The Linear Ordering Problem: Instances, Search
Space Analysis and Algorithms

Tommaso Schiavinotto and Thomas Stiitzle
Darmstadt University of Technology, Computer Science D@apant
Alexanderstr. 10, 64283 Darmstadt, Germany
{schiavin,tom} @intellektik.informatik.tu-darmstadt.de

Abstract

The linear ordering problem is akP-hard problem that arises in a variety of
applications. Due to its interest in practice, it has reegigonsiderable attention
and a variety of algorithmic approaches to its solution Haaen proposed. In this
paper we give a detailed search space analysis of availabk henchmark in-
stance classes that have been used in various researcledargéhfitness-distance
correlations observed for many of these instances sudggsadaptive restart al-
gorithms like iterated local search or memetic algorithwisich iteratively gener-
ate new starting solutions for a local search based on pre\gearch experience,
are promising candidates for obtaining high performingatgms. We therefore
experimentally compared two such algorithms and the finpegmental results
suggest that, in particular, the memetic algorithm is the state-of-the-art ap-
proach to the LOP.

1 Introduction

Given ann x n matrix C, the linear ordering problem (LOP) is the problem of finding
a permutatiorr of the column and row indicefl, ..., n} such that the value

f(x) =Z D Catiynii)

1 j=i+1

is maximized. In other words, the goal is to find a permutatitthe columns and rows
of matrix C' such that the sum of the elements in the upper triangle ismiagd.

The LOP arises in a large number of applications in such gévéields as econ-
omy, sociology, graph theory, archaeology, and task sdimep10]. Two well known
examples of the LOP are the triangularization of input-atitpatrices of an economy,
where the optimal ordering allows economists to extractesgrformation about the
stability of the economy or the stratification problem intexreology, where the LOP is
used to find the most probable chronological order of sanfplesd in different sites.
The matrix that describes the problem is known as Harris idatr

The LOP isNP-hard, that is, we cannot expect a polynomial time algorifbm
its solutions. However, the LOP arises in a variety of prattapplications [10] and
therefore algorithms for its efficient solution are reqdir&everal exact and heuristic
algorithms were proposed in the literature. Exact algorglinclude a branch & bound
algorithm that uses a LP-relaxation for the lower bound ba¥| 4], a branch & cut
algorithm proposed by Grotschel, Junger, and Reinell §1f@ a combined interior
point / cutting plane algorithm by Mitchell and Borchers [25tate-of-the-art exact
algorithms can solve fairly large instances from specifstance classes with up to a
few hundred columns and rows, while they fail on other instsnof other classes of
much smaller size. Independent of the type of instancegdpthe computation time
of exact algorithms increases strongly with instance size.

The LOP was also tackled by a number of heuristic algoriththese include con-
structive algorithms like Becker’'s greedy algorithm [3)cal search algorithms like
the CK heuristic by Chanas and Kobylanski [8], as well as a numbenefaheuris-
tic approaches such as elite tabu search and scatter spagsented in a series of
papers by Marti, Laguna, and Campos [17, 7, 6], or iterasedllsearch (ILS) algo-
rithms [9, 25]. In particular, ILS approaches appear cuitydn be the most successful
metaheuristics, as judged by their performance on a nunflmraidable LOP bench-
mark instances [9, 25].

Available algorithms have typically been tested on a nundfeslasses of real-
world as well as randomly generated instances. Howeverisé&wown about how the
performance of current state-of-the-art algorithms depemn specific characteristics
of the various available LOP instance classes neither hffereinces among the in-
stances translate into differences in their search spaacteristics. First steps into
answering these open questions were undertaken in [25].

The main contributions of this article are the followingrdtj we give a detailed
analysis of the search space characteristics of all tharinstclasses introduced in the
major algorithmic contributions to the LOP. This includestaictural analysis, where
standard statistical information is gathered as well asretyais of the main search
space characteristics such as autocorrelation [27, 33jtaeds-distance analysis [13].
A second contribution is the detailed analysis of two metigiséics, an iterated local
search algorithm [18] and a memetic algorithm [23]. As wel wée, their relative
performance depends on the particular LOP instance claskitth they are applied.
Interestingly, a detailed analysis shows that there is soomeelation between spe-
cific search space characteristics and the hardness ofdtenaes as encountered by
the two metaheuristics. Computational comparisons ofwealgorithms to known
metaheuristic approaches establish that the memeticitdgois a new state-of-the-art
algorithm for the LOP.

The paper is structured as follows. Section 2 gives an oeeraf the instance
classes that we studied. Section 3 introduces the greedsithig and the local search
techniques that are used by the metaheuristics. Detailb@sttuctural analysis of
the benchmark instances is given in Section 4, while Se&idescribes the results of
the search space analysis. Section 6 introduces the metlusuve applied and the
following Section 7 gives a detailed account of the compaoitet results. Finally, we
conclude in Section 8.

2 LOP instance classes

So far, researches on the LOP made use of a number of diffdessies of benchmark
instances, including instances stemming from real-wopldliaations as well as ran-
domly generated instances. However, typically not all tietdnces are tackled in all
the available papers and, in addition, several of the ratglgenerated instances are
not available publically.

The probably most widely used class of instances are thdsBloifB, a benchmark
library for the LOP that comprises 49 real-world instances@sponding to input-
output tables of economical flows in the EU. LOLIB is avaikablt http://www.
iwr.uni-heidelberg.de/iwr/comopt/soft/LOLIB/ ; for all LOLIB in-
stances optimal solutions are known [11].

Our initial results with an ILS algorithm for the LOP, whichewe presented in
[25], indicated that the LOLIB instances are actually to@Bito pose a real challenge
to state-of-the-art metaheuristic approaches and evexaitt algorithms. Therefore,
we have generated through sampling the elements of thenatigiatrix an additional
set of large, random, real-life like instances that havendlar structure as those of
LOLIB and that therefore should have the same or at leastasitharacteristics. We
call this instance class XLOLIB for eXtended LOLIB. We geatexd for each instance
of LOLIB two large instances, one of size = 150 and the other of siza = 250,
resulting in a total of 49 instances of size 150 and 49 ingtsf size 250. Initial tests
showed that these instances are well beyond the capabditidne exact algorithm by
Mitchell and Borchers [22], one of the best performing exadgorithms. For example,
on an instance of size 250 we aborted the program after onk emeputation time
without identifying an optimal solution.

A real life instance consisting of a single input-output rxabf 81 sectors of the
U.S. economy is available from the Stanford graph-basaryi16], which is accessi-
ble athttp://www-cs-faculty.stanford.edu/ knuth/sgb.html . From
this instance, we generated several smaller instances\dgmaly selecting sectors. In
fact, we created nine instances: three of 50 elements, tfif@®, one of 79, one of 80
and one of 81 (that is the complete matrix). We refer to thasswith SGB. Instances
from the class SGB have been used in [17] and [9] to evalubtedearch and iterated
local search algorithms. There instances of size 40, 60,78nalith 25 instances for
each size were generated.

Because LOLIB instances are rather small, Mitchell and Bers [22] generated
large instances in their research on exact algorithms ferL#BP. They generate a
matrix by first drawing numbers between 0 and 99 for the elémienthe upper tri-
angular, and between 0 and 39 for the others, and then slguffisa matrix. This
technique is used in order to obtain a linearity similar te ttOLIB instances; the
linearity is the ratio of the optimal objective function ewbe sum of the matrix el-
ements excluding those on the diagonal. Furthermore, Z@®sdded to increase
the sparsity of the matrix. The range used to draw numbergtigeraely limited
when compared with the values that LOLIB instances elemesutstake. The idea
underlying this choice is that there should be a large nurobeplutions with costs
close to the optimal value, resulting in, according to Méithand Borchers, hard
instances. Thirty of these instances with known optimaltsohs are available at

http://www.rpi.edu/"mitchj/generators/linord ,where also the gen-
erator can be found; we will refer to this instances as MBLBt¢hkll-Borchers LOP
Benchmarks). Of these available instances, five are of €19e tén of size 150, ten
of size 200, and 5 of size 250. Even if the size of the MBLB ins&s is comparable
to those of XLOLIB, preliminary tests showed that MBLB instas are significantly
easier than XLOLIB instances. In fact, for all MBLB instasagptimal solutions are
known.

Finally, another class of randomly generated instances prepposed in [17]. There,
75 instances were generated using a uniform distributicherrange between 0 and
250000. Laguna, Marti, and Campos generated 25 instaachda the sizes 75, 150,
and 200. We call this instance class LMC-LOP. These instanege made available
by Rafael Marti.

3 Constructive and local search algorithms

The currently best known constructive algorithm for the Li®Bue to Becker [3]. Ina
first step the index that maximizes the cost

Dk Cik
g ==F——1=1...n
‘ 22216191'

is chosen, and it is put in the first position of the permutatidext, this index together
with the corresponding column and row is removed and the gevalues for the re-
maining indices are computed from the resulting sub-matiikese steps are then
repeated until the index list is empty, resulting in a conagiohal cost ofO(n?). A
straightforward variation of this algorithm is to compute t; values only once at the
start of the algorithm, sort these values in non-increasndgr to yield a permutation
of the indices. Using this variant, a solution can be compurte) (n?).

Both, the original algorithm and the variation, return gemdutions compared to
random ones. For example, the average deviation from thenopt solutions for
LOLIB instances is6.52 with the original algorithm9.46% with the variation, and
30.48% for random solutions; for MBLB the deviation obtained &r81% with the
original algorithm 2.52% with the static variation, and0.34% for random solutions.

Better solutions than with Becker’s construction heuistie obtained with local
search algorithms. We considered three possibilities.fifsigwo are based on neigh-
borhoods defined through the operations applicable to tiremisolution.

The first neighborhoodyx, is defined by the operatidnterchangeit is given as
interchange: TI x {1,...,n}? — TII, wherell is the set of all permutations and we
have fori # j:

. .o\ A
Interchangévr,z,]) = (...,7ri_1,7rj,7ri+1,...,7r]-_1,7r,-,7rj+1,...)

This neighborhood has siz&/x| = n(n — 1)/2. Preliminary tests showed thafx
gives significantly worse results when compared to the ¥atig two local search
methods.

A second neighborhoodV7, is defined by thénsertoperation: an element in po-
sition 4 is inserted in another positigh Formally,insert: IT x {1,...,n}? — Il is
defined fori # j:

insert(’iT i _7) é (---77Ti—1,7ri+1,---,7Tj777i;77j+1,---) 7/<.77
0 (e s M1y Wiy Ty e e e W1, Wi 15+) >

The insert based neighborhood has &i#g(r)| = (n — 1)2.
The A-function

Ag(m,i,j) 2 f(inser(r,i,) — f(m)

associated with this operation is defined as:

i—1 . .
k=3 Crimy — Cmpms 1>).

Ag(m,i,j) 2 { k=it Crms ~ Crem, 6 < J;
The cost for evaluating this functiond(|i —j|) and, hence, i®(n) if no care is taken.
In a straightforward implementation of a local search basethis neighborhood one
would, given an index, tentatively try all possible movésser{(w, 7, j) with j ranging
from 0 ton — 1. Since for each move th&-function evaluation is linear, the cost for
exhaustively visiting the neighborhood@&n?). However, the local search procedure
can be sped up significantly, if the neighborhood is visited imore systematic way.
A particular case of an insert move is given i j £ 1; we call this aswapmove, and
its A function is:

N Crim; — Crjmi 1=7+1;
As(ﬂ-alaj):{ Cr.m; — Crsms 712]_1'

Hence, the cost of the evaluationAf is constant. Furthermore, amsertmove (with
arguments andy) is always equivalent t — j| swapmoves. For example, for =7
and: = 2,j = 5 we have

m= 123456 —
132456 =inser(r,2,3) —
134256 =inser(r,2,4) —
134526 =inser(r,2,5).

In the example, it can be noticed that all the permutatiosised when transforming

by applyinginseri(w, 2, 5) are in theinsertneighborhood ofr and are always obtained
by applying a swap move to the previous step. Hence, the gleause onlyswap
moves to visit the wholgV;. For each index we will apply all the possible moves
insert(r, 4, j) in two stages. First, with indicesthat range fromi — 1 to 0 and then for
indicesj that vary fromi + 1 ton — 1. In every stage a solution can be obtained from
the previous visited one by applyingsavapmove. Hence, every solution in the neigh-
borhood can be obtained in constant time and therefore talecimmputational cost for
evaluating the insert neighborhood becort¥s?). This technique was inspired by
the method that Congram applies to Dynasearch [9]. In Fig.ekkmow the effect of

[j i+l i

i+11i j i+1i+21 j
i+1 AN ! =
[N i Y2 il —

R SNEN
j i j MMZ

Figure 1: Given is a pictorial example of what tAfunction means in terms of matrix
entries and how an insert move can be done with successigpmoves.

aninsertmove on the matrix and we also show how the same move can beodbne
throughswapmoves.
A further minor speed-up consists in pre-computing the émstll the possible
swapmoves:
dij:Cij—Cji Vi,jZO...n—l.

In addition to these standard neighborhoods, we also imgiéed the local search
algorithmCK by Chanas and Kobylanski [8] that uses two functisos andreverse
When applied to a permutatiosort returns a new permutation in which the elements
are rearranged according to a specific sorting criterioa [8B, while reversereturns
the reversed permutation. In the LOP case, if a permutatiaximizes the objective
function, the reversed permutation minimizes the objedliinction; hence, reversing
a good solution leads to a bad solution. The ide&kfis to alternate sorting and
reversing to improve the current solution; in fact, it hasibshown that the application
of reverseand thersortto a solution will lead to a solution with a value greater onaiq
the starting one. The functional description of the aldnits:

(sort* o reversg* o sort*

whereo denotes function composition, and th@perator is used to apply any given
function iteratively until the objective function does rbiange. Formally, we consider
a general functiog, and a generic permutation

. ™ f(p(m)) = f(m)
¢" () 2 { o* ((m)) otherwise

The sort function is recursively defined as follows:

_ o k= 0,
sorf(my, ..., m) = { inserex (mg, sort(mo, - .., mk—1)) k>1 1
inserE’C(L Sort(T[—O: s 77Tk:71)) = (7717 R (s SRS Trtly--- 77rk71) (2)

wherer € 0,...,k — 1 such that it maximizes the value:

7F—1 k—1
AC’C(tyra (7(0,...,7Tk_1) = § cﬂ'jt+ § 7rt7rj-
=1 i=r

Unfortunately this definition does not help in understagdhme neighborhood ac-
tually used byCK. In fact, one can show that tig&C algorithm actually implements a
local search algorithms based 4f.

We implemented three local search variants, including texsiens of thensert
moves and thé . The twoinsertvariants differ only in the pivoting rule applied. One
version uses a pivoting rule that is somewhere betviiestrandbest improvement

function visity, ()

fori =0..n—1do
T+ argmax, ,»; f(inser{n,i,r))
7' = inser{(r,,T)
if f(7') > f(m) then

return(r’)

end if

end for

return(m)

Obviously, the scan of the indexes for finding the best move#gh index is made
exploiting the evaluation of the delta function in constéamie. We indicate withCSy
the local search oA/} based on the visit we just introducefiS; is a local search on
N7 using a random first improvement strategy, where the neigidaal is scanned in a
random order; the latter neighborhood examination scheagires theA-function to
be computed in linear time.

Table 1 gives a comparison of the three algorithms on thetbeadk classes we
considered. The results show that with respect to solutiadity all three algorithms
are comparable. However, they strongly differ in terms ofhpatational speed. Clearly,
LSy is the fastest, followed b§KC; LS; is several orders of magnitude slower than the
other two. Based on these results, in the rest of the paperilvepply £S; as local
search.

Avg.Dev. (%) #optima Avg.time (sec)

LOLIB ~Z3; 0.1842 42 0.1802
cK 0.2403 38 0.0205

LSy 0.22 45 0.013

SGB " LS; 0.27 5 0.1389

cK 0.41 3 0.01013

LS; 0.46 7 0.00516

MBLB ~Z3; 0.0195 10 9.81
cK 0.0209 12 0.22

LS; 0.021 10 0.14

XLOLIB (250) ~CK 111 0 2.1256
LS; 0.90 0 0.6741
LMC-LOP "CK 0.65 0 1.0496
LSy 0.60 0 0.2976

Table 1: Comparison between three local search algorithimtsebenchmark classes.
The results are averaged over all instances of each classvand 00 trials for each
instance. Avg.Dev. gives the average percentage devitionoptimal or best known
solutions, # optima gives the number of optimal or best knselations found at least
once in the 100 trials for each instance, and Avg.time (s&@&sghe average compu-
tation time in seconds on a 1.4 GHz Athlon CPU to run the loeafeh once on each
benchmark instance of a class (for example, the timing goreb OLIB instances is
the time to run a local search once for all the 49 instance<3ifIB).

4 Structural analysis of theinstances

As a first step in our analysis of the LOP instance charatiesjave computed cross-
statistical information on the distribution of the matrintges for the available in-
stances. In particular, we computed for all instances tlaesly, the variation coef-
ficient and the skewness of the matrix entries. The sparsigsares the percentage
of matrix elements that are equal to zero; the main interetis measure is that ac-
cording to Mitchell and Borchers, it has a strong influencalgorithm behavior [22].
The variation coefficien{VC) is defined asr/ X, whereo is the standard deviation
and X the mean of the matrix entries. VC gives an estimate of thabiity of the
matrix entries, independent of their size and their ran¢peskewnesss the third mo-
ment of the mean normalized by the standard deviation; ggan indication of the
degree of asymmetry of the matrix entries. The statistiesh ds given in Table 2 for
LOLIB and XLOLIB instances and in Table 3 for the random imsta classes MBLB
and LMC-LOP.

The cross statistical data for the SGB instances are thantddian for the size
50 and 65 instances for the sparsity is 14.16 and 22.91, ctrsply, the VC is 4.59
and 5.23, respectively, and the skewness is 10.31 and ¥84#ctively. For the three
instances of size 79, 80, and 81 these values are 26.26, 28®25.29 for the sparsity,
6.12, 6.13, and 10.62 for the VC and 16.62, 16.80, and 21 2héoskewness.

INote that the full SGB instance of size 81 has the partiaylarfi having a negative row, hence resulting

Table 2: Structural information on the real-world and reialdd like instance classes.
“Sp.” indicates the sparsity, “VC” the variation coefficteand “Sk.” the skewness.
Given are the minimum, the 0.25 and 0.75 quantiles, the metlia maximum and the
mean of these measures across all instances of a benchmssk cl

LOLIB
Size Min | 1stqu.| Median| 3rdqu.| Max | Mean
Sp.| 11.00| 26.91 | 35.28 | 46.13 | 80.63 | 37.34
all | VC | 410 | 4.45 4.87 5.78 | 16.25 | 5.49
Sk.| 9.15 | 11.40 | 1293 | 15.83 | 39.18 | 15.50

XLOLIB
Sp. | 10.57| 26.80 | 34.71 | 45.74 | 80.351| 37.25
150 | VC | 4.04 | 4.46 4.84 554 | 16.05 | 5.42
Sk.| 894 | 11.09 | 12.49 | 15.78 | 42.62 | 15.04
Sp.| 10.79| 26.98 | 35.04 | 45.76 | 80.48 | 37.25
250 | VC | 4.07 | 4.39 5.00 5.77 15.81 | 5.48
Sk.| 9.05 | 11.33 | 12.61 | 16.51 | 43.63 | 15.49

These statistical data show that there are significantrdiffees between the real-
life instances (LOLIB and SGB) and real-life like random Iplems (XLOLIB) on the
one side and the randomly generated instances from LMC-L@PMBLB on the
other side. For the real-life and real-life like instancsttistics (sparsity, VC, and
skewness) are typically much higher than for the randomhegated instances. This
suggest that the former class of instances are much ledsregul the variation among
the matrix entries is much stronger than for the random me&ia. Additionally, the
variation of the statistics among the real-world (liketarees is much larger indicating
a certain diversity of structural features in these instanh@®©bviously, SGB instances
are an exception in that respect, because they are all geddéram the same matrix.
Differently, the variance of the statistical measures g for LMC-LOP and MBLB
instances, indicating a more regular structure of these.

The data presented here give evidence that we might obsigmiéicant differ-
ences in the behavior of algorithms when applied to randastairces or real-life
(like) instances. Additionally, these data give an indaathat conclusions obtained
for the random instances do not necessarily apply to rémldstances, because ran-
dom instances show such different statistical data frorhlifeanstances. Hence, the
XLOLIB instances appear to be much better suited for testiggrithms on realistic,
large LOP instances than the random instances.

in a somewhat different structure of this instance with eespo VC and skewness than other instances of
similar size.

Table 3: Structural information on randomly generatedainsé classes. “Sp.” indi-
cates the sparsity, “VC” the variation coefficient, and “Sthe skewness. Given are
the minimum, the 0.25 and 0.75 quantiles, the median, thérmawr and the mean of
these measures across all instances of a benchmark class.

LMC-LOP
Size Min | 1stqu.| Median| 3rd qu.| Max | Mean
Sp.| 05 0.5 0.50 051 | 051 | 051
75 | vC | 0.70 | 0.71 0.71 0.71 | 0.72 | 0.71
Sk. | 0.389| 0.40 0.40 0.40 | 0.42 | 0.40
Sp.| 1.33 | 1.33 1.33 133 | 1.37 | 1.34
150 | vC | 0.70 | 0.71 0.72 0.72 | 0.73 | 0.72
Sk.| 0.36 | 0.40 0.41 0.43 | 0.46 | 0.41
Sp.| 0.67 | 0.67 0.67 0.68 | 0.68 | 0.67
200 | vC | 0.71 | 0.71 0.71 0.71 | 0.72 | 0.71
Sk.| 0.38 | 0.34 0.40 0.41 | 0.43 | 0.40

MBLB
Sp.| 22.01| 22.12 | 22.33 | 22.44 | 23.36| 22.45
100 | VvVC | 1.00 | 1.01 1.01 1.01 1.02 | 1.01
Sk.| 098 | 0.98 1.00 1.00 | 1.00 | 0.99
Sp.| 229 | 2.38 7.15 12.02 | 12.48| 7.23
150 | vC | 0.77 | 0.78 0.83 0.88 | 0.89 | 0.83
Sk.| 082 | 0.84 0.86 0.88 | 0.88 | 0.86
Sp.| 2.08 | 2.25 7.02 11.87 | 12.10| 7.06
200 | vC | 0.77 | 0.78 0.83 0.88 | 0.88 | 0.83
Sk.| 0.82 | 0.84 0.86 0.88 | 0.89 | 0.86
Sp.| 204 | 211 2.12 215 | 223 | 2.13
250 | vC | 0.77 | 0.77 0.78 0.78 | 0.78 | 0.77
Sk.| 0.82 | 0.83 0.84 0.84 | 0.84 | 0.84

5 Landscape Analysis

The central idea of the landscape analysis in combinatopi@hization is to represent
the space searched by an algorithm as a landscape formed fleyasible solutions,
which in the LOP case are permutations, arfifreessvalue assigned to each solution,
whichin our case is the objective function valfier) of a permutationr and to impose
a distance metric on the search space [20]. The usefulndisis glaradigm is typically
based on (i) the insights with respect to search space dbé&sdics and the relationship
to the behavior of local search algorithms or metaheusi$tic 31], (ii) the possibility
to predict problem or problem instance difficulty [2, 28], (1) indications on useful
parameterizations of local search algorithms [1].

Formally, the search landscape of the LOP is described biple {TI(n), f, d),
wherell is the set of all permutations of the integgis. .., n}, f is the cost function

10

andd is a distance measure, which induces a structure on thedapésit is natural
to define the distance between two permutaticend#’ in dependence of the "basic
operation” used by a local search algorithm; typically,distance then is given by the
minimum number of applications of this basic operation ek transformr into 7’
Since the best performing local search algorithms are atttban the\;, we consider
aninsertmove as our basic operation. Unfortunately, as far as we ktimwe is no
efficient, that is polynomial, way of computing the minimumamber ofinsertmoves
needed to transform one permutation into another one. Tdrerave use a surrogate
distance that is based on theecedence metrif24]: for all pairs of elementg ands
we count how oftery precedes in both permutations and then subtract this quantity
fromn(n — 1)/2, which corresponds to the maximum possible distance.

5.1 Landscape correlation analysis

The first feature of the search landscape we studied is igedigess: a search land-
scape is said to be rugged if there is a low correlation betvmegghboring points. To
measure this correlation, Weinberger suggested to pedoamdom walkin the search
landscape of lengtin, to interpret the resulting set @i points{f(z:)},t =1,...,m
as a time series and to measure the autocorrelatirof points in this time series that

are separated hysteps [33] as
:;S(f(xt) - f)(f($t+s) —f)

() = 2 (F)(m —s)

whereo?(f) is the variance of the time series, afidts mean. Often, the resulting
time series can be modeled as an autoregressive procesdesfare, and then the
whole correlation structure can be summarized-fy or, equivalently, by theearch
landscape correlation lengtthat is computed aé = —m (r(1) # 0) [26, 27,
33]; the lower is the value of, the more rugged is the landscape. Interestingly, in
landscape analysis literature general intuitions and sesdts suggest that there is a
negative correlation betweérand the hardness of the problem [2].

We computed on all benchmark instances with a random walk of one million
steps; Table 4 summarizes data collected on all instaééesgliven normalized by the
instance size, that corresponds also to the diameter oftsémrdscape based on the
N7 neighborhood. As we see, each class has a relatively smihea (SGB has one
instance that represents an outlier in these data). Thiasn#zat the landscape corre-
lation length can characterize specific instance classes these instance classes, the
MBLB instances have the by far largéstvhich would suggest that these instances are
also the easiest to solve; in fact, when abstracting fromairce size, our experimental
results with metaheuristic suggests that this is true. Ex smaller is found for the
real-life instances from LOLIB and SGB, while the smalleatues, on average, are
observed for LMC-LOP and the XLOLIB instances.

Regarding instance class definitions, note that the valié&nalone are not suf-
ficient. For example, XLOLIB instances showed roughly theeaormalized values
for £/n as LMC-LOP instances, which would suggest similar behatdowever, both
types of instances have widely different characteristestzown by the data on the
distribution of the matrix entries.

11

Table 4: Given are standard statistical data (minimum, @5 0.75 quantiles, me-
dian, average, and maximum) for the normalized valyesof the search landscape
correlation length measured across all the instances afhitable benchmark classes.
Min 1stqu.| Median| 3rd qu.| Max Mean
LOLIB 0.7536| 0.7907| 0.8004 | 0.8207| 0.8403| 0.8021
SGB 0.4821| 0.8055| 0.8163 | 0.8248| 0.8347| 0.7810
XLOLIB(100) | 0.7094| 0.7278| 0.7311 | 0.7416| 0.7671| 0.7341
XLOLIB(250) | 0.7165| 0.7327| 0.7364 | 0.7407 | 0.7524| 0.7372
MBLB 0.9339| 0.9595| 0.9639 | 0.9707| 0.9775| 0.9620
LMC-LOP 0.6924| 0.7211| 0.7312| 0.7450(0.7746| 0.7332

From the methodological point of view we were interested ow fong arandom
walk should be to obtain a stable estimate/ oTherefore, we measured on all MBLB
and XLOLIB instances of size 250 ten timédor different lengths of the random
walks. Figure 2 shows théwe found in these experiments for all the instances. As
we see, the longer is the random walk the more precise is Hudtireg measure of.
These plots also indicate that apparently for 1.000.008sstethe random walk thé
estimate has stabilized. On the other side, these resatissabgest, that the random
walks for measuring should be a large multiple (e.g. 400 in this case) larger than
instance size to result in stable estimates.

5.2 Fitness-distance analysis

In a next step we analyzed the distribution and the relatigation of local optima to
the global optima of the LOP.

For LOLIB we run 13,000 local searches starting from randofat®ons, while
for the other instance classes 1,000 local searches weee @mthe instance classes
LMC-LOP and XLOLIB the local searches generated 1,000 mtistiocal optima for
each instance and in no case the best known solutions wemd.féoer LOLIB instead
the number of distinct local optima was considerably vagyimetween 24 and 13000
with a median around 9400; for MBLB the number ranged fromuacb73 and 1000,
with a median of 965; finally for the smaller SGB instancesuarb600 distinct lo-
cal optima were found, while in the largest ones 1,000 distimcal optima resulted.
Summary data are given also in Table 5.

For all LOLIB, SGB and MBLB instances we know the global opdinn fact, on
several instances we could identify also global optima agrtbe local optima gener-
ated. Among the total number of distinct local optima, theepatage of global optima
ranges from 0.47% to 85.12% for LOLIB, while for the othertarece classes the cor-
responding percentages are much smaller. Summary dateese Halues are given
in Table 6. In fact, these results also suggest that espetli@l LOLIB instances can
effectively be solved by a random restart algorithm thatiislong enough.

Finally, we analyzed the relationship between the qualitpcal optima and their
distance to the closest global optimum by measuring thestmstance correlation
coefficient and measuring fitness distance plots [13]. Gavsample ofn candidate

12

MBLB XS2\P

1.0 1 1.0 1
g (I R |
0.8 — 0.8 — o
I v
!
o 06 — o 06
~ ~
[0 [0
02 02 4°
0.0 0.0
T T T T T T T T
1le+03 le+05 1le+07 le+03 1le+04 1le+05 1e+06 1e+07
Random walk length Random walk length

Figure 2: Dependence éfn (given in they-axis) on theeandom walldength @-axis)
for MBLB (left) and XLOLIB (right) instances. Every dot is ¢haverage normalized
landscape correlation length measured acrossattom walksof the corresponding
length for one instance of the class.

Table 5: Summary information on the percentage of distiocal optima found (per-
centage of the total number of local optima generated).
Min | 1stqu.| Median| 3rd qu.| Max | Mean
LOLIB | 0.12 | 40.35 | 63.65 | 80.49 | 99.2 | 67.93
SGB | 25.60| 64.50 | 94.60 | 99.5 | 100.00| 81.09
MBLB | 7.30 | 76.75 | 96.50 | 99.48 | 100.00| 82.17

solutions{m, ..., 7} with an associated set of pai6fi,d;), ..., (fm,dm)} of fit-
ness (solution quality) valueg and distances to the closest global optimémthe
(sample) fithess distance correlation coefficignan be computed as

_ Couf,d)
RO)

where

65\’(f,d)=—_2(fi—f)(di—d)a (4)
m y

13

Table 6: Summary information on the number of distinct glaiima found, given
as the percentage of the total number of distinct local ogtim
| Min | 1stqu.| Median | 3rd qu.| Max | Mean
LOLIB | 0.47| 2.34 14.10 | 16.54 | 85.12| 8.33
SGB | 0.00| 0.10 0.20 1.17 | 1.86 | 0.68
MBLB | 0.00| 0.00 0.22 0.57 | 427 | 0.46

Table 7: Some information on the local optima generatedirtean distance from the
best known solution is given as percentage over the maxndistaThe number of
distinct local optima is given as percentage of the numbdocez| optima generated,;
the LOLIB value is over 13000 trials explaining in part theywkw value.

Class Avg.Dist (%) from best known Avg. (%) distinct local optima
LOLIB 5.84 58.55

SGB 10.51 81.18

XLOLIB 26.27 100

MBLB 0.43 82.02

LMC-LOP 23.22 100

)= |~ ST ar= |- @-d2 6
m—1= z ’ m—1i= Z ’

and f, d are the averages over the séts= {f,...,fm} andD = {dy,...,d,},
respectively. 60\\/(f, d) is the sample covariance between thandd values, while
or andop are the sample standard deviationdband D, respectively. As usual, we
have—1 < p < 1. In our case, we used as the fitness the deviation from thelglob
optimum. Hence, a high, positive value pfindicates that the higher the solution
quality, the closer we get to global optima, on average aedcé, the solution quality
gives good guidance when searching for global optima. Foirtstances of the classes
LMC-LOP and XLOLIB we do not have proven optimal solutionsaagable, since
exact algorithms were not able to solve these. In this caseysed the best known
solutions instead of global optima. The best known solgtiware the best ones found
by the metaheuristics we tested in Section 7. In the caseedfMC-LOP instances of
dimension 75, these best known solutions are conjecturied tibe optimal ones, since
the same best solutions were found in many trials of the neetadtics we tested.

In addition, we used a second measure of the FDC that is iariah the original
measure. For this new measure the FDC is computed only footiakoptima with an
objective function value that is better than the medianahje function for all the local
optima that were generated. The idea behind this measuratialt the metaheuristic
should be able to easily reach a solution with such an obgfiinction value. In fact,
by a simple random restart, within few iterations the proligitof finding a solution
better than a median local optimum approaches one. Furtrefrim an analysis of

14

Table 8: Summary information fgr, the fitness distance correlation coefficient, com-
puted on the complete set of local optima.
Min 1stqu.| Median | 3rd qu.| Max Mean

LOLIB -0.1056| 0.4901| 0.6763 | 0.7833| 1.0000| 0.6189

SGB 0.2750 | 0.6297| 0.6674 | 0.7466| 0.9177| 0.6409

XLOLIB 0.2412 | 0.3925| 0.4520| 0.4907| 0.6513| 0.4484

MBLB 0.6144 | 0.7224| 0.7948 | 0.8423| 0.9395| 0.7867
LMC-LOP | 0.2876 | 0.4857| 0.5760 | 0.6493| 0.8193| 0.5662

Table 9: Summary information fgr, the easy level fitness distance correlation coeffi-
cient, computed on the local optima better thanghsy leve(see text for details).
Min 1stqu. | Median | 3rd qu. Max Mean

LOLIB -0.7214| 0.3117 | 0.5844 | 0.7493 | 0.9698 | 0.4573

SGB 0.1910 | 0.4850 | 0.5977 | 0.7247 | 0.8609 | 0.5774

XLOLIB 0.1593 | 0.2736 | 0.3245 | 0.3696 | 0.5423 | 0.3219

MBLB 0.2480 | 0.5421 | 0.6349 | 0.7031 | 0.8074 | 0.6123
LMC-LOP | 0.06305| 0.34620| 0.45340| 0.57380| 0.79050| 0.45900

the FDC relationship one should focus on the solutions warefithe more likely ones
to be encountered in the search trajectory of the metaliesridVe will refer to the
threshold on the solution quality as thasy leveand to the FDC based on the solutions
passing this bound as tleasy level FDQp’).

Table 8 and 9 summarize the information about FDC easly level FDCrespec-
tively. In general, it appears that the easy level FDC cdefiis are lower than the
standard FDC coefficients. This probably is the case beqamaguality local optima
that are far from the global optimum can have a consideraffliesince on the resulting
correlation and these poor local optima are eliminated wiimgosing the "easy level”
bound. For some instance the valuep@ndp’ are strongly positive, suggesting that
these instances should be relatively easy for restart tigpeithms [20].

In Figure 3 we show some example FDC plots for instances fribimeachmark
classes except XLOLIB. Since the range of thaxis is from zero to the maximum
distance, the plots give visual information on the typiciatahce of local optima to
the nearest global optima (see also Table 7). As we see ftheapproblems the local
optima are close to the global optima (or best known solsdictypically the average
distance is less than a third of the maximal distance. On ttrere side are the
MBLB instances, for which all the local optima are extremelgse to a global one,
the maximal distance over all instances we observed wasvilBith corresponds to
3.86% of the maximum distance. To give a more detailed patfithe fitness-distance
relationship for the MBLB instances, we plot in Figure 4 thene data as in Figure 3
but using a logarithmic scale on theaxis.

In Section 7, we will give an analysis of how the fithess diseameasure correlates
with the hardness of LOP instances for particular metakgcsi

According to the FDC analysis and the FDC plots, the MBLBanses would be

15

stabus mat

o
< o
2 —
3
] o
@
< o |
a —
E o
£ 5
s | ... -
CD
[a)
o
° N T T T
0 500 1000 1500
Distance;
p20.6972303 p =0.7989547

sgSOo?t%%O.mat

3.0

2.0
1

Dev. (%) from b.k. solution
1.0
1
> @

T 1 T T T T T
0 500 1500 2500
Distance
p:0.683814 P =0.5854774
BLB
rzd\geb.mat
wn
P
o o
c o
S o
5 o
2 g
< o
Qo
£
e v
D =T |
g 3
>
3
o o
S 4
o T T T T T
0 5000 10000 15000 20000
Distance;
p20.7212155 p =0.4790354
HER
.5.mat
v
c -
2
3
o
7}
. o
= -
Qo
£
2
:: n
S o 7
P
CD
o
o
S 4

0 500 1000

Distance;
p20.5551284 p =0.2917459

Dev. (%) from b.k. solution Dev. (%) from b.k. solution Dev. (%) from b.k. solution

Dev. (%) from b.k. solution

16

0.8

0.6

02 04

00 02 04 06 08 1.0 0.0

0.02 0.04 0.06

0.00

02 04 06 08

0.0

LOLIB
t65wllxx.mat
o
o
o
L)
L)
o
T T T T T
0 200 400 600 800
Distance;
p20.7560137 p =0.6511237

sgSlogt%%O.mat

0 500 1500 2500
Distance
p20.3406085 P =0.1909829
B
1908 fhat
o
o
o
T T T T T T
0 2000 6000 10000
Distance;
p20.6993844 p =0.5672307
%S—LOP
.3.mat
%

o
oegﬁ
T T

0

5000 10000 15000 20000
Distance;
p20.6075786 p =0.5995912

Figure 3: Examples of FDC plots. On theaxis is given the distance to the nearest
global optimum (or best known solution if optima are not @oyand on the axis
the percentage deviation from optimum or best known satutidhe dashed line indi-
cates the median deviation from the best known or globaltintgd solution over the

randomly generated local optima.

rzd\ggb.l?nat rl%gf .'Fj’nat

n

—

g - = oo

(e}
Q —

c c o
K] K]
5 o 2 1
3 9 3
< ° < 3
o o o
£ £
= o]
-~ u =
g S -- M- - € s
B o i > —
> 3 ©
[a) [a)

g g |

S T T T T © T T T T T

1 10 100 1000 10000 1 10 100 1000 10000
Distance Distance
p =0.7212155 p’ =0.4790354 p =0.6993844 p' =0.5672307

Figure 4: FDC plots for two MBLB instances; here th@xis uses a log scale.

predicted to be the easiest ones, when abstracting fromipstance size. This is
the case because of the very high FDC coefficients and thesotnation of the local
optima in a very tiny part of the whole search space. A furt@nfirmation of this
impression is given by the analysis of the landscape rugegdihrough the correla-
tion length of random walks. In fact, later experimentaltessuggest that MBLB
instances are actually easily solved, while XLOLIB and LMOP instances of a sim-
ilar size to the MBLB instances are by far harder to solve fetaheuristics but also for
exact algorithms. An additional, interesting observat®that the landscape analysis
would suggest that the characteristics of the XLOLIB instare slightly different
from the original LOLIB instances, differently from the sttural analysis of these in-
stances. In fact, the later experimental evaluation shahatdXLOLIB instances are
much harder to solve than LOLIB instances (see also expatahevaluation in Sec-
tion 7) and this observation gives an indication that thiilemay not only be due to
their larger size.

6 Metaheuristics

The results of the search space analysis of the LOP suggésh#thods that are able
to exploit both the good performances of the local searothtae often highly positive
fithess distance correlation are promising for this probleBarlier research results
suggest that two metaheuristics that have these chasiitiedre Iterated Local Search
(ILS), and Memetic Algorithms (MAs) [5, 20, 19].

17

Algorithm 1 Algorithmic outline of an ILS algorithm.

7 < GeneratelnitialSolutiof);
7 + LocalSearckwr);
repeat
7' « Perturbatior(r);
7' « LocalSearclr');
m < AcceptanceCriteriofrr, 7', history);
until termination condition met;

6.1 |Iterated Local Search

Iterated local search (ILS) is a conceptually very simpliedbithe same time very pow-
erful, metaheuristic, as shown by a number of availableiegipbns results [18]. ILS
iterates in a particular way over the local search procesgpplying three main steps:
(i) perturb a locally optimal solution, (ii) locally optireé it with the local search cho-
sen and (iii) choose, based on some acceptance criteriespthtion that undergoes
the next perturbation phase. Algorithm 1 describes thergéakgorithmic outline for
ILS. Next, we indicate the possibilities we considered fa final ILS algorithm.

e GeneratelnitialSolutionThe initial solution is taken to be a random permutation.

e LocalSearch The local search procedure is the core of the algorithm hed t
overall ILS performance depends strongly on it. For the Iigbathm, we use
the LSy local search, which was the best performing according t¢i&e8.

e Perturbation As perturbation operator we usé@tterchangemoves, because it
is a move that cannot be undone by insert moves in one stepniinber of
interchangamoves to be applied in a perturbation is a parameter of troeitign.

e AcceptanceCriterion It determines to which solution the next perturbation is
applied. We tried different approaches, the final choice lottv one to be used
was made using an automatic tuning procedure.

Accept better: A new local optimum is accepted only if the objective funatio
is larger than the current best solution, that isf (8') > f();

Accept small worsening: A new local optimum is accepted if the objective func-
tion f(=') is larger thar(1 — €) = f (7), wheree is a parameter to be tuned;

Simulated annealing like: We apply a probabilistic acceptance/rejection test
based on the standard Metropolis acceptance criteriominlated anneal-
ing [15]. In this case, the parameters to be tuned are thalitétnperature,
the temperature cooling ratio, and the number of step betwersecutive
temperature reductions.

6.2 Memetic Algorithm

Memetic algorithms are evolutionary algorithms that atamately coupled with local
search algorithms, resulting in a population-based algorithat effectively searches

18

Algorithm 2 Algorithmic outline of an memetic algorithm.

Population + {};
for i=1...mdo {m is the number of individuals
m + Local Search(Generate RandomSolution());
Population < Population U {r};
end for
repeat
Offsprings« {};
for i + 1...#crossoversdo
draw m,, 7, from Population
Offsprings« OffspringsJ {LocalSearckCrossovefr,, m))};
end for
for i < 1...#mutations do
draw 7, from Population
Offsprings« OffspringsJ {LocalSearckMutatg(r,))};
end for
Population«+ SelectBegPopulationu Offspringsm);
if same average solution quality for a long tithen {diversificatior}
Population+ SelectBegPopulation 1);
for i=1...m-1do {m is the number of individuals
7 + LocalSearcfiGenerateRandomSolutiQ;
Population«+ PopulationJ {r};
end for
end if
until termination condition met;

in the space of local optima [23].

Algorithm 2 shows the algorithmic scheme of MAs that we useddr implemen-
tation. In the first step @opulationof individualsis obtained by first generating
distinct random permutations and applying to eddy. Then, in each iteratiorgén-
eration) a number of new individuals are created by applyéngssoverandmutation
operators (in the literature these new individuals areedaiffspringd. The individ-
uals to whichcrossoverand mutationare applied are chosen randomly according to
a uniform distribution as in several other, high performMgs [19]. The crossover
operator takes two individuals of the current populatiod emmbines them into a new
individual, while the mutation operator introduces a pdration into an individual. To
each of the offspring’S; is applied. Finally, the best individuals from the original
population and the newly generated ones are selected faoretigopulation; care is
taken to eliminate duplicates.

In addition to this rather standard scheme for MAs, we useearsification mech-
anism that is triggered if the average objective functionthd population has not
changed for a number of steps. In this case, we generate aaream initial popula-
tion, keeping only the overall best individual.

It is well known that the performance of an MA may depend gtgon the cross-

19

(@) (b)

w4l slls] 2l sllsllz]slla] «'a]ls]ls]l2]s]s]l7](s] (1]
Gl |ICY I (2| Y Y I R e Y 13 I 12 {3 | [(Y

t t
) (d

wta]slls]l2][slls]lz]sla] *a]ls]s]l2]s]s]l7]s][]
ml2]s](or)] [el=) 2] (5] 2] e](edz]) (6] 5] (2] (5]

Figure 5: (a) DPX operator: the positions marked with a eirmte common in the
parents; (b) CX operator: the positions marked with a ciaciecommon in the parents
(c) OB operator: the positions marked with a circle are tloedered elements (= 5);
(d) Rank operator

over operator. Therefore, we tested four different ones.

DPX (Fig. 5a): The offspring inherits the elements that havesdrae position in both
parents; these are put in the same position as in the paréhes.others ele-
ment are assigned randomly between those position thabaohasen yet. This
results in an offspring that, on average, has a same disfeoroeboth parents.

CX (Fig. 5b): The idea of CX is to keep as much information as ips&om the par-
ents. For the elements in common between the parents it Weelkthe previous
operator. For the others, the CX operator chooses randaméyrgpty position
(¢) and a parentA!), determining an element(a = «}) that in turn is assigned
to the offspring in position. In the second parent?, a different elemert = 72
occupies this same positian The elemenb is then copied to the offspring in
the position occupied by in 7!, This process iterates until all the position are
filled (see [21]).

OB (Fig. 5c¢, order based): In the first phase the solution of tisefiarent is copied to
the offspring. In the second phase it seldefositions,0 < k < n, and orders
the elements in thege positions according to their order in the second parent
(see [32]);

Rank (Fig. 5d): The offspring permutation is obtained sorting tiements by their
average ranking over the two parents, ties are broken ralydameoording to a
uniform distribution.

20

6.3 Parameter tuning

The tuning of the ILS and the MA algorithm was done in a syst&natatistically
well-funded approach. We have developed a number of differ@ndidate configura-
tions for the two algorithms, 78 in the ILS case and 144 in th& ¢ase, and a final
configuration was selected using an automatic tuning proegased on F-races [4].
The F-race returns the configuration of a metaheuristit pgdorms best with respect
to some evaluation metric on a number of instances that acfas parameter tuning.
In our case, parameter tuning was done using XLOLIB instainésize 100. Notice
that the instances used for tuning are different from thetsmis in the benchmark sets
on which the computational results are presented in theviddlg. Hence, we have a
clear separation of the instances into training instanessy] for parameter tuning and
test instances, on which the final results are presented.

Certainly, it may be argued that tuning the algorithms ongpeific instance class
and testing them in possibly different ones may give a biabénresults. However,
this procedure gives also an impression of the robustneas afigorithm, since we
can examine how the performance on one instance class tjpeer® a wider set
of instances. Additionally, we did further experimentdites different configurations
when deemed necessary (see, for example, Section 7.3gtsorttore complete picture
of the overall performance can be obtained.

Inthe ILS case, the tuning concerned mainly the acceptaiteeion to be used and
the strength of the perturbation. The final configurationmetd uses the acceptance
criterion that accepts slightly worsening solutions wits 0.0001 and the perturbation
consists of Anterchangemoves.

In the MA case, we performed some exploratory experimerfréapplying the
actual tuning procedure. In this preliminary experimentfaund that the CX and OB
crossovers gave best results. Therefore, we considergdrede two in the automatic
tuning phase. Mutations are obtained by applyingithéerchange operation on an
individual. The number the operation is applied is a pareamete fixed this parameter
to 7, so that the mutation corresponds to the perturbatitmalLS case. In the actual
tuning phase with the F-races we considered 144 differemfigarations (more than
for ILS, but ILS has few parameters). We compared the onerdsatited to be the
best to the two extreme cases that are an MA without crossmapne without mu-
tations. This final comparison let to the choice of the confitjon with no mutation,
supposedly, because the partial restarts were enoughréalirte diversification into
the search, making the mutation unnecessary. The final eoafign had a population
size of 25 individuals, every generation 11 new offsprings farmed using the OB
crossover operator, and the diversification was appliext #fe average fitness of the
population has not changed for 30 generations.

7 Experimental results
In this section we study the performance of ILS and MA and caraphem to results

from the literature. The algorithms were run on dual prosesshlon 2400+ machine
with a clock speed of 2GHz and with 1GB of RAM; since the altforis were imple-

21

mented as single processes (no threads) only one proceasausgd at time. Each
algorithm has been run 100 times on each instance from LOMBL.B, and SGB
and 30 times on the XLOLIB and the LMC-LOP instances. For tkgeeiments a
CPU time limit of 120 seconds was fixed, only runs that reachecknown optimum
solution value were aborted prematurély.

The performance analysis is divided into two parts, in thet ine we consider the
instances for which we know the optimal or the conjecturetihagd objective function
value, while in the second the other instances are considBiext, different aspects of
the algorithms are analyzed in more detail and the reswdts@npared to literature.

7.1 Instanceswith known optimal solutions

Max completion time Max completion time
(MBLB) (LMC-LOP 75)
o
R -
/ — /
8 - // o //
— o -
/, - /,
o 4 4
® // 8 _ //
e e

o _| 4 4

4 4
gr 1 // g 1 //

4 4
e e
& L7 S !
e e
/ o 4 o
o Jase o ° o ° o J&o®o "> ° Pa@ oo
T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 120
ILS ILS

Figure 6: Pairwise comparison of ILS and MA with respect ®itiaximum time taken
to solve MBLB (left) and LMC-LOP (right) instances. Each potorresponds to one
instance; theg-axis indicates the maximum computation time of ILS and ghexis
gives the maximum computation time for the MA.

For all LOLIB, SGB, MBLB instances we were able to determimedptima, using
an exact algorithm that is presented in [22]. The same dlguaris not able to find
solutions for the instances of the other classes in reas®namputation time (this was
tested running randomly chosen instances for 18 hours)theoinstances of size 75
in LMC-LOP, we observed that the MA was finding for each instaa same objective
function value; the very same value was the best found by Wtgch, however, did

2To give some impression of the time limits, let us state thatttme taken to apply 1000 times ¢
starting from random solutions on the75eec _250.mat instance from XLOLIB of size 250 took 5.86
seconds.

22

not reach such a solution in every single trial. Thereforstvongly suppose that this
value is optimal and we used it as (conjectured) global amtinfior our analysis. In
fact, the generated solutions were found to be unique. Bakithat we conjecture to
be global optima will also be called pseudo-optima in théofeing.

Experiments with MA and ILS showed that the LOLIB and SGB amstes are
extremely easy and cannot be considered as challengindimanks for state-of-the-
art metaheuristics. In fact, the longest of the 100 trial$Ltsy and MA for any of the
instances of LOLIB took less than 0.1 seconds and less ti#ase@onds for the SGB
instances.

For MBLB the situation is different. While the MA obtainedryegood results and
the maximum time to solve an instance was 6.5 seconds, thiks&sr ILS were much
worse, as shown in Figure 6 on the left. In fact, for 2 instartbe ILS algorithm failed
to find an optimum in all the runs (once in one instance, thireed for the other one)
and when it succeeded, it took much longer than the MA.

d75.5.mat d75.12.mat

1.0
1.0

0.8
|
0.8
|

0.6
0.6

0.4
|
0.4
|

0.2
0.2

/ — ILS
4 - - MA

- - MA

empirical probability of best known solution
~
empirical probability of best known solution

0.0

T T T T T T T T T T
le-02 1le-01 1e+00 1e+01 1e+02 le-02 1le-01 1e+00 1e+01 1e+02

0.0

time (s) time (s)

Figure 7: Run time distributions for the hardest LMC-LOPtames of size 75. Given
is on thez-axis the computation time and on theaxis the empirical cumulative prob-
ability of finding a pseudo-optimal solution.

Somewhat stronger tradeoffs between MA and ILS performbacame noticeable
on the LMC-LOP instances of size 75 (Figure 6, right). Helne, MA obtained much
better results than ILS: First, as said above, the MA was tabfind the best known
solutions in all the 30 runs, while ILS could reach the samellef performance only
for 12 instances. For seven instances, it found the best kp@rmutation even in less
than 50% of the runs.

To give a more detailed impression of the behavior of the MA #re ILS al-
gorithm, for selected instanced we examined the run-tirs&idutions that give the

23

empirical probability of finding a global optimum (or a bouond the solution quality)
in dependence of the computation time [12]. Figure 7 givesRhDs for the two hard-
est LMC-LOP instances of size 75 as judged by the computti@sults of ILS. In
both cases, ILS finds the best known solution in only 11 oufdfials. The plots show
that (i) the probability of finding such a solution for the MAcreases continously and
quickly reaches one, suggesting that MA is preferable tdltBdor computation times
in the range of a few seconds and (ii) that the ILS algorithoffess from a type of
stagnation behavior that strongly compromises its peréoma.

In fact, the observation of search stagnation suggestsltBgterformance can be
strongly improved by including additional means of searekmification [30]. There-
fore, we introduced a simple diversification step for the th&t restarts the algorithm
from a new random solution, if no improved solution is fournd & numbem,,; of
iterations. The parameter,; was set (without tuning) to 750, which is the same num-
ber of solutions visited by the MA before the diversificatirp is applied. The new
algorithm (ILSR) strongly improved over the “standard” ILS, although i diot fully
reach the level of performance of the MA. Certainly, IRScould be improved by
additional tuning or by using more sophisticated ways ofdediversification in ILS.

Finally, we compare the computational results of MA to ancexadgorithm by
Mitchell and Borchers (SimpMB) [22], which is based on thenBlex algorithm and
that uses a branch and bound procedure to find an integeiosoliigure 8 gives a
visual comparison of the results on the LOLIB and MBLB instas1 MA is clearly
much faster than SimpMB, often by several orders of mageituithe much superior
performance of MA over SimpMB is further confirmed by the fa@t SimpMB was
not able to solve any instances of XLOLIB or LMC-LOP within nyahours of com-
putation time.

7.2 Instances with unknown global optima

For the XLOLIB and the LMC-LOP instances with matrices of dimsion larger than
75 no optimal or pseudo-optimal solutions are known. Tlareefwe restricted the
comparison of MA and ILS to a statistical analysis of the gualf the solutions re-
turned by the two algorithms after the maximum computatimet The overall result
was that for the large instances of LMC-LOP, the MA obtainsrage results that are
significantly better than those of ILS, as confirmed by a Witmotest witha: = 0.01.
Similarily, the MA gives better performance on the XLOLIBstances. This is true for
the instances of dimension 150, as indicated by a Wilcoxsivigh o = 0.01; how-
ever, for the large instances of dimensionality 250, noificant differences between
the MA and the ILS could be found. The computational resubts/gsualized in Figure
9.

7.3 Tuning effect for ILS

The results presented in Section 7.1 for ILS on the MBLB insé&s are actually much
worse than those presented in an earlier article with aréiffid LS algorithm [25] using
theCK local search and different parameter settings for the peation size (there 5
interchangemoves) and the accetpance criterion (there, only bettditgsalutions

24

Max completion time Max completion time

(LOLIB) (MBLB)
0 S
™ V (=} 7’
7/ N 7/
o 4 7/
o ’ 7
4 o 4
10 ’ 3 ’
T ’ = ’
7/ 7/
o ’ ’
< © d < 8 ,7
= 0 ’ = =1 ’
‘_i - 7 7
4 4
S - . g 2
8
0 // o //
L— Vs 7/
© 7/ 7/
4 4
S {mamw o o@ ° o o 1maw o® o
T T T T T T T T T T T T T
00 05 10 15 20 25 3.0 35 0 500 1000 1500 2000
SimpMB SimpMB

Figure 8: Pairwise comparison of SimpMB (indicated as eraethod) to MA for the
LOLIB and MBLB instances. For each instance, the time giventfie MA is the
maximum time over 100 trials to find a globally optimal sabuti(y-axis), while the
timing for SimbMB (given in thez-axis) is obtained from running it once, because it
is a deterministic algorithm.

were accepted). Hence, we suspect that the main reasonefOpdlor’ performance
of ILS is that the configuration returned from the automatitg procedure performs
poorly on MBLB instances. Hence, we tested again this edili® implementation,
referring to it in the following as ILSv5, with the only diffence that now we use the
LSy local search instead ¢iK.

In fact, ILSV5 resulted to be far better than ILS; it was aldedach the optimal
solution in all trials for every instance, and the compuatatimes were even smaller
than that of MA, as Figure 10 shows. The hardest instance alasdsby ILSV5 in a
maximum computation time of less than 5 seconds, while hBinstances took less
than one second.

These result suggest, in turn, that ILSv5 may perform béttan ILS also on other
instance classes. We tested this conjecture on the LMC-h&tBrices of dimension 75
and the XLOLIB instances of size 150. For these instancegonguted the average
deviation from the best known solutions and plotted thed&iguire 11; the results is
that ILSV5 is significantly worse than ILS on these instances

Overall, these results suggest that the performance of MAdie robust with re-
spect to the various instance classes than ILS. This cdoolesn be drawn because
(i) ILS and MA were only tuned on the dimension 100 instancemfXLOLIB, but
MA shows, in general, good behavior across all instanceseiaand (ii) variants of
ILS that differ only in some details of the parameter tuningkm a large difference to

25

LMC-LOP XLOLIB

o
™ - X
O 150 e O 150

© X 200 0 X 250
. S - -~ © X
g ° S X, -
s e o .
c c N 4 L
S s o XX
8 < 8 X .
S S S L X X
& s . 3 27 %% XOX;@ 0
8 3
g Soxox g 3 X Ko X
< 9 4 X% X < © X FERX o
= o S XX X = o ©8x

XY 50 S > 0Q®
o8 %)X o B Q ©
817 #Bx B oo oo g8 4.0~ ke
T T T T T T T T T T T
0.00 0.02 0.04 0.06 0.00 0.10 0.20 0.30
ILS mean deviation (%) ILS mean deviation (%)

Figure 9: Pairwise comparison of the average solution tyuabtained by ILS and
MA, on large LMC-LOP instances (left) and XLOLIB instanceigfit). The results are
grouped according to the different instance sizes (indithy crosses or circles). Each
cross (circle) gives on the-axis the average deviation from the best known solution
found by ILS and on thg-axis that of the MA.

ILS performance and, hence, make parameter settings strdegendent on instance
classes.

7.4 FDC and instance hardness

The experiments with ILS on the LMC-LOP instances indichtg tLS has significant
difficulties for solving all the instances in all the runs. ©mreason may be that ILS is
attracted to high quality solutions that may be far from aglty optimal one. But, if
this is the case, it is likely that ILS shows such a behavianstances with a low FDC
value.

This conjecture is examined by analyzing ILS results in deleace of the FDC
coefficientp and the easy level FDC coefficiept As an index of how hard is an
instance for ILS, we used the average deviation from thekyestn solutions and the
number of best known solutions returned by ILS over 30 tridlke plots in Figure
12 illustrate graphically the relationship of these measuo the FDC and easy level
FDC and show that these search space characteristicsthffdrardness of an instance
as encountered by ILS. The FDC has a strong negative coorelaith the average
deviation from the optima found by ILS and a strong positine avith the number of
global optima. Summarizing, the higher is the FDC the edseome the instances for
ILS, as we conjectured. A slightly stronger correlation liserved for theeasy level

26

Max completion time Max completion time

(MBLB) (MBLB)
4 o 4
e — e
g , © ,
= , ’
, o - ,
4 4
8 4 ’ ’
4 4
o // < o //
= 3 1 ’ < ’
) © ’ = o ’
- 4 4
o _| ’ o ’
< // ~ 4 //
4 4
o _| ’ 8. -
Y - — ng
// //
’ o /
o @ o o o o o |8 ©°
T T T T T T T T T T T T T
0 20 40 60 80 100 0 1 2 3 4 5 6

ILS ILSV5

Figure 10: Pairwise comparison of ILSv5 to ILS (left) and 11530 MA (right) based
on the maximum time measured across 100 trials to find a diobyatiimal solution on
MBLB instances.

FDC, which may suggest that the easy level FDC is betterdtotpredict the instance
hardness for ILS.

7.5 Comparison

In the literature, we find three main metaheuristic appreach the LOP. In [7], Cam-
pos, Laguna, and Marti proposed the application of Sc&arch (SS) to the LOP
and they discussed several ways of how to implement an S®aqipto the LOP.
The same authors studied an elite tabu search algorithmaaliditional diversifica-
tion features for the LOP [17]. In this latter article, thdg@presented the instance
class LMC-LOP. The most recent metaheuristic applicatiwritie LOP is the iterated
dynasearch (IDS) of Congram [9]. Dynasearch is a local seglgorithm where a dy-
namic programming approach is used to find the best set operdteninsertmoves
(two moves are independent if they do not overlap); iterdigthsearch is then simply
an ILS algorithm that uses dynasearch in the local searph ste

In the following, we give some comparisons on the solutioaligyiand the timings
between the different available approaches. However, wewariered several difficul-
ties for doing so. The least severe probably is that the éxjats in these articles
were run on different machines. Using [29] and some expeartiai¢est we evaluated
that the machine we use is 21 time faster than the Intel Parité6Mhz used in [7, 17]

3The scatter search of [6] differs only in minor details frdme bne in [7] and the results are essentially
very similar. Therefore, we focus in the following on theulks presented in the first article.

27

LME-LOP X QB

T} X X X
S] X X o X
o -
g 34 X S } X X
< o =1 T XX
S S X
g o ¥ X g] * &%
g o % X g ©° X X ¥
g R R M
£ S X X £ x’ag)b/(X '
o
9 XX e 34 x X
4 g1 «x 4 2 & -
o §< 1 x
o . o
S X S -
° T T T T T T T T T T T T T T
0.00 0.01 0.02 0.03 0.04 0.05 0.00 0.10 0.20 0.30
ILS mean deviation (%) ILS mean deviation (%)

Figure 11: Pairwise comparison between the ILS and ILSv5 MCH.OP and
XLOLIB instances. Each cross gives on thexis the average deviation from the
best known solution found by ILS and on thexis that of ILSv5.

and 15 times faster than the Power Challenge R10000 usedl im[9able 10 we re-
port some results for the instance classes studied in [B]1The major difficulty for
the comparison we found were that not enough details weengivthese articles to
allow a detailed comparison. First, the termination ciiteapplied to ETS and IDS is
not clearly stated, neither how many trials were run on tfferdint available instances.
Second, the “average deviation” is the mean of the resubts @lV/the instances of the
considered class; however is not clear which results arerteg (for example, if it is
the mean over the experiments or the best results obtaiBedause of these problems
it is not possible to establish if the number of optima givethiese articles is the num-
ber of instances for which the algorithm was able to get atleace a global optimum,
always the optimum, or the result after just one run. To behemntost cautious side
(that is, to let the reported results appear in the best pleskght), we will assume
that averages for SS, ETS, and IDS are given as averages béstsolutions found
and that the number of optima is the number of instances tieaalavays solved to
optimality.

For the results of MA and ILS, we report the average deviatimmputed over all
results obtained in 100 runs for LOLIB and 30 runs for LMC-L@®Btances. (Note,
that for these instances the MA found optimal solutions ichesingle trial for all the
instances of LOLIB and LMC-LOP.) For the time we indicate #verage time to find
an optimal solution when it was found. As the number of optwmesreport how many
instances were solved to the optimum in all the considerad by the MA, while for
ILS we additionally give the number of instances for whichlabgl optimum was

28

LMC-LOP (size 75)

LMC-LOP (size 75)

o o o o
s S s S
£ o o e o o
§ _ § _
g g ° g 8]°
> = > =
g 3 0® g 3 o
S 7 o S 7 o
g g — lo) g g — lo)
g o o g o %
9 1 o° 9 1 o
- o - o
8 0 Od® ® 8 o _ofdom 0o o
o T T T T T T o T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FDC easy level FDC
average vs. FDC correlation: —0.5689 average vs. e.l. FDC correlation: —0.6254
LMC-LOP (size 75) LMC-LOP (size 75)
S - 0 ®@DO ® S - O O0®O® 0O O
o o o
s &7 ° s Q7 o
5 5
H* N H+ «
2 o 2 o
o _l o o _l o
- o - o
o) o o
@® o o
[oXe) oo
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
FDC easy level FDC

optima vs. FDC correlation: 0.7016 # optima vs. e.l. FDC correlation: 0.7946
Figure 12: FDC affects the instance hardness. Shown are @lthe average percent-
age deviation from pseudo-optimal solutions for ILS (in fingt row) and the number
of best known solutions found by ILS (second row) versus th€ left column) and
the easy level FDC (right column). In addition, are givendbgrelations between each
pair of measures.

29

Table 10: Comparison our ILS and MA algorithm to three algoms from the liter-
ature. Avg.Dev.(%) gives the average percentage devitiom the known optimal
solutions, # optima the number of optimal solutions foumuh, time(s) gives the run-
times reported in the original papers, and "P166 run time”tae computation times
translated to a 166 Mhz Pentium ng

ETS| IDS | ILS MA
Avg.Dev.(%) | 0.01| 0.00| 0.00 | 0.00 | 0.00
LOLIB # optima 42 | 47 | 49 49 49

run time(s) 3.82| 0.93| 1.22 | 0.00165| 0.00176
P166 runtime| 3.82| 0.93| 0.30 0.35 0.37

Avg. Dev.(%) | — | 0.05| 0.00 | 0.0072 0.00
LMC-LOP # optima - 3 25 13(25) 25
size: 75 run time(s) — | 2.95| 10.56| 6.58 0.38
P166 runtimel — | 2.95| 38.25| 138.15 7.90

Table 11: Comparison of ILS and MA to ETS on large LMC-LOP &mstes. Given
is the average percentage deviation from the best knowrticod, averaged over all
trials and all instances.

size| ETS| ILS | MA

150 | 0.18 | 0.029| 0.0022

200‘ 0.19‘ 0.033‘ 0.015

found at least once.

Regarding the results in Table 10, let us remark the followim [9] is reported
that the IDS was able to obtain always the same best resuftddrMC-LOP instances.
Therefore, we assumed that this is the very same result veenglot (and, hence, the
resulting average deviation of 0.0 for IDS in Table 10 frora best known solution).
Instead, for ETS we can give precise results, because DaeRdfrti send us a spread-
sheet containing the results of ETS for each instance.

When comparing the results in Table 10, it is clear that, ewsder the cautious
assumptions about the results of SS, ETS, and IDS, our ILSVERa@lgorithms are
extremely competitive to the earlier proposed metahaéadgtproaches to the LOP. In
fact, ILS and MA outperform ETS and SS on the LOLIB instances are roughly
on par with IDS. On the small LMC-LOP instances, ILS and MAuratmuch better
quality solutions than ETS at, however, higher computatimes. Our ILS appears to
perform slightly worse than IDS on these instances, while $¢/ves the small LMC-
LOP instances about five times faster than IDS.

Finally, we compares the average deviation from the besivkreplutions for the
LMC-LOP instances of dimension 150 or 200 for ETS, ILS, and MAable 11. (Note
that ETS results were adjusted to the new best known sokifiamthese instances.)
The results show that ILS and MA yield by far better qualitjusions than ETS; how-
ever, itis not clear how the computation times of the thrgerdhms compare, because
not enough details are given in [17].

The overall result of the comparison is that, in particulae MA obtains an ex-

30

tremely encouraging performance both, from the point ofwig the time and the
solution quality reached. In fact, even when being caut@msut the experimental
conditions used in the other papers, our results suggestitbaMA is a new, very
robust state-of-the-art algorithm for the LOP.

8 Conclusions

In this paper we have given a detailed analysis of benchnmatiamces for the LOP.
These include a new class of instances, called XLOLBie instances of this class
are randomly generated through sampling real-world icggwhich allows to derive
large, random real-world like instances. In fact, crosdistical data on the distri-
bution of the matrix entries of XLOLIB instances are badicéthe same as those of
the underlying real-world instances from LOLIB. Howevéme tsearch space analysis
showed some discrepancy between the original LOLIB ingtsianid the newly gener-
ated XLOLIB instances. Nevertheless, XLOLIB instancesagpio be much closer to
real-world instances than instances from other, randoemggated classes like MBLB
or LMC-LOP instances.

The search space analysis of LOP instances showed thatmstestées have high
correlation length, suggesting that, in general, the LOPaisy to solve when com-
pared to other problems [2]. Furthermore, most LOP instaithee also a high fitness
distance correlation. Notable exceptions occur for a fevIRdnstances, where even
negative fithness distance correlations were found. Comagmeasures of search space
characteristics, we introduced a new way to measure the RIB{ch we named “easy
level FDC". This measure tries to consider the fact that metiaistics actually search
through high quality local optima and the central idea ofdhsy level FDC is to focus
the analysis on high quality solutions. In fact, the easgll&DC showed a better cor-
relation to the instance hardness for of small LMC-LOP insé&s for ILS algorithms
than the standard way of determining FDC.

Based on the results of the search space analysis and thediiglon quality re-
turned by simple iterative improvement algorithms, weHlartstudied efficient iterated
local search and memetic algorithms for the LOP. A comparisdween the two algo-
rithmic approaches showed that the MA resulted in a much madrest performance
with respect to the different instance classes than the lg&ithm. However, some
additional experiments have shown that the ILS algorithmase sensible to parameter
settings and that the performance of different varianteddp strongly on the instance
classes. It is an open question whether, with appropriaii@dgy ILS can reach MA's
performance on all the instance classes. A final compari$dtoand ILS perfor-
mance to other available metaheuristic approaches for@e ¢howed that our MA is
a new, very robust state-of-the-art algorithm for the LOP.

4All the instances and the best known results will be publishe the WWW at the addresstp:
/lintellektik.informatik.tu-darmstadt.de/"schiavin/ lop for their easy access.

31

Acknowledgments

The authors would wish to thank Prof. John Mitchell and DiaBBorchers for making
available the code of their exact algorithm. We thank alsoR&fael Marti for sending
to us the LMC-LOP instances and the results they obtaindutivt Tabu Search.

This work was supported by the “Metaheuristics Network”, es€arch Training
Network funded by the Improving Human Potential programri¢he CEC, grant
HPRN-CT-1999-00106. The information provided is the selgponsibility of the au-
thors and does not reflect the Community’s opinion. The Conityis not responsible
for any use that might be made of data appearing in this patidic.

References

[1]

(2]

[3]

[4]

[5]

E. Angel and V. Zissimopoulos. Autocorrelation coeffict for the graph biparti-
tioning problem.Theoretical Computer SciencE1:229-243, 1998.

E. Angel and V. Zissimopoulos. On the classification of-bifmplete problems in
terms of their correlation coefficieriDiscrete Applied Mathematic89:261-277,
2000.

O. Becker. Das Helmstadtersche Reihenfolgeproblemie- Effizienz ver-
schiedener Naherungsverfahren.damputer uses in the Social Sciengéen,
January 1967.

M. Birattari, Thomas Stitzle, L. Paquete, and K. Vatrapp. A racing algorithm
for configuring metaheuristics. In W. B. Langdon et al., ediProceedings of
the Genetic and Evolutionary Computation Conference (GB€0D02) pages
11-18. Morgan Kaufmann Publishers, San Francisco, CA, 2002

K.D. Boese.Models for Iterative Global OptimizatiorPhD thesis, University of
California, Computer Science Department, Los Angeles, @34, 1996.

[6] V. Campos, F. Glover, M. Laguna, and R. Marti. An expegittal evaluation of

a scatter search for the linear ordering probldaournal of Global Optimization
21(4):397-414, 2001.

[7] V. Campos, M. Laguna, and R. Marti. Scatter search fer lthear ordering

[8]

[9]

(10]

problem. In D. Corne et al., editoew Ideas in Optimizatigrpages 331-339.
McGraw-Hill, 1999.

S. Chanas and P. Kobylanski. A new heuristic algorithiaiag the linear order-
ing problem.Computational Optimization and Applicatigr&s191-205, 1996.

R. K. Congram. Polynomially Searchable Exponential Neighbourhoods &+ S
quencing Problems in Combinatorial Optimisatio®PhD thesis, University of
Southampton, Faculty of Mathematical Studies, UK, 2000.

M. Grotschel, M. Junger, and G. Reinelt. A cuttingieealgorithm for the linear
ordering problemQOperations Resear¢i32(6):1195-1220, 1984.

32

[11] M. Grotschel, M. Junger, and G. Reinelt. Optimalnigallation of large real world
input—output matricesStatistische Hefte25:261—-295, 1984.

[12] H.H. Hoos and T. Stutzle. Evaluating Las Vegas aldponis — pitfalls and reme-
dies. InProceedings of the Fourteenth Conference on Uncertain#riificial
Intelligence (UAI-98)pages 238-245. Morgan Kaufmann, San Francisco, 1998.

[13] T. Jones and S. Forrest. Fitness distance correlasoa measure of problem
difficulty for genetic algorithms. In L.J. Eshelman, edjt8roc. of the 6th Inter-
national Conference on Genetic Algorithnpgges 184-192. Morgan Kaufman,
San Francisco, 1995.

[14] R. Kaas. A branch and bound algorithm for the acyclicggaph problemEuro-
pean Journal of Operational Resear@355—-362, 1981.

[15] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Opimation by simulated
annealing Science220:671-680, 1983.

[16] D.E.Knuth.The Stanford GraphBase: A Platform for Combinatorial Cotivpy!
Addison Wesley, New York, 1993.

[17] M. Laguna, R. Marti, and V. Campos. Intensification digrsification with elite
tabu search solutions for the linear ordering problé@omputers & Operations
Research26(12):1217-1230, 1999.

[18] H. R. Lourenco, O. Martin, and T. Stutzle. Iterateddbsearch. In F. Glover
and G. Kochenberger, editotdandbook of Metaheuristicsolume 57 ofinter-
national Series in Operations Research & Management Sejgages 321-353.
Kluwer Academic Publishers, Norwell, MA, 2002.

[19] P. Merz.Memetic Algorithms for Combinatorial Optimization Probis: Fitness
Landscapes and Effective Search StratedisD thesis, Department of Electrical
Engineering and Computer Science, University of Siegenm@ay, 2000, 2000.

[20] P. Merz and B. Freisleben. Fitness landscapes and neeatgorithm design. In
D. Corne, M. Dorigo, and F. Glover, editofdew Ideas in Optimizatigrpages
245-260. McGraw-Hill, London, 1999.

[21] P. Merz and B. Freisleben. Fitness landscape analysisveemetic algorithms
for the quadratic assignment problelBEE Transactions on Evolutionary Com-
putation 4(4):337-352, 2000.

[22] J. E. Mitchell and B. Borchers. Solving linear orderipgpblems with a com-
bined interior point/simplex cutting plane algorithm. InlH Frenket al,, editor,
High Performance Optimizatigrpages 349-366. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000.

[23] P. Moscato and C. Cotta. A gentle introduction to memelgorithms. In
F. Glover and G. Kochenberger, editarflgndbook of Metaheuristicsolume 57
of International Series in Operations Research & Managemeigrige pages
105-144. Kluwer Academic Publishers, Norwell, MA, 2002.

33

[24] C. R. Reeves. Landscapes, operators and heuristicts@arnals of Operational
Research86:473-490, 1999.

[25] T. Schiavinotto and T. Stiitzle. Search space anabfdise linear ordering prob-
lem. In G. R. Raidl et al, editoApplications of Evolutionary Computingolume
2611 ofLecture Notes in Computer Scienqeges 322—-333. Springer Verlag,
Berlin, Germany, 2003.

[26] P. Stadler. Towards a theory of landscapes. In R. Ldpéfia, R. Capovilla,
R. Garcia-Pelayo, H. Waelbroeck, and F. Zertuche, edi@osiplex Systems and
Binary Networksvolume 461, pages 77-163, Berlin, New York, 1995. Springer
Verlag.

[27] P. Stadler. Landscapes and their correlation funstiah of Math. Chemistry
20:1-45, 1996.

[28] P. F. Stadler and W. Schnabl. The landscape of the thagedalesman problem.
Physics Letters AL61:337—344,1992.

[29] Standard Performance Evaluation Corporation. SPEQ3BPand CPU2000
Benchmarkshttp://www.spec.org/ , November 2002.

[30] T. stutzle and H. H. Hoos. Analysing the run-time babav of iterated local
search for the travelling salesman problem. In P. HanserCamibeiro, editors,
Essays and Surveys on MetaheuristiOperations Research/Computer Science
Interfaces Series, pages 589-611. Kluwer Academic PwiisiBoston, MA,
2001.

[31] T. Stutzle and H.H. HOoSM AX-MZN Ant System.Future Generation Com-
puter Systemd.6(8):889-914, 2000.

[32] G. Syswerda. Schedule optimization using geneticritlyms. In L. Davis, editor,
Handbook of Genetic Algorithm¥an Nostrand Reinhold, New York, 1990.

[33] E. D. Weinberger. Correlated and uncorrelated fitnesddcapes and how to tell
the differenceBiological Cybernetics63:325-336, 1990.

34

