEyfJ32hOUM5toQyLeythA2ppgxtRNMQvMWXl0n7vO65de/uota4LuIowxEcwyl4cAkNuIUmtICBhGd4hTfn0Xlx3p2PeWvJKWYO4Q+czx9yb4+Q</latexit><latexit sha1_base64="hP6FqYym0iBXDVYJLYnXH/CmniM=">AAAB73icbVBNS8NAEJ3Ur1q/qh69LBZBEEoigh6LXjxWsLXQhrDZbtqlm03cnQgl9E948aCIV/+ON/+N2zYHbX0w8Hhvhpl5YSqFQdf9dkorq2vrG+XNytb2zu5edf+gbZJMM95iiUx0J6SGS6F4CwVK3kk1p3Eo+UM4upn6D09cG5Goexyn3I/pQIlIMIpW6qRBPgrOJpWgWnPr7gxkmXgFqUGBZlD96vUTlsVcIZPUmK7npujnVKNgkk8qvczwlLIRHfCupYrG3Pj57N4JObFKn0SJtqWQzNTfEzmNjRnHoe2MKQ7NojcV//O6GUZXfi5UmiFXbL4oyiTBhEyfJ32hOUM5toQyLeythA2ppgxtRNMQvMWXl0n7vO65de/uota4LuIowxEcwyl4cAkNuIUmtICBhGd4hTfn0Xlx3p2PeWvJKWYO4Q+czx9yb4+Q</latexit>
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Fig. 6 Constructions for computing the discrete integral
area invariant.

2. Let t± be the positive solutions to ||pk +
t(pk±±1 − pk±)||2 = r2. Next, let q± = pk +
t±(pk±±1 − pk±). The point q+ (respectively
q−) is the intersection of the line between pk+
and pk++1 (respectively pk− and pk−−1) and the
boundary of Br(pk).

3. Construct points u−, u+, v as follows. Let
θ = 1

4∠q+pkq−, where ∠q+pkq− is the angle
between q+−pk and q−−pk, measured counter-
clockwise. Define

u± = pk + sec(θ)R±θ(q± − pk),

where Rθ is the standard (counter-clockwise)
rotation matrix through angle θ. Then, define
v to be the bisector of the segment connecting
u+ and u−, or equivalently

v = pk +R2θ(q+ − pk).

4. Let A1 be the area of the polygon
u−, q−, pk− , . . . pk, . . . pk+ , q+, u+ (which is
easily computed via Lemma 5). This is the
combined area of the light and dark shaded
regions in Figure 6.

5. Let A2 = ||(v−u+)×(q+−u+)||−r2
(
θ
2 − sin θ

2

)
,

the total area of the lighter shaded regions in
Figure 6. (The first term is twice the area
of the triangle formed by v, q+, u+, and the
second term is twice the area of the circular
segment cut by the secant connecting q+ and
v. Both terms are doubled by symmetry of the
computation.)

6. Return Ip(pk) = A1 − A2, the discrete integral
invariant at pk.

Remark 7 In Algorithm 6 what is actually com-
puted is different than Ip as given in Definition 4.
It is assumed that curve does not “wander back into
Br(x)”, so that the intersection of Br(x) with the exte-
rior of R has only a single component. For a large
enough choice of r, this assumption would generally be
false. But, for the purposes of puzzle piece matching,
we are interested in matching portions of curves, not
global shape matching, and so prefer Ip from Algorithm
6 to that of Definition 4.

4 Piece comparison

We now describe the process of comparing two
puzzle pieces to find possible fits. Integral area
invariants reduce this problem to one of local
sequence alignment; a match between two puz-
zle pieces is a partial overlap of the integral area
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invariant sequences, and searching for the “best”
partial overlap should typically reveal the “best”
fit possible for a given pair of puzzle pieces. The
meaning of “best” here is qualitative and will be
illustrated via examples; in particular we will see
ways in which good signature overlap may result
in poor puzzle piece matches.

4.1 Signature alignment and piece
fitting

Before discussing puzzle pieces, we describe for
context the process of finding alignments of two
periodic arrays to within a fixed threshold. Let
A = {a0, . . . , am−1} and B = {b0, . . . , bn−1} be
numerical arrays. A and B are considered as peri-
odic arrays, so indices are taken modulo their
respective array lengths: if j, k are integers, let
aj = ajmodm and bk = bkmodn, where representa-
tives are chosen so that 0 ≤ jmodm ≤ m− 1 and
0 ≤ kmodn ≤ n− 1. This periodicity convention
will be used for the remainder of Section 4. The
following definition makes the notion of alignment
precise.

Definition 8 Let ε > 0. A pair of substrings
{ai, ai+1, . . . , ai+`} ⊂ A and {bj , bj+1, . . . , bj+`} ⊂ B
will be called an ε-alignment for A and B if |ai+k −
bj+k| < ε for k = 0, . . . , `.

To find ε-alignments, we use a simplified ver-
sion of the Smith-Waterman local sequence align-
ment algorithm, [19]. For the purposes of puzzle
piece matching, we will search for a maximal
length ε-alignment.

Algorithm 9 Calculate a maximum length ε-
alignment of two periodic arrays.

Input: Periodic arrays A = {a0, . . . , an−1}, B =
{b0, . . . , bm−1}, and ε > 0.

Output: A maximum length ε-alignment
{ai, ai+1, . . . , ai+`} ⊂ A and {bj , bj+1, . . . , bj+`} ⊂
B.

1. Construct a scoring matrix

Sij =

{
0 if |ai − bj | < ε

1 otherwise

.

2. For each r = 0, . . . , gcd(m,n), search along
the (periodic) diagonal Sr,0, Sr+1,1 . . . for the
longest sequence of zeros. This longest sequence
may not be unique; see Remark 10.

3. Return the indices i, j and length ` + 1,
where Si,j , Si+1,j+1, . . . Si+`,j+` is the longest
sequence of zeros from 2.

Remark 10 In our application, the matrix Sij will

have 105 or more entries (e.g. comparing two arrays
with lengths around 300 or more), making it unlikely
that two maximal length ε-alignments of the same
length exist. We implement Algorithm 9 to return the
most recently found maximal length ε-alignment and
do not keep track of any other ε-alignments of the same
or smaller length.

Now suppose that we have puzzle pieces P,Q
with integral invariant signatures A,B computed
with a disk of radius r. These pieces and their
signatures are oriented counter-clockwise. To com-
pare puzzle pieces, we must reverse the orientation
of one piece, say Q. This results in a new sig-
nature B which can be obtained from B =
{b0, b1, . . . , bn−1} via

B = {πr2−bn−1, πr2−bn−2, . . . , πr2−b1, πr2−b0}.

To fit P and Q together, we look for a maximal
ε-alignment of A and B.

Definition 11 Let ε > 0. An ε-fit of
P = {p0, . . . , pm−1} with Q = {q0, . . . , qn−1},
is a pair of substrings {pi, pi+1, . . . , pi+`} ⊂ P
and {qj , qj+1, . . . , qj+`} ⊂ Q corresponding

to an ε-alignment {ai, ai+1, . . . , ai+`}, {πr2 −
bj+`, π, . . . , πr

2 − bj+1, πr
2 − bj} of signatures A and

B.

Remark 12 Note that, although we compare P and
Q by finding an ε-alignment of A and B, the process
is symmetrical: a given ε-alignment of A and B corre-
sponds to an ε-alignment of B and A. If the maximal
ε-fit is not unique, it is possible that the order of com-
parison will matter by virtue of the order in which
ε-alignments are found in Algorithm 9. We have not
encountered this in our application. To simplify dis-
cussion we assume that the ε-fit of P to Q is the same
as Q to P .



7

Our strategy for finding the “best” fit between
two puzzle pieces P , Q is to look for a maximal
length ε-fit for a well-chosen value of ε. This is a
qualitative decision based on two main factors:

1. An ε-fit is a strict pointwise condition on the
alignment of the signatures. A typical puzzle
may have short extreme changes of shape (e.g. a
corner). Our measure of fit must be sensitive to
this. Using an average measure of closeness, or
allowing skips in alignment will result in incor-
rect fits due to these brief changes in shape
(e.g. a straight edge fitting with a corner with
incident straight edges).

2. A fit should be come from an alignment of max-
imal length. Ideally, for standard rectangular
puzzle pieces, two pieces should have an ε-fit
that includes the entire matching sides. There
will often be shorter length fits (such as the
straight sides of two edge pieces or portions
of edges) that come from better alignments
(e.g. smaller ε), but are not correct for puzzle
assembly.

4.2 The orthogonal Procrustes
problem

Given an ε-fit, the visual placement of pieces P
and Q is done by minimizing the least squares
distance between the substrings of the fit via an
orientation preserving rigid motion, i.e. a transfor-
mation from SE(2), the special Euclidean group.
This problem is often called the Procrustes prob-
lem, [20, 21]. We briefly recall the solution here
for context.

Let {x0, . . . , x`} and {y0, . . . , y`} be collections
of points in R2. The (special) orthogonal Pro-
crustes problem aims to find the rotation matrix
R that minimizes the least squares distance

∑̀
i=0

||xi −Ryi||2.

The solution to this problem is obtained via the
singular value decomposition. Viewing xi, yi as
column vectors, form the 2× (`+ 1) matrices X =[
x0 · · · x`

]
and Y =

[
y0 · · · y`

]
, and compute

the singular value decomposition XY > = UΣV >

of XY >. Then R = U ′V >, where U ′ is obtained
from U by multiplying the second (last) column by
det(UV >) to ensure that R has determinant one.

To apply this to our ε-fits, we incorpo-
rate a translation to first align centroids. Let
{pi, pi+1, . . . , pi+`}, {qj , qj+1, . . . , qj+`} be an ε-fit
of P and Q. Let

p =
1

`+ 1

∑̀
k=0

pi+k and q =
1

`+ 1

∑̀
k=0

qj+k

be the respective centroids. Let

X =
[
pi − p pi+1 − p · · · pi+` − p

]
and

Y =
[
qj+` − q qj+`−1 − q · · · qj − q

]
and R the rotation matrix minimizing the distance
between X and RY just described. The transfor-
mation gPQ = (R, p − Rq) in SE(2) given by
gPQ(z) = Rz + p − Rq then minimizes the least
squares distance

∑̀
k=0

||pi+k − g qj+`−k||2

over all choices of g in SE(2). In what follows,
we’ll write gPQ for the element of SE(2) obtained
from applying this process to an ε-fit of P and Q.

Example 13 We illustrate how an ε-fit can vary with
ε by applying the special Euclidean transformations
obtained via Procrustes. Shown in Figure 7 are four ε-
fits for pieces 3 and 4 from our example puzzle. These
pieces have perimeters in the range 5000 to 6500, and
a radius r = 50 is used for the integral invariant sig-
natures. For this pair of pieces, there is a large range
151 ≤ ε ≤ 698, for which the fit is visually correct and
close to maximal length. This behavior is typical for a
correctly matched pair of rectangular puzzle pieces.

4.3 Fit quality

For a given ε, there will be an ε-fit between any
pair of puzzle pieces, and it is useful to have a mea-
sure of the quality of the fit so that poor quality
ones can be discarded. Once a pairwise quality is
determined, the selection of correct fits for assem-
bly will be done globally based on this quality;
this global selection will be discussed in Section 5.
There are two reasons we may want to discard a
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Fig. 7 ε-fits with ε = 50, 150, 200, and 700 (from left to right).

given ε-fit, which we refer to as errors of type (a)
and type (b):

(a) It is a fit between two pieces which do not go
together in the assembled puzzle.

(b) It is an incorrect fit for two pieces which do go
together in the assembled puzzle.

Fig. 8 A poor quality fit of type (b) and good quality fit
of type (a).

Qualitatively, it is unlikely that one can judge
whether an ε-fit is an error of type (a) or (b) based
on direct measurement of the quality of the fit.
For example, shown in Figure 8 are two ε-fits for
ε = 700. On the left is a clearly incorrect and poor
quality fit between pieces 3 and 4, which do go
together in the final assembly. On the right is a
good quality fit for pieces 1 and 4, which do not
go together in the final assembly. Despite these
unavoidable flaws, some metric is needed to deter-
mine the correctness of an ε-fit. Our results utilize
three measurements:

1. the length `PQ of the fit,
2. the distance

dPQ =
∑̀
k=0

||pi+k − gPQqj+`−k||2

between the substrings {pi, pi+1, . . . , pi+`} and
{qj , qj+1, . . . , qj+`} of the fit after alignment,
and

3. the standard deviations σP , σQ of
the substrings {ai, ai+1, . . . , ai+`} and
{bj , bj+1, . . . , bj+`} of the invariant signatures
of P,Q corresponding to the fit.

We seek a long fit with a good alignment
after application of the Procrustes transformation,
hence the choice of measurements 1 and 2. Mea-
surement 3 captures the amount of variation in the
shape of the matched substrings; small standard
deviation σ can be an indicator that our matched
substrings consist of straight lines, or portions of
the puzzle pieces that resemble an arc of a circle.
Our measure of the quality qPQ of a fit will be a
function of dPQ, `PQ, σP and σQ. Other measure-
ments that we do not discuss here – such as the
area or perimeter of the overlap of the polygons
P and gPQQ, or the total distance between the
signature substrings that give the ε-fit – can be
effectively incorporated into the quality as well.
We use the optimization convention of minimiza-
tion, so smaller will be better in our definitions of
quality measurements qPQ of the ε-fit of P and Q.

The next task for assembly is to combine the
ε-fits into an assembled puzzle. For successful
assembly, correct ε-fits need to be identified, and
incorrect ones discarded. This task is both local
and global: a fit itself can be judged based the
quality measurements just discussed, while all pos-
sible fits can be considered in aggregate. In the
next section, we outline possible methods using
spanning trees and the consistency of collections
of ε-fits to correctly assemble a puzzle.

5 Puzzle assembly

The data used to determine a successful puzzle
assembly is the collection of all ε-fits between pairs
of puzzle pieces. For a puzzle with s pieces, this

is a collection of s(s−1)
2 ε-fits. A convenient way

to encode this data is as an undirected, weighted,
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complete graph G on s vertices; each vertex rep-
resents a puzzle piece, each edge an ε-fit, and the
weight on each edge a measure of the quality of the
corresponding ε-fit. This graph G will be called a
comparison graph for our puzzle. We briefly recall
standard terminology from graph theory that will
be used in this discussion.

Definition 14 A cycle in a graph is a sequence of dis-
tinct edges connecting a sequence of vertices in which
the only repeated vertices are the first and last in the
sequence. The length of a cycle is the number of ver-
tices it comprises. We will denote a cycle by listing its
vertices in order, with first and last vertex repeated. A
cycle graph is a graph that consists of a single cycle,
with no distinguished first/last vertex. A tree is a con-
nected graph with no cycles. A spanning tree in a graph
G is a subgraph of G which is a tree and includes all
vertices of G.

5.1 Spanning trees

In order to aggregate the collection of ε-fits into
an assembled puzzle, we choose a spanning tree in
the comparison graph G. This spanning tree will
specify a unique way of attaching each puzzle piece
to the other pieces, as shown in Figure 9; if an edge
connects two pieces in the spanning tree, the ε-fit
between those pieces is used in the assembly. A
spanning tree of G will be called a puzzle assembly.

To further incorporate the quality weights
assigned to each edge of G, we choose a puzzle
assembly with minimum total edge weight, which
we call an optimal puzzle assembly. In practice, the
edge weights will be unique, so the optimal puzzle
assembly will also be unique. For small puzzles for
which good quality ε-fits of type (a) and (b) are
uncommon, a properly chosen measure of quality
can result in optimal puzzle assemblies that are
often correct or close to correct.

We illustrate various optimal puzzle assemblies
using our running example puzzle. These exam-
ples will motivate choices of quality measurement
qPQ and the development of cycle consistency in
Section 5.2. In the next two examples, we take an
arclength separation δ = 15 and integral invariant
radius r = 40.

Example 15 Shown in Figure 10 is the optimal puz-
zle assembly for quality qPQ = dPQ/`PQ and ε = 180.
For this choice of ε there are no errors of type (b);

Fig. 9 A spanning tree in the complete graph G and the
resulting puzzle assembly.

all pieces which are meant to fit together have visually
correct ε-fits. However, there are many good quality
ε-fits of type (a), resulting in an incorrect optimal puz-
zle assembly. Many pieces are incorrectly aligned along
straight edges because these offer the best quality ε-fits
for small ε.

Fig. 10 An optimal puzzle assembly resulting from type
(a) errors, ε = 180.

It is not apparent that dPQ or `PQ alone
can eliminate these errors of type (a), so we
incorporate σP and σQ via a threshold:

qPQ = dPQ/`PQ + ισ∗(min(σP , σQ)), (1)

where

ισ∗(σ) =

{
∞ if σ < σ∗

0 otherwise
.

A value of min(σP , σQ) that is below a cho-
sen threshold σ∗ indicates that either substring of
P or Q in the ε-fit could be close to a straight
line. If this is the case, the weight qPQ becomes
∞, eliminating the possibility that the optimal
puzzle assembly will contain that particular ε-fit.
The threshold σ∗ can be chosen via a standard
thresholding method.
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Example 16 Shown in Figure 11 is the optimal puz-
zle assembly for quality (1) with ε = 180 and σ∗ = 70.
As before there are no errors of type (b) for this choice
of ε. The introduction of σP , σQ into the quality mea-
surement now eliminates the type (a) errors resulting
from straight line matches, and the resulting optimal
puzzle assembly is correct.

Fig. 11 An optimal puzzle assembly with type (a) errors
eliminated, ε = 180.

Example 17 Lastly, we consider another example
with δ = 15, r = 50 and ε = 350. Increasing ε and
r increases the “sloppiness” of the fits; there will be
more potential for errors of type (a) that cannot be
eliminated via the quality measurement (1). Shown in
Figure 12 is the optimal puzzle assembly for quality (1)
with ε = 350 and σ∗ = 177. An incorrect optimal puz-
zle assembly results from the type (a) errors. In order
to use this collection of ε-fits to assemble the puzzle,
we move beyond the quality measurement and exam-
ine the consistency of collections of ε-fits; a process we
will call checking cycle consistency.

Fig. 12 An incorrect optimal puzzle assembly with type
(a) errors, ε = 350.

5.2 Cycle Consistency

Our computational solution to a jigsaw puzzle
must specify the placement of each piece rela-
tive to the other pieces in a unique way, so it
is mathematically convenient to interpret puzzle
assemblies as spanning trees in the complete graph
G of all ε-fits. This interpretation does not account
for the fact that a puzzle has many more con-
nections than just those chosen for the spanning
tree giving the puzzle assembly. For a standard

m × n rectangular puzzle, a spanning tree uses
only mn − 1 fits, while the entire puzzle contains
2mn− (m+ n) possible correct fits between pairs
of pieces. To use the information in these fits we
propose a process of checking cycle consistency.

Intuitively, we would like to capture the consis-
tency of a collection of ε-fits. Let P1, . . . , Ps be the
pieces of our puzzle, and write gij as shorthand for
the Euclidean transformation gPiPj

that aligns Pj
with Pi, as discussed in Section 4.2. Take a subcol-
lection of k pieces Pi1 , . . . , Pik . If, in a real puzzle,
we can attach pieces in either of the sequences

Pi1 → Pi2 → · · · → Pik−1
→ Pik or Pi1 → Pik ,

then the direct attachment of Pi1 to Pik should
give the same placement of Pi1 as the attach-
ment of Pi1 to Pik through the intermediary pieces
Pi2 , . . . , Pik−1

. This collection of attachments cor-
responds to a cycle (Pi1 , Pi2 , . . . , Pik , Pi1) of length
k the assembly graph G, and we propose Defi-
nitions 18 and 21 as two ways to measure the
consistency of the placement of pieces Pi1 , . . . , Pik
by examining this cycle.

We first measure consistency at the level of
transformations. Let g = gi1i2 · · · gik−1ik giki1 be
the composition of the transformations in the
cycle (Pi1 , . . . , Pik , Pi1). (Note that these transfor-
mations start and end at the starting vertex Pi1 of
the cycle.) If these fits are part of a perfect puzzle
assembly, g should be the identity transformation.
Since our assemblies will not be perfect, we impose
a threshold test on g.

Definition 18 Let θ∗, τ∗ > 0. With g as above write
g = (Rθ, τ) where Rθ is the standard rotation, −π <
θ ≤ π, and τ the translation comprising the trans-
formation g. If |θ| < θ∗ and ||τ || < τ∗, the cycle
(Pi1 , . . . , Pik , Pi1) will be called transformation con-
sistent (with respect to θ∗, τ∗). If all cycles in the
cycle graph (Pi1 , . . . , Pik ) are transformation consis-
tent, then the cycle graph (Pi1 , . . . , Pik ) will be called
transformation consistent.

Remark 19 Transformation consistency for a cycle
depends on the starting point of the cycle. Thus it is
possible for some cycles in a single cycle graph to be
transformation consistent while others are not. Thus
checking cycle graph consistency for a cycle graph
of length k involves checking each of the k cycles it
contains.
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A cycle consisting of correct fits will necessarily
be transformation consistent. However, obviously
incorrect fits can still be part of transformation
consistent cycles, as the next example illustrates.

Example 20 We return to the puzzle assembly of
Example 17 to illustrate transformation consistency
for cycles of length 4. There are no errors of type (b)
for the chosen δ, r and ε of Example 17, so we hope
to discover 24 cycles corresponding to 6 cycle graphs,
shown in Figure 14, that are consistent with correct
assembly of the puzzle. Removing the fits eliminated
by the check on shape variation σ (since they will not
be part of the optimal puzzle assembly), we arrive at a
modified comparison graph G with 61 edges and 1081
cycle graphs of length 4. Using thresholds θ∗ = π/20
and τ∗ = 30, a total of 111 of these cycle graphs
are transformation consistent. As shown in the exam-
ple cycle of Figure 13, these “extra” transformation
consistent cycles arise from accidental alignment of
ε-fits.

Fig. 13 A transformation consistent cycle and the ε-fits
it comprises.

Thus, transformation consistency does not
provide a complete filter to identify cycles in the
assembly graph consisting of correct ε-fits. In order
to eliminate incorrect transformation consistent
cycles like the one in Figure 13, we introduce over-
lap consistency, a more stringent check on cycles
in the comparison graph. Overlap consistency is
motivated by the simple observation that a cor-
rectly assembled cycle will not have overlapping
pieces.

Denote by int(Pi) the interior of the puzzle
piece Pi and let Pi1 , . . . , Pik be a collection of
pieces as before. In a perfect puzzle assembly the
interiors of these pieces should not overlap as they
are assembled. That is, all pairwise intersections

of the open regions

Ωj = int(gi1i2gi2i3 · · · gij−1ijPij ), j = 1, . . . , k,

should be empty. Since our assemblies will not be
perfect, we impose a threshold test on the areas of
these intersections. In order to account for puzzle
pieces of varying size, our threshold is determined
as a portion of the combined areas of the pieces
being compared.

Definition 21 Let Ω1, . . . ,Ωk be as above and let
α∗ > 0 and α∗ij = α∗

(
area(Ωi) + area(Ωj)

)
. If

area
(
Ωi ∩ Ωj

)
< α∗ij for i, j = 1, 2, . . . , k, then the

cycle (Pi1 , . . . , Pik , Pi1) will be called overlap consis-
tent (with respect to α∗). If all cycles in the cycle graph
Pi1 , . . . , Pik are overlap consistent, then the cycle
graph (Pi1 , . . . , Pik ) will be called overlap consistent.

Remark 22 Checking overlap consistency is much
more computationally intensive than transformation
consistency, requiring at most k(k − 1)/2 computa-
tions of the intersections of polygons for each cycle.
To check overlap consistency for the whole cycle graph,
these checks must be repeated for each of the k start-
ing points of cycles, naively resulting in a total of
k2(k − 1)/2 overlap checks. In practice, most of these
overlap consistency checks will fail before checking all
k(k − 1)/2 intersections. As needed, the computation
time for overlap consistency checks can be reduced by
first filtering cycles via a check on transformation con-
sistency and by reducing the number of points in each
puzzle piece by adjusting δ.

Example 23 We return again to Example 17 and
illustrate overlap consistency for cycles of length 4. As
in Example 20 we use a modified comparison graph
G with 61 edges and 1081 cycles of length 4. With a
threshold of α∗ = 1

80 , exactly 6 of these cycle graphs
are overlap consistent, shown in Figure 14. These are
the 6 correct cycle graphs of length 4 that we can expect
to find in a perfect assembly.

To improve our optimal puzzle assembly, we
incorporate cycle consistency information into the
edge weights of the assembly graph. We do this
by reducing the edge weights for those fits which
appear in overlap consistent cycle graphs, increas-
ing the likelihood that these fits are selected in the
optimal puzzle assembly.
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Fig. 14 Overlap consistent cycles for the ε-fits of Example 17 with α∗ = 1
80

.

Definition 24 Suppose that the ε-fit of Pi and Pj has
weight qij and appears in c overlap consistent cycles.
Choose 0 < β∗ < 1, and assign a new weight qij =
(β∗)cqij to the ε-fit. For rectangular puzzles, we will
have c = 0, 1, or 2. The graph G obtained from G by
assigning the new weights qij will be called the cycle
consistent comparison graph.

Example 25 We return to Example 17 for a final
time and incorporate cycle consistency into the opti-
mal puzzle assembly. Using the overlap consistent cycle
graphs found in Example 23 and taking β∗ = 1

2 , we
create the new overlap consistent comparison graph
G. Taking a minimal spanning tree of this graph now
results in a correct optimal puzzle assembly, shown in
Figure 15. Hence cycle consistency is able to discern
the correct ε-fits to include in the assembly where the
quality measure alone is not.

Fig. 15 An optimal puzzle assembly incorporating cycle
consistency, ε = 350.

5.3 The full puzzle assembly
algorithm

We summarize our full method for automated
puzzle assembly. Assembly results from applying
this method to various example puzzles will be
provided in Section 6.

Algorithm 26 An algorithm for apictorial jigsaw
puzzle assembly.

Input: A collection of (unprocessed) puzzle piece
boundary curves.

Output: A collection of transformations intended to
produce a correct puzzle assembly.

1. Process the puzzle data. Choose an arclength
separation δ and apply Algorithm 1 to the
unprocessed pieces until arclength separation
is uniform. In practice, this takes fewer than
10 iterations. Let P1, . . . , Ps be the processed
pieces.

2. Compute integral invariants. Choose an inte-
gral invariant radius r and apply Algorithm
6 to compute discrete integral area invariants
A1, . . . , As for P1, . . . , Ps.

3. Compute ε-fits for all piece pairs. Choose a fit
threshold ε and apply Algorithm 9 to find the
maximum length ε-fit Pi ← Pj for each pair
of pieces Pi, Pj. Store the quality data `ij, dij,
σi, σj and the Procrustres transformation gij
mapping Pj to Pi.

4. Form the comparison graph. Choose a fit
quality qij = f(`ij , dij , σi, σj) and form the
weighted comparison graph G as a complete
graph edges Pi and edge weights qij. Option-
ally, the minimal spanning tree of G can be
computed and tested to see if it yields a correct
optimal puzzle assembly.

5a. Check cycle transformation consistency
(optional, as a prefilter to overlap consistency).
Choose thresholds θ∗, τ∗ and a collection
of cycles in G to check for transformation
consistency with respect to θ∗, τ∗.

5b. Check cycle overlap consistency (optional, if
comparison graph does not produce correct
assembly). Choose a threshold α∗ and a col-
lection of cycles in G (e.g. the transformation
consistent cycles from 5) to check for overlap
consistency with respect to α∗.

6. Form the cycle consistent comparison graph.
With 0 < β∗ < 1, adjust the weights of G to
create the cycle consistent comparison graph G.
The minimal spanning tree of G can then be
tested to see if it yields a correct optimal puzzle
assembly.
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6 Results

Example 27 Pictured in Figure 16 is the assembly
of the 50 piece “Alphabet” puzzle, [22]. Applying Algo-
rithm 26 with δ = 15, r = 50, ε = 220, σ∗ = 115 and
quality

qij = dij/`ij + ισ∗(min(σi, σj))

yields this puzzle assembly. The optimal puzzle assem-
bly obtained directly from G is sufficient to solve this
puzzle; no cycle consistency checks were performed.
The entire computation (including segmentation of the
puzzle images) required about 3 minutes on an Apple
Macbook Air M1 8gb using Mathematica 12.3.1.0.

Example 28 Pictured in Figure 17 is the assem-
bly of the 46 piece “Rainforest” puzzle, [7]. Applying
Algorithm 26 with the same δ, r, ε, σ∗ and qij as in
Example 27 yields this puzzle assembly. The optimal
puzzle assembly obtained directly from G is sufficient
to solve this puzzle; no cycle consistency checks were
performed. The entire computation (including segmen-
tation of the puzzle images) required about 3 minutes
on an Apple Macbook Air M1 8gb using Mathematica

12.3.1.0.

Example 29 Pictured in Figure 18 are two assem-
blies of the 100 piece “Safari” puzzle, [23]. For both
assemblies, we use δ = 15, r = 50, ε = 260, σ∗ = 205
and the same quality qij as in the previous examples.
For the first assembly, no cycle consistency checks
were performed, and the assembly is very incorrect.
This assembly required 9 minutes Apple Macbook Air
M1 8gb using Mathematica 12.3.1.0. For the sec-
ond assembly, two stages of cycle consistency checks
with cycle length 4 are performed: first transforma-
tion consistency with θ∗ = π/30 and d∗ = 20, then
overlap consistency with α∗ = 1/80 on the transforma-
tion consistent cycles. In the comparison graph there
are 9057744 cycles of length 4, so this computation
is intensive, requiring roughly 3 additional hours for
cycle consistency checks. Note that the assembly is
much improved, with only one piece misplaced.

Surprisingly, with the same values of δ, r, ε and σ∗,
we can achieve a completely correct puzzle assembly by
changing the quality to

qij = dij/`
3
ij + ισ∗(min(σi, σj)).

This change puts stronger weight on the length of the
match, rather than just the average distance between
paired points in the ε-fit. Shown in Figure 19 is the
(correct) assembly for this quality, with no cycle con-
sistency checks performed. This assembly required 9
minutes on the same hardware.

7 Conclusion

We have described a new method for automatic
assembly of jigsaw puzzles. This method highlights
the efficacy of integral area invariants for shape
comparison, and uses combinatorial information
about the collection of shape matches to better
select which matches should be used for the puz-
zle assembly. As shown in Section 6, our method
is effective at assembling traditional rectangular
jigsaw puzzles, but does not rely on structural
information about piece shape or arrangement.
There are a number of interesting directions for
further research.

In [5], related methods for puzzle assembly are
shown to be effective on non-rectangular puzzles
such as the Baffler Nonagon, [8]. This robustness
to irregular assemblies is helpful for solving more
general object reassembly problems. For reasons
that are not yet clear, preliminary experiments
applying our assembly method to non-rectangular
puzzles have not yielded results as impressive as
those of [5]. It would be worthwhile to better
understand this shortcoming, and to experiment
with changes to Algorithm 26 to make it more
effective on non-rectangular puzzles.

Our method of determining ε-fits involves
exhaustive comparison of invariant signatures.
This was a qualitative choice based on the goal
of finding the longest match within a threshold
of shape similarity. Other comparison methods
or paradigms for comparison could be explored.
Rather than enforcing a strict distance thresh-
old, signature matches could be found using a
more flexible notion of local sequence alignment,
e.g. one that measures distance with allowance for
errors or omissions, [24]. One could also search
for alignments probabilistically, [25]. Additionally,
our shape comparisons were done independently;
the fit of one pair of pieces does not affect the fit of
another pair. This does not comport with reality,
where a correct fit between a pair of pieces limits
the further possible fits for those pieces. To reflect
this fact in the algorithmic approach it may be
possible to use multiple sequence alignment, [26],
which could seek non-overlapping alignments of a
collection of signatures.

For large puzzles and large cycles, the
cycle consistency process becomes computation-
ally intensive since the number of cycles grows
exponentially with both the number of vertices
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Fig. 16 An optimal puzzle assembly for the Alphabet puzzle

Fig. 17 An optimal puzzle assembly for the Rainforest puzzle.

and the length of the cycle. Optimization of the
approach to cycle consistency is needed to use
it effectively to assemble puzzles larger than 100
pieces. One possible approach to this optimiza-
tion would be to select cycles randomly to test,
and update the cycle consistent comparison graph
G dynamically. Random cycle selection could be
done in an informed manner; prioritizing those
consisting of ε-fits with better quality, for example.

There are a number of parameters that need
to be determined for a successful puzzle assembly.
Some of these parameters, such as the arclength
resolution δ, the integral invariant radius r and
the comparison threshold ε, seem to depend pri-
marily on the size of the puzzle pieces and not
on the puzzle geometry per se. Others, such as
the shape variation threshold σ∗ and the overlap
threshold α∗ depend on the geometry and arrang-
ments of the pieces. It would be worthwhile to
investigate how some of these parameters could
be determined or optimized automatically. Along
similar lines, one could investigate the relationship

between parameter values and quality measure-
ments of the fits. As can be seen in Example 29,
the choice of quality can have a strong effect on the
correctness of the assembly, and a more systematic
method for choosing quality would be useful.

Finally, because the focus of this work was
on the application of integral area invariants, the
use of other invariant signatures (e.g. differential
invariants, [27, 28], or invariant histograms, [29])
in combination with our graph based assembly
process was not systematically explored. It would
be very interesting if other types of invariant sig-
natures proved to be more (or less) effective in
achieving correct puzzle assemblies.
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9 Data Availability
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