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Abstract

In a previous paper, we gave a new general theory of the construction of flat operators on grey-level
or multivalued images from operators on binary images. While the traditional approach was based on
threshold superposition, we rely instead on threshold summation, and this allows a correct formula-
tion for non-increasing flat operators, and also for operators with non-binary outputs. We obtained
then some basic properties of flat operators, valid for both increasing and non-increasing operators.
Here we pursue this work by investigating further properties of flat operators, which
differ in the increasing and non-increasing cases, in particular the composition, join
and meet of operators, and the commutation with contrast mappings. We study dual-
ity under inversion and characterise discrete linear convolution operators as flat opera-
tors. This allows to integrate various hybrid morphological operators into our framework.
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1 Introduction

This paper is a sequel of the first part of our study
of flat morphology [1].

Many morphological operators on grey-level or
multivalued images are what one calls flat opera-

tors: for instance the median filter, or the dilation,
erosion, opening and closing by a flat structuring
element. They are obtained from an operator on
binary images (or sets) through the method of flat
extension [2]. It works by thresholding the image,
applying the binary operator on the thresholds,
then superposing the modified thresholds. Let us
briefly describe it.

We consider a space of points E, which can
be the Euclidean (E = R

n) or digital (E = Z
n)

space, or a subset of such a space. Write P(E) for
the set of all subsets of E (i.e., binary images). For
X ∈ P(E), write Xc for E \ X, its complement
in E. Image intensities are numerical values, they
range in a closed subset T of R = R∪{−∞,+∞};
for example in the digital case, one can take T to
be an interval in Z = Z ∪ {−∞,+∞}. Let V be
the set of image values, either V = T for grey-
level images, or V = Tm (m > 1) for multivalued
images. Then V is ordered, numerically for V = T ,
and by componentwise (ormarginal) order for Tm:

(x1, . . . , xm) ≤ (y1, . . . , ym)

⇐⇒ xi ≤ yi for i = 1, . . . ,m . (1)

1
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Since T is closed, V is a complete lattice [3]: every
subset of V has a supremum and an infimum for
the order. Write ⊥ and ⊤ for the least and greatest
elements of V , and

∨
for the supremum operation

in V ; when V = T ,
∨

is the numerical supre-
mum, and when V = Tm, it is the componentwise
numerical supremum. We consider images E → V ,
for instance grey-level images E → T or multi-
valued images E → Tm; write V E for the set of
images E → V .

For an image F : E → V and v ∈ V , the
threshold set [4] is

Xv(F ) = {p ∈ E | F (p) ≥ v} . (2)

The set Xv(F ) is decreasing in v: w > v ⇒
Xw(F ) ⊆ Xv(F ).

For B ⊆ E and v ∈ V , the cylinder of base B
and level v is the function CB,v given by setting
for p ∈ E: CB,v(p) = v if p ∈ B, and CB,v(p) = ⊥
if p /∈ B. Then every function F : E → V is the
upper envelope of the sets {v} × Xv(F ), in other
words, F =

∨
v∈V CXv(F ),v. In other words, F can

be recovered by superposing its thresholdings at
all values v ∈ V .

Consider now an increasing operator ψ :
P(E) → P(E) on binary images: X ⊆ Y ⇒
ψ(X) ⊆ ψ(Y ). Then for any F : E → V ,
we take the upper envelope ψV (F ) of the sets
{v} × ψ (Xv(F )), in other words:

ψV (F ) =
∨

v∈V

Cψ(Xv(F )),v . (3)

For every point p ∈ E we have:

ψV (F )(p) =
∨{

v ∈ V
∣∣ p ∈ ψ(Xv(F ))

}
. (4)

Then ψV : V E → V E : F 7→ ψV (F ) is the flat

operator corresponding to ψ, or the flat extension

of ψ [2, 5].
An advantage of this method is that it works

for any complete lattice V of image values, it is not
restricted to the cases V = T or V = Tm (grey-
level or multivalued images) that we consider here.
Indeed, [2] considered an arbitrary complete lat-
tice V of values, and gave examples with images
having non-numerical values, for instance in the
lattice of labels (see Figures 2, 6 and 7 in that
paper).

However, it has a fundamental limitation: it is
restricted to increasing operators, in other words,
operators that preserve the inclusion order. Thus,
it cannot be applied to non-increasing operators
such as the morphological gradient and Laplacian,
the top-hat, or the hit-or-miss transform. We illus-
trated this failure in Subsection 1.1 of [1] with
the simple example of the set difference between
a dilation and an erosion on binary images, see
Figures 3 and 4 there: the method of [2] does
not give what we would expect, namely the arith-
metical difference between the corresponding flat
dilation and erosion.

In [1] we proposed to replace the last step
in the method, namely the superposition of the
threshold sets {v} × ψ (Xv(F )), cf. (3), by a sum-
mation of the characteristic functions of these
thresholds ψ (Xv(F )).

For a set X ∈ P(E), write χX for the char-
acteristic function of X: for p ∈ E, χX(p) = 1 if
p ∈ X and χX(p) = 0 if p /∈ X. Then for an oper-
ator ψ : P(E) → P(E), let χψ : P(E) → {0, 1}E

be the composition of ψ : P(E) → P(E) followed
by χ : P(E) → {0, 1}E ; thus, for any X ∈ P(E)
we write χψ(X) for the characteristic function of
ψ(X). Then, when V ⊆ R

m, the flat extension of
an increasing binary operator ψ satisfies

ψV (F )(p) = ⊥+ S
(
χψ(Xv(F ))(p)

∣∣ v ∈ V
)
,

where ⊥ is the least element of V and S is a
summation operator that we introduced in [6] and
studied further in [1]; here we sum the binary val-
ues χψ(Xv(F ))(p) for v ranging in V . This formula
is valid when the operator ψ is increasing. We pro-
posed to extend it to any operator ψ on binary
images; in some cases, for instance in the morpho-
logical gradient, the base value ⊥ can be omitted
in it. We obtained then non-increasing flat oper-
ators that conform to intuition, in particular the
morphological gradient and Laplacian, the top-hat
and the hit-or-miss transform get flat extensions
that agree with the forms empirically given in the
literature.

Because of the summation S, this new
approach requires some restrictions that were not
necessary in the previous theory of [2] for increas-
ing operators. First, S is defined only for functions
with bounded numerical or vector values (we recall
in Subsection 2.3 the definition and properties of
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S, and the form that it takes for discrete or con-
tinuous values and vectors). Thus the complete
lattice V takes here the form V = V1 × · · · × Vm,
where each Vi = [⊥i,⊤i], a bounded closed inter-
val of R or of uiZ for some real ui > 0 (usually
ui = 1); we also allow a complete sublattice of
V1 × · · · × Vm. Second, the summation S requires
the summed function to be of bounded variation,
see Subsection 2.2; in practice, this condition is
satisfied in many situations (see Subsection 5.2 of
[1] for more details):

• when V has finite height, in particular if V is
finite;

• when the operator ψ is local, that is, for any p ∈
E, there is a finite W (p) ∈ P(E) such that for
any Z ∈ P(E), p ∈ ψ(Z) ⇔ p ∈ ψ

(
Z ∩W (p)

)
,

for instance if ψ is a morphological operator
with a finite structuring element;

• when ψ is obtained as a linear combination
of increasing binary operators, for instance the
morphological gradient and Laplacian, the top-
hat and the hit-or-miss transform.

Subsection 5.3 of [1] studied some elemen-
tary properties of this generalised form of flat
extension, for instance the componentwise decom-
position of a flat operator on vector images into
grey-level flat operators for the vector compo-
nents, and conditions for the preservation of an
interval of values. Then its Subsection 5.4 showed
that connected binary operators extend to con-
nected flat operators, and we linked our method to
the max-tree approach to anti-extensive connected
operators.

In this paper, we will continue the analysis
of the properties of our generalised flat exten-
sion. We first give a mathematical reminder in
Section 2. In Section 3, after recalling our defi-
nition of flat extension, we consider some further
properties: the flat extension of a supremum and
infimum of binary operators (Subsection 3.1), the
flat extension of a composition of binary opera-
tors (Subsection 3.2), and finally the commutation
of flat operators with contrast mappings (Subsec-
tion 3.3).

Duality under inversion of values is a com-
plex problem, to which we devote Section 4. We
first consider the dual form of summation (Sub-
section 4.1), then the relation between duality and
flat extension (Subsection 4.2).

Section 5 introduces the study of flat linear
operators. We will show that a linear convolution
by a finite mask is a flat operator.

Finally, the Conclusion summarizes our work
and suggests possible generalisations.

2 Mathematical background

We summarise here the mathematical basis of
our theory: posets and lattices (Subsection 2.1),
bounded variation (Subsection 2.2) and function
summation (Subsection 2.3).

2.1 Posets and lattices

Concerning posets and lattices, we follow the the-
ory given in [3, 7, 8]; the basic terminology was
given in Subsection 1.3 of [1], we refer the reader
to it. The following concepts are thus assumed to
be known: a poset, a chain and its length, the
height of a poset, a closed interval, a closure oper-
ator, a closure range, a bounded poset, a lattice,
a complete lattice, a conditionally complete lat-
tice, an inf-closed (resp., sup-closed) subset of a
complete lattice. By empty/non-empty supremum
or infimum, we mean supremum or infimum of an
empty/non-empty subset of the lattice. We write
h(P ) for the height of a poset P .

Let L be a complete lattice. We say that L
is infinitely supremum distributive if it satisfies
the identity a ∧

(∨
i∈I bi

)
=

∨
i∈I(a ∧ bi) for any

a ∈ L and any subset {bi | i ∈ I} ⊆ L. In
Subsection 2.1 of [2], we also considered complete

distributivity, which is usually defined as extended
supremum distributivity (equations (10,12) there)
or as extended infimum distributivity (equations
(11,13) there). We will use here an equivalent form
given there. Define the relation ◁ on L as follows
(see equation (14) in [2]): for w, x ∈ L,

w ◁ x ⇐⇒
[
∀Y ⊆ L,

x ≤
∨
Y ⇒ ∃y ∈ Y, w ≤ y

]
. (5)

Note that we do not exclude the case where Y = ∅;
it shows that one can never have w ◁ ⊥. Moreover
[2]: w ◁ x ⇒ w ≤ x, v ≤ w ◁ x ≤ y ⇒ v ◁ y,
and ⊥ ◁ x ⇔ ⊥ < x.



Springer Nature 2021 LATEX template

By Lemma 2 of [2], L is completely distributive

iff:

∀x ∈ L, x =
∨

{w ∈ L | ⊥ < w ◁ x} . (6)

A complete chain and a direct product of complete
chains (with componentwise order) are completely
distributive complete lattices. A complete sublat-
tice of a completely distributive complete lattice
is completely distributive.

Given a non-empty subset Q of R = R ∪
{−∞,+∞}, we write supQ and inf Q for the
numerical supremum and infimum of Q; similarly,
for a subset Q of R

m
(m > 1)), we write supQ and

inf Q for the componentwise numerical supremum
and infimum of Q, namely:

sup
i∈I

(xi1, . . . , x
i
m) =

(
sup
i∈I

xi1, . . . , sup
i∈I

xim
)

and

inf
i∈I

(xi1, . . . , x
i
m) =

(
inf
i∈I

xi1, . . . , inf
i∈I

xim
)
. (7)

Given a, b ∈ R such that a < b, the closed inter-
val [a, b] is a complete lattice for the numerical
order, where the non-empty supremum and infi-
mum operations are the numerical sup and inf,
while the empty supremum and infimum give the
bounds a and b. Similarly, for a, b ∈ R

m
, with

the componentwise order (1) and the component-
wise sup and inf (7). The same holds for a closed
interval in Z = Z ∪ {−∞,+∞} and in Z

m
. Note

that such a closed interval in R, R
m
, Z or Z

m
is a

completely distributive complete lattice.
On the other hand, a subset of R

m
or Z

m

can be a complete lattice where the supremum
and infimum operations are not the component-
wise sup and inf. For instance, let m = 2 and
X = {(0, 0), (1, 2), (2, 1), (3, 3)}; then X is a finite
lattice, thus a complete lattice; here the supremum
and infimum in X of the pair {(1, 2), (2, 1)} are
(3, 3) and (0, 0), while sup{(1, 2), (2, 1)} = (2, 2) /∈
X and inf{(1, 2), (2, 1)} = (1, 1) /∈ X. In such
a lattice, we will write

∨
and

∧
for the supre-

mum and infimum operations. This distinction is
important, because the traditional approach of
[2] applies the lattice-theoretical supremum

∨
to

image values, while our new approach [1] uses
the numerical or componentwise sup. We showed
indeed in Example 21 of [1] that with such a lattice
of values, a dilation will give different image values
with the traditional approach and with the new

one. In fact, our new approach implicitly assumes
that the lattice of values is an interval in R

m

or Z
m; for instance, in the above example, X is

embedded in the interval X ′ = {0, 1, 2, 3}2, which
constitutes then the effective lattice of image
values.

2.2 Bounded variation

We summarise here Section 2 of [1], where some
furthers results, examples and counterexamples
are given.

For x ∈ R, let [x]+ = max(x, 0) be the positive
part of x, and let [x]− = [−x]+ = max(−x, 0) be
the negative part of x. Then x = [x]+ − [x]− and
|x| = [x]+ + [x]−.

Let P be a poset not reduced to a singleton.
A strictly increasing sequence in P is a (n + 1)-
tuple (s0, . . . , sn), where n ∈ N, s0, . . . , sn ∈ P
and s0 < · · · < sn. Let f : P → R; for any strictly
increasing sequence (s0, . . . , sn) in P , we define the
positive, negative and total variation of f on it:

PV(s0,...,sn)(f) =

n∑

i=1

[
f(si)− f(si−1)

]+
,

NV(s0,...,sn)(f) =

n∑

i=1

[
f(si)− f(si−1)

]−
,

TV(s0,...,sn)(f) = PV(s0,...,sn)(f) +NV(s0,...,sn)(f)

=

n∑

i=1

∣∣f(si)− f(si−1)
∣∣ .

These three numbers are non-negative. Now, for
a, b ∈ P with a ≤ b, let S(a, b) be the set of strictly
increasing sequences in P that start in a and end
in b:

S(a, b) ={(s0, . . . , sn) | n ∈ N,

a = s0 < · · · < sn = b} . (8)

One obtains then the positive, negative and total

variation of f on the interval [a, b]:

PV[a,b](f) = sup{PV(s0,...,sn)(f) |

(s0, . . . , sn) ∈ S(a, b)} ,

NV[a,b](f) = sup{NV(s0,...,sn)(f) |

(s0, . . . , sn) ∈ S(a, b)} ,

TV[a,b](f) = sup{TV(s0,...,sn)(f) |

(s0, . . . , sn) ∈ S(a, b)} .
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These three variations are non-negative, but they
can be infinite, they are thus in the interval
[0,+∞]. Now we have

PV[a,b](f) + f(a) = NV[a,b](f) + f(b) (9)

and

TV[a,b](f) = PV[a,b](f) +NV[a,b](f) . (10)

By (9), PV[a,b](f) and NV[a,b](f) are either both
finite or both infinite. We say that f is of bounded
variation on [a, b], or briefly, f is BV [a, b], if
TV[a,b](f) is finite; equivalently, PV[a,b](f) and
NV[a,b](f) are both finite. Thus:

for f BV [a, b] :

PV[a,b](f)−NV[a,b](f) = f(b)− f(a) .

Note that the three variations increase when the
interval [a, b] increases, in other words, for a′ ≤
a ≤ b ≤ b′ we have PV[a,b](f) ≤ PV[a′,b′](f), and
similarly for NV and TV . In the limit case where
a = b, S(a, b) consists of the unique sequence (a),
and then PV[a,a](f) = NV[a,a](f) = TV[a,a](f) =
0; the above three equalities are trivially valid in
this case.

We will say that f is of bounded variation on

P , or briefly, f is BV, if sup{TV[a,b](f) | a, b ∈
P, a < b} < ∞; in other words, there is a real M
such that PV[a,b](f) ≤M and NV[a,b](f) ≤M for
all a, b ∈ P such that a < b.

When P is bounded by ⊥,⊤, we will
write PV (f), NV (f) and TV (f) for PV[⊥,⊤](f),
NV[⊥,⊤](f) and TV[⊥,⊤](f) respectively. Then f
is of bounded variation on P iff TV (f) < ∞,
equivalently, both PV (f) and NV (f) are finite.

Assume now that P has a least element ⊥.
We define the positive and negative variation

functions pv[f ], nv[f ] : P → [0,∞] as follows:

∀x ∈ P, pv[f ](x) = PV[⊥,x](f)

and nv[f ](x) = NV[⊥,x](f) .

Note that pv[f ](⊥) = nv[f ](⊥) = 0. Next,
we define fP and fN , the positive and negative

increments of f , by

∀x ∈ P, fP (x) =
[
f(⊥)

]+
+ pv[f ](x)

and fN (x) =
[
f(⊥)

]−
+ nv[f ](x) . (11)

The two functions pv[f ] and nv[f ] are non-
negative and increasing. Now, f is BV iff both
pv[f ] and nv[f ] are bounded, and then for all
x ∈ P we have f(x) = fP (x) − fN (x). Moreover,
a bounded, non-negative and increasing function
f satisfies f = fP and is BV.

Consider now the dual poset with the inverse
order relation ≥ and with the bounds ⊥ and ⊤
exchanged; then positive and negative variation
will be exchanged, that is, PV[a,b](f) corresponds
to NV[b,a](f) in the dual poset. If P has a great-
est element ⊤, we obtain the dual positive and
negative variation functions pv∗[f ], nv∗[f ] : P →
[0,∞] given by

∀x ∈ P, pv∗[f ](x) = NV[x,⊤](f)

and nv∗[f ](x) = PV[x,⊤](f) .

Note that pv∗[f ](⊤) = nv∗[f ](⊤) = 0. We have
then the dual positive and negative increments of

f ,

∀x ∈ P, f∗P (x) =
[
f(⊤)

]+
+ pv∗[f ](x)

and f∗N (x) =
[
f(⊤)

]−
+ nv∗[f ](x) . (12)

The two functions pv∗[f ] and nv∗[f ] are non-
negative and decreasing. Now, f is BV iff both
pv∗[f ] and nv∗[f ] are bounded, and then for all
x ∈ P we have f(x) = f∗P (x) − f∗N (x). See
Figure 1. Moreover, a bounded, non-negative and
decreasing function f satisfies f = f∗P and is BV.

= g − hfIR

IR

f

g

h−

Fig. 1 Let P = [⊥,⊤] ⊂ R. Left: a BV function f : P →
R. We have f = g − h for g = f∗P and h = f∗N , cf. (12).
Right: we show g and −h. When f decreases, g decreases
while h remains constant; when f increases, −h increases
(so h decreases) while g remains constant.

We deduce from the above discussion of varia-
tion functions and dual variation functions:
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Proposition 1 Let P be poset, and let f : P → R.

1. If P has least element ⊥, then f is of bounded

variation iff there exist two bounded, non-

negative and increasing functions g, h : P → R

such that f = g − h.
2. If P has greatest element ⊤, then f is of

bounded variation iff there exist two bounded,

non-negative and decreasing functions g, h :
P → R such that f = g − h.

Note that when P is bounded by ⊥,⊤, every
increasing or decreasing function f is bounded: for
f increasing, f(⊥) ≤ f(x) ≤ f(⊤), while for f
decreasing, f(⊤) ≤ f(x) ≤ f(⊥).

By taking for a BV function f the threshold-
ings of fP and fN at positive integer levels, we
obtain the following, see Proposition 17 of [1]:

Proposition 2 Let P be a poset with least element ⊥,

and let f : P → Z be of bounded variation. Let m =
maxx∈P fP (x) and n = maxx∈P fN (x). Then there

are m+n increasing functions g1, . . . , gm, h1, . . . , hn :
P → {0, 1} such that g1 ≥ · · · ≥ gm, h1 ≥ · · · ≥ hn
and f =

∑m
i=1 gi −

∑n
j=1 hj .

2.3 Function summation

We consider a poset P ⊂ R
m (m ≥ 1), and we

suppose that P is bounded by ⊥,⊤ ∈ R
m: ∀x ∈

P , ⊥ ≤ x ≤ ⊤. We will define a summation on
functions P → R.

Consider first a function f : P → R that
is bounded, non-negative and decreasing. For a
strictly increasing sequence (s0, . . . , sn) in P ,
define the summation

S(s0,...,sn)(f) =

n∑

i=1

f(si)(si − si−1) . (13)

For P ⊂ R, this represents an approximation from
below of the integral of f on the interval [s0, sn],
see Figure 2. For P ⊂ R

m, we have S(s0,...,sn)(f) ∈
R
m.
Given a, b ∈ P with a < b, recall from (8)

the set S(a, b) of strictly increasing sequences in
P starting in a and ending in b. For f : P → R

bounded, non-negative and decreasing, we define
the summation of f over the interval [a, b]:

S[a,b](f) = sup
{
S(s0,...,sn)(f)

∣∣

ss s

f

RI

P

s s s s
0 1 2 3 4 5 6

Fig. 2 For a bounded, non-negative and decreasing func-
tion f , the hatched area represents S(s0,...,s6)(f) for a
strictly increasing sequence (s0, . . . , s6).

(s0, . . . , sn) ∈ S(a, b)
}
. (14)

Note that, given P ⊂ R
m, S[a,b](f) ∈ R

m and here
sup is the numerical supremum form = 1, and the
componentwise numerical supremum for m > 1.

For a = b, S(a, b) consists of the unique
sequence (a), and S[a,a](f) = 0. Now, P is
bounded by ⊥,⊤, and we will write S(f) for
S[⊥,⊤](f), the summation of f over P . The sum-
mation S[a,b](f) is non-negative and bounded:
given M > 0 such that all x ∈ P satisfy 0 ≤
f(x) ≤M , we have 0 ≤ S[a,b](f) ≤M(b− a). It is
also increasing on the function f : if f(x) ≤ g(x)
for all x ∈ P , then S[a,b](f) ≤ S[a,b](g). Given a
scalar λ ≥ 0, λf is bounded, non-negative and
decreasing, and then S[a,b](λf) = λS[a,b](f).

Now, given f, g : P → R bounded, non-
negative and decreasing, f + g is also bounded,
non-negative and decreasing, but we generally
obtain only the inequality S[a,b](f + g) ≤
S[a,b](f) + S[a,b](g). We say that S is additive on

P if for all bounded, non-negative and decreas-
ing functions f, g : P → R, and all a, b ∈ P with
a < b, we have S[a,b](f + g) = S[a,b](f) + S[a,b](g).

Recall Proposition 1: a function f : P → R

is of bounded variation iff there are two bounded,
non-negative and decreasing functions g, h : P →
R such that f = g − h. When the summation is
additive, we can then define the summation of f as
S[a,b](f) = S[a,b](g)− S[a,b](h), and this definition
will not depend on the choice of g and h:

Theorem 3 Let P be a bounded poset. Suppose that

S is additive on P . For any f : P → R of bounded

variation, given a decomposition f = g − h for g, h :
P → R bounded, non-negative and decreasing, define

S[a,b](f) = S[a,b](g) − S[a,b](h). Then S[a,b](f) does
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not depend on the choice of g and h in the decompo-

sition, and S[a,b] is a linear operator on the module of

functions with bounded variation: for f1, f2 : P → R

of bounded variation and λ1, λ2 ∈ R,

S[a,b](λ1f1 + λ2f2) = λ1S[a,b](f1) + λ2S[a,b](f2) .

The additivity of S depends on the poset P .
We give three types of posets on which S is
additive, and then describe the summation of a
function of bounded variation.

First, if P is a bounded chain, then S is
additive on P . In the case of a finite chain P ,
that is, P = {t0, . . . , tn} with t0 < · · · < tn,
for 0 ≤ u < v ≤ n we have S[tu,tv ](f) =∑v

i=u+1 f(ti)(ti − ti−1). In the continuous case
where P = [⊥,⊤] ⊂ R, for a, b ∈ P with a < b,

we have S[a,b](f) =
∫ b
a
f(t) dt; this is a Riemann

integral (any real function of bounded variation
is continuous almost everywhere, hence Riemann
integrable).

Second, let P = P1 × · · · × Pm, the carte-
sian product of bounded posets P1, . . . , Pm, with
componentwise ordering; now, each Pi is bounded
by ⊥i,⊤i, so P will be bounded by ⊥,⊤, where
⊥ = (⊥1, . . . ,⊥m) and ⊤ = (⊤1, . . . ,⊤m). If S is
additive on each Pi (i = 1, . . . ,m), then S is addi-
tive on P . In particular, since S is additive on a
bounded chain, if follows that it is additive on a
cartesian product of bounded chains.

Let us now describe the form taken by the
summation in P in terms of summations in all
Pi. For each i = 1, . . . ,m, there is some ki ≥ 1
such that Pi ⊂ R

ki ; let Qi = R
ki and Q =

Q1 × · · · ×Qm, thus P ⊂ Q. Now, summations of
the form S(s0,...,sn)(f) and S[a,b](f) will belong to
Q for f : P → R, but to Qi for f : Pi → R. For
each i = 1, . . . ,m we define the i-th projection

πi : Q = Q1 × · · · ×Qm → Qi

: (x1, . . . , xm) 7→ xi . (15)

Given a = (a1, . . . , am) ∈ P , we define the i-th
embedding through a

ηai : Qi → Q = Q1 × · · · ×Qm

: x 7→ (a1, . . . , ai−1, x, ai+1, . . . , am) , (16)

and for f : P → R, we write fηai for the
composition of ηai followed by f :

fηai : Pi → R : x 7→ f(ηai (x))

= f(a1, . . . , ai−1, x, ai+1, . . . , am) .

Then, for a = (a1, . . . , am), b = (b1, . . . , bm) ∈ P
with a < b, and f : P → R of bounded variation,
we have

πi(S[a,b](f)) = S[ai,bi](fη
a
i )

for i = 1, . . . ,m . (17)

In geometrical terms, each projection
πi(S[a,b](f)) is obtained by summing f
along the line segment parallel to the i-
th axis of P , joining a = (a1, . . . , am) to
(a1, . . . , ai−1, bi, ai+1, . . . , am). In particular
S[a,b](f) is completely determined by the restric-
tion of f to the m lines through a parallel to the
axes.

If Pi is a finite chain, Pi = {t0, . . . , tn} with
t0 < · · · < tn, given ai = tu and bi = tv
(0 ≤ u ≤ v ≤ n), we have πi(S[a,b](f)) =∑v

h=u+1 fη
a
i (th)(th − th−1). If Pi is a real inter-

val, Pi = [⊥i,⊤i] ⊂ R, then πi(S[a,b](f)) =∫ bi
ai
fηai (t) dt.

Let us illustrate this in the cases of Z3 and R
3,

with componentwise ordering. Let a = (a1, a2, a3)
and b = (b1, b2, b3), with a1 < b1, a2 < b2 and
a3 < b3. In Z

3 we get for a BV function f :

S[a,b](f) =
( b1∑

t=a1+1

f(t, a2, a3) ,

b2∑

t=a2+1

f(a1, t, a3) ,

b3∑

t=a3+1

f(a1, a2, t)
)
. (18)

In R
3 we get:

S[a,b](f) =
(∫ b1

a1

f(t, a2, a3) dt ,

∫ b2

a2

f(a1, t, a3) dt ,

∫ b3

a3

f(a1, a2, t) dt
)
. (19)

We now give the third type of poset on which
the summation is additive. Let P be a poset
bounded by ⊥,⊤. Let φ be a closure map on P
such that φ(⊥) = ⊥, and let M = {φ(x) | x ∈
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P} be the corresponding closure range; we have
then ⊥,⊤ ∈ M . For any f : M → R, define
fϕ : P → R by fϕ(x) = f(φ(x)); for x ∈ M ,
we have fϕ(x) = f(x). If S is additive on P ,
then it is additive on M : for f : M → R of
bounded variation and for any a, b ∈ M such
that a < b, we have PV[a,b](fϕ) = PV[a,b](f) and
NV[a,b](fϕ) = NV[a,b](f), so fϕ is of bounded
variation, and S[a,b](f) = S[a,b](fϕ).

For instance, if P is a complete lattice and M
is a complete sublattice of P , then P is a closure
range, the corresponding closure map φ is defined
by φ(x) =

∧
{y ∈ M | x ≤ y}. Thus, if S is addi-

tive on P , it will be additive onM . From the above
two cases, it follows that S is additive on any com-
plete sublattice of a direct product of complete
chains.

We end this section with a few properties that
will be used in the sequel. The following result
(Proposition 14 of [1]) was fundamental in the
analysis of the flat extension of increasing opera-
tors on binary images in [1]; we will apply it here
to functions of bounded variation:

Proposition 4 Let P be bounded by ⊥,⊤. For any

decreasing function f : P → {0, 1},

⊥+ S(f) = sup{x ∈ P | f(x) = 1} , (20)

where we set sup ∅ = ⊥ on the right side of the

equation.

The following “isomorphism lemma” will be
used in Subsection 3.3:

Lemma 5 Let P,Q be bounded posets and let θ : P →
Q be a bijection such that for a real a > 0, for all

x, y ∈ P we have θ(y) − θ(x) = a(y − x). Then S is

additive on P iff it is additive on Q. For any f : Q→
R, let fθ : P → R : x 7→ f(θ(x)); then f is BV iff

fθ is BV , and for any a, b ∈ P with a ≤ b, we have

S[θ(a),θ(b)](f) = aS[a,b](fθ).

Proof For x, y ∈ P , θ(x) < θ(y) ⇔ x < y, so θ
is a poset isomorphism between P and Q. Thus for
f : Q → R, f is decreasing iff fθ is decreasing; now,
f and fθ have the same sign and the same bounds.
Let f be bounded, non-negative and decreasing. For a
strictly increasing sequence (s0, . . . , sn) in P , we have

S(θ(s0),...,θ(sn))(f) =
n∑

i=1

f(θ(si))(θ(si)− θ(si−1)) =

a

n∑

i=1

f(θ(si))(si − si−1) = aS(s0,...,sn)(fθ) .

For a, b ∈ P with a ≤ b S(θ(a), θ(b)) is the set of all
(θ(s0), . . . , θ(sn)) for (s0, . . . , sn) ∈ S(a, b), hence

S[θ(a),θ(b)](f) = sup
{
S(θ(s0),...,θ(sn))(f)

∣∣

(θ(s0), . . . , θ(sn)) ∈ S(θ(a), θ(b))
}

= sup
{
aS(s0,...,sn)(fθ)

∣∣ (s0, . . . , sn) ∈ S(a, b)
}

= aS[a,b](fθ) .

For g, h : Q → R bounded, non-negative and
decreasing, S[θ(a),θ(b)](g + h) = aS[a,b]((g + h)θ) =
aS[a,b](gθ + hθ), while S[θ(a),θ(b)](g) = aS[a,b](gθ)
and S[θ(a),θ(b)](h) = aS[a,b](hθ); hence S[θ(a),θ(b)](g+
h) = S[θ(a),θ(b)](g) + S[θ(a),θ(b)](h) iff S[a,b](gθ +
hθ) = S[a,b](gθ) + S[a,b](hθ); in other words, S is
additive on P iff it is additive on Q. Now f :
Q → R is BV iff f = g − h for g, h : Q →
R bounded, non-negative and decreasing, iff fθ =
gθ − hθ with gθ, hθ : P → R bounded, non-
negative and decreasing, iff fθ is BV. We have then
S[θ(a),θ(b)](f) = S[θ(a),θ(b)](g) − S[θ(a),θ(b)](h) =
aS[a,b](gθ)− aS[a,b](hθ) = aS[a,b](fθ). □

The following will be used in Section 5:

Lemma 6 Let P be a bounded subset, and let S is

additive on P . Let f1, f2 : P → R such that f1(x) =
f2(x) for all x > ⊥. If f1 is BV, then f2 is BV, and

S(f1) = S(f2).

Proof By Proposition 1, there are two bounded, non-
negative and decreasing functions g1, h1 : P → R such
that f1 = g1 − h1. Define g2, h2 : P → R as follows.
For x > ⊥, let g2(x) = g1(x) and h2(x) = h1(x). If
f1(⊥) ≥ f2(⊥), we set g2(⊥) = g1(⊥) and h2(⊥) =
h1(⊥) + f1(⊥) − f2(⊥), while if f1(⊥) < f2(⊥), we
set g2(⊥) = g1(⊥) + f2(⊥) − f1(⊥) and h2(⊥) =
h1(⊥); then in both cases g2(⊥) − h2(⊥) = g1(⊥) −
h1(⊥) + f2(⊥) − f1(⊥) = f2(⊥), g2(⊥) ≥ g1(⊥) and
h2(⊥) ≥ h1(⊥). It follows that f2 = g2 −h2, and that
g2, h2 are bounded, non-negative and decreasing func-
tions. Hence f2 is BV. By (13), for a strictly increasing
sequence (s0, . . . , sn) in P , the summation involves
only the values of the function at s1, . . . , sn, all > ⊥,
so S(s0,...,sn)(g1) = S(s0,...,sn)(g2). It follows by (14)
that S(g1) = S(g2); similarly S(h1) = S(h2). There-
fore S(f1) = S(g1)− S(h1) = S(g2)− S(h2) = S(f2).

□
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3 Generalised flat
morphological operators

In this section we recall our new definition of flat
extension, then we consider its properties with
respect to the join and meet of operators (Sub-
section 3.1), then the composition of operators
(Subsection 3.2); finally we consider the commu-
tation of flat operators with contrast mappings
(Subsection 3.3).

Let E be the space of points. We take a set of
image values U = C1 × · · · × Cm, where m ≥ 1
and for i = 1, . . . ,m, either Ci = R or Ci = uiZ
for some real ui > 0 (usually ui = 1). All images,
those given as input to flat operators, as well as
those obtained as output of these operators, will
have their values in U , they will be maps E → U .

For m = 1, U is ordered numerically, while
for m > 1 it has the componentwise or marginal
ordering (1). The set U has two important proper-
ties. First, it is a conditionally complete lattice, in
particular, every closed interval [a, b] ⊂ U will be a
complete lattice where the non-empty supremum
and infimum operations are the componentwise
numerical sup and inf operations. Second, it is a
module for the operations of addition and sub-
traction, with neutral 0 = (0, . . . , 0), and the
scalar multiplication with scalars in Z. It follows
from these two properties that for any interval
[a, b] ⊂ U (a ≤ b) and any bounded, non-negative
and decreasing function f : [a, b] → Z, for any
strictly increasing sequence (s0, . . . , sn) in [a, b],
the summation S(s0,...,sn)(f) will belong to U , thus
the summation S[a,b](f) will also belong to U .

We choose two bounds ⊥,⊤ ∈ U , with ⊥ <
⊤, and consider the interval [⊥,⊤] = {v ∈ U |
⊥ ≤ v ≤ ⊤}. Now ⊥ = (⊥1, . . . ,⊥m) and ⊤ =
(⊤1, . . . ,⊤m), so

[⊥,⊤] = [⊥1,⊤1]× · · · × [⊥m,⊤m] ,

where [⊥i,⊤i] = {v ∈ Ci | ⊥i ≤ v ≤ ⊤i} (i =
1, . . . ,m). Let either V = [⊥,⊤] (what we call the
standard case), or V be a complete sublattice of
[⊥,⊤] (what we call the sub-standard case).

All input images must have bounded values,
so they will be E → V . Thus we will apply flat
operators to input images E → V , and the result-
ing output images will be E → U . Since V is the
direct product of the complete chains [⊥i,⊤i], or

a complete sublattice of that product, the sum-
mation S will be additive on V ; this allows us to
define the flat extension as the summation of a
function defined on V . Moreover, V is a completely
distributive complete lattice, a property that guar-
antees some good properties of flat extension, as
we saw in [2] and will see again in the rest of the
paper.

Recall from Subsections 2.2 and 2.3 that for a
function f defined on V , PV[⊥,⊤](f), NV[⊥,⊤](f),
TV[⊥,⊤](f) and S[⊥,⊤](f) can be abbreviated into
PV (f), NV (f), TV (f) and S(f).

In Subsections 2.2 and 2.3, we analysed the
variation and summation of a function in a single
variable. Here we will consider the variation and
summation of an expression in several variables,
and we need to specify over which variable we take
the variation or summation. Given an expression
W in several variables, a variable x appearing in
W , and a poset P , we will write “W | x ∈ P” to
specify that the variation or summation of W is
over the variable x ranging over P ; in other words,
TV[a,b](W | x ∈ P ) and S[a,b](W | x ∈ P ) desig-
nate the total variation TV[a,b](f) and summation
S[a,b](f) of the function f : P∩[a, b] → R : x 7→W .

Recall that for a set X ∈ P(E), we write
χX for the characteristic function of X. Then for
ψ : P(E) → P(E), let χψ : P(E) → {0, 1}E

be the composition of ψ followed by χ, in other
words, we write χψ(X) for the characteristic func-
tion of ψ(X), thus χψ(X)(p) = 1 for p ∈ ψ(X)
and χψ(X)(p) = 0 for p /∈ ψ(X).

A binary image transformation is a map
P(E) → P(E), for instance, the dilation, erosion,
opening and closing by a structuring element. A
binary image measurement is a map P(E) → KE

for a finite interval K ⊂ Z, for instance the
morphological Laplacian

χδ + χε− 2χid : P(E) → {−1, 0, 1}E :

X 7→ χδ(X) + χε(X)− 2χX , (21)

where id is the identity operator on P(E), while
δ and ε are the dilation and erosion by a point
neighbourhood. Obviously, to every binary image
transformation ψ corresponds the binary image
measurement χψ, with K = {0, 1}.

The distinction between the two may seem to
be purely formal, but we see a concrete meaning
in it. The flat extension (to grey-level or vector



Springer Nature 2021 LATEX template

II

images) of a binary image transformation will be a
flat operator preserving the general contrast, such
as a dilation, erosion, opening, closing or median
filter; thus if the input image values are translated,
the same translation will be applied to output
image values. On the other hand, the flat exten-
sion of a binary image measurement will be a flat
operator whose output does not necessarily change
when the input image has its values translated,
for instance the gradient or Laplacian. This dis-
tinction manifests itself in the two formulas below,
with the translation by ⊥ appearing only for a
binary image transformation. We will see another
difference between the two in the interpretation of
duality, see Section 4.

Let us introduce some further terminology. A
stack on V [2] is a decreasing map Y : V → P(E),
i.e., to every v ∈ V it associates Y(v) ⊆ E, and for
v, w ∈ V with v ≤ w we have Y(w) ⊆ Y(v). For
instance, given F : E → V , the map V → P(E) :
v 7→ Xv(F ) is a stack, and for an increasing binary
image transformation ψ, the map V → P(E) :
v 7→ ψ(Xv(F )) is also a stack. We say that a binary
image measurement µ:

• has stack-pointwise bounded variation if for
every stack Y and every point p ∈ E,
TV

(
µ(Y(v))(p)

∣∣ v ∈ V
)
<∞;

• has pointwise bounded variation if for every
point p ∈ E, TV

(
µ(Z)(p)

∣∣ Z ∈ P(E)
)
<∞;

• is local [1] if for any p ∈ E, there exists a finite

W (p) ∈ P(E) such that for any Z ∈ P(E),
µ(Z)(p) = µ

(
Z ∩W (p)

)
(p).

By extension, a binary image transformation ψ
has stack-pointwise bounded variation or pointwise
bounded variation, or is local, when the binary
image measurement χψ has that property.

For instance, an increasing binary image trans-
formation ψ has pointwise bounded variation: as
Z increases, χψ(Z)(p) will change once from 0
to 1, so PV

(
µ(Z)(p)

∣∣ Z ∈ P(E)
)

= 1 and

NV
(
µ(Z)(p)

∣∣ Z ∈ P(E)
)
= 0.

These three properties are related: being local
implies having pointwise bounded variation, which
implies having stack-pointwise bounded variation.
Indeed, we first recall Proposition 23 of [1]:

Proposition 7 Let µ : P(E) → KE be a binary

image measurement, for a finite interval K ⊂ Z. If

µ is local with the finite W (p) ∈ P(E) associated

to each p ∈ E, then for any p ∈ E, TV
(
µ(Z)(p)

∣∣
Z ∈ P(E)

)
= TV

(
µ(X)(p)

∣∣ X ∈ P(W (p))
)

≤
h(K)|W (p)|. Thus, if µ is local, then µ has pointwise

bounded variation.

Now, the following result is adapted from
Proposition 23 of [1], in which we just replace
Xv(F ) (for F : E → V ) by Y(v) for an arbitrary
stack:

Proposition 8 Let µ : P(E) → KE be a binary

image measurement, for a finite interval K ⊂ Z. Then

for any stack Y and point p ∈ E, TV
(
µ(Y(v))(p)

∣∣ v ∈

V
)

≤ min
(
h(K)h(V ), TV

(
µ(Z)(p)

∣∣ Z ∈ P(E)
))

.

Thus, if V has finite height or if µ has pointwise

bounded variation, then µ has stack-pointwise bounded

variation.

Recall that the summation S is additive on V .
Given a binary image measurement µ : P(E) →
KE , we define the no-shift flat extension µ−V of
µ by setting for any image F : E → V and point
p ∈ E:

µ−V (F )(p) = S
(
µ(Xv(F ))(p)

∣∣ v ∈ V
)
, (22)

provided that the summation is well-defined, that
is, the summed function v 7→ µ(Xv(F ))(p) is of
bounded variation; for instance this is guaranteed
when µ has stack-pointwise bounded variation.

By the linearity of the summation, see
Theorem 3, the no-shift flat extension is linear: for
two binary image measurements µ1, µ2 and two

scalars λ1, λ2 ∈ Z, we have
(
λ1µ1 + λ2µ2

)−V
=

λ1µ
−V
1 + λ2µ

−V
2 .

Given a binary image transformation ψ :
P(E) → P(E), we define the shifted flat extension

ψ+V of ψ by setting for any image F : E → V and
point p ∈ E:

ψ+V (F )(p) = ⊥+ (χψ)−V (F )(p)

=⊥+ S
(
χψ(Xv(F ))(p)

∣∣ v ∈ V
)
, (23)

again provided that the summation is well-defined,
that is, the function v 7→ χψ(Xv(F ))(p) is of
bounded variation, for instance if ψ has stack-
pointwise bounded variation. We always have
ψ+V (F )(p) ∈ [⊥,⊤], see equation (43) of [1]. Note
however that in the non-standard case, that is,
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when V ̸= [⊥,⊤], if ψ is not increasing, then
we do not necessarily have ψ+V (F )(p) ∈ V , see
Example 22 of [1].

In Proposition 20 of [1], we showed that for
an increasing binary image transformation ψ, the
shifted flat extension coincides with the usual flat
extension according to [2]: ψ+V = ψV . Indeed,
in (4) the condition p ∈ ψ(Xv(F )) can be writ-
ten χψ(Xv(F ))(p) = 1, and in V the supremum

∨

becomes the componentwise numerical sup; apply-
ing (20) to the resulting formula, we get (23). In
particular, we have then ψ+V (F )(p) ∈ V .

3.1 The lattice-ordered group of flat

operators

The the set of all binary image transforma-
tions is ordered as follows: ψ1 ≤ ψ2 iff for all
X ∈ P(E), ψ1(X) ⊆ ψ2(X). It constitutes
then a complete lattice, with supremum

∨
i∈I ψi :

X 7→
⋃
i∈I ψi(X) and infimum

∧
i∈I ψi : X 7→⋂

i∈I ψi(X). Note that in [2], we wrote ⊆,
⋃

and⋂
for the order, the supremum and infimum on

increasing binary image transformations. Binary
image measurements are also ordered, with µ1 ≤
µ2 iff for all X ∈ P(E), µ1(X) ≤ µ2(X).

We saw in [2] (Proposition 15 and Corol-
lary 29) that the map ψ → ψV is an isomorphism
between the poset of increasing binary operators
and the one of increasing flat operators. Our gen-
eralisation of flat extension has also that property,
by Corollary 33 of [1]:

Lemma 9 For any two binary image measurements

µ1, µ2 we have µ1 ≤ µ2 ⇔ µ−V1 ≤ µ−V2 . For any

two binary image transformation ψ1, ψ2 we have ψ1 ≤
ψ2 ⇔ ψ+V

1 ≤ ψ+V
2 . In particular, the two maps

µ 7→ µ−V and ψ 7→ ψ+V are injective.

We saw then in [2] that for increasing binary
image transformations, this isomorphism is gener-
ally compatible with the supremum and infimum
operations. More precisely, for any complete lat-
tice V ,

• the flat extension of a supremum of increasing
binary image transformations is the supremum

of their flat extensions:
(∨

i∈I ψi
)V

=
∨
i∈I ψ

V
i

(see Proposition 28 of [2]);
• when V is infinite supremum distributive, the
flat extension of the infimum of two increasing

binary image transformations is the infimum of

their flat extensions:
(
ψ1∧ψ2

)V
= ψV1 ∧ψV2 (see

Proposition 30 of [2]);
• when V is completely distributive, the flat
extension of an infimum of increasing binary
image transformations is the infimum of their

flat extensions:
(∧

i∈I ψi
)V

=
∧
i∈I ψ

V
i (see

Proposition 30 of [2]).

In our framework, V is a complete sublattice of
[⊥,⊤], it is thus a completely distributive com-
plete lattice, and the above properties hold for
increasing binary image transformations, with the
shifted flat extension ψ+V , which coincides with
the classical flat extension ψV . Since the shifted
flat extension (23) of ψi differs from the no-shift
one (22) applied to χψi only by the translation
by ⊥, which is compatible with the supremum
and infimum, we obtain similar identities for the
no-shift flat extension of their characteristic func-
tions:

(
sup
i∈I

χψi
)−V

=
∨

i∈I

(χψi)
−V

and
(
inf
i∈I

χψi
)−V

=
∧

i∈I

(χψi)
−V ,

where sup and inf are the componentwise numer-
ical supremum and infimum.

However, these identities do not extend to the
general case, as we will see in Example 10 for
non-increasing binary image transformations, and
Example 11 for binary image measurements with
non-binary values (K ̸= {0, 1}). We will thus
analyse in more detail the maps µ 7→ µ−V and
ψ 7→ ψ+V .

We consider the family M(E) of all binary
image measurements on P(E), in other words, of
all maps µ : P(E) → Z

E with bounded values
µ(X)(p) (X ∈ P(E), p ∈ E). For any µ ∈ M(E),
let K[µ] = {µ(X)(p) | X ∈ P(E), p ∈ E}; thus µ
is a map P(E) → K[µ]E , where K[µ] is included
in a finite interval in Z.

Then M(E) is closed under the operations of
addition and subtraction of functions, as we have

K[−µ] = Ǩ[µ] =
{
−k

∣∣ k ∈ K[µ]
}

and K[µ1 + µ2] ⊆ K[µ1]⊕K[µ2] ={
k1 + k2

∣∣ k1 ∈ K[µ1], k2 ∈ K[µ2]
}
.
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In other words, M(E) is a comutative group for
the operation of addition. It is also ordered by
≤. Write ∨ and ∧ for the binary operations on
functions applying pointwise numerical maximum
and minimum:

(µ1 ∨ µ2)(X)(p) = max
{
µ1(X)(p), µ2(X)(p)

}

and

(µ1 ∧ µ2)(X)(p) = min
{
µ1(X)(p), µ2(X)(p)

}
;

then K[µ1 ∨µ2],K[µ1 ∧µ2] ⊆ K[µ1]∪K[µ2]; thus
M(E) is a lattice. Now, the addition is compatible
for the order, µ1 ≤ µ2 ⇒ µ1 + µ ≤ µ2 + µ. Thus
M(E) is a lattice-ordered group, or l-group, see [3],
Chapter XIII.

The lattice M(E) is not complete. For
instance, for all n ∈ N and X ∈ P(E), let
µn(X) = 0 if |X| < n and µn(X) = n if |X| ≥ n,
so K[µn] = {0, n}; then µ = supn∈N µn satis-
fies µ(X) = |X| for X finite, and µ(X) = ∞ for
X infinite, so K[µ] = N ∪ {∞} is infinite and
not contained in Z. However, this lattice is con-
ditionally complete. Given a family µi ∈ M(E)
(i ∈ I) and µ ∈ M(E) such that µi ≤ µ for
all i ∈ I, we have supi∈I µi ≤ µ, then supi∈I µi
takes values bounded above by maxK[µ], and
bounded below by minK[µj ] for any j ∈ I, thus
supi∈I µi ∈ M(E). We have then the dual prop-
erty for the infimum: if µi ≥ µ for all i ∈ I, then
infi∈I µi ∈ M(E).

Let MV (E) be the set of no-shift flat exten-
sions of binary image measurements: MV (E) =
{µ−V | µ ∈ M(E)}. By Lemma 9, the no-shift flat
extension µ 7→ µ−V is an isomorphism between
the two posets M(E) and MV (E): µ1 ≤ µ2 ⇔
µ−V
1 ≤ µ−V

2 . Hence MV (E) inherits the lattice
structure of M(E); write ⊔ and ⊓ for the join and
meet operations on MV (E); thus

µ−V
1 ⊔ µ−V

2 = (µ1 ∨ µ2)
−V

and µ−V
1 ⊓ µ−V

2 = (µ1 ∧ µ2)
−V . (24)

Now, the no-shift flat extension is linear, it is
in particular an isomorphism between the addi-
tive groups M(E) and MV (E): (µ1 + µ2)

−V =
µ−V
1 + µ−V

2 . Therefore M(E) and MV (E) are
isomorphic l-groups.

As the sum of two integers equals the sum of
their minimum and maximum, given two binary

image measurements µ1, µ2, we have

(µ1 ∨ µ2) + (µ1 ∧ µ2) = µ1 + µ2 .

The additivity of the no-shift flat extension gives
then

(
µ−V
1 ⊔ µ−V

2

)
+
(
µ−V
1 ⊓ µ−V

2

)
=

(µ1 ∨ µ2)
−V + (µ1 ∧ µ2)

−V =

µ−V
1 + µ−V

2 . (25)

Let T (E) be the set of all binary image trans-
formations. We have ψ1 ≤ ψ2 ⇔ χψ1 ≤ χψ2,
then

χ
(∨

i∈I

ψi

)
= sup

i∈I
χψi

and χ
(∧

i∈I

ψi

)
= inf
i∈I

χψi ,

where sup and inf apply the pointwise numerical
infimum and supremum. Thus the characteristic
function χ gives an isomorphism between T (E)
and a sublattice of M(E), which is complete. By
Lemma 9, for ψ1, ψ2 ∈ T (E), we have ψ1 ≤ ψ2 ⇔
ψ+V
1 ≤ ψ+V

2 . From (23,25) we derive for any
ψ1, ψ2 ∈ T (E):

(ψ1 ∨ψ2)
+V +(ψ1 ∧ψ2)

+V = ψ+V
1 +ψ+V

2 . (26)

Note that the equalities (25,26) are particular
cases of the identity (a∨b)+(a∧b) = a+b satisfied
in any commutative l-group, see [3], Chapter XIII,
Section 3.

We will now see that the form taken by the
join ⊔ and meet ⊓ in MV (E) does not necessarily
coincide with the pointwise numerical maximum
and minimum for functions in UE .

First, for two binary image transformations
ψ1, ψ2 that are not increasing, we can have
(ψ1 ∨ ψ2)

+V (F ) ̸= ψ+V
1 (F ) ∨ ψ+V

2 (F ) and (ψ1 ∧
ψ2)

+V (F ) ̸= ψ+V
1 (F ) ∧ ψ+V

2 (F ).

Example 10 See Figure 3. Let E = Z and V =
{0, . . . , 8} ⊂ Z. Let F : V E → V E be given by

F (x) =

{
0 if x < 0 or x > 7 ,

8− x if 0 ≤ x ≤ 7 .
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Fig. 3 Top left: the function F , the dashed horizontal lines show the sets Xt(F ) at level t. Top right: the sets ψ1(Xt(F )) at

level t. Bottom left: the sets ψ2(Xt(F )) at level t. Bottom right: ψ+V
1 (F ) = ψ+V

2 (F ) (constant 4 function), (ψ1 ∨ψ2)+V (F )
(constant 8 function), and (ψ1 ∧ ψ2)+V (F ) (constant 0 function).

Define ψ1, ψ2 : P(E) → P(E) as follows:

ψ1(X) =

{
∅ if |X| ∈ {0, 1, 3, 5, 7} ,

E otherwise ;

ψ2(X) =

{
∅ if |X| ∈ {0, 2, 4, 6, 8} ,

E otherwise .

Then ψ1(Xt(F )) = E for t = 0, 1, 3, 5, 7 and
ψ1(Xt(F )) = ∅ for all other values of t, while
ψ2(Xt(F )) = E for t = 0, 2, 4, 6, 8 and ψ2(Xt(F )) = ∅
for all other values of t. Since ⊥ = 0, ψ+V

i = (χψi)
−V

(i = 1, 2). It follows that ψ+V
1 (F ) = ψ+V

2 (F ) is the

constant 4 function, (ψ1 ∨ψ2)
+V (F ) is the constant 8

function, and (ψ1 ∧ ψ2)
+V (F ) is the constant 0 func-

tion. Therefore (ψ1 ∨ψ2)
+V (F ) ̸= ψ+V

1 (F )∨ψ+V
2 (F )

and (ψ1 ∧ψ2)
+V (F ) ̸= ψ+V

1 (F )∧ψ+V
2 (F ). Note that

(26) holds.
For µ1 = χψ1 and µ2 = χψ2, we get µ−V1 (F ) =

µ−V2 (F ), (µ1 ∨ µ2)
−V (F ) ̸= µ−V1 (F ) ∨ µ−V2 (F ) and

(µ1 ∧µ2)
−V (F ) ̸= µ−V1 (F )∧µ−V2 (F ), but (25) holds.

Next, for two increasing binary image mea-
surements µ1, µ2 that do not have binary values,
that is, which are not of the form µ1 = χψ1 and
µ2 = χψ2 for two increasing binary image trans-
formations ψ1, ψ2, we can have (µ1 ∨ µ2)

−V (F ) ̸=

µ−V
1 (F )∨µ−V

2 (F ) and (µ1∧µ2)
−V (F ) ̸= µ−V

1 (F )∧
µ−V
2 (F ).

Example 11 See Figure 4. Let E = Z
2 and V =

{0, 1, 2} ⊂ Z. We take the function F : V E → V E

shown in (d), with X1(F ) and X2(F ) shown in (e)
and (f) respectively. Let εA, εB , εC be the erosions
by the three structuring elements A,B,C shown in
(a,b,c). Let P be the singleton made of the pixel
at the centre of X1(F ) and X2(F ), and let G =
χP , cf. (g,h). We have εA(X1(F )) = εB(X1(F )) =
εC(X1(F )) = P , εA(X2(F )) = P , and εB(X2(F )) =
εC(X2(F )) = ∅. Let µ1 = χεA and µ2 = χεB + χεC .
Then µ1(X1(F )) = G, µ1(X2(F )) = G, µ2(X1(F )) =
G + G = 2G, and µ2(X2(F )) = 0 + 0 = 0. Hence
(µ1∨µ2)(X1(F )) = G∨2G = 2G, (µ1∨µ2)(X2(F )) =
G ∨ 0 = G, (µ1 ∧ µ2)(X1(F )) = G ∧ 2G = G,
(µ1 ∧ µ2)(X2(F )) = G ∧ 0 = 0. From (22) we get:

µ−V1 (F ) = µ1(X1(F )) + µ1(X2(F )) = G+G = 2G ,

µ−V2 (F ) = µ2(X1(F )) + µ2(X2(F )) = 2G+ 0 = 2G ,

(µ1∨µ2)
−V (F ) = (µ1∨µ2)(X1(F ))+(µ1∨µ2)(X2(F ))

= 2G+G = 3G ,

(µ1∧µ2)
−V (F ) = (µ1∧µ2)(X1(F ))+(µ1∧µ2)(X2(F ))

= G+ 0 = G ,
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which means that (µ1 ∨ µ2)
−V (F ) ̸= µ−V1 (F ) ∨

µ−V2 (F ) and (µ1 ∧ µ2)
−V (F ) ̸= µ−V1 (F ) ∧ µ−V2 (F ).

Note that (25) holds.

(b) (c)

(d)

(a)

(g)(f)(e) (h)

+ ++

B
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2

2

1 2 1

2

1

2

1

00 000

0

0

0

00000

0

0

0

0 0 0

00

0 0 0

1

Fig. 4 Here E = Z
2. (a), (b) and (c): the three structuring

elements A, B and C; the cross + indicates the position
of the origin. (d) The function F ; it has value 0 outside
the portion shown here. (e) X1(F ). (f) X2(F ). (g) P =
εA(X1(F )) = εB(X1(F )) = εC(X1(F )) = εA(X2(F )); on
the other hand, εB(X2(F )) = εC(X2(F )) = ∅. (h) G = χP .

3.2 Composition of operators

In Proposition 32 of [2], we showed that for
any complete lattice V , the flat extension of
the composition of two increasing binary image
transformations is the composition of their flat
extensions, (ψ1ψ2)

V = ψV1 ψ
V
2 , provided that one

of the following conditions hold:

• the operator on the left, ψ1, is a dilation;
• the operator on the right, ψ2, is an erosion;
• V is completely distributive.

As we saw above, in our framework V is neces-
sarily a completely distributive complete lattice.
However, our next counterexample shows that the
above property does not extend to the case where
the right operator ψ2 is a non-increasing binary
image transformation, even if the left operator ψ1

is a dilation.

Example 12 See Figure 5. Let E = Z and V =
{0, . . . , 8} ⊂ Z. Since ⊥ = 0, the shifted flat extension
coincides with the no-shift one. We take the struc-
turing element A = {−1, 0,+1}, and let δ and ε be
the dilation and erosion by A. We take a function
F forming a ramp decreasing between x = 1 and
x = 7, and constant for x ≤ 1 and x ≥ 7. We get
(δ \ ε)+V (F ) and [δ(δ \ ε)]+V (F ) by summing the

stacks (δ \ ε)(Xv(F )) and δ(δ \ ε)(Xv(F )) for v ∈ V .
Finally, δ+V (δ \ ε)+V (F ) results from the standard
flat dilation applied to (δ \ ε)+V (F ), and we see that
δ+V (δ \ ε)+V (F ) ̸= [δ(δ \ ε)]+V (F ).

On the other hand, the above result from [2]
remains valid when ψ2 is increasing and ψ1 has
pointwise bounded variation. We will show this
by using an argument similar to the one used
in the proof of Lemma 31 of [2]. Recall that V
is completely distributive, in the sense given by
(5,6).

Lemma 13 Let ψ be an increasing binary image

transformation. For any F : E → V and x ∈ V ,

we have ψ(Xx(F )) ⊆ Xx(ψ
V (F )), and Xx(ψ

V (F )) ⊆
ψ(Xw(F )) for any w ◁ x. For any increasing map

f : P(E) → {0, 1}, we have

S
(
f(ψ(Xv(F )))

∣∣ v ∈ V
)
=

S
(
f(Xv(ψ

V (F )))
∣∣ v ∈ V

)
. (27)

Proof Here ψV is the usual flat operator given by (4).
As Xv(F ) and Xv(ψ

V (F )) are decreasing in v, while
ψ and f are increasing, the two maps V → R : v 7→
f(Xv(ψ

V (F ))) and v 7→ f(ψ(Xv(F ))) are decreasing;
hence the two summations in (27) are well-defined.

Take any x ∈ V . For p ∈ ψ(Xx(F )), x inter-
venes in the supremum sup

{
v ∈ V

∣∣ p ∈ ψ(Xv(F ))
}
,

so by (4), ψV (F )(p) ≥ x, that is, p ∈ Xx(ψ
V (F )).

Hence ψ(Xx(F )) ⊆ Xx(ψ
V (F )). As f is increasing,

f(ψ(Xx(F ))) ≤ f(Xx(ψ
V (F ))). The summation on

x ∈ V gives then

S
(
f(ψ(Xx(F )))

∣∣ x ∈ V
)
≤

S
(
f(Xx(ψ

V (F )))
∣∣ x ∈ V

)
. (28)

Let w ◁ x. For any p ∈ Xx(ψ
V (F )), (4) gives

x ≤ ψV (F )(p) = sup
{
v ∈ V

∣∣ p ∈ ψ(Xv(F ))
}
,

and (5) gives w ≤ u for some u ∈ V such that
p ∈ ψ(Xu(F )); then Xu(F ) ⊆ Xw(F ), and as ψ is
increasing, ψ(Xu(F )) ⊆ ψ(Xw(F )), so p ∈ ψ(Xw(F )).
Hence Xx(ψ

V (F )) ⊆ ψ(Xw(F )). As f is increasing,
f(Xx(ψ

V (F ))) ≤ f(ψ(Xw(F ))). Thus, given x ∈ V
such that f(Xx(ψ

V (F ))) = 1, every w ◁ x satisfies
f(ψ(Xw(F ))) = 1, so (6) gives:

x = sup{w ∈ V | ⊥ < w ◁ x} ≤

sup
{
w ∈ V

∣∣ f(ψ(Xw(F ))) = 1
}
.

Taking the supremum of all such x, we get

sup
{
x ∈ V

∣∣ f(Xx(ψV (F ))) = 1
}
≤

sup
{
w ∈ V

∣∣ f(ψ(Xw(F ))) = 1
}
. (29)
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Fig. 5 Top left: the function F , the dashed horizontal lines show the sets Xt(F ) at level t; we also show the structuring
element A. Top middle: the sets (δ \ ε)(Xt(F )) at level t, where δ and ε are the dilation and erosion by A. Top right: the
sets δ(δ \ ε)(Xt(F )) at level t. Bottom left: (δ \ ε)+V (F ). Bottom middle: [δ(δ \ ε)]+V (F ). Bottom right: δ+V (δ \ ε)+V (F ).

Applying Proposition 4 to the two decreasing maps
V → R : x 7→ f(Xx(ψ

V (F ))) and x 7→ f(ψ(Xx(F ))),
we get:

sup
{
x ∈ V

∣∣ f(Xx(ψV (F ))) = 1
}
=

⊥+ S
(
f(Xx(ψ

V (F )))
∣∣ x ∈ V

)

and sup
{
w ∈ V

∣∣ f(ψ(Xw(F ))) = 1
}
=

⊥+ S
(
f(ψ(Xw(F )))

∣∣ w ∈ V
)
.

Combining this with the inequality (29), we get

S
(
f(Xx(ψ

V (F )))
∣∣ x ∈ V

)
≤

S
(
f(ψ(Xw(F )))

∣∣ w ∈ V
)
.

The two bound variables x on the left side and w on
the right side can both be renamed v, so we obtain
the converse of inequality (28), and we derive thus the
equality (27). □

Proposition 14 Let ψ be an increasing binary image

transformation. For any binary image measurement

µ having pointwise bounded variation, (µψ)−V =
µ−V ψ+V . For any binary image transformation ξ hav-
ing pointwise bounded variation, (ξψ)+V = ξ+V ψ+V .

Proof Let p ∈ E. As µ has pointwise bounded varia-
tion, for any p ∈ E we apply Proposition 2: there are
m + n increasing functions f1, . . . , fm+n : P(E) →
{0, 1} (m,n ≥ 0), such that for any Z ∈ P(E),
µ(Z)(p) =

∑m
i=1 fi(Z) −

∑m+n
j=m+1 fj(Z). As ψ is

increasing, ψ+V coincides with ψV . Thus, for any

F : E → V , the above lemma gives for each i =
1, . . . ,m+ n:

S
(
fi(ψ(Xv(F )))

∣∣ v ∈ V
)
=

S
(
fi(Xv(ψ

+V (F )))
∣∣ v ∈ V

)
.

By linearity of summation, we get then

S
(
µ(ψ(Xv(F )))(p)

∣∣ v ∈ V
)

= S
( m∑

i=1

fi(ψ(Xv(F )))

−
m+n∑

j=m+1

fj(ψ(Xv(F )))
∣∣∣ v ∈ V

)

=
m∑

i=1

S
(
fi(ψ(Xv(F )))

∣∣ v ∈ V
)

−
m+n∑

j=m+1

S
(
fj(ψ(Xv(F )))

∣∣ v ∈ V
)

=
m∑

i=1

S
(
fi(Xv(ψ

+V (F )))
∣∣ v ∈ V

)

−
m+n∑

j=m+1

S
(
fj(Xv(ψ

+V (F )))
∣∣ v ∈ V

)

= S
( m∑

i=1

fi(Xv(ψ
+V (F )))

−
m+n∑

j=m+1

fj(Xv(ψ
+V (F )))

∣∣∣ v ∈ V
)

= S
(
µ(Xv(ψ

+V (F )))(p)
∣∣ v ∈ V

)
.



Springer Nature 2021 LATEX template

II

By (22), this means that (µψ)−V (F )(p) =
µ−V (ψ+V (F ))(p).

For µ = χξ, we get then ⊥ + (χξψ)−V (F )(p) =
⊥ + (χξ)−V (ψ+V )(p), which means by (23) that
(ξψ)+V (F )(p) = ξ+V (ψ+V (F ))(p). □

3.3 Commutation with contrast

mappings and with thresholding

We will consider here two classical properties
of flat increasing operators: commutation with
contrast mappings or anamorphoses [9, 10] and
commutation with thresholding. We will see that
non-increasing flat operators commute only with
linear contrast mappings. In order to ease of the
discussion, we restrict ourselves to the standard
case: V = [⊥,⊤].

Let us first deal with contrast mappings. For
any map θ : V → V , let θE : V E → V E be
the extension of θ to functions E → V obtained
by pointwise application of θ, that is, for any F :
E → V and p ∈ E we have θE(F )(p) = θ(F (p)).
In the case of grey-level images, that is, when V
is a complete chain included in R (say, V = R,
Z, a closed interval [a, b] ⊂ R, or an interval
in Z), one calls a contrast mapping or anamor-

phosis [9, 10] a map θE for θ : V → V that
is both increasing and continuous. When V is a
finite chain, the continuity requirement on θ can
be dropped, and when V = Z, it applies only at
±∞. Then, the flat extension ψV of an increas-
ing binary image transformation ψ will commute
with any contrast mapping θE : for any F ∈ V E ,
θE(ψ

V (F )) = ψV (θE(F )).
A complete characterization of such a commu-

tation in the case of an arbitrary complete lattice
V was made in [11], see Theorem 8 there. In
particular, given an increasing binary image trans-
formation ψ and an increasing map θ : V → V ,
the following three conditions taken together are
sufficient for the commutation of ψV with θE , that
is θE(ψ

V (F )) = ψV (θE(F )):

1. θ(⊥) = ⊥ or ψ(E) = E;
2. θ(⊤) = ⊤ or ψ(∅) = ∅;
3. θ commutes with non-empty suprema and non-

empty infima in V .

When V = R or V = [a, b] ⊂ R, condition 3 is
equivalent to the continuity of the map θ. When
V is a product of chains, condition 3 becomes very
restrictive.

Now, if we consider bounded functions E →
R
m, an increasing linear map θ satisfies con-

dition 3, so θE will commute with increasing
flat operators. The same should then hold for
non-increasing flat operators obtained as linear
combinations of increasing ones.

In practice, linearity will be necessary, as we
can see with our usual example of the set dif-
ference between an extensive dilation δ and an
anti-extensive erosion ε. Assume⊥ = 0, and define
the binary image transformation ψ by ψ(X) =
δ(X) \ ε(X) for all X ∈ P(E). We have ψ+V =
δ+V −ε+V . Consider an increasing map θ : V → V
such that θE commutes with the increasing flat
operators δ+V and ε+V . Then

ψ+V θE =
[
δ+V − ε+V

]
θE

= δ+V θE − ε+V θE = θEδ
+V − θEε

+V ,

while θEψ
+V = θE

[
δ+V − ε+V

]
. The equality

ψ+V θE = θEψ
+V requires that for all func-

tions F we have θE(δ
+V (F )) − θE(ε

+V (F )) =
θE

(
δ+V (F )−ε+V (F )

)
, that is, for every p ∈ E we

have

θ
(
δ+V (F )(p)

)
− θ

(
ε+V (F )(p)

)

= θ
(
δ+V (F )(p)− ε+V (F )(p)

)
.

A sufficient and probably necessary condition for
this general equality is that θ is additive, that is
θ(x + y) = θ(x) + θ(y). As θ is continuous, it
will then be linear. Our next example confirms the
necessity of the additivity condition on θ.

Example 15 See Figure 6. Let E = Z and V =
[0,⊤] ⊂ R for ⊤ > 0. For x, y ∈ Z with x < y, let
[x . . . y] = {z ∈ Z | x ≤ z ≤ y} be the discrete inter-
val between x and y. Let δ and ε be the dilation and
erosion by the structuring element {−1, 0,+1}, and
let ψ be their set difference, ψ(X) = δ(X) \ ε(X).
Given a, b, c ∈ Z such that a + 3 ≤ b ≤ c − 3, let
A = [a . . . b−1] and B = [b . . . c−1]. Define X = δ(A)\[
ε(A) ∪ δ(B)

]
= {a − 1, a} (the left boundary of A),

Y = δ(A) ∩ δ(B) = {b− 1, b} (the common boundary
of A and B), and Z = δ(B)\

[
ε(B)∪δ(A)

]
= {c−1, c}

(the right boundary of B). We have then ψ(A) =
X ∪ Y , ψ(B) = Y ∪ Z, and ψ(A ∪ B) = X ∪ Z. For
u, v, w ∈ V , define Fu,v = uχA + vχB and Gu,v,w =
uχX + vχY + wχZ. Let s ≥ r ≥ 0; we have: for
0 < v ≤ r, Xv(Fr,s) = A∪B and ψ(Xv(Fr,s)) = X∪Z;
for r < v ≤ s, Xv(Fr,s) = B and ψ(Xv(Fr,s)) = Y ∪Z;
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Fig. 6 Let E = Z and V = [0,⊤], and let δ and ε

be the dilation and erosion by the structuring element
{−1, 0,+1}, and let ψ be their set difference. (a) From
top to bottom, the two successive interval A and B in E,
then their dilations δ(A), δ(B) and erosions ε(A), ε(B), and
finally the three boundary sets X = δ(A) \

[

ε(A) ∪ δ(B)
]

,

Y = δ(A) ∩ δ(B) and Z = δ(B) \
[

ε(B) ∪ δ(A)
]

. (b) Let
Fr,s = rχA+ sχB, for s ≥ r ≥ 0. (c) The vertical lines are
made of the union of all cross-sections {v} × ψ(Xv(Fr,s)),
for v ∈ V . (d) Then ψ+(Fr,s) = rχX +(s− r)χY + sχZ =
Gr,s−r,s.

for v > s, Xv(Fr,s) = ψ(Xv(Fr,s)) = ∅. It follows then
that ψ+(Fr,s) = Gr,s−r,s.

Given a contrast mapping θE , we have θE(Fr,s) =
Fθ(r),θ(s), so ψ+(θE(Fr,s)) = ψ+(Fθ(r),θ(s)) =
Gθ(r),θ(s)−θ(r),θ(s); on the other hand,

θE(ψ
+(Fr,s)) = θE(Gr,s−r,s) = Gθ(r),θ(s−r),θ(s).

The commutation ψ+(θE(Fr,s)) = θE(ψ
+(Fr,s))

requires thus that θ(s − r) = θ(s) − θ(r), in other
words, the additivity of θ.

Now, the commutation with contrast map-
pings raises a theoretical problem in our frame-
work: we consider images with bounded values,
and the contrast mapping will modify the bounds,
for an image F : E → [⊥,⊤], ηE(F ) will be
E → [η(⊥), η(⊤)]. This problem could be avoided
in the classical framework for increasing operators
[2] by taking image values in R

m
. Our solution is

to consider images with values ranging in an inter-
val that can be modified: for ⊥1 ≤ ⊥0 < ⊤0 ≤ ⊤1,
an image F : E → [⊥0,⊤0] can be considered as
F : E → [⊥1,⊤1], and we can choose the inter-
val [⊥1,⊤1] wide enough to have ⊥1 ≤ η(⊥0) <
η(⊤0) ≤ ⊤1, that is, ηE(F ) : E → [⊥1,⊤1]. But
then it raises a new problem, the two formulas
(22) and (23) depend on the chosen interval [⊥,⊤],
changing that interval can change the result.

In Proposition 34 of [1], we showed that given
⊥1 ≤ ⊥0 < ⊤0 ≤ ⊤1, V0 = [⊥0,⊤0], and V1 =
[⊥1,⊤1], for any F : E → V0 and for any binary
image measurement µ, we have

µ−V1(F ) = (⊥0 −⊥1)µ(E) + µ−V0(F )

+(⊤1 −⊤0)µ(∅) . (30)

From (23), we deduce that for any binary image
transformation ψ,

ψ+V1(F ) = (⊥0 −⊥1)
(
χψ(E)− 1

)

+ψ+V0(F ) + (⊤1 −⊤0)χψ(∅) . (31)

When E = R
n or Z

n, a morphological opera-
tor based on structuring elements commutes with
translations of E; it follows then that µ(E) and
µ(∅) must be constant, and both ψ(E) and ψ(∅)
must be equal to either E or ∅. We make this
requirement in the general case, and so extending
the interval from [⊥0,⊤0] to [⊥1,⊤1] leads only to
a vertical translation of the result of the flat oper-
ator, which can be corrected. In some particular
cases, we can make stricter requirements.

Most known morphological operators on sets
(dilation, erosion, hit or miss transform, gradient,
. . . ) satisfy µ(∅) = 0 and ψ(∅) = ∅, so the last term
(⊤1−⊤0)µ(∅) in (30) and (⊤1−⊤0)χψ(∅) in (31)
is equal to 0. When this is not the case, the oper-
ator involves a set complementation. Specifically,
if µ(∅) = k ̸= 0, then we have µ = k − µ0, where
µ0(∅) = ∅; then by linearity we get µ−Vi(F ) =
k(⊤i−⊥i)−µ

−Vi

0 (F ) (i = 0, 1). Similarly, if ψ(∅) =
E, then ψ(X) = ρ(X)c, where ρ(∅) = ∅; then for
i = 0, 1, (χψ)−Vi(F ) = ⊤i − ⊥i − (χρ)−Vi(F ),
hence ψ+Vi(F ) = ⊤i+⊥i−ρ

+Vi(F ) by (23). Thus
the flat operator involves an inversion in Vi, whose
specific form depends on its bounds ⊥i and⊤i.

For the value of µ(E) and ψ(E), the situ-
ation is variable. Given an extensive dilation δ
and an anti-extensive erosion ε, we have δ(E) =
ε(E) = E, but (δ \ ε)(E) = ∅. For the no-shift
flat extension, we can require that µ(E) = 0, so
that left term (⊥0 − ⊥1)µ(E) in (30) is equal
to 0. Now for the shifted flat extension, we can
require instead that ψ(E) = E, so that left term
(⊥0 −⊥1)

(
χψ(E)− 1

)
in (31) is equal to 0. Oth-

erwise, since we consider linear contrast mappings
of the form θ : v 7→ av for a > 0, we can restrict
ourselves to the case where ⊥0 = ⊥1 = 0, in other
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words, to positive image values; this also cancels
the left term in (⊥0 −⊥1).

Consider thus scaling by a positive scalar: θ :
v 7→ av, where a > 0. In the case of continu-
ous image intensities, that is, U = R

m, we have
a ∈ R

+; on the other hand, for discrete image
intensities, that is, U = u1Z× · · · × umZ, we take
a ∈ N. Let V0 = [⊥0,⊤0], aV0 = {av | a ∈ V0} and
V a0 = [a⊥0, a⊤0]. In the continuous case U = R

m,
aV0 = V a0 , while in the discrete case, aV0 is
the complete sublattice of V a0 made of all vectors
whose coordinates are multiple of a (relatively to
u1, . . . , um).

Let F : E → V0; then aF is E → aV0, and
for v ∈ V0 we have Xav(aF ) = Xv(F ). Define θ :
V0 → aV0 : v 7→ av and f : aV0 → Z : w 7→
µ(Xw(aF ))(p); then fθ : V0 → Z satisfies fθ(v) =
f(av) = µ(Xav(aF ))(p) = µ(Xv(F ))(p). We apply
Lemma 5 with (22):

µ−aV0(aF )(p) = S[a⊥0,a⊤0](f)

= aS[⊥0,⊤0](fθ) = aµ−V0(F )(p) .

Then (23) gives

ψ+aV0(aF )(p) = a⊥0 + (χψ)−aV0(aF )(p)

= a⊥0 + a(χψ)−V0(F )(p) = aψ+V0(F )(p) .

As aF is E → aV0 and aV0 is a complete sublattice
of V a0 , Proposition 31 of [1] gives µ−aV0(aF ) =
µ−V a

0 (aF ) and ψ+aV0(aF ) = ψ+V a

0 (aF ). Hence

µ−V a

0 (aF ) = µ−aV0(aF ) = aµ−V0(F ) and

ψ+V a

0 (aF ) = ψ+aV0(aF ) = aψ+V0(F ) . (32)

Take now an interval V1 = [⊥1,⊤1] wide
enough to include both V0 and V a0 , that is, ⊥1 ≤
⊥0, ⊥1 ≤ a⊥0, ⊤1 ≥ ⊤0, and ⊤1 ≥ a⊤0. Then
(30) gives

aµ−V1(F ) = a(⊥0 −⊥1)µ(E) + aµ−V0(F )

+a(⊤1 −⊤0)µ(∅)

and

µ−V1(aF ) = (a⊥0 −⊥1)µ(E) + µ−V a

0 (aF )

+(⊤1 − a⊤0)µ(∅)

= (a⊥0 −⊥1)µ(E) + aµ−V0(F )

+(⊤1 − a⊤0)µ(∅) .

The equality aµ−V1(F ) = µ−V1(aF ) is equivalent
to (a − 1)⊥1µ(E) − (a − 1)⊤1µ(∅) = 0. Allowing
the interval [⊥1,⊤1] to vary, this condition will be
satisfied in the following three cases: (a) µ(E) =
µ(∅) = 0; (b) ⊥1 = 0 (we consider positive image
values) and µ(∅) = 0; (c) µ(E) = 0 and ⊤1 = 0
(we consider negative image values).

Similarly, (31) gives

aψ+V1(F ) = a(⊥0 −⊥1)
(
χψ(E)− 1

)

+aψ+V0(F ) + a(⊤1 −⊤0)χψ(∅)

and

ψ+V1(aF ) = (a⊥0 −⊥1)
(
χψ(E)− 1

)

+ψ+V a

0 (aF ) + (⊤1 − a⊤0)χψ(∅)

= (a⊥0 −⊥1)
(
χψ(E)− 1

)

+aψ+V0(F ) + (⊤1 − a⊤0)χψ(∅) .

The equality aψ+V1(F ) = ψ+V1(aF ) is equivalent
to (a − 1)⊥1

(
χψ(E) − 1

)
− (a − 1)⊤1χψ(∅) = 0.

Allowing the interval [⊥1,⊤1] to vary, this condi-
tion will be satisfied in the following three cases:
(a) ψ(E) = E and ψ(∅) = ∅; (b) ⊥1 = 0 (we
consider positive image values) and ψ(∅) = ∅; (c)
ψ(E) = E and ⊤1 = 0 (we consider negative
image values).

The most sensible choice is to take images
with positives values, ⊥1 = ⊥0 = 0, with the
further conditions µ(∅) = 0 and ψ(∅) = ∅, giv-
ing aµ−V1(F ) = µ−V1(aF ) and aψ+V1(F ) =
ψ+V1(aF ) respectively.

We will now give the conditions under which
a flat operator commutes with vertical translation
v 7→ v + b. Recall V0 = [⊥0,⊤0]. Let b ∈ U and
V0 + b = {v + b | v ∈ V0}; as U is a module,
V0 + b = [⊥0 + b,⊤0 + b] ⊆ U . For F : E → V0,
F + b is E → V0 + b, and for v ∈ V0 we have
Xv+b(F + b) = Xv(F ). Define θ : V0 → V0 + b :
v 7→ v + b and f : V0 + b → Z : w 7→ µ(Xw(F +
b))(p); then fθ : V0 → Z satisfies fθ(v) = f(v +
b) = µ(Xv+b(F + b))(p) = µ(Xv(F ))(p). We apply
Lemma 5 with (22):

µ−V0+b(F + b)(p) = S[⊥0+b,⊤0+b](f)

= S[⊥0,⊤0](fθ) = µ−V0(F )(p) .
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For a binary image transformation ψ, (23) gives
then

ψ+V0+b(F + b)(p) = ⊥0+ b+(χψ)−V0+b(F + b)(p)

= ⊥0 + (χψ)−V0(F )(p) + b = ψ+V0(F )(p) + b .

Hence

µ−V0+b(F + b) = µ−V0(F ) and

ψ+V0+b(F + b) = ψ+V0(F ) + b . (33)

Take now an interval V1 = [⊥1,⊤1] wide
enough to include both V0 and V0 + b, that is,
⊥1 ≤ ⊥0, ⊥1 ≤ ⊥0+b, ⊤1 ≥ ⊤0, and ⊤1 ≥ ⊤0+b.
Then (30) gives

µ−V1(F + b) = (⊥0 + b−⊥1)µ(E)

+µ−V0+b(F + b) + (⊤1 −⊤0 − b)µ(∅)

= bµ(E) + (⊥0 −⊥1)µ(E) + µ−V0(F )

+(⊤1 −⊤0)µ(∅)− bµ(∅)

= µ−V1(F ) + b
(
µ(E)− µ(∅)

)
.

From (23), we deduce

ψ+V1(F + b) = ψ+V1(F ) + b
(
χψ(E)− χψ(∅)

)
.

When µ(E) = 1 and µ(∅) = 0, we get µ−V1(F +
b) = µ−V1(F ) + b; similarly, when ψ(E) = E and
ψ(∅) = ∅, we get ψ+V1(F +b) = ψ+V1(F )+b. This
is for instance the case for usual increasing mor-
phological operators (dilation, erosion, opening,
closing, . . . ).

On the other, when µ(E) = µ(∅) = 0, we get
µ−V1(F + b) = µ−V1(F ); similarly, when ψ(E) =
ψ(∅) = ∅, we get ψ+V1(F + b) = ψ+V1(F ) This is
for instance the case for the difference between two
increasing morphological operators, for instance a
Beucher gradient or a top-hat.

Let us next consider commutation with thresh-
olding. Here V = [⊥,⊤]. It has been shown that
given an increasing binary image transformation
ψ, under some conditions on either ψ or V , for
any F : E → V and v ∈ V , we get Xv(ψ

+V (F )) =
ψ(Xv(F )).

Let us first remark that commutation with
thresholding can be expressed under the form
ξv(ψ

+V (F )) = ψ+V (ξv(F )) for a map ξv : V E →
V E . For any A ∈ P(E), define β(A) : E → V by
β(A) = ⊥ + (⊤ − ⊥)χA, in other words, for all

p ∈ E, β(A)(p) = ⊤ when p ∈ A and β(A)(p) = ⊥
when p /∈ A (in [1] we wrote it B⊤

⊥ [A]). It is
thus the binary image E → {⊥,⊤} correspond-
ing to A. For any binary image transformation
ψ, we showed in Corollary 32 of [1] that for any
A ∈ P(E):

ψ+V (β(A)) = β(ψ(A)) .

Now, define ξv : V E → {⊥,⊤}E by
ξv(F ) = β(Xv(F )). The above equality
with A = Xv(F ) gives ψ+V (ξv(F )) =
ψ+V (β(Xv(F ))) = β(ψ(Xv(F ))), while
ξv(ψ

+V (F )) = β(Xv(ψ
+V (F ))). Thus

ξv(ψ
+V (F )) = ψ+V (ξv(F )) iff β(Xv(ψ

+V (F ))) =
β(ψ(Xv(F ))), and as β is a bijection
P(E) → {⊥,⊤}E , this is equivalent to
Xv(ψ

+V (F )) = ψ(Xv(F )). Therefore

ξv(ψ
+V (F )) = ψ+V (ξv(F ))

⇐⇒ Xv(ψ
+V (F )) = ψ(Xv(F )) .

In [11] we expressed commutation with threshold-
ing in the form ξvψ

V = ψV ξv for an increasing
ψ.

As ξv is not linear, from the above discussion
around Example 15, it appears that commuta-
tion with thresholding will fail for the difference
between a dilation and an erosion. See for instance
Figure 5, where we have X4([δ \ ε]

+V (F )) = ∅ (see
bottom left), while [δ\ε](X4(F )) ̸= ∅ (see top mid-
dle). It is indeed easily shown that, unless V =
{⊥,⊤}, commutation with thresholding requires
ψ to be increasing:

Proposition 16 Let ψ be a binary image transforma-

tion, let a, b ∈ V such that ⊥ < a < b and for any

F : E → V , the equality Xv(ψ
+V (F )) = ψ(Xv(F ))

holds for v = a and for v = b. Then ψ is increasing.

Proof Let X,Y ∈ P(E) such that X ⊆ Y . Define
F : E → V by setting for p ∈ E:

F (p) =






b if p ∈ X ,

a if p ∈ Y \X ,

⊥ if p ∈ E \ Y .

Then Xa(F ) = Y and Xb(F ) = X. As the threshold
set Xv(F ) is decreasing in the threshold v, from a < b
we derive Xb(ψ

+V (F )) ⊆ Xa(ψ
+V (F )). Hence

ψ(X) = ψ(Xb(F )) = Xb(ψ
+V (F ))
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⊆ Xa(ψ
+V (F )) = ψ(Xa(F )) = ψ(Y ) ,

so ψ is increasing. □

Let thus ψ be an increasing binary image
transformation. So ψ+V is the classical flat exten-
sion ψV . For v = ⊥, the equality X⊥(ψ

V (F )) =
ψ(X⊥(F )) holds iff ψ(E) = E. For v > ⊥, the
condition varies according to the lattice V . When
V is a finite chain, the equality Xv(ψ

V (F )) =
ψ(Xv(F )) always holds for all v > ⊥. When
V = Z, it holds for any finite v. When V = Z

and v = +∞, or when V is continuous (V = R

or V = [a, b] ⊂ R) and we take any v > ⊥, the
equality holds if ψ is upper semi-continuous [9]:
given a decreasing sequence of subsets of E, X0 ⊇
X1 ⊇ . . . ⊇ Xn ⊇ . . ., we have ψ

(⋂
n∈N

Xn

)
=⋂

n∈N
ψ(Xn).

Consider next an arbitrary complete lattice
V . By Theorem 10 of [11], the increasing binary
image transformation ψ satisfies Xv(ψ

V (F )) =
ψ(Xv(F )) for any F : E → V and for all v > ⊥,
iff ψ is V -↓-continuous (see Definition 5 there):
for every non-void lower set S in V and for every
function G : E → V , we have

ψ
(⋂

v∈S

Xv(G)
)
=

⋂

v∈S

ψ
(
Xv(G)

)
.

When V = Z, V = R or V = [a, b] ⊂ R, ψ is V -
↓-continuous iff it is upper semi-continuous (see
Proposition 27 there).

4 Duality

In image processing, duality exchanges the roles
of foreground and background, of dark and bright
regions. Thus, the dual of an operator ψ is the
operator ψ∗ that is applied to the background or
negative when ψ is applied to the foreground or
positive. For ψ : P(E) → P(E), ψ∗(X) = ψ(Xc)c

(recall that the superscript c denotes the com-
plementation in E). For ψ : V E → V E with V
bounded by ⊥ and ⊤, ψ∗(F ) = νE(ψ(νE(F ))),
where ν : V → V : v 7→ ⊥ + ⊤ − v is the
inversion of V , and νE its extension to functions
E → V , cf. Subsection 3.3. Note that (ψ∗)∗ = ψ,
the duality relation is symmetric. For instance,
dilation and erosion are dual, as well as open-
ing and closing. Duality is compatible with the
composition of operators and exchanges join and

meet: (ξψ)∗ = ξ∗ψ∗, (ξ ∨ ψ)∗ = ξ∗ ∧ ψ∗, and
(ξ ∧ ψ)∗ = ξ∗ ∨ ψ∗.

In [2] we showed that for an increasing binary
image operator ψ and a completely distributive
lattice V , we have (ψ∗)V = (ψV )∗. In this section,
we will see how this result can be extended to a
binary image operator that is not increasing, or to
a binary image measurement.

Here with operators involving complementa-
tion, the relation of duality with foreground and
background becomes subtler. For instance, let δ
be an extensive dilation on P(E), let ε be the
anti-extensive dual erosion, and let ψ be their set
difference: ψ(X) = δ(X) \ ε(X). When δ and ε
are the dilation and erosion by a symmetric point
neighbourhood, ψ(X) is the boundary of X, the
union of its outer boundary δ(X) \ X and of its
inner boundary X \ ε(X). Now, the boundary of
Xc is ψ(Xc) = ψ(X), the union of δ(Xc) \Xc =
X \ ε(X) and Xc \ ε(Xc) = δ(X) \X; so, X and
Xc have the same boundary, the outer and inner
boundaries of Xc are those of X exchanged. On
the other hand, the dual ψ∗ of ψ gives ψ∗(X) =
ψ∗(Xc) = ε(X) ∪ ε(Xc), the complement of the
boundary. We see thus that a notion like bound-
ary should not be seen as an image transformation
(like dilation, erosion, opening and closing), but
rather as a feature extraction. For an image trans-
formation ψ, we consider the dual ψ∗ : X 7→
ψ(Xc)c, while for a feature extraction we sim-
ply apply ψ to Xc. This distinction is somewhat
analogous to the one between a binary image
transformation (with shifted flat extension) and
a binary image measurement (with no-shift flat
extension).

In [2] we considered the dual flat extension
ψV ∗, defined as the flat extension for the dual
lattice of V ; we will here consider the dual sum-
mation in Subsection 4.1. Then in Subsection 4.2
the results will be applied to the relation of flat
extension with duality.

4.1 Dual summation

Given a function f : P → R and a fixed real
number M > 0, we will write BND(f,M) if f
is bounded by M , non-negative, and decreasing,
that is: for all x ∈ P , 0 ≤ f(x) ≤ M , and for all
x, y ∈ P , x < y ⇒ f(x) ≥ f(y).

We assume that the poset P is bounded by
⊥,⊤. Consider first a bounded, non-negative and
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decreasing function f : P → R, in other words,
BND(f,M) for some M > 0. In the defini-
tion (13) of S(s0,...,sn)(f) for a strictly increasing
sequence (s0, . . . , sn), we associated to the inter-
val [si−1, si] the term f(si)(si − si−1). When P
is a real interval, this term is an approximation
from below of the integral of f on that interval, see
Figure 2. Hence in the definition (14) of S[a,b](f),
we took the supremum of all S(s0,...,sn)(f) for
(s0, . . . , sn) ∈ S(a, b). We can instead approximate
this integral from above, associating to the inter-
val [si−1, si] the term f(si−1)(si − si−1), leading
thus to the dual summation

S∗
(s0,...,sn)

(f) =

n∑

i=1

f(si−1)(si − si−1)

=

n−1∑

i=0

f(si)(si+1 − si) , (34)

see Figure 7 (a). Then we obtain the dual sum-

mation of f over the interval [a, b] by taking
the infimum of such dual summations for all
(s0, . . . , sn) ∈ S(a, b):

S∗
[a,b](f) = inf

{
S∗
(s0,...,sn)

(f)
∣∣

(s0, . . . , sn) ∈ S(a, b)
}
. (35)

We will relate the original summation S and
the dual one S∗ by combining the function f with
an inversion of both its domain P and its range
included in R. Since P ⊆ R

m for some m ≥ 1,
we define the inversion ν : Rm → R

m : x 7→ ⊥ +
⊤− x; it is an involution (dual isomorphism that
is its own inverse), and it exchanges ⊥ and ⊤. Let
P ν = {ν(x) | x ∈ P}; then the poset P ν has the
same least and greatest elements ⊥ and ⊤ as P ,
and ν is a dual isomorphism between P and P ν .
For a, b ∈ P with a ≤ b, the map (s0, . . . , sn) 7→
(ν(sn), . . . , ν(s0)) is a bijection between S(a, b) in
P and S(ν(b), ν(a)) in P ν . Note that when P is
the whole interval [⊥,⊤] in R

m, or its trace in Z
m,

then P ν = P .
Consider a function f : P → R such that

BND(f,M). As f is decreasing, the function fν :
P ν → R : x 7→ f(ν(x)) is increasing. Inverting
fν w.r.t. M , we get M − fν : P ν → R : x 7→
M − f(ν(x)), such that BND(M − fν,M). Let
(s0, . . . , sn) be an increasing sequence in P , and
let (t0, . . . , tn) = (ν(sn), . . . , ν(s0)) be the inverted

IR

IR

M

M

IR

M

s s

f

sss s s

t ttt t

f

t t

0 1 2 3 4 5 6

0 2 3 4 651

t ttt t

νf−M

2 3 4

(a)

(b)

(c)

t
0 1

t
65

ν

Fig. 7 (a) The function f : P → R is bounded,
non-negative and decreasing: BND(f,M). We consider a
strictly increasing sequence (s0, . . . , s6) in P . The grey
area represents S∗

(s0,...,s6)
(f). (b) Let ν : x 7→ ⊥ + ⊤ − x

be the inversion between P and P ν , and let ti = s6−i

for i = 0, . . . , 6. Then (t0, . . . , t6) is a strictly increasing
sequence in P ν . The function fν : P ν → R : x 7→ f(ν(x))
is increasing. The grey area represents the complement
of S∗

(s0,...,s6)
(f) in the rectangle [t0, t6] × [0,M ]. (c) The

function M − fν is bounded, non-negative and decreasing:
BND(M − fν,M). The grey area of (b), after inversion of
the interval [0,M ], represents S(t0,...,t6)(M − fν). Thus,
S(t0,...,t6)(M − fν) = (s6 − s0)M − S∗

(s0,...,s6)
(f).

sequence in P ν ; let L = tn− t0 = sn−s0. We have

S(t0,...,tn)(M − fν) =
n∑

i=1

(
M − f(ν(ti))

)
(ti− ti−1)

=

n∑

i=1

M(ti − ti−1)−
n∑

i=1

f(ν(ti))(ti − ti−1)

[apply ti = ν(sn−i)]



Springer Nature 2021 LATEX template

II

= LM −
n∑

i=1

f(sn−i)(ν(sn−i)− ν(sn−i+1))

[apply ν(x)− ν(y) = y − x]

= LM −
n∑

i=1

f(sn−i)(sn−i+1 − sn−i)

[change variable: j = n− i+ 1]

= LM −
1∑

j=n

f(sj−1)(sj − sj−1)

= LM − S∗
(s0,...,sn)

(f) .

The above argument is illustrated in Figure 7.
Then for a, b ∈ P such that a ≤ b, we get (with
L = b− a):

S[ν(b),ν(a)](M − fν) = sup
{
S(t0,...,tn)(M − fν)

∣∣
(t0, . . . , tn) ∈ S(ν(b), ν(a))

}

= sup
{
(b− a)M − S∗

(s0,...,sn)
(f)

∣∣

(s0, . . . , sn) ∈ S(a, b)
}

= (b− a)M − inf
{
S∗
(s0,...,sn)

(f)
∣∣

(s0, . . . , sn) ∈ S(a, b)
}
= (b− a)M − S∗

[a,b](f) .

We summarize: for f : P → R, we have M − fν :
P ν → R, BND(f,M) ⇒ BND(M − fν,M),
and

S[ν(b),ν(a)](M −fν) = (b−a)M −S∗
[a,b](f) . (36)

Note that for g = M − fν we get f = M − gν.
Indeed, for x ∈ P , we have

(M−gν)(x) =M−g(ν(x)) =M−(M−fν)(ν(x))

=M −
(
M − fν(ν(x))

)
= f(ν(ν(x))) = f(x) .

Conversely, for g : P ν → R, we haveM−gν : P →
R, BND(g,M) ⇒ BND(M − gν,M), and for
f =M − gν we get g =M − fν. Then (36) gives

S[ν(b),ν(a)](g) = (b− a)M − S∗
[a,b](M − gν) ,

hence the dual form of (36) for g : P ν → R such
that BND(g,M):

S∗
[a,b](M − gν) = (b− a)M −S[ν(b),ν(a)](g) . (37)

We show now that S is additive on P ν if
and only if S∗ is additive on P . Suppose S addi-
tive on P ν , and let f1, f2 : P → R such that

BND(f1,M1) and BND(f2,M2). Then f1 + f2 :
P → R satisfies BND(f1 + f2,M1 + M2), and
(f1 + f2)ν = f1ν + f2ν. Applying (36) to f1, f2
and f1 + f2, together with the additivity of S on
P ν , we get for a, b ∈ P ν such that a ≤ b:

(b− a)(M1 +M2)− S∗
[a,b](f1 + f2)

= S[ν(b),ν(a)]

(
M1 +M2 − (f1 + f2)ν

)

= S[ν(b),ν(a)](M1 − f1ν +M2 − f2ν) =

S[ν(b),ν(a)](M1 − f1ν) + S[ν(b),ν(a)](M2 − f2ν)

= (b− a)M1 −S∗
[a,b](f1) + (b− a)M2 −S∗

[a,b](f2) ,

from which we obtain S∗
[a,b](f1+ f2) = S∗

[a,b](f1)+

S∗
[a,b](f2), that is, S

∗ is additive on P . Conversely,
if S∗ is additive on P , we show that S additive on
P ν by the same argument with g1, g2 : P ν → R

in place of f1, f2 : P → R, inverting the roles of S
and S∗, and using (37) instead of (36).

Let now f : P → R be of bounded variation,
We have f = g− h for two functions g, h : P → R

such that BND(g,M) and BND(h,M) for some
M > 0; as for the original summation S, we
can define S∗

[a,b](f) = S∗
[a,b](g) − S∗

[a,b](h), and
by the additivity of S∗ on P , this definition of
S∗
[a,b](f) does not depend on the choice of g and

h. Now we have fν = (g − h)ν = gν − hν =
(M − hν)− (M − gν), where M − hν and M − gν
are two functions P ν → R, BND(M−gν,M) and
BND(M − hν,M). We get then:

S[ν(b),ν(a)](fν)

= S[ν(b),ν(a)](M − hν)− S[ν(b),ν(a)](M − gν)

=
[
(b− a)M − S∗

[a,b](h)
]
−
[
(b− a)M − S∗

[a,b](g)
]

= S∗
[a,b](g)− S∗

[a,b](h) = S∗
[a,b](f) .

We can summarise our results:

Theorem 17 Let P be a poset bounded by ⊥,⊤. Let

ν : x 7→ ⊥+⊤−x be the inversion between P and P ν .
The dual summation S∗ is additive on P iff S is addi-

tive on P ν . Under this additivity condition, for any

f : P → R of bounded variation, given a decomposition

f = g− h for g, h : P → R bounded, non-negative and

decreasing, we define S∗
[a,b](f) = S∗

[a,b](g) − S∗
[a,b](h),

then S∗
[a,b](f) does not depend on the choice of g

and h in the decomposition, and we have S∗
[a,b](f) =

S[ν(b),ν(a)](fν) for all a, b ∈ P with a ≤ b. The addi-

tive dual summation S∗ will be a linear operator on

the module of functions of bounded variation.
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Let us now describe the form taken by the
dual summation S∗ for some particular posets.
Throughout, let f : P → R be of bounded
variation.

We consider first the case where P is a bounded
chain; then P ν is a bounded chain. From the dis-
cussion in Subsection 2.3, S is additive on P ν ;
hence by Theorem 17, S∗ is additive on P , and we
obtain the dual form of the formulas given there:

• If P is a finite chain, that is, P = {t0, . . . , tn}
with t0 < · · · < tn, then for 0 ≤ u < v ≤ n we
have:

S∗
[tu,tv ]

(f) =

v−1∑

i=u

f(ti)(ti+1 − ti)

=

v∑

i=u+1

f(ti−1)(ti − ti−1) .

Recall that we had S[tu,tv ](f) =∑v
i=u+1 f(ti)(ti − ti−1).

• If P is a real interval, P = [⊥,⊤] ⊂ R, then for
a, b ∈ P with a < b,

S∗
[a,b](f) = S[a,b](f) =

∫ b

a

f(t) dt .

Consider now a cartesian product P = P1 ×
· · · × Pm of posets, with componentwise order,
see (1). We assume that each Pi is bounded by
⊥i,⊤i, so P will be bounded by ⊥,⊤, where
⊥ = (⊥1, . . . ,⊥m) and ⊤ = (⊤1, . . . ,⊤m). Each
Pi has the inversion νi : Pi → P νii : x 7→
⊥i + ⊤i − x. Define the inversion ν : P → P ν :
x 7→ ⊥ + ⊤ − x; we have then ν(x1, . . . , xm) =(
ν1(x1), . . . , νm(xm)

)
and P ν = P ν11 × · · · × P νmm .

From the discussion in Subsection 2.3, if S is
additive on each P νii (i = 1, . . . ,m), then S is
additive on P ν = P ν11 × · · · × P νmm . Hence by
Theorem 17: if S∗ is additive on each Pi (i =
1, . . . ,m), then S∗ is additive on P . We can now
describe the form taken by the dual summation in
P in terms of dual summations in all Pi. As said
in Subsection 2.3, for each i = 1, . . . ,m we have
some ki ≥ 1 such that Pi ⊂ R

ki ; let Qi = R
ki and

Q = Q1 × · · · ×Qm = R
k1+···+km , so P ⊂ Q. For

i = 1, . . . ,m, recall

• from (15) the i-th projection πi : Q = Q1×· · ·×
Qm → Qi : (x1, . . . , xm) 7→ xi,

• and from (16) the i-th embedding through a for
a = (a1, . . . , am) ∈ P :

ηai : Qi → Q = Q1 × · · · ×Qm

: x 7→ (a1, . . . , ai−1, x, ai+1, . . . , am) .

Now let a = (a1, . . . , am) and b = (b1, . . . , bm) ∈
P with a ≤ b. By Theorem 17 applied to P ,
S∗
[a,b](f) = S[ν(b),ν(a)](fν); for i = 1, . . . ,m,

πi(S
∗
[a,b](f)) = πi(S[ν(b),ν(a)](fν)). Applying (17)

with fν : P ν → R, ν(b) ν(a) in place of f :
P → R, a and b, we get πi(S[ν(b),ν(a)](fν)) =

S[νi(bi),νi(ai)](fνη
ν(b)
i ). Now for x ∈ Pi, (16) gives

νη
ν(b)
i (x) = ν

(
ν1(b1), . . . , νi−1(bi−1), x,

νi+1(bi+1), . . . , νm(bm)
)

= (b1, . . . , bi−1, νi(x), bi+1, . . . , bm) = ηbi (νi(x)) ,

so νη
ν(b)
i = ηbi νi. Thus, S[νi(bi),νi(ai)](fνη

ν(b)
i ) =

S[νi(bi),νi(ai)](fη
b
i νi). Applying again Theorem 17

to Pi, we get S[νi(bi),νi(ai)](fη
b
i νi) = S∗

[ai,bi]
(fηbi ).

Combining all above equalities, we get the dual
form of (17):

πi(S
∗
[a,b](f)) = S∗

[ai,bi]
(fηbi ) . (38)

Note that we have here ηbi instead of ηai . Geomet-
rically speaking, this means that each projection
πi(S

∗
[a,b](f)) is obtained by the dual summation

of f along the line segment parallel to the i-th
axis of P , joining (b1, . . . , bi−1, ai, bi+1, . . . , bm) to
b = (b1, . . . , bm). In particular S∗

[a,b](f) is com-
pletely determined by the restriction of f to the
m lines through b parallel to the axes.

Now if P is a product of bounded chains, that
is, if each Pi is a chain, then S∗ is additive on Pi
(see above), hence S∗ will be additive on P . In
particular:

• If Pi is a finite chain, Pi = {t0, . . . , tn} with
t0 < · · · < tn, then for ai = tu and bi = tv
(0 ≤ u ≤ v ≤ n),

πi(S
∗
[a,b](f)) =

v−1∑

j=u

fηbi (tj)(tj+1 − tj)

=

v∑

j=u+1

fηbi (tj−1)(tj − tj−1) .
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• If Pi is a real interval, Pi = [⊥i,⊤i] ⊂ R, then

πi(S
∗
[a,b](f)) =

∫ bi
ai
fηbi (t) dt.

We illustrate this in the cases of Z3 and R
3,

with componentwise ordering. Let a = (a1, a2, a3)
and b = (b1, b2, b3), with a1 < b1, a2 < b2 and
a3 < b3. In Z

3 we get the dual of (18):

S∗
[a,b](f) =

(b1−1∑

t=a1

f(t, b2, b3) ,

b2−1∑

t=a2

f(b1, t, b3) ,

b3−1∑

t=a3

f(b1, b2, t)
)
. (39)

In R
3 we get the dual of (19):

S∗
[a,b](f) =

(∫ b1

a1

f(t, b2, b3) dt ,

∫ b2

a2

f(b1, t, b3) dt ,

∫ b3

a3

f(b1, b2, t) dt
)
. (40)

We give now the dual of Proposition 4, which
will be used in Subsection 4.2:

Proposition 18 Let P be bounded by ⊥,⊤. For any

decreasing function f : P → {0, 1},

⊥+ S∗(f) = inf{y ∈ P | f(y) = 0} , (41)

where we set inf ∅ = ⊤ on the right side of the

equation.

Proof Here BND(f, 1). With the inversion ν : x 7→
⊥ + ⊤ − x between P and P ν , 1 − fν is a function
P ν → {0, 1} and BND(1−fν, 1). By (36), S(1−fν) =
⊤ − ⊥ − S∗(f), so S∗(f) = ⊤ −

(
⊥ + S(1 − fν)

)
.

Applying (20) to 1− fν, we get:

⊥+ S∗(f) = ⊥+⊤−
(
⊥+ S(1− fν)

)

= ⊥+⊤− sup{x ∈ P ν | (1− fν)(x) = 1}

= ⊥+⊤− sup{x ∈ P ν | fν(x) = 0}

= inf{⊥+⊤− x | x ∈ P ν , fν(x) = 0}

= inf{ν(x) | x ∈ P ν , fν(x) = 0}

= inf{y ∈ P | f(y) = 0} .

The empty infimum on the right side of (41) corre-
sponds to the case where f(y) = 1 for all y ∈ P ;
then for every (s0, . . . , sn) ∈ S(⊥,⊤), (34) gives
S∗
(s0,...,sn)

(f) =
∑n
i=1(si − si−1) = ⊤ − ⊥, hence by

(35) we get S∗(f) = ⊤−⊥, so ⊥+S∗(f) = ⊤ = inf ∅.
□

4.2 Duality in flat operators

Let us now analyse duality under inversion of
flat operators. We will relate it to the dual flat
extension, which will rely on the dual summation
S∗.

We define for any image F : E → V and v ∈ V
the dual threshold set :

X
∗
v(F ) = {p ∈ E | F (p) ≤ v} . (42)

We consider also the complement of the threshold
set,

Xv(F )
c = {p ∈ E | F (p) ̸≥ v} .

Both sets X
∗
v(F ) and Xv(F )

c are increasing in v:
for v < w, we have X∗

v(F ) ⊆ X
∗
w(F ) and Xv(F )

c ⊆
Xw(F )

c.
In [2], for any increasing binary image transfor-

mation ψ, we defined ψV
∗

, the dual flat extension

of ψ , as the flat extension of ψ w.r.t. the dual of
V (with the order inverted), given by the dual of
(4):

ψV
∗

(F )(p) =
∧{

v ∈ V
∣∣ p ∈ ψ(X∗

v(F ))
}
. (43)

We showed that for any dual automorphism β of
V , βEψ

V β−1
E = ψV

∗

. We also showed that when
V is completely distributive, ψV

∗

= (ψ∗)V , where
ψ∗ is the dual of ψ defined by ψ∗(X) = ψ(Xc)c.

Recall the inversion ν : U → U : x 7→ ⊥+⊤−x
of Subsection 4.1, and write V ν = {ν(v) | v ∈ V }.
Since V is a complete sublattice of [⊥,⊤], V ν will
also be a complete sublattice of [⊥,⊤], so S will
be additive on it; thus by Theorem 17, S∗ will be
additive on V and on V ν .

We say that V is symmetrical if V = V ν , in
other words, for any v ∈ V , ⊥ + ⊤ − v ∈ V . For
instance, in the standard case V = [⊥,⊤], V is
symmetrical. There is a linear dual automorphism
of V if and only if V is symmetrical, and then the
only one is ν.

The following result, the dual of Proposition 20
of [1], relates (43) to summation:

Proposition 19 Given an increasing operator ψ :
P(E) → P(E), an image F : E → V and a point

p ∈ E,

⊤− S∗(χψ(X∗
v(F ))(p)

∣∣ v ∈ V
)

= inf
{
v ∈ V

∣∣ p ∈ ψ(X∗
v(F ))

}
,
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where we set inf ∅ = ⊤ on the right side of the

equation. If V is closed under componentwise numer-

ical infimum, we get

ψV
∗

(F )(p) = ⊤− S∗(χψ(X∗
v(F ))(p)

∣∣ v ∈ V
)
,

where ψV
∗

is the dual flat extension of ψ to V E .

Proof As ψ, χ and the map v 7→ X
∗
v(F ) are increasing,

the map V → {0, 1} : v 7→ χψ(X∗
v(F ))(p) is increasing,

so the map v 7→ 1−χψ(X∗
v(F ))(p) is a decreasing map

V → {0, 1}. We apply Proposition 18 to it, so (41)
gives

⊥+ S∗(1− χψ(X∗
v(F ))(p)

∣∣ v ∈ V
)

= inf
{
v ∈ V

∣∣ 1− χψ(X∗
v(F ))(p) = 0

}
.

The additivity of S∗ gives

⊥+ S∗(1− χψ(X∗
v(F ))(p)

∣∣ v ∈ V
)

= ⊥+ S∗(1)− S∗(χψ(X∗
v(F ))(p)

∣∣ v ∈ V
)

= ⊥+ (⊤−⊥)− S∗(χψ(X∗
v(F ))(p)

∣∣ v ∈ V
)

= ⊤− S∗(χψ(X∗
v(F ))(p)

∣∣ v ∈ V
)
.

Now, 1 − χψ(X∗
v(F ))(p) = 0 ⇔ χψ(X∗

v(F ))(p) =
1 ⇔ p ∈ ψ(X∗

v(F )). Combining this equivalence with
the above two equalities, we get indeed

⊤− S∗(χψ(X∗
v(F ))(p)

∣∣ v ∈ V
)

= inf
{
v ∈ V

∣∣ p ∈ ψ(X∗
v(F ))

}
.

The empty infimum on the right side corresponds to
the case where p /∈ ψ(X∗

v(F )) for all v ∈ V , so on
the left side we have S∗(χψ(X∗

v(F ))(p)
∣∣ v ∈ V

)
= 0,

giving thus ⊤ as result.
If V is closed under componentwise numerical infi-

mum, the latter coincides with the lattice-theoretical
infimum operation in V , so

⊤− S∗(χψ(X∗
v(F ))(p)

∣∣ v ∈ V
)

=
∧{

v ∈ V
∣∣ p ∈ ψ(X∗

v(F ))
}
,

which gives ψV
∗

(F )(p) by (43). □

This result leads us to our definition of dual flat
extension by summation. Given a binary image
measurement µ : P(E) → KE , we define the no-

shift dual flat extension µ−V ∗

of µ by setting for
any image F : E → V and point p ∈ E:

µ−V ∗

(F )(p) = −S∗
(
µ(X∗

v(F ))(p)
∣∣ v ∈ V

)
,
(44)

provided that the summation is well-defined, that
is, the summed function v 7→ µ(Xv(F ))(p) is of
bounded variation. Given a binary image transfor-
mation ψ : P(E) → P(E), we define the shifted

dual flat extension ψ+V ∗

of ψ by setting for any
image F : E → V and point p ∈ E:

ψ+V ∗

(F )(p) = ⊤+ (χψ)−V
∗

(F )(p)

= ⊤− S∗
(
χψ(X∗

v(F ))(p)
∣∣ v ∈ V

)
, (45)

again provided that the summation is well-defined,
that is, the function v 7→ χψ(Xv(F ))(p) is of
bounded variation

Recall νE : V E → V E , the extension of ν to
functions E → V , given by pointwise application
of ν, that is, νE(F )(p) = ν(F (p)). Then the dual
flat extension is the dual by inversion νE of the
flat extension:

Proposition 20 Let V be symmetrical. Given a

binary image measurement µ and a binary image

transformation ψ, for any image F : E → V , we

have µ−V
∗

(F ) = −µ−V (νE(F )) and ψ+V ∗

(F ) =
νE(ψ

+V (νE(F ))).

Proof Apply Theorem 17 to (44):

µ−V
∗

(F )(p) = −S∗(µ(X∗
v(F ))(p)

∣∣ v ∈ V
)

= −S
(
µ(X∗

ν(v)(F ))(p)
∣∣ v ∈ V

)
.

Now for q ∈ E,

q ∈ X
∗
ν(v)(F ) ⇔ F (q) ≤ ν(v) ⇔ ν(F (q)) ≥ v

⇔ νE(F )(q) ≥ v ⇔ q ∈ Xv(νE(F )) .

So X
∗
ν(v)(F ) = Xv(νE(F )). Thus with (22) we get:

µ−V
∗

(F )(p) = −S
(
µ(Xv(νE(F )))(p)

∣∣ v ∈ V
)

= −µ−V (νE(F )) .

Then (45), combined with with the above and (23),
gives:

ψ+V ∗

(F )(p) = ⊤+ (χψ)−V
∗

(F )(p)

= ⊤− (χψ)−V (νE(F ))

= (⊤+⊥)−
(
⊥+ (χψ)−V (νE(F ))

)

= νE(ψ
+V (νE(F ))) .

□

We will now relate the dual flat extension of a
binary image operator to the flat extension of the
dual by complementation of that operator. Recall
that V is completely distributive, in the sense
given by (5,6). The following preliminary result is
adapted from Proposition 36 of [2], and its proof
is similar:
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Lemma 21 For any decreasing function f : P(E) →
{0, 1} and image F : E → V ,

sup{v ∈ V | f(Xv(F )c) = 1}

= inf{v ∈ V | f(X∗
v(F )) = 0} .

Here the empty supremum and infimum are ⊥ and ⊤
respectively. Furthermore,

S
(
f(Xv(F )c)

∣∣ v ∈ V
)
= S∗(f(X∗

v(F ))
∣∣ v ∈ V

)
.

The latter equality also holds if f is increasing.

Proof Let A = {v ∈ V | f(Xv(F )c) = 1} and B =
{v ∈ V | f(X∗

v(F )) = 0}. If A is empty, then f(∅) =
f(X⊥(F )c) = 0, and as f is decreasing, f must be
constant 0, so B = V , and supA = inf B = ⊥. If
B is empty, then f(V ) = f(X∗

⊤(F )) = 1, and as f
is decreasing, f must be constant 1, so A = V , and
supA = inf B = ⊤. We can thus assume A and B to
be non-empty.

For any v ∈ A and w ∈ B, f(Xv(F )c) = 1 and
f(X∗

w(F )) = 0, that is, f(Xv(F )c) ̸≤ f(X∗
w(F )); as f

is decreasing, this implies that X
∗
w(F ) ̸⊆ Xv(F )c, so

there is some q ∈ X
∗
w(F )∩Xv(F ); then F (q) ≤ w and

F (q) ≥ v, hence v ≤ w. It follows that supA ≤ inf B.
Write b = inf B. Let g ∈ V such that g ◁ b, cf.

(5), and let h = sup{F (q) | q ∈ Xg(F )c}; then for
any q ∈ Xg(F )c, F (q) ≤ h, so q ∈ X

∗
h(F ), hence

Xg(F )c ⊆ X
∗
h(F ); as f is decreasing, f(Xg(F )c) ≥

f(X∗
h(F )). Suppose that g /∈ A: then f(Xg(F )c) = 0,

hence f(X∗
h(F )) = 0, so h ∈ B, thus b ≤ h, that

is, b ≤ sup{F (q) | q ∈ Xg(F )c}; by (5), we deduce
that there is some q ∈ Xg(F )c such that g ≤ F (q),
that is, q ∈ Xg(F ), a contradiction. Therefore, for
every g ∈ V such that g ◁ b, we must have g ∈ A.
As V is completely distributive, by (6) we have b =
sup{g ∈ V | ⊥ < g ◁ x} ≤ supA, so inf B ≤ supA.
From the double inequality, we deduce the equality
supA = inf B.

Applying Proposition 4, (20) gives

sup{v ∈ V | f(Xv(F )c) = 1}

= ⊥+ S
(
f(Xv(F )c)

∣∣ v ∈ V
)
.

Applying Proposition 18, (41) gives

inf{v ∈ V | f(X∗
v(F )) = 0}

= ⊥+ S∗(f(X∗
v(F ))

∣∣ v ∈ V
)
.

We conclude that S
(
f(Xv(F )c)

∣∣ v ∈ V
)

=
S∗(f(X∗

v(F ))
∣∣ v ∈ V

)
.

Let now f be increasing. Then 1 − f : P(E) →
{0, 1} is decreasing, so we apply to it the above result,
and the additivity of both S and S∗ gives

[⊤−⊥]− S
(
f(Xv(F )c)

∣∣ v ∈ V
)

= S(1 | v ∈ V )− S
(
f(Xv(F )c)

∣∣ v ∈ V
)

= S
(
[1− f ](Xv(F )c)

∣∣ v ∈ V
)

= S∗([1− f ](X∗
v(F ))

∣∣ v ∈ V
)

= S∗(1 | v ∈ V )− S∗(f(X∗
v(F ))

∣∣ v ∈ V
)

= [⊤−⊥]− S∗(f(X∗
v(F ))

∣∣ v ∈ V
)
,

hence S
(
f(Xv(F )c)

∣∣ v ∈ V
)
= S∗(f(X∗

v(F ))
∣∣ v ∈ V

)

again. □

Given a binary image measurement µ, define
the binary image measurement µ‡ by µ‡(Z) =
µ(Zc). For any strictly increasing sequence
(Z0, . . . , Zn) in P(E), (Zcn, . . . , Z

c
0) is a strictly

increasing sequence, and

TV(Z0,...,Zn)

(
µ‡(Z)(p)

∣∣ Z ∈ P(E)
)

=

n∑

i=1

∣∣µ‡(Zi)(p)− µ‡(Zi−1)(p)
∣∣

=

n∑

i=1

∣∣µ(Zci )(p)− µ(Zci−1)(p)
∣∣

=

1∑

i=n

∣∣µ(Zci−1)(p)− µ(Zci )(p)
∣∣

= TV(Zc
n
,...,Zc

0
)

(
µ(Z)(p) | Z ∈ P(E)

)
.

Hence TV
(
µ‡(Z)(p)

∣∣ Z ∈ P(E)
)

=

TV
(
µ(Z)(p)

∣∣ Z ∈ P(E)
)
, so: µ has pointwise

bounded variation iff µ‡ has pointwise bounded
variation.

Proposition 22 Given a binary image measure-

ment µ having pointwise bounded variation, µ−V
∗

=
−(µ‡)−V .

Proof Let p ∈ E. As µ has pointwise bounded varia-
tion, for any p ∈ E we apply Proposition 2: there are
m + n increasing functions f1, . . . , fm+n : P(E) →
{0, 1} (m,n ≥ 0), such that for any Z ∈ P(E),
µ(Z)(p) =

∑m
i=1 fi(Z) −

∑m+n
j=m+1 fj(Z). For any

F : E → V , the above lemma gives for each i =
1, . . . ,m+ n:

S
(
fi(Xv(F )c)

∣∣ v ∈ V
)
= S∗(fi(X∗

v(F ))
∣∣ v ∈ V

)
.

By linearity of S and S∗, we get then

S
(
µ(Xv(F )c)(p)

∣∣ v ∈ V
)

= S
( m∑

i=1

fi(Xv(F )c)−
m+n∑

j=m+1

fj(Xv(F )c)
∣∣∣ v ∈ V

)

=

m∑

i=1

S
(
fi(Xv(F )c)

∣∣ v ∈ V
)
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−
m+n∑

j=m+1

S
(
fj(Xv(F )c)

∣∣ v ∈ V
)

=

m∑

i=1

S∗(fi(X∗
v(F ))

∣∣ v ∈ V
)

−
m+n∑

j=m+1

S∗(fj(X∗
v(F ))

∣∣ v ∈ V
)

= S∗
( m∑

i=1

fi(X
∗
v(F ))−

m+n∑

j=m+1

fj(X
∗
v(F ))

∣∣∣ v ∈ V
)

= S∗(µ(X∗
v(F ))(p)

∣∣ v ∈ V
)
.

Now (22) gives S
(
µ(Xv(F )c)(p)

∣∣ v ∈ V
)

=

S
(
(µ‡)(Xv(F ))(p)

∣∣ v ∈ V
)
= (µ‡)−V (F )(p), while

(44) gives S∗(µ(X∗
v(F ))(p)

∣∣ v ∈ V
)
= −µ−V

∗

(F )(p).

Therefore (µ‡)−V (F )(p) = −µ−V
∗

(F )(p), so

µ−V
∗

(F ) = −(µ‡)−V (F ). □

Given a binary image operator ψ, define the
dual binary image operator ψ∗ by ψ∗(Z) =
ψ(Zc)c. We have

χψ∗(Z) = χ(ψ(Zc)c) = 1− χ(ψ(Zc))

= 1− [χψ]‡(Z) . (46)

Thus for p ∈ E and successive Zi−1, Zi ∈ P(E),

∣∣χψ∗(Zi)(p)− χψ∗(Zi−1)(p)
∣∣

=
∣∣[1− [χψ]‡(Zi)(p)

]
−
[
1− [χψ]‡(Zi−1)(p)

]∣∣

=
∣∣[χψ]‡(Zi−1)(p)− [χψ]‡(Zi)(p)

∣∣

=
∣∣[χψ]‡(Zi)(p)− [χψ]‡(Zi−1)(p)

∣∣ .

It follows that TV
(
χψ∗(Z)(p)

∣∣ Z ∈ P(E)
)
=

TV
(
[χψ]‡(Z)(p)

∣∣ Z ∈ P(E)
)
, which from the

above discussion on µ is equal to TV
(
χψ(Z)(p)

∣∣
Z ∈ P(E)

)
. Hence ψ has pointwise bounded

variation iff ψ∗ has pointwise bounded variation.

Corollary 23 Let V be completely distributive. Given

a binary image operator ψ having pointwise bounded

variation, ψ+V ∗

= (ψ∗)+V .

Proof Let F : E → V and p ∈ E. By (22,46) we have:

(χψ∗)−V (F )(p) = S
(
χψ∗(Xv(F ))(p)

∣∣ v ∈ V
)

= S
(
1− [χψ]‡(Xv(F ))(p)

∣∣ v ∈ V
)

= S(1)− S
(
[χψ]‡(Xv(F ))(p)

∣∣ v ∈ V
)

= (⊤−⊥)− ([χψ]‡)−V (F )(p) .

Thus (χψ∗)−V (F ) = (⊤−⊥)− ([χψ]‡)−V (F ). Apply-
ing successively (45), Proposition 22, the above equal-
ity, and (23), we obtain:

ψ+V ∗

(F ) = ⊤+ [χψ]−V
∗

(F ) = ⊤− ([χψ]‡)−V (F )

= ⊥+ (⊤−⊥)− ([χψ]‡)−V (F )

= ⊥+ (χψ∗)−V (F ) = (ψ∗)+V (F ) .

□

Assume that V is symmetrical. Combining
Proposition 20 with Proposition 22 and Corol-
lary 23, for any binary image measurement µ, any
binary image transformation ψ, and any image
F : E → V , we obtain:

µ−V (νE(F )) = −µ−V ∗

(F ) = (µ‡)−V (F ) and

νE(ψ
+V (νE(F ))) = ψ+V ∗

(F ) = (ψ∗)+V (F ) .
(47)

Let us illustrate this in the case of the dif-
ference between a dilation and erosion. Let δ be
an extensive dilation on P(E), and let ε = δ∗

be its dual by complementation; thus ε is an
anti-extensive erosion. As δ(X) \ ε(X) = δ(X) ∩
ε(X)c = δ(X) ∩ δ(Xc), we have δ(Xc) \ ε(Xc) =
δ(X) \ ε(X). Consider the binary image measure-
ment µ = χ(δ \ ε) : X 7→ χ

(
δ(X) \ ε(X)

)
=

χδ(X) − χε(X); then µ‡ = µ. Now, µ−V =
(χδ)−V − (χε)−V = δ+V − ε+V . Then (47) gives
µ−V (νE(F )) = (µ‡)−V (F ) = µ−V (F ). Indeed,
applying (47) to δ and ε, ε+V is the dual by
inversion νE of δ+V , so we have:

µ−V (νE(F )) = δ+V (νE(F ))− ε+V (νE(F ))

= νE(ε
+V (F ))− νE(δ

+V (F ))

= [⊤+⊥− ε+V (F )]− [⊤+⊥− δ+V (F )]

= δ+V (F )− ε+V (F ) = µ−V (F ) .

Consider next the binary image transformation
ψ = δ \ ε. We have thus χψ = µ and ψ+V =
⊥ + µ−V = ⊥ + δ+V − ε+V . The previous equal-
ity gives (χψ)−V (νE(F )) = (χψ)−V (F ), hence
ψ+V (νE(F )) = ψ+V (F ). As seen above, we have
ψ(Xc) = ψ(X), so ψ∗(X) = ψ(Xc)c = ψ(X)c =
ε(X) ∪ ε(Xc). Then (47) gives (ψ∗)+V (F ) =
νE(ψ

+V (νE(F ))) = νE(ψ
+V (F )). Indeed, as

χψ∗(X) = χ[ψ(X)c] = 1− χψ(X), we get

(ψ∗)+V (F ) = ⊥+ (χψ∗)−V (F )
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= ⊥+ S(1)− (χψ)−V (F )

= ⊥+ (⊤−⊥)− [δ+V (F )− ε+V (F )]

= ⊥+⊤− [⊥+ δ+V (F )− ε+V (F )]

= ⊥+⊤− ψ+V (F ) = νE(ψ
+V (F )) .

Concerning duality, we have thus obtained in
our new approach the same results as in the clas-
sical theory [2]. First, the dual flat extension of
an operator coincides with the dual by inver-
sion of the flat extension of that operator, see
Proposition 20. Next, the dual flat extension of
an operator coincides also with the flat extension
of the dual by complementation of that operator,
see Proposition 22 and Corollary 23. All this is
summarised in (47).

5 Flat linear operators and
hybrid morphology

As we mentioned in Section 3, after (22), the no-

shift flat extension is linear:
(
λ1µ1 + λ2µ2

)−V
=

λ1µ
−V
1 + λ2µ

−V
2 . We stated that equality for

scalars λ1, λ2 ∈ Z, but if we relax our framework
by considering binary image measurements with
non-integer output values, the equality will remain
valid for λ1, λ2 ∈ R.

As we suggested in the conclusion of [1], it fol-
lows that some linear operators on grey-level or
multivalued images will be flat. Assume ⊥ = 0.
A translation τ of the space E, acting on on
P(E), is an increasing binary image operator, and
its flat extension τV is the same translation act-
ing on V E [2]; we have τV = τ+V = (χτ)−V .
Then, for k translations τ1, . . . , τk and k scalars
λ1, . . . , λk ∈ R, we get

(
λ1χτ1 + · · ·+ λkχτk

)−V

= λ1(χτ1)
−V + · · ·+ λk(χτk)

−V

= λ1τ
V
1 + · · ·+ λkτ

V
k .

Here λ1χτ1 + · · · + λkχτk is a discrete convolu-
tion operator acting on binary images, associated
to the mask with values λ1, . . . , λk, positioned at
τ1(o), . . . , τk(o), where o is the origin in E; then
λ1τ

V
1 + · · ·+ λkτ

V
k is the same convolution opera-

tor for grey-level or multivalued images, and it is
obtained as the flat extension of the one on binary
images.

We will present here the first elements of a gen-
eral theory of flat linear operators. But we need
beforehand to introduce some constraints on the
lattice V of image values. Given a flat linear oper-
ator µ−V applied to two functions F,G : E → V ,
the linearity gives the equality µ−V (F + G) =
µ−V (F ) + µ−V (G), where µ−V is applied to the
function F + G, which is not necessarily E → V ;
we are thus in the same situation as in Subsec-
tion 3.3, where the interval of values is bounded,
but may vary. In view of (30), as we will always
have µ(∅) = 0, we can restrict ourselves to func-
tions with non-negative values, in other words, the
lattice V has its lower bound ⊥ = 0. Then for
⊥1 = ⊥0 = 0 < ⊤0 ≤ ⊤1, V0 = [0,⊤0], and
V1 = [0,⊤1], for any F : E → V0, (30) with the
condition µ(∅) = 0 will give µ−V1(F ) = µ−V0(F ).
In other words, µ−[0,⊤](F ) does not vary when the
upper bound ⊤ increases.

From now on, we assume that the lower bound
⊥ will always be 0, but the upper bound ⊤ can
vary. We consider thus bounded positive functions,
that is, any function F for which there exists
⊤ > 0 with 0 ≤ F (p) ≤ ⊤ for all p ∈ E. The
set of such functions is closed under addition and
multiplication by a positive scalar. Here linearity
means that µ−V (F + G) = µ−V (F ) + µ−V (G)
and µ−V (aF ) = aµ−V (F ) for a > 0, where
V = [0,⊤] with ⊤ large enough to guarantee that
F,G, F +G, aF are all E → V . The case of func-
tions that are not positive and of negative scalars
will be dealt with later.

Given a bounded positive function F and a
positive scalar a > 0, taking ⊤ > 0 large enough
to have both F and aF with values in the interval
V = [0,⊤], assuming µ(∅) = 0, then (32) will give
µ−V (aF ) = aµ−V (F ). There remains to guaran-
tee that µ−V (F + G) = µ−V (F ) + µ−V (G) for
F,G, F +G : E → V .

For a binary image measurement µ let us say
that µ is additive if for any X,Y ∈ P(E), X∩Y =
∅ implies that µ(X ∪ Y ) = µ(X) + µ(Y ). We can
give an equivalent formulation of that property:

Lemma 24 A binary image measurement µ is addi-

tive if and only if µ(∅) = 0 and for any X,Y ∈ P(E),
µ(X ∪ Y ) + µ(X ∩ Y ) = µ(X) + µ(Y ).
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Proof Let µ be additive. As X ∩ ∅ = ∅, we obtain
µ(X) = µ(X ∪ ∅) = µ(X) + µ(∅), hence µ(∅) = 0.
For any X,Y ∈ P(E), we have X ∩ [Y \ X] = ∅ and
X ∪Y = X ∪ [Y \X], so µ(X ∪Y ) = µ(X ∪ [Y \X]) =
µ(X) + µ(Y \ X); now [X ∩ Y ] ∩ [Y \ X] = ∅ and
[X∩Y ]∪[Y \X] = Y , so µ(Y ) = µ([X∩Y ]∪[Y \X]) =
µ(X∩Y )+µ(Y \X). Subtracting the equalities µ(X∪
Y ) = µ(X)+µ(Y \X) and µ(Y ) = µ(X∩Y )+µ(Y \X),
we get µ(X ∪ Y )− µ(Y ) = µ(X)− µ(X ∩ Y ), that is,
µ(X ∪ Y ) + µ(X ∩ Y ) = µ(X) + µ(Y ).

Conversely, if µ(∅) = 0 and for any X,Y ∈ P(E),
µ(X∪Y )+µ(X∩Y ) = µ(X)+µ(Y ), then forX∩Y = ∅
we get µ(X ∪Y ) = µ(X ∪Y )+0 = µ(X ∪Y )+µ(X ∩
Y ) = µ(X) + µ(Y ), hence µ is additive; □

Note that the condition µ(∅) = 0 cannot be
omitted, it is not a consequence of the identity
µ(X∪Y )+µ(X∩Y ) = µ(X)+µ(Y ). For instance,
if µ is the constant 1 function, then µ(X ∪ Y ) +
µ(X∩Y ) = µ(X)+µ(Y ) = 2, but µ is not additive,
since µ(∅) ̸= 0.

Given an additive binary image measurement
µ, one can easily show by induction on n ∈ N that
for n mutually disjoint subsets X1, . . . , Xn of E,
µ
(
X1 ∪ · · · ∪Xn

)
= µ(X1) + · · ·+ µ(Xn).

Recall from the Introduction the cylinder of

base B and level v for B ⊆ E and v ∈ V : the
function CB,v given by CB,v(p) = v if p ∈ B, and
CB,v(p) = ⊥ = 0 if p /∈ B.

Lemma 25 Let the binary image measurement µ
satisfy µ(∅) = 0. For any B ⊆ E and v ∈ V ,

µ−V (CB,v) = vµ(B).

Proof CB,v has its values in the finite chain W =
{0, v,⊤}, which is a complete sublattice of V . By
Proposition 31 of [1], µ−V (CB,v) = µ−W (CB,v). The
summation of a function f : W → R takes the form
S(f) = f(v)(v−0)+f(⊤)(⊤−v). Thus, for any p ∈ E,
(22) gives

µ−W (CB,v)(p) =

µ(Xv(CB,v))(p)(v − 0) + µ(X⊤(CB,v))(p)(⊤− v) .

We have Xv(CB,v) = B and when v < ⊤ we have
X⊤(CB,v) = ∅. Thus, µ(Xv(CB,v)) = µ(B) and either
⊤ − v = 0 or µ(X⊤(CB,v)) = µ(∅) = 0. The above

equality gives then µ−W (CB,v)(p) = vµ(B)(p). Hence

µ−V (CB,v) = µ−W (CB,v) = vµ(B). □

Now, we say that µ−V is additive if µ−V (F +
G) = µ−V (F )+µ−V (G) for any F,G, F+G : E →
V . We obtain then the following:

Corollary 26 Given a binary image measurement µ,
if µ−V is additive, then µ is additive.

Proof By additivity, µ−V (0) = 0, while Corollary 32
of [1] give µ−V (0) = (⊤−0)µ(∅). Hence µ(∅) = 0. Let
X,Y ∈ P(E) such that X ∩ Y = ∅. For v ∈ V \ {0},
CX∪Y,v = CX,v + CY,v. Lemma 25 gives then

vµ(X) + vµ(Y ) = µ−V (CX,v) + µ−V (CY,v)

= µ−V (CX,v+CY,v) = µ−V (CX∪Y,v) = vµ(X ∪Y ) ,

so µ(X ∪ Y ) = µ(X) + µ(Y ). □

The following question arises: given an addi-
tive binary image measurement, is µ−V additive?
We do not have a general answer. First, we know
that µ−V will be well-defined, because µ has point-
wise bounded variation, hence stack-pointwise
bounded variation (see Proposition 8):

Lemma 27 Let µ : P(E) → KE be an additive binary

image measurement, for a bounded K ⊂ R. Then for

any p ∈ E,

PV
(
µ(Z)(p)

∣∣ Z ∈ P(E)
)
≤ supK and

NV
(
µ(Z)(p)

∣∣ Z ∈ P(E)
)
≤ − infK . (48)

Thus, µ has pointwise bounded variation.

Proof Let (Z0, . . . , Zn) be a strictly increasing
sequence in P(E), and let p ∈ E. By the additivity
of µ, for each i = 1, . . . , n, µ(Zi)(p) − µ(Zi−1)(p) =
µ(Zi \Zi−1)(p). The sets Zi \Zi−1 for i = 1, . . . , n are
mutually disjoint. Let P be the set of all i = 1, . . . , n
such that µ(Zi)(p)− µ(Zi−1)(p) > 0. We have

PV(Z0,...,Zn)

(
µ(Z)(p)

∣∣ Z ∈ P(E)
)
=

∑

i∈P

(
µ(Zi)(p)− µ(Zi−1)(p)

)
=

∑

i∈P

µ(Zi \ Zi−1)(p)

= µ
(⋃

i∈P

(Zi \ Zi−1)
)
(p) ≤ supK .

The equality at the beginning of the second line follows
from the additivity of µ, since the Zi \Zi−1 are mutu-
ally disjoint. Let N be the set of all i = 1, . . . , n such
that µ(Zi)(p)− µ(Zi−1)(p) < 0. We have similarly

−NV(Z0,...,Zn)

(
µ(Z)(p) | Z ∈ P(E)

)
=

∑

i∈N

(
µ(Zi)(p)− µ(Zi−1)(p)

)
=

∑

i∈N

µ(Zi \ Zi−1)(p)

= µ
( ⋃

i∈N

(Zi \ Zi−1)
)
(p) ≥ infK ,
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that is, NV(Z0,...,Zn)

(
µ(Z)(p)

∣∣ Z ∈ P(E)
)
≤ − infK.

Taking the supremum of positive and negative varia-
tions for all strictly increasing sequences (Z0, . . . , Zn),
having the same bounds supK and − infK, (48) fol-
lows. □

Next, our question receives a positive answer
when µ is local.

Theorem 28 Let µ be an additive binary image mea-

surement, and let µ be local with the finite W (p) ∈
P(E) associated to each p ∈ E. For any p ∈ E
and q ∈ W (p), let Mq,p = µ({q})(p). Then for any

F : E → V and p ∈ E,

µ−V (F )(p) =
∑

q∈W (p)

F (q)Mq,p . (49)

In particular, µ−V is additive.

Proof Let F : E → V and let v ∈ V such that v > 0.
For any q ∈ E, define F/q : E → V by F/q(q) = F (q)
and F/q(p) = 0 for p ̸= q; in other words, F/q =
C{q},F (q). If F (q) ≥ v, then q ∈ Xv(F ) and Xv(F/q) =
{q}, while if F (q) ̸≥ v, then q /∈ Xv(F ) and Xv(F/q) =
∅; thus Xv(F/q) = Xv(F ) ∩ {q}. Now take p ∈ E. We
have

Xv(F ) ∩W (p) = Xv(F ) ∩
( ⋃

q∈W (p)

{q}
)

=
⋃

q∈W (p)

(Xv(F ) ∩ {q}) =
⋃

q∈W (p)

Xv(F/q) .

Since µ is local withW (p) associated to p, the Xv(F/q)
for q ∈ W (p) are mutually disjoint, and µ is additive,
we have

µ(Xv(F ))(p) = µ(Xv(F ) ∩W (p))(p)

= µ
( ⋃

q∈W (p)

Xv(F/q)
)
(p) =

∑

q∈W (p)

µ(Xv(F/q))(p) .

This equality holds for any v > 0; so, by Lemma 6, the
summation of the two functions for v ∈ V are equal,
hence (22) and the additivity of summation give:

µ−V (F )(p) = S
(
µ(Xv(F ))(p)

∣∣ v ∈ V
)

= S
( ∑

q∈W (p)

µ(Xv(F/q))(p)
∣∣∣ v ∈ V

)

=
∑

q∈W (p)

S
(
µ(Xv(F/q))(p)

∣∣ v ∈ V
)

=
∑

q∈W (p)

µ−V (F/q)(p) .

By Lemma 25, µ−V (F/q) = µ−V (C{q},F (q)) =

F (q)µ({q}), so µ−V (F/q)(p) = F (q)µ({q})(p) =
F (q)Mq,p. Hence (49) follows. As this formula is that
of a convolution, µ−V is additive. □

We did not find any general result on the addi-
tivity of µ−V when µ is not local. However, we get
some preliminary results in the case where µ has
binary values, that is, µ is P(E) → {0, 1}E .

We have considered flat linear operators on
bounded positive functions, that is, functions F :
V E → UE such that for some ⊤ ∈ U with ⊤ > 0,
F is V E → [0,⊤]E . We will now extend our
framework to bounded functions, that is, functions
F : V E → UE such that for some ⊤ ∈ U with
⊤ > 0, F is V E → [−⊤,⊤]E , in other words,
−⊤ ≤ F (p) ≤ ⊤ for all p ∈ E. We will use the
same method as in Theorem 3, where we extended
the additive summation S from bounded, non-
negative and decreasing functions to functions of
bounded variation.

Every bounded function F is the difference
of two bounded positive functions, for instance
its positive and negative parts F+ and F−. We
define the flat extension µ∗V of µ as follows:
given a decomposition F = G − H, where G,H
are bounded positive functions, we set µ∗V (F ) =
µ−V (G)−µ−V (H), and when µ−V is additive, this
definition does not depend on the decomposition.
The following result has its proof similar to that
of Theorem 3, given in Theorem 12 of [6].

Theorem 29 Let A =
⋃

⊤>0[0,⊤]E be the

set of bounded positive functions, and let B =⋃
⊤>0[−⊤,⊤]E be the set of bounded functions. Let

Ψ : A → UE be additive: for F,G ∈ A, Ψ(F + G) =

Ψ(F ) + Ψ(G). Define Ψ̂ : B → UE as follows: given a

decomposition of F ∈ B as F = G−H for G,H ∈ A,

we set Ψ̂(F ) = Ψ(G)−Ψ(H). Then

1. Ψ̂(F ) does not depend on the choice of the

decomposition: for F = G1 − H1 = G2 − H2,

where G1, G2, H1, H2 ∈ A, we have Ψ(G1) −
Ψ(H1) = Ψ(G2)−Ψ(H2).

2. Ψ̂ extends Ψ: for F ∈ A, we have Ψ̂(F ) =
Ψ(F ).

3. Ψ̂ is additive: for F1, F2 ∈ B, Ψ̂(F1 + F2) =

Ψ̂(F1) + Ψ̂(F2).
4. If Ψ(aG) = aΨ(G) for all G ∈ A and a > 0,

then Ψ̂(aF ) = aΨ̂(F ) for all F ∈ B and a ∈ R.

Proof 1. Let F = G1 − H1 = G2 − H2; then G1 +
H2 = G2+H1, and the additivity of Ψ gives Ψ(G1)+
Ψ(H2) = Ψ(G1 + H2) = Ψ(G2 + H1) = Ψ(G2) +
Ψ(H1), hence Ψ(G1)−Ψ(H1) = Ψ(G2)−Ψ(H2).
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2. For F ∈ A, we have F = F − 0, where 0 is
the zero function in A. By additivity, Ψ(0) = 0, so

Ψ̂(F ) = Ψ(F )−Ψ(0) = Ψ(F ).
3. Let F1, F2 ∈ B, with the decompositions F1 =

G1 −H1 and F2 = G2 −H2 for G1, G2, H1, H2 ∈ A.
We have F1+F2 = G1−H1+G2−H2 = (G1+G2)−

(H1 + H2), so the definition of Ψ̂ and the additivity
of Ψ give

Ψ̂(F1 + F2) = Ψ(G1 +G2)−Ψ(H1 +H2)

= Ψ(G1) + Ψ(G2)−Ψ(H1)−Ψ(H2)

=
(
Ψ(G1)−Ψ(H1)

)
+

(
Ψ(G2)−Ψ(H2)

)

= Ψ̂(F1) + Ψ̂(F2) .

4. Let F ∈ B with F = G − H for G,H ∈ A.
For a = 0, Ψ̂(aF ) = Ψ̂(0) = Ψ(0) = 0 = 0Ψ̂(F ). For
a > 0, aF = aG− aH, so

Ψ̂(aF ) = Ψ(aG)−Ψ(aH) = aΨ(G)− aΨ(H)

= a
(
Ψ(G)−Ψ(H)

)
= aΨ̂(F ) .

For a < 0, aF = aG− aH = |a|H − |a|G, so

Ψ̂(aF ) = Ψ(|a|H)−Ψ(|a|G) = |a|Ψ(H)− |a|Ψ(G)

= −|a|
(
Ψ(G)−Ψ(H)

)
= −|a|Ψ̂(F ) = aΨ̂(F ) .

□

Here µ∗V = Ψ̂ for Ψ = µ−V . Assuming that
µ−V is additive, µ∗V will be well-defined and addi-
tive. Now we saw above that for a > 0 and G ∈ A,
µ−V (aG) = aµ−V (G). Hence µ∗V will be linear on
B.

In image processing, one has considered hybrid

filters, which combine linear and morphologi-
cal operators, see for instance [12–14]. A simple
example is a smoothing filter applying locally a
weighted average of medians. As morphological
operators are not additive, we cannot use the con-
struction µ∗V when µ is not linear, so our theory
of flat extension can be applied only in the case of
bounded positive functions.

By Proposition 14, given an increasing binary
image transformation ψ and a local additive
binary image measurement µ, we will have
(µψ)−V = µ−V ψ+V , where ψ+V = ψV is the clas-
sical flat extension of ψ, and µ−V is the linear
operator corresponding to µ, as in equation (49)
of Theorem 28. See Example 30.

Example 30 Let E = Z
2. We consider bounded pos-

itive functions E → R
+. We refer to Figure 8 for

the three windowsW (p),W0(p) andW1(p) associated
to a point p. Let ψ be the binary image transfor-
mation defined, for X ∈ P(E), by p ∈ ψ(X) ⇔

p p p
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p p

p p
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sw se
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0

W p)(
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Fig. 8 In Z
2, the 8 neighbours of a point p are labelled

pn, pnw, pw, psw, ps, pse, pe, pne according to their geo-
graphical position. We show the three windows W (p),
W0(p) and W1(p) associated to a point p.

|X ∩W0(p)| ≥ 2. Then ψ+V = ψV is the rank filter
given by setting, for a bounded positive function F ,
ψ+V (F )(p) equal to the second greatest value among
the F (q), q ∈ W0(p). Let µ be the binary image
measurement defined, for X ∈ P(E), by µ(X)(p) =
1
4

∑
q∈W1(p)

χX(q). Then µ−V is the averaging filter
with window W1, that is, for a bounded positive func-
tion F we have µ−V (F )(p) = 1

4

∑
q∈W1(p)

F (q). Now,

(µψ)−V = µ−V ψ+V ; this operator associates to a
point p the average of the second greatest image values
in the four 2× 2 quadrants in W (p).

6 Conclusion

This second paper concludes our presentation of
a new approach to flat morphological operators,
where lattice-theoretical threshold superposition
is replaced by numerical threshold summation.
The advantage of this new framework is that the
flat extension is not restricted to increasing binary
image transformations, that is, increasing oper-
ators on binary images giving binary images as
output; indeed, it applies to non-increasing binary
image transformations, and also to what we call
binary image measurements, that is, operators on
binary images with output images that are not
necessarily binary, for instance the morphologi-
cal Laplacian (21), or a linear convolution by a
mask of coefficients. A minor drawback of this new
approach is that the flat extension applies only to
grey-level or multivalued images with numerical
or componentwise (marginal) ordering of image
values, while the classical approach [2] applied
to images with values in an arbitrary complete
lattices, for instance label images.

Our first paper [1] was mainly devoted to
the mathematical basis of our approach, namely
bounded variation and the summation operation
S, extending preliminary results of [6]. Then it
gave the definition of flat extension by threshold
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summation, in its two forms of the no-shift flat
extension µ−V of a binary image measurement µ
and the shifted flat extension ψ+V of a binary
image transformation ψ. Finally, it studied the ele-
mentary properties of this flat extension, and also
showed how connected binary image transforma-
tions extend to connected flat operators. These
last results were rather straightforward, they gen-
eralised the same results given in [2] for the
classical flat extension of increasing binary image
transformations.

The new approach is compatible with the old
one, in the sense that for increasing binary image
transformations, our shifted flat extension coin-
cides with the classical flat extension: ψ+V =
ψV .

In this second paper, we have considered fur-
ther properties of the flat extension, which were
given in [2] within the classical framework for
increasing binary image transformations. They
are more complex, indeed, they generally rely on
the complete distributivity of the lattice V of
image values. We now see that most of these
properties are valid only for increasing binary
image transformations, they generally fail for non-
increasing binary image transformations and for
binary image measurements with non-binary out-
put values (i.e., which do not correspond to binary
image transformations). However, we could obtain
some weaker properties that remain valid in our
general framework.

In [2] we showed that when the lattice V of
image values is completely distributive, the flat
extension of a supremum or infimum of increasing
binary image transformations is respectively the
supremum or infimum of their flat extensions. This
is no more true in the general case, see Subsec-
tion 3.1. However, since the no-shift flat extension
is both linear and an isomorphism between the
poset of binary image measurements and the poset
of their no-shift flat extensions, it follows that
flat operators constitute a lattice-ordered group,
but here the join and meet operations take a
different form than the usual ones for image oper-
ators, see Examples 10 and 11. Moreover, the
lattice of of shifted flat extensions of binary image
transformations is complete.

Similarly, in [2] we showed that when the lat-
tice V of image values is completely distributive,
the flat extension of a composition of increasing
binary image transformations is the composition

of their flat extensions. This property fails in
the general case, see Subsection 3.2, in particular
Example 12. However, it remains valid in the case
of the composition of an increasing binary image
transformation followed by a binary image mea-
surement having pointwise bounded variation, see
Proposition 14.

It is known that under some continuity con-
ditions, the flat extension of an increasing binary
image transformation commutes with anamor-

phoses (increasing contrast mappings) and with
thresholding [9–11]. As we saw in Subsection 3.3,
in general, the shifted flat extension of a non-
increasing binary image transformation commutes
only with linear contrast mappings.

Section 4 studied duality, following the same
plan as in [2]. First we considered the dual flat
extension; in [2] it was defined through superposi-
tion in the dual lattice of dual threshold sets, here
it is defined through the dual summation of dual
threshold sets, see Subsection 4.1. Then in Sub-
section 4.2 we showed that the dual flat extension
of a binary image transformation corresponds to
both the dual by inversion of the flat extension
of that transformation, and to the flat extension
of the dual by complementation of that transfor-
mation. We obtained something very similar for
binary image measurements.

Section 5 considered flat linear operators. Here
we had to restrict our framework to bounded

positive functions, that is, images with bounded
positive values. When the no-shift flat extension
µ−V of a binary image measurement µ is linear, µ
must be additive. We could not obtain the recip-
rocal result, that the no-shift flat extension of any
additive binary image measurement is linear; it
seems that a general analysis of additive binary
image measurements is extremely difficult. How-
ever, we proved that the no-shift flat extension of
a local additive binary image measurement is lin-
ear, it takes the form of a convolution by a mask
of values, see equation (49) in Theorem 28.

We can extend flat linear operators to bounded

functions, that is, images with bounded values
that are not necessarily positive, by decompos-
ing them as the difference between two bounded
positive functions.

In the case of bounded positive functions,
one can consider hybrid operators obtained as
the composition of a flat morphological opera-
tor followed by a linear convolution. They can
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then be considered as flat operators, thanks to
Proposition 14.

In our work, we considered binary image mea-
surements having integer output values. This
allowed us, in the case of a binary image mea-
surement µ having pointwise bounded variation,
to use Proposition 2 to decompose µ(Z)(p) into
a linear combination of binary-valued functions,
see Propositions 14 and 22. Now, in Section 5 we
suggested that our framework can be extended to
binary image measurements with non-integer out-
put values. Here µ will be P(E) → KE for a
finite K ⊂ R. Then we need to generalise Propo-
sition 2 to functions with non-integer values. This
seems straightforward by using in its proof (see
Proposition 17 of [1]) the following generalisation
of Lemma 6 of [6]: for f : P → {v0, . . . , vn}, where
0 ≤ v0 < · · · < vn, we have f = v0 +

∑n
i=1(vi −

vi−1)fi, where fi(x) = 1 if f(x) ≥ vi and f(x) = 0
if f(x) < vi.

Many more problems can be studied in the
theory and applications of these generalised flat
operators. We do not intend to investigate them
further.
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