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Abstract
Mathematicalmorphology (MM) is an indispensable tool for post-processing. Several extensions ofMM to categorical images,
such as multi-class segmentations, have been proposed. However, none provide satisfactory definitions for morphology on
probabilistic representations of categorical images. The categorical distribution is a natural choice for representing uncer-
tainty about categorical images. Extending MM to categorical distributions is problematic because categories are inherently
unordered. Without ranking categories, we cannot use the standard framework based on supremum and infimum. Ranking
categories is impractical and problematic. Instead, we consider the probabilistic representation and operations that emphasize
a single category. In this work, we review and compare previous approaches. We propose two approaches for morphol-
ogy on categorical distributions: operating on Dirichlet distributions over the parameters of the distributions and operating
directly on the distributions. We propose a “protected” variant of the latter and demonstrate the proposed approaches by fixing
misclassifications and modeling annotator bias.

Keywords Mathematical morphology · Categorical distributions · Dirichlet distributions · Multi-class segmentation

1 Introduction

Multi-class segmentation problems are common in analy-
sis of biomedical images. A typical solution is to train a
neural network pixel classifier. Commonly, these networks
predict a probability distribution over all classes in each pixel,
which can be thresholded to obtain a final segmentation.
These predictions often contains holes, partial misclassifica-
tions, shrinkage of small classes and rough borders between
classes, resulting in errors in the final segmentation. To
improve the segmentation, post-processing is often used to
close holes, reclassify uncertain pixel labels based on prox-
imity, grow objects and smoothen rough boundaries.

Mathematical morphology is a powerful framework for
post-processing binary and grayscale images. Binary and
grayscale morphology are special cases of morphology on
complete lattices [1]. A complete lattice is a partially ordered
set (poset), where each non-empty subset has an infimum
and a supremum. For complete lattices, the core operators,
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dilation and erosion, can be defined using supremum and
infimum: for binary morphology using set union and inter-
section; and for grayscale morphology using maximum and
minimum under the standard total ordering of the reals; see
[1] for an in depth treatment of the theoretical foundations
of mathematical morphology.

For generalmulti-class images, there is nonatural ordering
of the classes, and hence, they do not form a complete lattice.
For example, for a segmentation of microscope images of
cells into cell membrane, mitochondria and background, any
ordering of the classes is task-dependent and not given by the
images themselves. A natural representation of this kind of
data is the categorical distribution, which can represent both
crisp segmentation masks and uncertainty as encountered in
prediction images. In the remainder of this work, we will use
the term “categorical” instead of “multi-class.”

In this work, we provide a thorough review of previously
proposed approaches to morphology on categorical images.
We then propose two approaches for morphology on cate-
gorical distributions: an indirect approach where we operate
on Dirichlet distributions that are then transformed to cate-
gorical distributions and a direct approach where we operate
on the categorical distributions themselves. We then define
protected variants of the direct operations that allow finer
control over the processing. Finally, we illustrate the utility
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of the proposed approach on two tasks: fixing misclassified
mitochondria and modeling annotator bias.

2 Background and RelatedWork

In this section, we briefly restate morphology on complete
lattices and on binary and grayscale images, beforewe review
themost relevant literature [2–8].Whatwe refer to as categor-
ical images have various names in the literature: color-coded
images, label images and n-ary images. In the sections below,
we will use the original names in the section titles, but oth-
erwise we will refer to categorical images and categorical
morphology.

In the literature, there are three main approaches for
extendingmorphology to imageswith values that do not have
a natural ordering: impose an order on the values, which is
the common approach for color images; operate on all cate-
gories simultaneously [2, 5]; and operate on a single category
at a time [6, 7]

Morphology on color images has received a lot of atten-
tion, with the primary focus on ordering colors by exploiting
the relationship between dimensions of color spaces. See, for
example, [9] for an overview of approaches for defining an
ordering of colors. Our focus is on categorical images, where
such approaches are less relevant.

2.1 Morphology on Complete Lattices

Let � be a set with the partial order ≤. The poset (�,≤) is a
complete lattice if every subset of � has an infimum ∧ and
a supremum ∨. We define an image as a function f from
pixel-coordinates D = Z

d to � and a structuring element B
as a subset of D

f ∈ F = {g | g : D �→ �} , (1)

B ⊆ D. (2)

The dilation (δ) and erosion (ε) of f by B are then defined
as the supremum and infimum over the local neighborhoods
in f given by B

δ( f ; B)(x) =
∨

{y|(y−x)∈B}
f (y), (3)

ε( f ; B)(x) =
∧

{y|(y−x)∈B}
f (y). (4)

Opening (γ ) and closing (φ) are the compositions of dilation
and erosion

γ ( f ; B)(x) = δ(ε( f ; B); B), (5)

φ( f ; B)(x) = ε(δ( f ; B); B). (6)

2.2 Binary and Grayscale Morphology

We define a grayscale image as in (1) with � = [0, 1]. Let ≤
be the usual ordering of the reals, then the poset ([0, 1],≤) is
a complete lattice, where the min function gives the infimum
and the max function the supremum. Let B be defined as in
(2). Dilation and erosion can then be obtained from (3) and
(4) as

δ( f ; B)(x) = max{y|(y−x)∈B} f (y), (7)

ε( f ; B)(x) = min{y|(y−x)∈B} f (y). (8)

If we restrict � to {0, 1}, we obtain binary morphology.

2.3 Morphology on Color-Coded Images

In [2], the authors propose a framework for categorical mor-
phology where pixels have a set of categories. Let C =
{c1, c2, . . . , cn} be a set of n categories. The powerset of
C , PC , is the set of all subsets of C , including the empty
set. An image f is then defined as in (1) with � = PC . In
this framework, the value of a pixel can be any element of
PC , e.g {c1}, {c1, cn} or {}. Let ⊆ be the usual subset rela-
tion, then the poset (PC ,⊆) is a complete lattice where set
intersection is the infimum and set union is the supremum.
In [2], the authors propose to use structuring elements that
are images that is B ∈ F . For the sake of comparison, we
first consider the simpler case where B is defined as in (2).
Dilation and erosion can then be obtained from (3) and (4)
as

δ( f ; B)(x) =
⋃

{y|(y−x)∈B}
f (y), (9)

ε( f ; B)(x) =
⋂

{y|(y−x)∈B}
f (y). (10)

An example of these operations is shown Fig. 1a.
Let B ∈ F . Under this scheme, an operation is only

performedwhen one ormore categories in the structuring ele-
mentmatch a category in the image, and the result depends on
the categories in both image and structuring element. Several
variations of dilation and erosion are proposed in [2]; here,
we only consider the “transparent” operations. LetD f be the
domain of f and DB the domain of B. A specified reference
point, y0 ∈ DB , is used to determine whether B matches f
and could, for example, be the center of a ball-shaped DB .
Dilation and erosion are then defined as

δ( f ; B)(x) = f (x) ∪
⋃

{y∈DB | f (x+y)∩B(y0) �=∅}
B(y) (11)

ε( f ; B)(x)
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=

⎧
⎪⎨

⎪⎩

f (x), if f (x) ∩ B(y0) = ∅
f (x) \ B(y0), if [∃y ∈ DB ]( f (x + y) ∩ B(y0) = ∅),

f (x) ∪ B(y0), otherwise

(12)

An example of these operations is shown Fig. 1b using a
cross-shaped structuring element with y0 in the center.

2.4 Morphology on Label Images

In [5], the authors propose a framework for categorical
morphologywhere pixels have no category (⊥), a unique cat-
egory or conflicting categories (�). LetC = {c1, c2, . . . , cn}
be a set of n categories and let C∗ = C ∪ {⊥,�}. An image
f is then defined as in (1) with � = C∗. The poset (C∗,≤)
where≤ satisfies [∀c ∈ C](⊥ ≤ c ≤ �) is a complete lattice.
Let B be defined as in (2) and let V (x) = { f (x−y) | y ∈ B}.
Dilation and erosion are then defined as

δ( f ; B)(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�, if� ∈ V (x)

�, if |V (x) ∩ C | > 1

V (x) ∩ C, if |V (x) ∩ C | = 1

⊥, otherwise

(13)

ε( f ; B)(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⊥, if⊥ ∈ V (x)

⊥, if |V (x) ∩ C | > 1

V (x) ∩ C, if |V (x) ∩ C | = 1

�, otherwise

(14)

An example of these operations is shown Fig. 1c. In the
context of categorical distributions, where we have detailed
information about label uncertainty, this approach is unsuit-
able due to the loss of information.

2.5 N-ary Morphology

In [6], the authors propose a framework for categorical mor-
phology where pixels have a unique category. Let C =
{c1, c2, . . . , cn} be a set of n categories. An image f is then
defined as in (1) with � = C . Instead of operating on all
categories simultaneously, the authors propose to operate on
a single category at a time. Let B be defined as in (2) and let
i be the category we operate on. We use subscripts to distin-
guish single category operations from standard operations.
Dilation and erosion are then defined as

δi ( f ; B)(x) =
{
f (x), if [∀y ∈ B]( f (x + y) �= i)

i, otherwise
(15)

εi ( f ; B)(x) =

⎧
⎪⎨

⎪⎩

f (x), if f (x) �= i

i, if [∀y ∈ B]( f (x + y) = i)

θ(x, f ), otherwise

(16)

where θ is a function that assigns a value in the case where
there are different categories in the neighborhood of x . A nat-
ural choice for θ , which is also suggested in [6], is to pick the
value of the closest pixels. However, this does not help when
the closest pixels have different values, which is a fundamen-
tal problem when pixel values cannot represent uncertainty.
This is solved by ranking the categories and using the ranking
to break ties. In general, there is no obvious way of ranking
categories based on the image alone, and as the number of
multi-category interfaces increases, it becomes more diffi-
cult to understand how one particular ranking influence the
outcome.

Without ranking categories a priori, the above definition
implies an ordering≤i , which is not a partial order, and thus,
(C,≤i ) is not a complete lattice. In [7], the authors show
that ≤i is a preorder, and formalize constraints for choosing
θ such that dilation and erosion form an adjunction and their
compositions are an opening and a closing. However, this
does not help decidewhich category to choosewhenmultiple
categories are closest, as the constraints on θ do not yield a
unique rule for breaking ties. An example of these operations
is shown in Fig. 1d, where the question marks highlight two
pixels that cannot be assigned a value without a method for
breaking ties.

2.6 Fuzzy n-Ary Morphology

In [6], the authors also propose an extension of n-ary mor-
phology to images of categorical distributions. Let C =
{c1, c2, . . . , cn+1} be a set of n+1 categories. The categorical
distribution of n+1 categories is completely determined by a
point in the n-simplex �n = {π ∈ R

n+1 | πk ≥ 0,
∑

πk =
1}, where πk is the probability of ck . An image f is then
defined as in (1) with � = �n . Operations are again defined
on a single category at a time. Let Br be a closed ball of radius
r centered at the origin and let i be the category we operate
on. Let fk(x) = f (x)k be the probability of observing cat-
egory ck in pixel x and let ωk(x) = 1 − fk(x). Dilation is
then defined as

δi ( f ; Br )(x)k =
{

δ( fk; Br )(x), if k = i,

[1 − δ( fi ; Br )(x)] fk (x)
ωi (x)

, if k �= i,

(17)

where δ( fi ; Br )(x) = 1 �⇒ [1 − δ( fi ; Br )(x)] fk (x)
ωi (x)

= 0.

123



864 Journal of Mathematical Imaging and Vision (2023) 65:861–873

Fig. 1 Comparison of
categorical morphologies from
the literature. From left to right:
image, structuring element,
dilation, closing

Two variations on erosion are proposed in [6], neither of
which we find satisfactory. The first requires that we pick
a ranking of all categories and does not yield idempotent
opening and closing

εi ( f ; Br )(x)k

=

⎧
⎪⎪⎨

⎪⎪⎩

ε( fk; Br )(x) if k = i

fk(x) + fi (x) − ε( fi ; B)(x) if k = min(argmin
j �=i

(δ( f j ; B)))

fk(x) otherwise

(18)
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The second assumes that the image is restricted to the edges
of the simplex (at most two categories are nonzero in any
pixel) and opening and closing are again not idempotent

εi ( f ; Br )(x)k

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ε( fk; Br )(x) if k = i
1−ε( fi ;B)(x)

1− fi (x)
fk(x) if fi (x) ≤ 0.5 ∨ max

j �=i
(δ( f j ; B)(x) < 0.5)

1 − ε( fi ; B)(x) if k = min(argmax
j �=i

δ( f j ; B)(x))

0 otherwise

(19)

We refer the reader to [6] for the motivation for these formu-
lations and their properties.

2.7 Fuzzy Pareto Morphology

In [3], the authors propose fuzzy Pareto morphology for
color images. An RGB color image can be seen as a three-
dimensional fuzzy set, where the membership function for
each set corresponds to the value of each color channel. This
can equivalently be seen as point in the half-open unit cube.
An image f is then defined as in (1) with � = (0, 1]d .
For each a ∈ �, we can associate a hyperrectangle defined
by the vector from the origin to a. Fuzzy Pareto morphol-
ogy is based on the idea of dominance. For a, b ∈ �, let
a ∩ b = {min(ai , bi )}i=1...d be the intersection of a and b.
Let A(a) = ∏

i ai be the area function, yielding the area of
the hyperrectangle of a. The degree to which a dominates b
is then

μD(a, b) = A(a ∩ b)

A(b)
, (20)

which measures howmuch of the hyperrectangle of b is con-
tained in the hyperrectangle of a.
Let B(x) = {x + y | y ∈ B}, dilation and erosion are then
defined as

δ( f ; B)(x) = f

(
arg min

y∈B(x)

{
max

z∈B(x)∧z �=y
μD( f (z), f (y))

})
,

(21)

ε( f ; B)(x) = f

(
arg max

y∈B(x)

{
min

z∈B(x)∧z �=y
μD( f (z), f (y))

})
.

(22)

Although not directly applicable to categorical distributions,
it could easily be extended by either restricting � to {v ∈
(0, 1]d | ∑

i vi = 1} or by considering it in the context
of the Dirichlet distribution. However, (21) and (22) are not
guaranteed to yield a unique solution, requiring us to come
up with an arbitration rule.

2.8 Morphology on the Unit Circle

In [10], the authors propose morphology on the unit circle
for processing the hue space of color images. The idea is to
use structuring elements from the hue space and define an
ordering based on the shortest distance along the unit circle
between values in the image and values in the structuring ele-
ment. Although not directly applicable to categorical images,
it could be relevant to consider structuring elements that are
themselves categorical distributions and basemorphology on
distance between distributions.

Morphology on the unit circle is also considered in [4]
where the authors propose three approaches: using differ-
ence operators (e.g., gradient), using grouped data and using
“labeled openings.” It is the labeled openings that are most
relevant in our context. Let f be an image as defined in
(1) with � = [0, 2π ]. In a labeled opening, the unit cir-
cle is partitioned into segments S(ω) = {[0, ω), [ω, 2ω),. . . ,
[2π − ω, 2π)} and each segment s ∈ S(ω) gives rise to
a binary image f (x; s) = f (x) ∈ s. A labeled opening
is then the union of the binary openings of all segments,
γω( f ) = ∪s∈S(ω) f (x; s), indicating for each pixel if it is
present in at least one of the opened segments. The resulting
image highlights areas of uniform direction and the inverse
of that image highlights areas with change in direction. Cat-
egorical images have a natural partitioning based on the
categories. A labeled opening of a categorical image would
then be a binary image indicating those pixels where at least
one category was preserved after opening each category. The
resulting image highlights areas where at least one category
is uniformly present, and the inverse of that image highlights
areas without a category after the opening, similarly to ⊥ in
Sect. 2.4.

2.9 Morphology on Component Graphs

In [8], the authors propose a framework for morphol-
ogy on multi-valued images based on component graphs.
Let an image be defined as in (1) with � = R

d . The
component graph is constructed from the connected com-
ponents of the threshold sets of an image. For example,
for d = 2 and f (x) ∈ {0, 1}2 the levels of f are
{(0, 0), (0, 1), (1, 0), (1, 1)} and the level set of (0, 1) is
{x | f (x) = (0, 1)}. Let ≤ be a partial order on {0, 1}2. The
threshold set of (0, 1) is then T(0,1) = {x | (0, 1) ≤ f (x)}.
We can represent the threshold set as a binary image and find
the connected components in this image. For two levels li and
l j , we have li ≤ l j �⇒ Ti ⊇ Tj , so any connected com-
ponent in Tj must be contained in a connected component
in Ti . The component graph is then constructed by adding a
node for each connected component and an edge from node
u to node v if the connected component of v is contained in
the connected component of u. In order to construct the com-
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ponent graph, it is required that � allows a minimum, e.g.,
{0}d , such that the graph will be connected. For categorical
images, this would require that we have a special background
category as in Sect. 2.3 and Sect. 2.4. Further, it requires that
each pixel can have multiple categories; otherwise, no com-
ponent will be nested inside another and the graph will be
the root with all connected components as children.

Because the component graph directly exposes the spatial
relationship between differently valued regions, it is possible
to apply morphological filters, e.g., noise reduction, by prun-
ing some nodes and reconstructing the image from the pruned
component graph. Directly pruning the component graph can
lead to ambiguity in the reconstruction when a node with two
non-comparable parents is removed. The authors propose to
solve this by building a component tree of the component
graph, prune the tree and then reconstruct the graph from the
tree and the image from the graph. In order to construct the
component tree, it is necessary to impose a total order on
the nodes of the component graph, for example, by using a
shape measure on the connected components in the compo-
nent graph.

Because the component graph only captures spatial rela-
tionships when connected components overlap for different
level sets, some common post-processing operations, such as
closing holes in segmentations, are challenging to perform.

3 Morphology on Categorical Distributions

In this section, we propose two approaches for morphol-
ogy on categorical distributions. In Sect. 3.1, we show how
to operate on all categories simultaneously by operating on
Dirichlet distributions. The limitations of this approach will
then motivate single category operations that work directly
on categorical distributions, whichwewill define in Sect. 3.2.

3.1 Morphology on Dirichlet Distributions

Let R+ be the positive real line. We consider the Dirichlet
distribution of order n ≥ 2 with parameters α ∈ R

n+, written
as Dir(α), as a distribution over the (n−1)-simplex�n−1 =
{π ∈ R

n | πk ≥ 0,
∑

πk = 1} with density function

pdf(π) = 1

Beta(α)

n∏

k=1

π
αk−1
k (23)

where Beta(·) is the multivariate Beta function defined with
the Gamma function as

Beta(α) =
∏n

k=1 Gamma(αk)

Gamma(
∑n

k=1 αk)
. (24)

Let Xα ∼ Dir(α), with α ∈ R
n+. A realization of Xα is a

point in the (n − 1)-simplex, which can be taken as param-
eters of the categorical distribution with n categories. The
expectation of Xα is

E[Xα
k ] = αk∑

α
, (25)

which maps each Dirichlet distribution to a specific categor-
ical distribution. Note that 0 < αk < ∞ implies that we can
only represent categorical distributions in the open simplex.
In practice, this is not a problem as we can get arbitrarily
close to the boundary of the simplex.

Let fk be the kth category in f . An image f is defined
as in (1) with � = R

n+. If we equip f with the ordering
f ≤ g ⇐⇒ [∀k]( fk(x) ≤ gk(x)), we obtain a com-
plete lattice. Dilation and erosion are then defined as their
grayscale counterparts applied to each category indepen-
dently

δ( f ; B)(x)k = δ( fk; B), (26)

ε( f ; B)(x)k = ε( fk; B). (27)

An example of these operations is provided in Fig. 2. It is
interesting to compare the images of entropy (uncertainty)
and α parameter magnitude for dilation and erosion. We can
see that entropy and magnitude are positively correlated for
dilation, and negatively correlated for erosion. Try to think
of dilation as “increasing the probability of everything” and
erosion as “decreasing the probability of everything.” It is,
of course, impossible to change the “probability of every-
thing,” all we can do is shuffle probability around between
categories. Nevertheless, the idea captures our intent and the
magnitude image reflects this. High entropy and low mag-
nitude can be interpreted as uncertainty due to a lack of
confidence, whereas high entropy and high magnitude can
be interpreted as uncertainty due to over confidence. Open-
ing and closing appear to be more straightforward as they,
respectively, decrease and increase uncertainty at the bound-
aries between overlapping categories.

We can easily extend these operators to operate on a subset
of categories S by simply only updating those categories

δ( f ; B|S)(x)k =
{

δ( fk; B), if k ∈ S

fk, otherwise
(28)

ε( f ; B|S)(x)k =
{

ε( fk; B), if k ∈ S

fk, otherwise
(29)

Anexample of these operations is provided inFig. 3wherewe
operate on the green category. Consider the gray/blue region
surrounded by green that is indicated with a white ellipse in
the left image of the second row. When we dilate the green
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Fig. 2 Morphology on Dirichlet distributions. The top left image is an
RGB representation of an image f with three categories, where the col-
ors red, green, and blue correspond to points very close to the vertices
of �2 and the remaining colors are mixtures of these three colors. The
first row is the Dirichlet distribution. The second row is the probability

vectors obtained from (25). The third row is entropy of the probability
vectors, and the fourth row is the magnitude (l1 norm) of the parameter
vectors. We can see that dilation increases both entropy and magni-
tude, whereas erosion decreases magnitude and increases or decreases
entropy depending on the local distribution (Color figure online)

category, we would expect this region to become green in
the probability image, but in the Dirichlet space these pixels
already have the same green value as the green region, so they
are unaffected by the dilation. We could partly solve this by
carefully setting the α values, e.g., setting the pixels with
only green to have very large green values. However, if our
goal is to work on categorical distributions, this becomes too
large a burden to be practical and we now turn our attention
to morphological operators that work directly on categorical
distributions.

3.2 Morphology on Categorical Distributions

Recall from Sect. 2.6 that for a set of n + 1 categories,
C = {c1, c2, . . . , cn+1}, the categorical distribution over
these categories is completely determined by a point in the
n-simplex �n = {π ∈ R

n+1 | πk ≥ 0,
∑

πk = 1}, where
πk is the probability of ck . An image f is then defined as in
(1) with � = �n . Operations are again defined on a single
category at a time. Let Br be a closed ball of radius r cen-
tered at the origin and let i be the category we operate on.
Let fk(x) = f (x)k be the probability of observing category
ck in pixel x and let ωk(x) = 1 − fk(x).

3.2.1 Dilation

For the dilated category i , the operation is the same as stan-
dard grayscale dilation. For the remaining set of categories,
the operation is a rescaling to ensure that the probabilities sum
to one, while the conditional probabilities Pr(k = j |x, k �=

i), for j �= i are unchanged

δi ( f ; Br )(x)k =
{

δ( fk; Br )(x), if k = i,

[1 − δ( fi ; Br )(x)] fk (x)
ωi (x)

, if k �= i .

(30)

If δ( fi ; Br ) = 1, then the conditional probabilities are not
defined andwe simply set the probabilities to 1−δ( fi ; Br ) =
0. This definition is the same as (17) and equivalent to the
definition from [6].

3.2.2 Erosion

Erosion is defined similarly to dilation, with the exception
of the case when fi (x) = 1 where we cannot rescale the
remaining categories because ωi (x) = 0

εi ( f ; Br )(x)k

=

⎧
⎪⎪⎨

⎪⎪⎩

ε( fk; Br )(x) if k = i

[1 − ε( fi ; Br )(x)] fk (x)
ωi (x)

if k �= i ∧ fi (x) < 1

[1 − ε( fi ; Br )(x)] θ( fk ,Br )(x)∑
j �=i θ( f j ,Br )(x)

if k �= i ∧ fi (x) = 1

(31)

The function θ must only depend on the neighborhood
defined by Br and defined such that ε( fi ; Br )(x) < 1 �⇒
[∃k �= i] (θ( fk, Br )(x) > 0). In addition, we require that,
when disregarding discretization issues, eroding with Br+ρ

is equivalent to first eroding with Br and then eroding with
Bρ

εi (εi ( f , Br ), Bρ)(x) = εi ( f , Br+ρ)(x). (32)
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Fig. 3 Morphology on Dirichlet
distributions using a subset of
categories, in this case the green
category {g}. See also Fig. 2
(Color figure online)

Since θ is only used in the case where fi (x) = 1, we must
have that

ε( fi ; Br )(x) < 1 �⇒ θ( fk, Br+ρ)(x)∑
j �=i θ( f j ; Br+ρ)(x)

= θ( fk; Br )(x)∑
j �=i θ( f j ; Br )(x) (33)

So θ must only depend on the smallest possible neighborhood
Br∗ where
ε( fi ; Br∗) < 1, leading to

θ( fk, Br )(x) = δ( fk; Br∗)(x) (34)

r∗ = argmin
r ′>0

r ′, s.t. ε( fi ; Br ′)(x) < 1.

This amounts to picking the closest category as suggested
for crisp categorical images in [6, 7], although without the
need for breaking ties since multiple closest categories are
now handled by rescaling. In Appendix 1, we show that these
definitions have the same properties as the definitions in [7]
for operating on n-ary images.

An example of the proposed operations is provided in
Fig. 4, where we operate on the green category. Compared to
morphology onDirichlet distributions using subsets in Fig. 3,
the operations nowwork directly on the probabilities,making
it much easier to understand and control.

4 ProtectedMorphological Operations

In [2], the authors introduce the concept of protectedmorpho-
logical operations, where a subset of categories are protected
from being updated. Herewe adapt the idea of protectedmor-
phological operations to categorical distributions and define
protected dilation and erosion.

Let L be a set of categories, we then write εi ( f ; Br |L) for
an erosion of i that protects L . Let J = C\({i} ∪ L) be the
set of categories that are not protected nor operated on. Let
fK (x) = ∑

k∈K fk(x) be the sum over a set of categories
K ⊂ C . If L is empty, or [∀x]( fL(x) = 0), protected opera-
tions reduce to their non-protected counterparts. Because L
can change the topology of the domain, we cannot just define
operations based onEuclidean distance. Insteadwe introduce
a distance function d
(x, y), which computes the distance
from x to y on the domain 
. If 
 = Z

d , then d
(x, y)
is the Euclidean distance. Computing exact Euclidean dis-
tance on a Euclidean domain with holes is non-trivial. Here
we use the simplified fast marching method (FMM) from
[11] with the update rule defined in [12], which results in
a small approximation error. For brevity, when possible we
leave out function application and write f instead of f (x) in
the following.

4.1 Protected Dilation

Let 
p = {x ∈ D | fL(x) ≤ 1 − p}, this is the part of f
where it is possible to set fi = p. Protected dilation is then
defined as

δi ( f ; Br |L)(x)k =
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

fk if k ∈ L

min

(
1 − fL , max

p∈(0,1]max{ fi (y) | d
p (x, y) ≤ r}
)

if k = i

[1 − fL − δi ( f ; Br |L)i ]
fk
f J

otherwise

(35)

4.2 Protected Erosion

Protected erosion is defined similarly to protected dilation,
with the added complication of normalization
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Fig. 4 Morphology on categorical distributions. Here we operate on the green category g (Color figure online)

Fig. 5 Protected morphology on categorical distributions. The red category {r} is protected while we operate on the green category g (Color figure
online)

εi ( f ; Br |L)(x)k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

fk if k ∈ L

fk if max
p∈(0,1]max{ f J (y) | d
p (x, y) ≤ r} = 0

min
p∈(0,1]min{ fi (y) | d
p (x, y) ≤ r} if k = i

[1 − fL − εi ( f ; Br |L)i ] fk
f J

if k ∈ J ∧ f J > 0

[1 − fL − εi ( f ; Br |L)i ] θ( fk )∑
j∈J θ( f j )

if k ∈ J ∧ f J = 0

(36)

The first case ensures that all protected categories are
unchanged. The second case ensures that a pixel x is not
updated, unless there is a path, not blocked by fL , to a pixel
y with f J (y) > 0. The importance of this is easily seen
by considering the case where fi varies in an region, but
fi + fL = 1 in the region. The third case states that if there
is such a path, then it can be eroded. The fourth and fifth
cases handle normalization. The θ function is defined in a
similar manner as for non-protected erosion in (34),

θ( fk)(x) = max
p∈(0,1]max{ fk(y) | d
p (x, y) ≤ r∗} (37)

r∗ = argmin
r ′>0

r ′ , s.t. [1 − fL − εi ( f ; r ′|L)i (x)] > 0.

An example of these operations is provided in Fig. 5, where
the red category is protected while we operate on the green
category. Compared to the non-protected operations in Fig. 4,
we can see that changes are restricted to the green and blue
categories.

5 Examples

The first example illustrates how morphology on categor-
ical distributions (Sect. 3.2) can be used to remove noisy

predictions. The second example illustrates how protected
morphology on categorical distributions (Sect. 4) can be used
to model annotator bias.

5.1 Removing Noisy Predictions

Despite the impressive performance of neural networks for
segmentation, the results are rarely perfect. Figure6 shows
part of an electron microscopy image of the hippocam-
pus, along with multi-class predictions and segmentations
obtained from [13]. Notice the noisy mitochondria predic-
tions resulting inmisclassifications highlighted in Fig. 6a.We
can remove thesemisclassification by opening themitochon-
dria class before the final classification. Figure7 shows the
opened predictions alongwith thefinal classifications.Notice
in particular how the errors in circle 2 in Fig. 7a are fixed, such
that the vesicle (teal) and the endoplasmic reticulum (yellow)
are separated by cytosol. This would have been very difficult
to achieve by working directly on the final segmentations.
That the vesicle and endoplasmic reticulumare probablymis-
classified just illustrates that not all things should be fixed in
post-processing.
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Fig. 6 Electron microscopy image of the hippocampus with predic-
tions of five classes: cytosol (white), membrane (blue), mitochondria
(purple), endoplasmic reticulum (yellow) and vesicle (teal). By exam-

ining neighboring slices, the areas 1–3 have been confirmed to wrongly
contain mitochondria predictions (Color figure online)

Fig. 7 Fixing mitochondria
misclassifications by opening
the mitochondria predictions
with B12

5.2 Modeling Annotator Bias

Expert annotation is the gold standard in most clinical prac-
tice as well as for evaluating computer methods. However,
annotation tasks are inherently subjective and prone to sub-
stantial inter-rater variation [14, 15]. When investigating the
influence of this variation on statistics and decisions, it can
be interesting to consider specific hypotheses regarding the
variation. Consider the brain tumor annotation in Fig. 8.
The annotation is derived from the QUBIQ1 challenge brain
tumor dataset, where three annotators each annotated whole
tumor, tumor core and active tumor. From this, we obtain an
image with four categories: background, edema, active core
and inactive core. Although the annotators have a high level
of agreement, there is still substantial variation in the extent
of edema and in how much of the tumor core is active.

Usingprotecteddilation,wecan, for example, hypothesize
how the merged annotation would appear under the assump-

1 https://qubiq.grand-challenge.org/.

tion that the tumor core is oversegmented, but the active
part is undersegmented. Figure9 shows the results where we
first dilate the active core while protecting edema and back-
ground, then dilate edemawhile protecting background. This
would allow us to easily investigate if statistical differences
in a case–control study could be explained by biased anno-
tations.

6 Discussion and Conclusion

We have provided a thorough review of morphology on cat-
egorically valued images. Based on this, we have defined
morphology on Dirichlet distributions and morphology on
categorical distributions. Inspired by [2], we have further
defined protected morphology on categorical distributions.
We have demonstrated the behavior of the proposed oper-
ations and shown how they can be used in real-world
applications such as noise removal in multi-class predictions
and modeling annotator bias.
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Fig. 8 Inter-rater variation in
annotation of brain tumors.
White is background, blue
edema, yellow inactive core and
purple active core. Variation is
indicated by color mixing. The
black circles highlights two
regions with large variation
(Color figure online)

Fig. 9 What could the annotation look like if the core was oversegmented, but the active part undersegmented? Dilation of active core while
protecting edema and background, followed by dilation of edema while protecting background using B1, B2, B3

The definition of dilation is straightforward and no obvi-
ous alternatives present themselves. This is not so for erosion.
In our definition, erosion corresponds to conditioning on a
change in probability of the eroded category.An equally valid
approach would be to also condition on where this change
came from. Instead of simply rescaling the categories with
nonzero mass, we could include information from the neigh-
borhood. For example, when eroding i we would fill the
difference fi (x)− ε( fi ; Br )(x) based on the pixels that con-
tribute to the difference, that is, those with minimum mass
for i . This would result in smoother boundaries, which could
be a better representation of uncertainty. A downside is that
categories can leak into each other, leading to undesirable
results.

In this work, we have focused on the basic morphologi-
cal operations, dilation and erosion, and their compositions,
closing and opening. A logical next step is to investigate
more complex morphological operations, such as the mor-
phological gradient, which may be used to investigate spatial
relationship between categories by measuring the change in
one category as a function of change in another category.

We have defined protected versions of dilation and ero-
sion. From these, we could define opening and closing in the

standard way. Alternatively, by changing which categories
are protected for dilation and erosion we get more control
over how a category is opened or closed. In [2], the authors
explore similar ideas for the so-called tunneling and bridging
operations on their set-based morphology, which would be
interesting to consider in the context of categorical distribu-
tions.

Our aim in this work was to bring morphological opera-
tions to probabilistic representations of categorical images.
These representations can be considered as generative pro-
cesses that can be sampled. Naive sampling will result in
noisy and unrealistic samples. Combining the sampling pro-
cess with the proposedmorphological operations could be an
easy approach to obtain smoother andmore realistic samples.

In summary,morphology is an indispensable tool for post-
processing segmentations. Extending morphology to cate-
gorical images and their probabilistic counterparts presents
a particular problem since there is in no inherent ordering
of categories. In this paper, we have proposed to view cat-
egorical images as images of categorical distributions and
definedmorphological operations that are consistentwith this
view.
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Appendix A: Proofs for Sect. 3.2

We closely follow Section 5.2 in [7] by defining a preorder
≤i on F and showing that our definitions of dilation and
erosion formanadjunction in this preorder.We then show that
their compositions are an opening (γi = δiεi ) and a closing
(φi = εiδi ), where we define an opening as an operator that
is increasing, anti-extensive and idempotent, and a closing
as an operator that is increasing, extensive and idempotent

a f ≤i g �⇒ γi f ≤i γi g, b γi f ≤i f , c γiγi f = γi f
(A1)

a f ≤i g �⇒ φi f ≤i φi g, b f ≤i φi f , c φiφi f = φi f
(A2)

For two images f , g ∈ F , we define the preorder ≤i as

f ≤i g ⇐⇒ [∀x]( fi (x) ≤ gi (x)) (A3)

This preorder is not antisymmetric, as we can have f ≤i g
and g ≤i f , but not f = g.

Theorem 1 δi and εi form an adjunction in the preorder ≤i

δi ( f ; Br ) ≤i g ⇐⇒ f ≤i εi (g; Br ) (A4)

Proof Since categories j �= i have no influence on ≤i , we
only need to consider the case where k = i in (30) and (31).
These cases are standard grayscale dilation and erosion that
form an adjunction. ��

Lemma 1 δi and εi are increasing in ≤i

Proof Follows by the same argument as for Theorem 1. ��

Theorem 2 For a fixed structuring element Br , δi and εi sat-
isfy

f ≤i εi (δi ( f )) (A5)

δi (εi ( f )) ≤i f (A6)

δi (εi (δi ( f ))) = δi ( f ) (A7)

Proof (A5) and (A6) follow from substitution into (A4) with
g = δi ( f ) and f = εi (g)

δi ( f ; Br ) ≤i δi ( f ; Br ) �⇒ f ≤i εi (δi (g; Br ); Br ) (A8)

δi (εi (g; Br ); Br ) ≤i g ⇐� εi (g; Br ) ≤i εi (g; Br ) (A9)

To show (A7), we consider the three cases (I) k = i ,
(II) k �= i with [∀x]( fi (x) < 1), and (III) k �= i with
[∃x]( fi (x) = 1). For brevity, we leave out the structuring
element Br , pixel index x and parentheses from operator and
function application in the following.

For (I) k = i , we can directly substitute the definitions in
(30) and (31) to get

(δiεiδi f )i = δεδ fi (A10)

= δ fi (A11)

= (δi f )i , (A12)

where the second step follows from the properties of the
standard grayscale operations.
For (II) k �= i with [∀x]( fi (x) < 1), we can ignore the third
case in (31). After substitution and cancelation of terms, we
get,

(δiεiδi f )k = [1 − δ fi ]
fk
f J

= (δi f )k (A13)

For (III) k �= i with [∃x]( fi (x) = 1), the third case in (31) is
only relevant when (δi f )i (x) = (δ fi )(x) = 1, which leads
to both sides of (A7) being zero

(δiεiδi f )k = [1 − δ fi ] θ(εiδi f )k∑
j∈J θ(εiδi f ) j

= 0 (A14)

(δi f )k = [1 − δ fi ] fk
f J

= 0 (A15)

So δiεiδi f = δi f ��
Corollary 1 γi = δiεi is an openingandφi = εiδi is a closing

Proof Corollary 1. in [7] ��
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