
The Linear Ordering Problem: Instances, Search
Space Analysis and Algorithms

Tommaso Schiavinotto and Thomas Stützle
Darmstadt University of Technology, Computer Science Department

Alexanderstr. 10, 64283 Darmstadt, Germany�
schiavin,tom�@intellektik.informatik.tu-darmstadt.de

Abstract

The linear ordering problem is an� � -hard problem that arises in a variety of
applications. Due to its interest in practice, it has received considerable attention
and a variety of algorithmic approaches to its solution havebeen proposed. In this
paper we give a detailed search space analysis of available LOP benchmark in-
stance classes that have been used in various researches. The large fitness-distance
correlations observed for many of these instances suggest that adaptive restart al-
gorithms like iterated local search or memetic algorithms,which iteratively gener-
ate new starting solutions for a local search based on previous search experience,
are promising candidates for obtaining high performing algorithms. We therefore
experimentally compared two such algorithms and the final experimental results
suggest that, in particular, the memetic algorithm is the new state-of-the-art ap-
proach to the LOP.

1 Introduction

Given an� � � matrix� , the linear ordering problem (LOP) is the problem of finding
a permutation� of the column and row indices�	
 ���
 � � such that the value

 �� � �
��
���

��
���� � �� ���� �� �

is maximized. In other words, the goal is to find a permutationof the columns and rows
of matrix� such that the sum of the elements in the upper triangle is maximized.

The LOP arises in a large number of applications in such diverse fields as econ-
omy, sociology, graph theory, archaeology, and task scheduling [10]. Two well known
examples of the LOP are the triangularization of input-output matrices of an economy,
where the optimal ordering allows economists to extract some information about the
stability of the economy or the stratification problem in archaeology, where the LOP is
used to find the most probable chronological order of samplesfound in different sites.
The matrix that describes the problem is known as Harris Matrix.

1

The LOP is� � -hard, that is, we cannot expect a polynomial time algorithmfor
its solutions. However, the LOP arises in a variety of practical applications [10] and
therefore algorithms for its efficient solution are required. Several exact and heuristic
algorithms were proposed in the literature. Exact algorithms include a branch & bound
algorithm that uses a LP-relaxation for the lower bound by Kaas [14], a branch & cut
algorithm proposed by Grötschel, Jünger, and Reinelt [10] and a combined interior
point / cutting plane algorithm by Mitchell and Borchers [22]. State-of-the-art exact
algorithms can solve fairly large instances from specific instance classes with up to a
few hundred columns and rows, while they fail on other instances of other classes of
much smaller size. Independent of the type of instances solved, the computation time
of exact algorithms increases strongly with instance size.

The LOP was also tackled by a number of heuristic algorithms.These include con-
structive algorithms like Becker’s greedy algorithm [3], local search algorithms like
the �� heuristic by Chanas and Kobylanski [8], as well as a number ofmetaheuris-
tic approaches such as elite tabu search and scatter search,presented in a series of
papers by Martı́, Laguna, and Campos [17, 7, 6], or iterated local search (ILS) algo-
rithms [9, 25]. In particular, ILS approaches appear currently to be the most successful
metaheuristics, as judged by their performance on a number of available LOP bench-
mark instances [9, 25].

Available algorithms have typically been tested on a numberof classes of real-
world as well as randomly generated instances. However, fewis known about how the
performance of current state-of-the-art algorithms depends on specific characteristics
of the various available LOP instance classes neither how differences among the in-
stances translate into differences in their search space characteristics. First steps into
answering these open questions were undertaken in [25].

The main contributions of this article are the following. First, we give a detailed
analysis of the search space characteristics of all the instance classes introduced in the
major algorithmic contributions to the LOP. This includes astructural analysis, where
standard statistical information is gathered as well as an analysis of the main search
space characteristics such as autocorrelation [27, 33] andfitness-distance analysis [13].
A second contribution is the detailed analysis of two metaheuristics, an iterated local
search algorithm [18] and a memetic algorithm [23]. As we will see, their relative
performance depends on the particular LOP instance class towhich they are applied.
Interestingly, a detailed analysis shows that there is somecorrelation between spe-
cific search space characteristics and the hardness of the instances as encountered by
the two metaheuristics. Computational comparisons of the two algorithms to known
metaheuristic approaches establish that the memetic algorithm is a new state-of-the-art
algorithm for the LOP.

The paper is structured as follows. Section 2 gives an overview of the instance
classes that we studied. Section 3 introduces the greedy algorithm and the local search
techniques that are used by the metaheuristics. Details on the structural analysis of
the benchmark instances is given in Section 4, while Section5 describes the results of
the search space analysis. Section 6 introduces the metaheuristics we applied and the
following Section 7 gives a detailed account of the computational results. Finally, we
conclude in Section 8.

2

2 LOP instance classes

So far, researches on the LOP made use of a number of differentclasses of benchmark
instances, including instances stemming from real-world applications as well as ran-
domly generated instances. However, typically not all the instances are tackled in all
the available papers and, in addition, several of the randomly generated instances are
not available publically.

The probably most widely used class of instances are those ofLOLIB, a benchmark
library for the LOP that comprises 49 real-world instances corresponding to input-
output tables of economical flows in the EU. LOLIB is available athttp://www.
iwr.uni-heidelberg.de/iwr/comopt/soft/LOLIB/ ; for all LOLIB in-
stances optimal solutions are known [11].

Our initial results with an ILS algorithm for the LOP, which were presented in
[25], indicated that the LOLIB instances are actually too small to pose a real challenge
to state-of-the-art metaheuristic approaches and even to exact algorithms. Therefore,
we have generated through sampling the elements of the original matrix an additional
set of large, random, real-life like instances that have a similar structure as those of
LOLIB and that therefore should have the same or at least similar characteristics. We
call this instance class XLOLIB for eXtended LOLIB. We generated for each instance
of LOLIB two large instances, one of size� � 	�� and the other of size� � ���,
resulting in a total of 49 instances of size 150 and 49 instances of size 250. Initial tests
showed that these instances are well beyond the capabilities of the exact algorithm by
Mitchell and Borchers [22], one of the best performing exactalgorithms. For example,
on an instance of size 250 we aborted the program after one week computation time
without identifying an optimal solution.

A real life instance consisting of a single input-output matrix of 81 sectors of the
U.S. economy is available from the Stanford graph-base library [16], which is accessi-
ble athttp://www-cs-faculty.stanford.edu/˜knuth/sgb.html . From
this instance, we generated several smaller instances by randomly selecting sectors. In
fact, we created nine instances: three of 50 elements, threeof 65, one of 79, one of 80
and one of 81 (that is the complete matrix). We refer to this class with SGB. Instances
from the class SGB have been used in [17] and [9] to evaluate tabu search and iterated
local search algorithms. There instances of size 40, 60, and75 with 25 instances for
each size were generated.

Because LOLIB instances are rather small, Mitchell and Borchers [22] generated
large instances in their research on exact algorithms for the LOP. They generate a
matrix by first drawing numbers between 0 and 99 for the elements in the upper tri-
angular, and between 0 and 39 for the others, and then shuffling the matrix. This
technique is used in order to obtain a linearity similar to the LOLIB instances; the
linearity is the ratio of the optimal objective function over the sum of the matrix el-
ements excluding those on the diagonal. Furthermore, zerosare added to increase
the sparsity of the matrix. The range used to draw numbers is extremely limited
when compared with the values that LOLIB instances elementscan take. The idea
underlying this choice is that there should be a large numberof solutions with costs
close to the optimal value, resulting in, according to Mitchell and Borchers, hard
instances. Thirty of these instances with known optimal solutions are available at

3

http://www.rpi.edu/˜mitchj/generators/linord ,where also the gen-
erator can be found; we will refer to this instances as MBLB (Mitchell-Borchers LOP
Benchmarks). Of these available instances, five are of size 100, ten of size 150, ten
of size 200, and 5 of size 250. Even if the size of the MBLB instances is comparable
to those of XLOLIB, preliminary tests showed that MBLB instances are significantly
easier than XLOLIB instances. In fact, for all MBLB instances optimal solutions are
known.

Finally, another class of randomly generated instances were proposed in [17]. There,
75 instances were generated using a uniform distribution inthe range between 0 and
250000. Laguna, Martı́, and Campos generated 25 instances each for the sizes 75, 150,
and 200. We call this instance class LMC-LOP. These instances were made available
by Rafael Martı́.

3 Constructive and local search algorithms

The currently best known constructive algorithm for the LOPis due to Becker [3]. In a
first step the index that maximizes the cost

� � �
� ��� � ���� ��� � �� � � � 	 � � � �

is chosen, and it is put in the first position of the permutation. Next, this index together
with the corresponding column and row is removed and the new� � values for the re-
maining indices are computed from the resulting sub-matrix. These steps are then
repeated until the index list is empty, resulting in a computational cost of� �� � �. A
straightforward variation of this algorithm is to compute the � � values only once at the
start of the algorithm, sort these values in non-increasingorder to yield a permutation
of the indices. Using this variant, a solution can be computed in � �� � �.

Both, the original algorithm and the variation, return goodsolutions compared to
random ones. For example, the average deviation from the optimum solutions for
LOLIB instances is� ��� with the original algorithm,� �	�
 with the variation, and�� �	�
 for random solutions; for MBLB the deviation obtained are� �� 	
 with the
original algorithm,� ���
 with the static variation, and

	
� ��	
 for random solutions.

Better solutions than with Becker’s construction heuristic are obtained with local
search algorithms. We considered three possibilities. Thefirst two are based on neigh-
borhoods defined through the operations applicable to the current solution.

The first neighborhood,�
 , is defined by the operationinterchange; it is given as
interchange� � � �	
 � � �
 � �� � � , where� is the set of all permutations and we
have for� �� � :

interchange
��
 �
 � � �� �� � �
 � ���
 ��
 � �� �
 � � �
 �� ��
 � �
 ��� �
 � � ��

This neighborhood has size��
 � � � �� � 	���. Preliminary tests showed that�

gives significantly worse results when compared to the following two local search
methods.

4

A second neighborhood,� � , is defined by theinsertoperation: an element in po-
sition � is inserted in another position� . Formally, insert � � � �	
 � � �
 � �� � � is
defined for� �� � :

insert
��
 �
 � � ��

� �� � �
 � ���
 � �� �
 � � �
 ��
 � �
 ��� �
 � � �� � � � ��� � �
 �� ��
 � �
 ��
 � � � � ���
 � �� �
 � � �� � � � �
The insert based neighborhood has size�� � �� � � � �� � 	��.

The�-function �� ��
 �
 � � ��
 �
insert

��
 �
 � �� �
 �� �
associated with this operation is defined as:

�� ��
 �
 � � �� � � ����� � ���� � � �� ��� � � � �� ������ �� ��� � ���� � � � � �
The cost for evaluating this function is� � �� �� �� and, hence, in� �� � if no care is taken.
In a straightforward implementation of a local search basedon this neighborhood one
would, given an index�, tentatively try all possible movesinsert

��
 �
 � � with � ranging
from � to � � 	. Since for each move the� -function evaluation is linear, the cost for
exhaustively visiting the neighborhood is� �� � �. However, the local search procedure
can be sped up significantly, if the neighborhood is visited in a more systematic way.
A particular case of an insert move is given if� � � 	 	; we call this aswapmove, and
its � function is:

�
 ��
 �
 � � ��
�

�� ��� � ��� � � � � � � 	 �
��� � � � �� ��� � � � � 	�

Hence, the cost of the evaluation of�
 is constant. Furthermore, aninsertmove (with
arguments� and�) is always equivalent to�� � � � swapmoves. For example, for� �

and� � �
 � � � we have

� � 	 � � 	
� � �

	 � �
	
� � � insert

��
 �
 � � �
	 � 	

� � � � insert
��
 �
 	 � �

	 � 	
� � � � insert

��
 �
 �� �
In the example, it can be noticed that all the permutations visited when transforming�
by applyinginsert

��
 �
 �� are in theinsert-neighborhood of� and are always obtained
by applying a swap move to the previous step. Hence, the idea is to use onlyswap-
moves to visit the whole� � . For each index� we will apply all the possible moves
insert

��
 �
 � � in two stages. First, with indices� that range from� � 	 to � and then for
indices� that vary from� � 	 to � � 	. In every stage a solution can be obtained from
the previous visited one by applying aswapmove. Hence, every solution in the neigh-
borhood can be obtained in constant time and therefore the total computational cost for
evaluating the insert neighborhood becomes� �� � �. This technique was inspired by
the method that Congram applies to Dynasearch [9]. In Fig. 1 we show the effect of

5

� � �� � �� � �� � �� �� �� �� �
� �� �� �� �

� �� �� �� �
� �� �� �� �� �� �� �� �

� �� �� �� �
� � � �� � � �	 	 	 		 	 	 	

� � �

��
�

� � � �� � � �� � � �
� � � �� � � �� � � �

� �� �� �� �� �
� �� �� �� �

� �� �� �� �� �
� �� �� �� �

� � � �� � � �� � � �
� � � �� � � �� � � �� � �� � �� � �� � �

��
��
��
��

� �� �� �� �� �� �� �� �� �� �� �
! !! !""## $ $$ $% %% %

&&''(((()))) * *+ + , ,, ,- -- -
. . . ./ / / / 0011

23 445
5

66778899

j
i

i+1

j ii+1

j

j

i

i+1
i+2

ii+1i+2

j

j

i

i

i+1

i+1

i

j

i j

Figure 1: Given is a pictorial example of what the� function means in terms of matrix
entries and how an insert move can be done with successiveswapmoves.

an insertmove on the matrix and we also show how the same move can be doneonly
throughswapmoves.

A further minor speed-up consists in pre-computing the costfor all the possible
swapmoves: : �� � ��� � �� � ; �
 � � � � � � � � 	�

In addition to these standard neighborhoods, we also implemented the local search
algorithm�� by Chanas and Kobylański [8] that uses two functionssort andreverse.
When applied to a permutation,sort returns a new permutation in which the elements
are rearranged according to a specific sorting criterion (see [8]), while reversereturns
the reversed permutation. In the LOP case, if a permutation maximizes the objective
function, the reversed permutation minimizes the objective function; hence, reversing
a good solution leads to a bad solution. The idea of�� is to alternate sorting and
reversing to improve the current solution; in fact, it has been shown that the application
of reverseand thensort to a solution will lead to a solution with a value greater or equal
the starting one. The functional description of the algorithm is:

�
sort< = reverse�< = sort<

6

where = denotes function composition, and the< operator is used to apply any given
function iteratively until the objective function does notchange. Formally, we consider
a general function�, and a generic permutation� :

� < �� � ��
� �
 �� �� �� �
 �� �

� < �� �� �� otherwise

The sort function is recursively defined as follows:

sort
�� �
 � � �
 � � � �

� �� � � �

insert�� �� �
sort

���
 � � �
 � ��� �� � � 	 (1)

insert�� ��
sort
���
 � � �
 � ��� �� � �� �
 � � �
 � ����
 �
 � ��� �
 � � �
 � ��� � (2)

where�	
 �
 � � �
 � � 	 such that it maximizes the value:

� �� ��
 	
 ���
 � � �
 � ��� � �
�����
��� ��� � �

����
�� ��

� ��� �
Unfortunately this definition does not help in understanding the neighborhood ac-

tually used by�� . In fact, one can show that the�� algorithm actually implements a
local search algorithms based on� � .

We implemented three local search variants, including two versions of theinsert
moves and the�� . The twoinsertvariants differ only in the pivoting rule applied. One
version uses a pivoting rule that is somewhere betweenfirst andbest improvement:

function visit�
 (�)
for � � � ��� � 	 do

�	 � arg������ ���
 �insert
��
 �
 	 ��� � � insert

��
 �
 �	 �
if

 �� � � �
 �� � then
return(� �)

end if
end for
return(�)

Obviously, the scan of the indexes for finding the best move for each index is made
exploiting the evaluation of the delta function in constanttime. We indicate with�� �
the local search on� � based on the visit we just introduced;�� � is a local search on
� � using a random first improvement strategy, where the neighborhood is scanned in a
random order; the latter neighborhood examination scheme requires the�-function to
be computed in linear time.

Table 1 gives a comparison of the three algorithms on the benchmark classes we
considered. The results show that with respect to solution quality all three algorithms
are comparable. However, they strongly differ in terms of computational speed. Clearly,
�� � is the fastest, followed by�� ; �� � is several orders of magnitude slower than the
other two. Based on these results, in the rest of the paper we will apply �� � as local
search.

7

Avg.Dev. (%) # optima Avg.time (sec)
LOLIB �� � 0.1842 42 0.1802

�� 0.2403 38 0.0205
�� � 0.22 45 0.013

SGB �� � 0.27 5 0.1389
�� 0.41 3 0.01013
�� � 0.46 7 0.00516

MBLB �� � 0.0195 10 9.81
�� 0.0209 12 0.22
�� � 0.021 10 0.14

XLOLIB (250) �� 1.11 0 2.1256
�� � 0.90 0 0.6741

LMC-LOP �� 0.65 0 1.0496
�� � 0.60 0 0.2976

Table 1: Comparison between three local search algorithms on the benchmark classes.
The results are averaged over all instances of each class andover 100 trials for each
instance. Avg.Dev. gives the average percentage deviationfrom optimal or best known
solutions, # optima gives the number of optimal or best knownsolutions found at least
once in the 100 trials for each instance, and Avg.time (sec) gives the average compu-
tation time in seconds on a 1.4 GHz Athlon CPU to run the local search once on each
benchmark instance of a class (for example, the timing givenon LOLIB instances is
the time to run a local search once for all the 49 instances of LOLIB).

4 Structural analysis of the instances

As a first step in our analysis of the LOP instance characteristics, we computed cross-
statistical information on the distribution of the matrix entries for the available in-
stances. In particular, we computed for all instances the sparsity, the variation coef-
ficient and the skewness of the matrix entries. The sparsity measures the percentage
of matrix elements that are equal to zero; the main interest in this measure is that ac-
cording to Mitchell and Borchers, it has a strong influence onalgorithm behavior [22].
The variation coefficient(VC) is defined as� � �� , where� is the standard deviation
and �� the mean of the matrix entries. VC gives an estimate of the variability of the
matrix entries, independent of their size and their range. Theskewnessis the third mo-
ment of the mean normalized by the standard deviation; it gives an indication of the
degree of asymmetry of the matrix entries. The statistical data is given in Table 2 for
LOLIB and XLOLIB instances and in Table 3 for the random instance classes MBLB
and LMC-LOP.

The cross statistical data for the SGB instances are that themedian for the size
50 and 65 instances for the sparsity is 14.16 and 22.91, respectively, the VC is 4.59
and 5.23, respectively, and the skewness is 10.31 and 13.09,respectively. For the three
instances of size 79, 80, and 81 these values are 26.26, 25.91, and 25.29 for the sparsity,
6.12, 6.13, and 10.62 for the VC and 16.62, 16.80, and 21.27 for the skewness.1

1Note that the full SGB instance of size 81 has the particularity of having a negative row, hence resulting

8

Table 2: Structural information on the real-world and real-world like instance classes.
“Sp.” indicates the sparsity, “VC” the variation coefficient, and “Sk.” the skewness.
Given are the minimum, the 0.25 and 0.75 quantiles, the median, the maximum and the
mean of these measures across all instances of a benchmark class.

LOLIB
Size Min 1st qu. Median 3rd qu. Max Mean

Sp. 11.00 26.91 35.28 46.13 80.63 37.34
all VC 4.10 4.45 4.87 5.78 16.25 5.49

Sk. 9.15 11.40 12.93 15.83 39.18 15.50

XLOLIB
Sp. 10.57 26.80 34.71 45.74 80.351 37.25

150 VC 4.04 4.46 4.84 5.54 16.05 5.42
Sk. 8.94 11.09 12.49 15.78 42.62 15.04
Sp. 10.79 26.98 35.04 45.76 80.48 37.25

250 VC 4.07 4.39 5.00 5.77 15.81 5.48
Sk. 9.05 11.33 12.61 16.51 43.63 15.49

These statistical data show that there are significant differences between the real-
life instances (LOLIB and SGB) and real-life like random problems (XLOLIB) on the
one side and the randomly generated instances from LMC-LOP and MBLB on the
other side. For the real-life and real-life like instances all statistics (sparsity, VC, and
skewness) are typically much higher than for the randomly generated instances. This
suggest that the former class of instances are much less regular and the variation among
the matrix entries is much stronger than for the random instances. Additionally, the
variation of the statistics among the real-world (like) instances is much larger indicating
a certain diversity of structural features in these instances. Obviously, SGB instances
are an exception in that respect, because they are all generated from the same matrix.
Differently, the variance of the statistical measures is low for LMC-LOP and MBLB
instances, indicating a more regular structure of these.

The data presented here give evidence that we might observe significant differ-
ences in the behavior of algorithms when applied to random instances or real-life
(like) instances. Additionally, these data give an indication that conclusions obtained
for the random instances do not necessarily apply to real-life instances, because ran-
dom instances show such different statistical data from real-life instances. Hence, the
XLOLIB instances appear to be much better suited for testingalgorithms on realistic,
large LOP instances than the random instances.

in a somewhat different structure of this instance with respect to VC and skewness than other instances of
similar size.

9

Table 3: Structural information on randomly generated instance classes. “Sp.” indi-
cates the sparsity, “VC” the variation coefficient, and “Sk.” the skewness. Given are
the minimum, the 0.25 and 0.75 quantiles, the median, the maximum and the mean of
these measures across all instances of a benchmark class.

LMC-LOP
Size Min 1st qu. Median 3rd qu. Max Mean

Sp. 0.5 0.5 0.50 0.51 0.51 0.51
75 VC 0.70 0.71 0.71 0.71 0.72 0.71

Sk. 0.389 0.40 0.40 0.40 0.42 0.40
Sp. 1.33 1.33 1.33 1.33 1.37 1.34

150 VC 0.70 0.71 0.72 0.72 0.73 0.72
Sk. 0.36 0.40 0.41 0.43 0.46 0.41
Sp. 0.67 0.67 0.67 0.68 0.68 0.67

200 VC 0.71 0.71 0.71 0.71 0.72 0.71
Sk. 0.38 0.34 0.40 0.41 0.43 0.40

MBLB
Sp. 22.01 22.12 22.33 22.44 23.36 22.45

100 VC 1.00 1.01 1.01 1.01 1.02 1.01
Sk. 0.98 0.98 1.00 1.00 1.00 0.99
Sp. 2.29 2.38 7.15 12.02 12.48 7.23

150 VC 0.77 0.78 0.83 0.88 0.89 0.83
Sk. 0.82 0.84 0.86 0.88 0.88 0.86
Sp. 2.08 2.25 7.02 11.87 12.10 7.06

200 VC 0.77 0.78 0.83 0.88 0.88 0.83
Sk. 0.82 0.84 0.86 0.88 0.89 0.86
Sp. 2.04 2.11 2.12 2.15 2.23 2.13

250 VC 0.77 0.77 0.78 0.78 0.78 0.77
Sk. 0.82 0.83 0.84 0.84 0.84 0.84

5 Landscape Analysis

The central idea of the landscape analysis in combinatorialoptimization is to represent
the space searched by an algorithm as a landscape formed by all feasible solutions,
which in the LOP case are permutations, and afitnessvalue assigned to each solution,
which in our case is the objective function value

 �� � of a permutation� and to impose
a distance metric on the search space [20]. The usefulness ofthis paradigm is typically
based on (i) the insights with respect to search space characteristics and the relationship
to the behavior of local search algorithms or metaheuristics [5, 31], (ii) the possibility
to predict problem or problem instance difficulty [2, 28], or(iii) indications on useful
parameterizations of local search algorithms [1].

Formally, the search landscape of the LOP is described by a triple �� �� �

: �

,
where� is the set of all permutations of the integers�	
 � � �
 � �,
 is the cost function

10

and
:

is a distance measure, which induces a structure on the landscape. It is natural
to define the distance between two permutation� and� � in dependence of the ”basic
operation” used by a local search algorithm; typically, thedistance then is given by the
minimum number of applications of this basic operation needed to transform� into � �.
Since the best performing local search algorithms are all based on the� � , we consider
an insert move as our basic operation. Unfortunately, as far as we know, there is no
efficient, that is polynomial, way of computing the minimum number ofinsertmoves
needed to transform one permutation into another one. Therefore, we use a surrogate
distance that is based on theprecedence metric[24]: for all pairs of elements� and�
we count how often� precedes� in both permutations and then subtract this quantity
from � �� � 	���, which corresponds to the maximum possible distance.

5.1 Landscape correlation analysis

The first feature of the search landscape we studied is its ruggedness: a search land-
scape is said to be rugged if there is a low correlation between neighboring points. To
measure this correlation, Weinberger suggested to performarandom walkin the search
landscape of length� , to interpret the resulting set of� points�
 �� � ��

� � 	
 � � �
�
as a time series and to measure the autocorrelation	 ��� of points in this time series that
are separated by

�
steps [33] as

	 ��� �
�� ��

�
�� �
 ��

� � � �
 � �
 �� �� � � � �
 �
� � �
 � �� � ��

where� � �
 � is the variance of the time series, and�
 its mean. Often, the resulting
time series can be modeled as an autoregressive process of order one, and then the
whole correlation structure can be summarized by	 �	� or, equivalently, by thesearch
landscape correlation lengththat is computed as

� � � �
�� � �� ��� �� (�	� �� �) [26, 27,

33]; the lower is the value of
�
, the more rugged is the landscape. Interestingly, in

landscape analysis literature general intuitions and someresults suggest that there is a
negative correlation between

�
and the hardness of the problem [2].

We computed
�

on all benchmark instances with a random walk of one million
steps; Table 4 summarizes data collected on all instances.

�
is given normalized by the

instance size, that corresponds also to the diameter of search landscape based on the
� � neighborhood. As we see, each class has a relatively small variance (SGB has one
instance that represents an outlier in these data). This means, that the landscape corre-
lation length can characterize specific instance classes. From these instance classes, the
MBLB instances have the by far largest

�
, which would suggest that these instances are

also the easiest to solve; in fact, when abstracting from instance size, our experimental
results with metaheuristic suggests that this is true. The next smaller

�
is found for the

real-life instances from LOLIB and SGB, while the smallest values, on average, are
observed for LMC-LOP and the XLOLIB instances.

Regarding instance class definitions, note that the values of
��� alone are not suf-

ficient. For example, XLOLIB instances showed roughly the same normalized values
for

��� as LMC-LOP instances, which would suggest similar behavior. However, both
types of instances have widely different characteristics as shown by the data on the
distribution of the matrix entries.

11

Table 4: Given are standard statistical data (minimum, 0.25and 0.75 quantiles, me-
dian, average, and maximum) for the normalized values

��� of the search landscape
correlation length measured across all the instances of theavailable benchmark classes.

Min 1st qu. Median 3rd qu. Max Mean
LOLIB 0.7536 0.7907 0.8004 0.8207 0.8403 0.8021
SGB 0.4821 0.8055 0.8163 0.8248 0.8347 0.7810
XLOLIB(100) 0.7094 0.7278 0.7311 0.7416 0.7671 0.7341
XLOLIB(250) 0.7165 0.7327 0.7364 0.7407 0.7524 0.7372
MBLB 0.9339 0.9595 0.9639 0.9707 0.9775 0.9620
LMC-LOP 0.6924 0.7211 0.7312 0.7450 0.7746 0.7332

From the methodological point of view we were interested on how long arandom
walk should be to obtain a stable estimate of

�
. Therefore, we measured on all MBLB

and XLOLIB instances of size 250 ten times
�

for different lengths of the random
walks. Figure 2 shows the

�
we found in these experiments for all the instances. As

we see, the longer is the random walk the more precise is the resulting measure of
�
.

These plots also indicate that apparently for 1.000.000 steps in the random walk the
�

estimate has stabilized. On the other side, these results also suggest, that the random
walks for measuring

�
should be a large multiple (e.g. 400 in this case) larger thanthe

instance size to result in stable estimates.

5.2 Fitness-distance analysis

In a next step we analyzed the distribution and the relative location of local optima to
the global optima of the LOP.

For LOLIB we run 13,000 local searches starting from random solutions, while
for the other instance classes 1,000 local searches were done. On the instance classes
LMC-LOP and XLOLIB the local searches generated 1,000 distinct local optima for
each instance and in no case the best known solutions were found. For LOLIB instead
the number of distinct local optima was considerably varying, between 24 and 13000
with a median around 9400; for MBLB the number ranged from around 73 and 1000,
with a median of 965; finally for the smaller SGB instances around 600 distinct lo-
cal optima were found, while in the largest ones 1,000 distinct local optima resulted.
Summary data are given also in Table 5.

For all LOLIB, SGB and MBLB instances we know the global optima. In fact, on
several instances we could identify also global optima among the local optima gener-
ated. Among the total number of distinct local optima, the percentage of global optima
ranges from 0.47% to 85.12% for LOLIB, while for the other instance classes the cor-
responding percentages are much smaller. Summary data on these values are given
in Table 6. In fact, these results also suggest that especially the LOLIB instances can
effectively be solved by a random restart algorithm that is run long enough.

Finally, we analyzed the relationship between the quality of local optima and their
distance to the closest global optimum by measuring the fitness distance correlation
coefficient and measuring fitness distance plots [13]. Givena sample of� candidate

12

1e+03 1e+05 1e+07

0.0

0.2

0.4

0.6

0.8

1.0

MBLB

Random walk length

1e+03 1e+04 1e+05 1e+06 1e+07

0.0

0.2

0.4

0.6

0.8

1.0

XLOLIB
(250)

Random walk length

��
�

��
�

Figure 2: Dependence of
��� (given in the�-axis) on therandom walklength (

�
-axis)

for MBLB (left) and XLOLIB (right) instances. Every dot is the average normalized
landscape correlation length measured across 10random walksof the corresponding
length for one instance of the class.

Table 5: Summary information on the percentage of distinct local optima found (per-
centage of the total number of local optima generated).

Min 1st qu. Median 3rd qu. Max Mean
LOLIB 0.12 40.35 63.65 80.49 99.2 67.93
SGB 25.60 64.50 94.60 99.5 100.00 81.09

MBLB 7.30 76.75 96.50 99.48 100.00 82.17

solutions�� �
 � � �
 �� � with an associated set of pairs��
�

: � �
 � � �
 �
�

:
� �� of fit-

ness (solution quality) values

� and distances to the closest global optimum

: �, the
(sample) fitness distance correlation coefficient� can be computed as

� �
�
Cov

�

:
�

�
�
�
 � � �� �

:
� (3)

where

�
Cov

�

:
� � 	

� � 	
��
���

�
� � �
 � �
: � � �:

�
 (4)

13

Table 6: Summary information on the number of distinct global optima found, given
as the percentage of the total number of distinct local optima.

Min 1st qu. Median 3rd qu. Max Mean
LOLIB 0.47 2.34 14.10 16.54 85.12 8.33
SGB 0.00 0.10 0.20 1.17 1.86 0.68

MBLB 0.00 0.00 0.22 0.57 4.27 0.46

Table 7: Some information on the local optima generated, themean distance from the
best known solution is given as percentage over the max distance. The number of
distinct local optima is given as percentage of the number oflocal optima generated;
the LOLIB value is over 13000 trials explaining in part the very low value.

Class Avg.Dist (%) from best known Avg. (%) distinct local optima
LOLIB 5.84 58.55<
SGB 10.51 81.18
XLOLIB 26.27 100
MBLB 0.43 82.02
LMC-LOP 23.22 100

�
�
�
 � �

���� 	
� � 	

��
���

�
� � �
 ��
 �
�� �

���� 	
� � 	

��
���

�: � � �:
��
 (5)

and �

 �:
are the averages over the sets� � �
�
 � � �

� � and� � �

: �
 � � �
 :
� �,

respectively.
�
Cov

�

:
� is the sample covariance between the

and

:
values, while�

�� and
�
�� are the sample standard deviations of� and� , respectively. As usual, we

have� 	 � � � 	. In our case, we used as the fitness the deviation from the global
optimum. Hence, a high, positive value of� indicates that the higher the solution
quality, the closer we get to global optima, on average and, hence, the solution quality
gives good guidance when searching for global optima. For the instances of the classes
LMC-LOP and XLOLIB we do not have proven optimal solutions available, since
exact algorithms were not able to solve these. In this case, we used the best known
solutions instead of global optima. The best known solutions were the best ones found
by the metaheuristics we tested in Section 7. In the case of the LMC-LOP instances of
dimension 75, these best known solutions are conjectured tobe the optimal ones, since
the same best solutions were found in many trials of the metaheuristics we tested.

In addition, we used a second measure of the FDC that is variation on the original
measure. For this new measure the FDC is computed only for thelocal optima with an
objective function value that is better than the median objective function for all the local
optima that were generated. The idea behind this measure is that all the metaheuristic
should be able to easily reach a solution with such an objective function value. In fact,
by a simple random restart, within few iterations the probability of finding a solution
better than a median local optimum approaches one. Furthermore, in an analysis of

14

Table 8: Summary information for�, the fitness distance correlation coefficient, com-
puted on the complete set of local optima.

Min 1st qu. Median 3rd qu. Max Mean
LOLIB -0.1056 0.4901 0.6763 0.7833 1.0000 0.6189
SGB 0.2750 0.6297 0.6674 0.7466 0.9177 0.6409

XLOLIB 0.2412 0.3925 0.4520 0.4907 0.6513 0.4484
MBLB 0.6144 0.7224 0.7948 0.8423 0.9395 0.7867

LMC-LOP 0.2876 0.4857 0.5760 0.6493 0.8193 0.5662

Table 9: Summary information for� �, the easy level fitness distance correlation coeffi-
cient, computed on the local optima better than theeasy level(see text for details).

Min 1st qu. Median 3rd qu. Max Mean
LOLIB -0.7214 0.3117 0.5844 0.7493 0.9698 0.4573
SGB 0.1910 0.4850 0.5977 0.7247 0.8609 0.5774

XLOLIB 0.1593 0.2736 0.3245 0.3696 0.5423 0.3219
MBLB 0.2480 0.5421 0.6349 0.7031 0.8074 0.6123

LMC-LOP 0.06305 0.34620 0.45340 0.57380 0.79050 0.45900

the FDC relationship one should focus on the solutions whichare the more likely ones
to be encountered in the search trajectory of the metaheuristics. We will refer to the
threshold on the solution quality as theeasy leveland to the FDC based on the solutions
passing this bound as theeasy level FDC(� �).

Table 8 and 9 summarize the information about FDC andeasy level FDC, respec-
tively. In general, it appears that the easy level FDC coefficients are lower than the
standard FDC coefficients. This probably is the case becausepoor quality local optima
that are far from the global optimum can have a considerable influence on the resulting
correlation and these poor local optima are eliminated whenimposing the ”easy level”
bound. For some instance the values of� and� � are strongly positive, suggesting that
these instances should be relatively easy for restart type algorithms [20].

In Figure 3 we show some example FDC plots for instances from all benchmark
classes except XLOLIB. Since the range of the

�
-axis is from zero to the maximum

distance, the plots give visual information on the typical distance of local optima to
the nearest global optima (see also Table 7). As we see for allthe problems the local
optima are close to the global optima (or best known solutions), typically the average
distance is less than a third of the maximal distance. On the extreme side are the
MBLB instances, for which all the local optima are extremelyclose to a global one,
the maximal distance over all instances we observed was 191,which corresponds to
3.86% of the maximum distance. To give a more detailed picture of the fitness-distance
relationship for the MBLB instances, we plot in Figure 4 the same data as in Figure 3
but using a logarithmic scale on the

�
-axis.

In Section 7, we will give an analysis of how the fitness distance measure correlates
with the hardness of LOP instances for particular metaheuristics.

According to the FDC analysis and the FDC plots, the MBLB instances would be

15

0 500 1000 1500

0.
0

0.
5

1.
0

1.
5

LOLIB
stabu3.mat

=0.6972303 =0.7989547

Distance

D
ev

. (
%

)
fr

om
 b

.k
. s

ol
ut

io
n

0 200 400 600 800

0.
0

0.
2

0.
4

0.
6

0.
8

LOLIB
t65w11xx.mat

=0.7560137 =0.6511237

Distance

D
ev

. (
%

)
fr

om
 b

.k
. s

ol
ut

io
n

0 500 1500 2500

0.
0

1.
0

2.
0

3.
0

SGB
sg80o1ts10.mat

=0.683814 =0.5854774

Distance

D
ev

. (
%

)
fr

om
 b

.k
. s

ol
ut

io
n

0 500 1500 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

SGB
sg81o0ts10.mat

=0.3406085 =0.1909829

Distance

D
ev

. (
%

)
fr

om
 b

.k
. s

ol
ut

io
n

0 5000 10000 15000 20000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

MBLB
r200e0.mat

=0.7212155 =0.4790354

Distance

D
ev

. (
%

)
fr

om
 b

.k
. s

ol
ut

io
n

0 2000 6000 10000

0.
00

0.
02

0.
04

0.
06

MBLB
r150b1.mat

=0.6993844 =0.5672307

Distance

D
ev

. (
%

)
fr

om
 b

.k
. s

ol
ut

io
n

0 500 1000 2000

0.
0

0.
5

1.
0

1.
5

LMC−LOP
d75.5.mat

=0.5551284 =0.2917459

Distance

D
ev

. (
%

)
fr

om
 b

.k
. s

ol
ut

io
n

0 5000 10000 15000 20000

0.
0

0.
2

0.
4

0.
6

0.
8

LMC−LOP
d200.3.mat

=0.6075786 =0.5995912

Distance

D
ev

. (
%

)
fr

om
 b

.k
. s

ol
ut

io
n

��

��

��

��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure 3: Examples of FDC plots. On the
�
-axis is given the distance to the nearest

global optimum (or best known solution if optima are not proven) and on the� axis
the percentage deviation from optimum or best known solution. The dashed line indi-
cates the median deviation from the best known or globally optimal solution over the
randomly generated local optima.

16

1 10 100 1000 10000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

MBLB
r200e0.mat

=0.7212155 =0.4790354

Distance

D
ev

. (
%

)
fr

om
 b

.k
. s

ol
ut

io
n

1 10 100 1000 10000

0.
00

0.
02

0.
04

0.
06

MBLB
r150b1.mat

=0.6993844 =0.5672307

Distance
D

ev
. (

%
)

fr
om

 b
.k

. s
ol

ut
io

n

�� �
�

�
�

Figure 4: FDC plots for two MBLB instances; here the
�
-axis uses a log scale.

predicted to be the easiest ones, when abstracting from pureinstance size. This is
the case because of the very high FDC coefficients and the concentration of the local
optima in a very tiny part of the whole search space. A furtherconfirmation of this
impression is given by the analysis of the landscape ruggedness through the correla-
tion length of random walks. In fact, later experimental results suggest that MBLB
instances are actually easily solved, while XLOLIB and LMC-LOP instances of a sim-
ilar size to the MBLB instances are by far harder to solve for metaheuristics but also for
exact algorithms. An additional, interesting observationis that the landscape analysis
would suggest that the characteristics of the XLOLIB instances are slightly different
from the original LOLIB instances, differently from the structural analysis of these in-
stances. In fact, the later experimental evaluation showedthat XLOLIB instances are
much harder to solve than LOLIB instances (see also experimental evaluation in Sec-
tion 7) and this observation gives an indication that this result may not only be due to
their larger size.

6 Metaheuristics

The results of the search space analysis of the LOP suggest that methods that are able
to exploit both the good performances of the local search, and the often highly positive
fitness distance correlation are promising for this problem. Earlier research results
suggest that two metaheuristics that have these characteristics are Iterated Local Search
(ILS), and Memetic Algorithms (MAs) [5, 20, 19].

17

Algorithm 1 Algorithmic outline of an ILS algorithm.

� � GenerateInitialSolution
�� �

� � LocalSearch
�� � �

repeat
� � � Perturbation

�� � �
� � � LocalSearch

�� � � �
� � AcceptanceCriterion

��
 � �
history� �
until termination condition met;

6.1 Iterated Local Search

Iterated local search (ILS) is a conceptually very simple but at the same time very pow-
erful, metaheuristic, as shown by a number of available applications results [18]. ILS
iterates in a particular way over the local search process byapplying three main steps:
(i) perturb a locally optimal solution, (ii) locally optimize it with the local search cho-
sen and (iii) choose, based on some acceptance criterion, the solution that undergoes
the next perturbation phase. Algorithm 1 describes the general algorithmic outline for
ILS. Next, we indicate the possibilities we considered for the final ILS algorithm.

� GenerateInitialSolution: The initial solution is taken to be a random permutation.

� LocalSearch: The local search procedure is the core of the algorithm and the
overall ILS performance depends strongly on it. For the ILS algorithm, we use
the�� � local search, which was the best performing according to Section 3.

� Perturbation: As perturbation operator we usedinterchangemoves, because it
is a move that cannot be undone by insert moves in one step. Thenumber of
interchangemoves to be applied in a perturbation is a parameter of the algorithm.

� AcceptanceCriterion: It determines to which solution the next perturbation is
applied. We tried different approaches, the final choice of which one to be used
was made using an automatic tuning procedure.

Accept better: A new local optimum is accepted only if the objective function
is larger than the current best solution, that is, is

 �� � � �
 �� �;
Accept small worsening: A new local optimum is accepted if the objective func-

tion

 �� � � is larger than

�	 � �� �
 �� �, where� is a parameter to be tuned;

Simulated annealing like: We apply a probabilistic acceptance/rejection test
based on the standard Metropolis acceptance criterion in simulated anneal-
ing [15]. In this case, the parameters to be tuned are the initial temperature,
the temperature cooling ratio, and the number of step between consecutive
temperature reductions.

6.2 Memetic Algorithm

Memetic algorithms are evolutionary algorithms that are intimately coupled with local
search algorithms, resulting in a population-based algorithm that effectively searches

18

Algorithm 2 Algorithmic outline of an memetic algorithm.� �� � ������ � �� �
for i=1. . . mdo �� is the number of individuals�

� � ��
�
��� ��	

�
	 �
���	������

:�
�
� ��� ���� ��� �� �� ������� � � �� � ������ � �� � �

end for
repeat

Offsprings� �� �
for � � 	 � � �
crossoversdo

draw � �, � � from Population
Offsprings� Offsprings� �LocalSearch

�
Crossover

�� �
 � � ��� �
end for
for � � 	 � � �
�

� ������ �
do

draw � � from Population
Offsprings� Offsprings� �LocalSearch

�
Mutate

�� � ��� �
end for
Population� SelectBest

�
Population� Offsprings
� � �

if same average solution quality for a long timethen �diversification�
Population� SelectBest

�
Population
 	� �

for i=1. . . m-1do �� is the number of individuals�
� � LocalSearch

�
GenerateRandomSolution

��� �
Population� Population� �� � �

end for
end if

until termination condition met;

in the space of local optima [23].
Algorithm 2 shows the algorithmic scheme of MAs that we used in our implemen-

tation. In the first step apopulationof individuals is obtained by first generating�
distinct random permutations and applying to each�� � . Then, in each iteration (gen-
eration) a number of new individuals are created by applyingcrossoverandmutation
operators (in the literature these new individuals are called offsprings). The individ-
uals to whichcrossoverandmutationare applied are chosen randomly according to
a uniform distribution as in several other, high performingMAs [19]. The crossover
operator takes two individuals of the current population and combines them into a new
individual, while the mutation operator introduces a perturbation into an individual. To
each of the offspring�� � is applied. Finally, the best� individuals from the original
population and the newly generated ones are selected for thenew population; care is
taken to eliminate duplicates.

In addition to this rather standard scheme for MAs, we use a diversification mech-
anism that is triggered if the average objective function ofthe population has not
changed for a number of steps. In this case, we generate a new,random initial popula-
tion, keeping only the overall best individual.

It is well known that the performance of an MA may depend strongly on the cross-

19

2 6 9 7 4 8 3 1 5

24 6 3 9 8 7 5 1

2 6 9 7 4 8 3 1 5

(c)

29 6 4 8 3 7 5 1

24 6 3 9 8 7 5 1

2 6 9 7 4 8 3 1 5

2

2

2

4 6

6

3

9 7

9

4

8

8

7

3

5

1

1

5

6 81 7 5 3 4 9

(a)

24 6 3 9 8 7 5 1

6 8 3

(b)

2 49 7 5 1

2 2 2 2 2 11

4 5 1

(d)

6 2 9 3 7 8

� �

� �� �

� �
� �

� �� �

� �

Figure 5: (a) DPX operator: the positions marked with a circle are common in the
parents; (b) CX operator: the positions marked with a circleare common in the parents
(c) OB operator: the positions marked with a circle are the reordered elements (� � �);
(d) Rank operator

over operator. Therefore, we tested four different ones.

DPX (Fig. 5a): The offspring inherits the elements that have thesame position in both
parents; these are put in the same position as in the parents.The others ele-
ment are assigned randomly between those position that are not chosen yet. This
results in an offspring that, on average, has a same distancefrom both parents.

CX (Fig. 5b): The idea of CX is to keep as much information as possible from the par-
ents. For the elements in common between the parents it workslike the previous
operator. For the others, the CX operator chooses randomly an empty position
(�) and a parent (� �), determining an element

�
(
� � � ��) that in turn is assigned

to the offspring in position�. In the second parent,� � , a different element� � � ��
occupies this same position�. The element� is then copied to the offspring in
the position occupied by� in � �. This process iterates until all the position are
filled (see [21]).

OB (Fig. 5c, order based): In the first phase the solution of the first parent is copied to
the offspring. In the second phase it selects� positions,� � � � �, and orders
the elements in these� positions according to their order in the second parent
(see [32]);

Rank (Fig. 5d): The offspring permutation is obtained sorting the elements by their
average ranking over the two parents, ties are broken randomly according to a
uniform distribution.

20

6.3 Parameter tuning

The tuning of the ILS and the MA algorithm was done in a systematic, statistically
well-funded approach. We have developed a number of different candidate configura-
tions for the two algorithms, 78 in the ILS case and 144 in the MA case, and a final
configuration was selected using an automatic tuning procedure based on F-races [4].
The F-race returns the configuration of a metaheuristic, that performs best with respect
to some evaluation metric on a number of instances that are used for parameter tuning.
In our case, parameter tuning was done using XLOLIB instances of size 100. Notice
that the instances used for tuning are different from the solutions in the benchmark sets
on which the computational results are presented in the following. Hence, we have a
clear separation of the instances into training instances,used for parameter tuning and
test instances, on which the final results are presented.

Certainly, it may be argued that tuning the algorithms on onespecific instance class
and testing them in possibly different ones may give a bias inthe results. However,
this procedure gives also an impression of the robustness ofan algorithm, since we
can examine how the performance on one instance class generalizes to a wider set
of instances. Additionally, we did further experiments testing different configurations
when deemed necessary (see, for example, Section 7.3), so that a more complete picture
of the overall performance can be obtained.

In the ILS case, the tuning concerned mainly the acceptance criterion to be used and
the strength of the perturbation. The final configuration returned uses the acceptance
criterion that accepts slightly worsening solutions with� � � ���� 	 and the perturbation
consists of 7interchangemoves.

In the MA case, we performed some exploratory experiments before applying the
actual tuning procedure. In this preliminary experiments we found that the CX and OB
crossovers gave best results. Therefore, we considered only these two in the automatic
tuning phase. Mutations are obtained by applying the�� ��	 �

	��� � operation on an
individual. The number the operation is applied is a parameter; we fixed this parameter
to 7, so that the mutation corresponds to the perturbation inthe ILS case. In the actual
tuning phase with the F-races we considered 144 different configurations (more than
for ILS, but ILS has few parameters). We compared the one thatresulted to be the
best to the two extreme cases that are an MA without crossoverand one without mu-
tations. This final comparison let to the choice of the configuration with no mutation,
supposedly, because the partial restarts were enough to introduce diversification into
the search, making the mutation unnecessary. The final configuration had a population
size of 25 individuals, every generation 11 new offsprings are formed using the OB
crossover operator, and the diversification was applied after the average fitness of the
population has not changed for 30 generations.

7 Experimental results

In this section we study the performance of ILS and MA and compare them to results
from the literature. The algorithms were run on dual processor Athlon 2400+ machine
with a clock speed of 2GHz and with 1GB of RAM; since the algorithms were imple-

21

mented as single processes (no threads) only one processor was used at time. Each
algorithm has been run 100 times on each instance from LOLIB,MBLB, and SGB
and 30 times on the XLOLIB and the LMC-LOP instances. For the experiments a
CPU time limit of 120 seconds was fixed, only runs that reachedthe known optimum
solution value were aborted prematurely.2

The performance analysis is divided into two parts, in the first one we consider the
instances for which we know the optimal or the conjectured optimal objective function
value, while in the second the other instances are considered. Next, different aspects of
the algorithms are analyzed in more detail and the results are compared to literature.

7.1 Instances with known optimal solutions

0 20 40 60 80 100

0
20

40
60

80
10

0

Max completion time
(MBLB)

ILS

M
A

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Max completion time
(LMC−LOP 75)

ILS

M
A

Figure 6: Pairwise comparison of ILS and MA with respect to the maximum time taken
to solve MBLB (left) and LMC-LOP (right) instances. Each point corresponds to one
instance; the

�
-axis indicates the maximum computation time of ILS and the�-axis

gives the maximum computation time for the MA.

For all LOLIB, SGB, MBLB instances we were able to determine the optima, using
an exact algorithm that is presented in [22]. The same algorithm is not able to find
solutions for the instances of the other classes in reasonable computation time (this was
tested running randomly chosen instances for 18 hours). Forthe instances of size 75
in LMC-LOP, we observed that the MA was finding for each instance a same objective
function value; the very same value was the best found by ILS,which, however, did

2To give some impression of the time limits, let us state that the time taken to apply 1000 time���
starting from random solutions on thebe75eec 250.mat instance from XLOLIB of size 250 took 5.86
seconds.

22

not reach such a solution in every single trial. Therefore, we strongly suppose that this
value is optimal and we used it as (conjectured) global optimum for our analysis. In
fact, the generated solutions were found to be unique. Solutions that we conjecture to
be global optima will also be called pseudo-optima in the following.

Experiments with MA and ILS showed that the LOLIB and SGB instances are
extremely easy and cannot be considered as challenging benchmarks for state-of-the-
art metaheuristics. In fact, the longest of the 100 trials byILS and MA for any of the
instances of LOLIB took less than 0.1 seconds and less than 0.2 seconds for the SGB
instances.

For MBLB the situation is different. While the MA obtained very good results and
the maximum time to solve an instance was 6.5 seconds, the results for ILS were much
worse, as shown in Figure 6 on the left. In fact, for 2 instances the ILS algorithm failed
to find an optimum in all the runs (once in one instance, three times for the other one)
and when it succeeded, it took much longer than the MA.

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d75.5.mat

time (s)

em
pi

ric
al

 p
ro

ba
bi

lit
y

of
 b

es
t k

no
w

n
so

lu
tio

n

ILS
MA

1e−02 1e−01 1e+00 1e+01 1e+02

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

d75.12.mat

time (s)

em
pi

ric
al

 p
ro

ba
bi

lit
y

of
 b

es
t k

no
w

n
so

lu
tio

n

ILS
MA

Figure 7: Run time distributions for the hardest LMC-LOP instances of size 75. Given
is on the

�
-axis the computation time and on the�-axis the empirical cumulative prob-

ability of finding a pseudo-optimal solution.

Somewhat stronger tradeoffs between MA and ILS performancebecame noticeable
on the LMC-LOP instances of size 75 (Figure 6, right). Here, the MA obtained much
better results than ILS: First, as said above, the MA was ableto find the best known
solutions in all the 30 runs, while ILS could reach the same level of performance only
for 12 instances. For seven instances, it found the best known permutation even in less
than 50% of the runs.

To give a more detailed impression of the behavior of the MA and the ILS al-
gorithm, for selected instanced we examined the run-time distributions that give the

23

empirical probability of finding a global optimum (or a boundon the solution quality)
in dependence of the computation time [12]. Figure 7 gives the RTDs for the two hard-
est LMC-LOP instances of size 75 as judged by the computational results of ILS. In
both cases, ILS finds the best known solution in only 11 out of 30 trials. The plots show
that (i) the probability of finding such a solution for the MA increases continously and
quickly reaches one, suggesting that MA is preferable to theILS for computation times
in the range of a few seconds and (ii) that the ILS algorithms suffers from a type of
stagnation behavior that strongly compromises its performance.

In fact, the observation of search stagnation suggests thatILS performance can be
strongly improved by including additional means of search diversification [30]. There-
fore, we introduced a simple diversification step for the ILSthat restarts the algorithm
from a new random solution, if no improved solution is found for a number��� of
iterations. The parameter��� was set (without tuning) to 750, which is the same num-
ber of solutions visited by the MA before the diversificationstep is applied. The new
algorithm (ILSR) strongly improved over the “standard” ILS, although it did not fully
reach the level of performance of the MA. Certainly, ILSR could be improved by
additional tuning or by using more sophisticated ways of search diversification in ILS.

Finally, we compare the computational results of MA to an exact algorithm by
Mitchell and Borchers (SimpMB) [22], which is based on the Simplex algorithm and
that uses a branch and bound procedure to find an integer solution. Figure 8 gives a
visual comparison of the results on the LOLIB and MBLB instances. MA is clearly
much faster than SimpMB, often by several orders of magnitude. The much superior
performance of MA over SimpMB is further confirmed by the factthat SimpMB was
not able to solve any instances of XLOLIB or LMC-LOP within many hours of com-
putation time.

7.2 Instances with unknown global optima

For the XLOLIB and the LMC-LOP instances with matrices of dimension larger than
75 no optimal or pseudo-optimal solutions are known. Therefore, we restricted the
comparison of MA and ILS to a statistical analysis of the quality of the solutions re-
turned by the two algorithms after the maximum computation time. The overall result
was that for the large instances of LMC-LOP, the MA obtains average results that are
significantly better than those of ILS, as confirmed by a Wilcoxon test with� � � �� 	.
Similarily, the MA gives better performance on the XLOLIB instances. This is true for
the instances of dimension 150, as indicated by a Wilcoxon test with � � � �� 	; how-
ever, for the large instances of dimensionality 250, no significant differences between
the MA and the ILS could be found. The computational results are visualized in Figure
9.

7.3 Tuning effect for ILS

The results presented in Section 7.1 for ILS on the MBLB instances are actually much
worse than those presented in an earlier article with a different ILS algorithm [25] using
the�� local search and different parameter settings for the perturbation size (there 5
interchangemoves) and the accetpance criterion (there, only better quality solutions

24

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Max completion time
(LOLIB)

SimpMB

M
A

0 500 1000 1500 2000

0
50

0
10

00
15

00
20

00

Max completion time
(MBLB)

SimpMB
M

A

Figure 8: Pairwise comparison of SimpMB (indicated as exactmethod) to MA for the
LOLIB and MBLB instances. For each instance, the time given for the MA is the
maximum time over 100 trials to find a globally optimal solution (�-axis), while the
timing for SimbMB (given in the

�
-axis) is obtained from running it once, because it

is a deterministic algorithm.

were accepted). Hence, we suspect that the main reason for the “poor” performance
of ILS is that the configuration returned from the automatic tuning procedure performs
poorly on MBLB instances. Hence, we tested again this earlier ILS implementation,
referring to it in the following as ILSv5, with the only difference that now we use the
�� � local search instead of�� .

In fact, ILSv5 resulted to be far better than ILS; it was able to reach the optimal
solution in all trials for every instance, and the computation times were even smaller
than that of MA, as Figure 10 shows. The hardest instance was solved by ILSv5 in a
maximum computation time of less than 5 seconds, while all other instances took less
than one second.

These result suggest, in turn, that ILSv5 may perform betterthan ILS also on other
instance classes. We tested this conjecture on the LMC-LOP instances of dimension 75
and the XLOLIB instances of size 150. For these instances, wecomputed the average
deviation from the best known solutions and plotted these inFigure 11; the results is
that ILSv5 is significantly worse than ILS on these instances.

Overall, these results suggest that the performance of MA ismore robust with re-
spect to the various instance classes than ILS. This conclusion can be drawn because
(i) ILS and MA were only tuned on the dimension 100 instances from XLOLIB, but
MA shows, in general, good behavior across all instance classes and (ii) variants of
ILS that differ only in some details of the parameter tuning make a large difference to

25

0.00 0.02 0.04 0.06

0.
00

0.
02

0.
04

0.
06

LMC−LOP

ILS mean deviation (%)

M
A

 m
ea

n
de

vi
at

io
n

(%
)

X

X
XX

XX

X

X

X

X
X

X
X

X
X
X

X

X

X
X

X

X

X
X

X

O O
O

O
OO

OO O
O

OO OO
OO

O
O

O
O O O O

O

O

O
X

150
200

0.00 0.10 0.20 0.30

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

XLOLIB

ILS mean deviation (%)
M

A
 m

ea
n

de
vi

at
io

n
(%

)

X
X

X

X

X
X

X

X

X

X
X

X

X

X
X

X

X

X

X

X

X
XX X
X

X

X

X

X

X

X

X X

X

X

X
X

X

X

X XX
XX
X

X

X

X
X

O

O

O

O

O
O

O

O

O

O

O

O

O

O

O
O

O

O O
O

O

O

O

O

O

O
O O

O

O

O
O

O

O

O
O
O

O O
O

O

OO

O
OO

O

OO

O
X

150
250

Figure 9: Pairwise comparison of the average solution quality obtained by ILS and
MA, on large LMC-LOP instances (left) and XLOLIB instances (right). The results are
grouped according to the different instance sizes (indicated by crosses or circles). Each
cross (circle) gives on the

�
-axis the average deviation from the best known solution

found by ILS and on the�-axis that of the MA.

ILS performance and, hence, make parameter settings strongly dependent on instance
classes.

7.4 FDC and instance hardness

The experiments with ILS on the LMC-LOP instances indicate that ILS has significant
difficulties for solving all the instances in all the runs. One reason may be that ILS is
attracted to high quality solutions that may be far from a globally optimal one. But, if
this is the case, it is likely that ILS shows such a behavior oninstances with a low FDC
value.

This conjecture is examined by analyzing ILS results in dependence of the FDC
coefficient� and the easy level FDC coefficient� �. As an index of how hard is an
instance for ILS, we used the average deviation from the bestknown solutions and the
number of best known solutions returned by ILS over 30 trials. The plots in Figure
12 illustrate graphically the relationship of these measures to the FDC and easy level
FDC and show that these search space characteristics affectthe hardness of an instance
as encountered by ILS. The FDC has a strong negative correlation with the average
deviation from the optima found by ILS and a strong positive one with the number of
global optima. Summarizing, the higher is the FDC the easierbecome the instances for
ILS, as we conjectured. A slightly stronger correlation is observed for theeasy level

26

0 20 40 60 80 100

0
20

40
60

80
10

0

Max completion time
(MBLB)

ILS

IL
S

v5

0 1 2 3 4 5 6

0
1

2
3

4
5

6

Max completion time
(MBLB)

ILSv5
M

A

Figure 10: Pairwise comparison of ILSv5 to ILS (left) and ILSv5 to MA (right) based
on the maximum time measured across 100 trials to find a globally optimal solution on
MBLB instances.

FDC, which may suggest that the easy level FDC is better suited to predict the instance
hardness for ILS.

7.5 Comparison

In the literature, we find three main metaheuristic approaches to the LOP. In [7], Cam-
pos, Laguna, and Martı́ proposed the application of ScatterSearch (SS) to the LOP
and they discussed several ways of how to implement an SS approach to the LOP.3

The same authors studied an elite tabu search algorithm withadditional diversifica-
tion features for the LOP [17]. In this latter article, they also presented the instance
class LMC-LOP. The most recent metaheuristic application for the LOP is the iterated
dynasearch (IDS) of Congram [9]. Dynasearch is a local search algorithm where a dy-
namic programming approach is used to find the best set of independentinsertmoves
(two moves are independent if they do not overlap); iterateddynasearch is then simply
an ILS algorithm that uses dynasearch in the local search step.

In the following, we give some comparisons on the solution quality and the timings
between the different available approaches. However, we encountered several difficul-
ties for doing so. The least severe probably is that the experiments in these articles
were run on different machines. Using [29] and some experimental test we evaluated
that the machine we use is 21 time faster than the Intel Pentium 166Mhz used in [7, 17]

3The scatter search of [6] differs only in minor details from the one in [7] and the results are essentially
very similar. Therefore, we focus in the following on the results presented in the first article.

27

0.00 0.01 0.02 0.03 0.04 0.05

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

LMC−LOP
(75)

ILS mean deviation (%)

IL
S

v5
 m

ea
n

de
vi

at
io

n
(%

)

X

X

X

X

X
X

X

X

X

X X

X

X

X

XX

X

X

X

X

X

X

X

X

X

0.00 0.10 0.20 0.30

0.
00

0.
10

0.
20

0.
30

XLOLIB
(150)

ILS mean deviation (%)
IL

S
v5

 m
ea

n
de

vi
at

io
n

(%
)

X

X

X

X
X

X

X

X

X

X

X

X

XX
X

X X
X

X

X
X

X

X X

X

X

X

X

X

X

X
X

X

X

X
X
X

X

X

X

X

X

X

X
XX

X

XX

Figure 11: Pairwise comparison between the ILS and ILSv5 on LMC-LOP and
XLOLIB instances. Each cross gives on the

�
-axis the average deviation from the

best known solution found by ILS and on the� -axis that of ILSv5.

and 15 times faster than the Power Challenge R10000 used in [9]. In Table 10 we re-
port some results for the instance classes studied in [7, 17,9]. The major difficulty for
the comparison we found were that not enough details were given in these articles to
allow a detailed comparison. First, the termination criterion applied to ETS and IDS is
not clearly stated, neither how many trials were run on the different available instances.
Second, the “average deviation” is the mean of the results over all the instances of the
considered class; however is not clear which results are reported (for example, if it is
the mean over the experiments or the best results obtained).Because of these problems
it is not possible to establish if the number of optima given in these articles is the num-
ber of instances for which the algorithm was able to get at least once a global optimum,
always the optimum, or the result after just one run. To be on the most cautious side
(that is, to let the reported results appear in the best possible light), we will assume
that averages for SS, ETS, and IDS are given as averages of thebest solutions found
and that the number of optima is the number of instances that are always solved to
optimality.

For the results of MA and ILS, we report the average deviationcomputed over all
results obtained in 100 runs for LOLIB and 30 runs for LMC-LOPinstances. (Note,
that for these instances the MA found optimal solutions in each single trial for all the
instances of LOLIB and LMC-LOP.) For the time we indicate theaverage time to find
an optimal solution when it was found. As the number of optimawe report how many
instances were solved to the optimum in all the considered runs by the MA, while for
ILS we additionally give the number of instances for which a global optimum was

28

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

01
0

0.
02

0
0.

03
0

LMC−LOP (size 75)

average vs. FDC correlation: −0.5689
FDC

IL
S

 a
ve

ra
ge

 d
ev

ia
tio

n
(%

)

0.0 0.2 0.4 0.6 0.8 1.0
0.

00
0

0.
01

0
0.

02
0

0.
03

0

LMC−LOP (size 75)

average vs. e.l. FDC correlation: −0.6254
easy level FDC

IL
S

 a
ve

ra
ge

 d
ev

ia
tio

n
(%

)

0.0 0.2 0.4 0.6 0.8 1.0

15
20

25
30

LMC−LOP (size 75)

optima vs. FDC correlation: 0.7016
FDC

IL
S

 #
 o

pt
im

a

0.0 0.2 0.4 0.6 0.8 1.0

15
20

25
30

LMC−LOP (size 75)

optima vs. e.l. FDC correlation: 0.7946
easy level FDC

IL
S

 #
 o

pt
im

a

Figure 12: FDC affects the instance hardness. Shown are plots of the average percent-
age deviation from pseudo-optimal solutions for ILS (in thefirst row) and the number
of best known solutions found by ILS (second row) versus the FDC (left column) and
the easy level FDC (right column). In addition, are given thecorrelations between each
pair of measures.

29

Table 10: Comparison our ILS and MA algorithm to three algorithms from the liter-
ature. Avg.Dev.(%) gives the average percentage deviationfrom the known optimal
solutions, # optima the number of optimal solutions found, run time(s) gives the run-
times reported in the original papers, and ”P166 run time” are the computation times
translated to a 166 Mhz Pentium CPU.

SS ETS IDS ILS MA
Avg.Dev.(%) 0.01 0.00 0.00 0.00 0.00

LOLIB # optima 42 47 49 49 49
run time(s) 3.82 0.93 1.22 0.00165 0.00176
P166 run time 3.82 0.93 0.30 0.35 0.37
Avg. Dev.(%) – 0.05 0.00 0.0072 0.00

LMC-LOP # optima – 3 25 13(25) 25
size: 75 run time(s) – 2.95 10.56 6.58< 0.38

P166 run time – 2.95 38.25 138.15 7.90

Table 11: Comparison of ILS and MA to ETS on large LMC-LOP instances. Given
is the average percentage deviation from the best known solutions, averaged over all
trials and all instances.

size ETS ILS MA
150 0.18 0.029 0.0022
200 0.19 0.033 0.015

found at least once.
Regarding the results in Table 10, let us remark the following. In [9] is reported

that the IDS was able to obtain always the same best result forthe LMC-LOP instances.
Therefore, we assumed that this is the very same result we obtained (and, hence, the
resulting average deviation of 0.0 for IDS in Table 10 from the best known solution).
Instead, for ETS we can give precise results, because Dr. Rafael Martı́ send us a spread-
sheet containing the results of ETS for each instance.

When comparing the results in Table 10, it is clear that, evenunder the cautious
assumptions about the results of SS, ETS, and IDS, our ILS andMA algorithms are
extremely competitive to the earlier proposed metaheuristic approaches to the LOP. In
fact, ILS and MA outperform ETS and SS on the LOLIB instances and are roughly
on par with IDS. On the small LMC-LOP instances, ILS and MA return much better
quality solutions than ETS at, however, higher computationtimes. Our ILS appears to
perform slightly worse than IDS on these instances, while MAsolves the small LMC-
LOP instances about five times faster than IDS.

Finally, we compares the average deviation from the best known solutions for the
LMC-LOP instances of dimension 150 or 200 for ETS, ILS, and MAin Table 11. (Note
that ETS results were adjusted to the new best known solutions for these instances.)
The results show that ILS and MA yield by far better quality solutions than ETS; how-
ever, it is not clear how the computation times of the three algorithms compare, because
not enough details are given in [17].

The overall result of the comparison is that, in particular,the MA obtains an ex-

30

tremely encouraging performance both, from the point of view of the time and the
solution quality reached. In fact, even when being cautiousabout the experimental
conditions used in the other papers, our results suggest that the MA is a new, very
robust state-of-the-art algorithm for the LOP.

8 Conclusions

In this paper we have given a detailed analysis of benchmark instances for the LOP.
These include a new class of instances, called XLOLIB.4 The instances of this class
are randomly generated through sampling real-world instances, which allows to derive
large, random real-world like instances. In fact, cross-statistical data on the distri-
bution of the matrix entries of XLOLIB instances are basically the same as those of
the underlying real-world instances from LOLIB. However, the search space analysis
showed some discrepancy between the original LOLIB instances and the newly gener-
ated XLOLIB instances. Nevertheless, XLOLIB instances appear to be much closer to
real-world instances than instances from other, randomly generated classes like MBLB
or LMC-LOP instances.

The search space analysis of LOP instances showed that most instances have high
correlation length, suggesting that, in general, the LOP iseasy to solve when com-
pared to other problems [2]. Furthermore, most LOP instances have also a high fitness
distance correlation. Notable exceptions occur for a few LOLIB instances, where even
negative fitness distance correlations were found. Concerning measures of search space
characteristics, we introduced a new way to measure the FDC,which we named “easy
level FDC”. This measure tries to consider the fact that metaheuristics actually search
through high quality local optima and the central idea of theeasy level FDC is to focus
the analysis on high quality solutions. In fact, the easy level FDC showed a better cor-
relation to the instance hardness for of small LMC-LOP instances for ILS algorithms
than the standard way of determining FDC.

Based on the results of the search space analysis and the highsolution quality re-
turned by simple iterative improvement algorithms, we further studied efficient iterated
local search and memetic algorithms for the LOP. A comparison between the two algo-
rithmic approaches showed that the MA resulted in a much morerobust performance
with respect to the different instance classes than the ILS algorithm. However, some
additional experiments have shown that the ILS algorithm ismore sensible to parameter
settings and that the performance of different variants depends strongly on the instance
classes. It is an open question whether, with appropriate tuning, ILS can reach MA’s
performance on all the instance classes. A final comparison of MA and ILS perfor-
mance to other available metaheuristic approaches for the LOP showed that our MA is
a new, very robust state-of-the-art algorithm for the LOP.

4All the instances and the best known results will be published on the WWW at the addresshttp:
//intellektik.informatik.tu-darmstadt.de/˜schiavin/ lop for their easy access.

31

Acknowledgments

The authors would wish to thank Prof. John Mitchell and Dr. Brian Borchers for making
available the code of their exact algorithm. We thank also Dr. Rafael Martı́ for sending
to us the LMC-LOP instances and the results they obtained with the Tabu Search.

This work was supported by the “Metaheuristics Network”, a Research Training
Network funded by the Improving Human Potential programme of the CEC, grant
HPRN-CT-1999-00106. The information provided is the sole responsibility of the au-
thors and does not reflect the Community’s opinion. The Community is not responsible
for any use that might be made of data appearing in this publication.

References

[1] E. Angel and V. Zissimopoulos. Autocorrelation coefficient for the graph biparti-
tioning problem.Theoretical Computer Science, 191:229–243, 1998.

[2] E. Angel and V. Zissimopoulos. On the classification of NP-complete problems in
terms of their correlation coefficient.Discrete Applied Mathematics, 99:261–277,
2000.

[3] O. Becker. Das Helmstädtersche Reihenfolgeproblem – die Effizienz ver-
schiedener Näherungsverfahren. InComputer uses in the Social Science, Wien,
January 1967.

[4] M. Birattari, Thomas Stützle, L. Paquete, and K. Varrentrapp. A racing algorithm
for configuring metaheuristics. In W. B. Langdon et al., editor, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2002), pages
11–18. Morgan Kaufmann Publishers, San Francisco, CA, 2002.

[5] K.D. Boese.Models for Iterative Global Optimization. PhD thesis, University of
California, Computer Science Department, Los Angeles, CA,USA, 1996.

[6] V. Campos, F. Glover, M. Laguna, and R. Martı́. An experimental evaluation of
a scatter search for the linear ordering problem.Journal of Global Optimization,
21(4):397–414, 2001.

[7] V. Campos, M. Laguna, and R. Martı́. Scatter search for the linear ordering
problem. In D. Corne et al., editor,New Ideas in Optimization, pages 331–339.
McGraw-Hill, 1999.

[8] S. Chanas and P. Kobylanski. A new heuristic algorithm solving the linear order-
ing problem.Computational Optimization and Applications, 6:191–205, 1996.

[9] R. K. Congram.Polynomially Searchable Exponential Neighbourhoods for Se-
quencing Problems in Combinatorial Optimisation. PhD thesis, University of
Southampton, Faculty of Mathematical Studies, UK, 2000.

[10] M. Grötschel, M. Jünger, and G. Reinelt. A cutting plane algorithm for the linear
ordering problem.Operations Research, 32(6):1195–1220, 1984.

32

[11] M. Grötschel, M. Jünger, and G. Reinelt. Optimal triangulation of large real world
input–output matrices.Statistische Hefte, 25:261–295, 1984.

[12] H.H. Hoos and T. Stützle. Evaluating Las Vegas algorithms — pitfalls and reme-
dies. InProceedings of the Fourteenth Conference on Uncertainty inArtificial
Intelligence (UAI-98), pages 238–245. Morgan Kaufmann, San Francisco, 1998.

[13] T. Jones and S. Forrest. Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. In L.J. Eshelman, editor, Proc. of the 6th Inter-
national Conference on Genetic Algorithms, pages 184–192. Morgan Kaufman,
San Francisco, 1995.

[14] R. Kaas. A branch and bound algorithm for the acyclic subgraph problem.Euro-
pean Journal of Operational Research, 8:355–362, 1981.

[15] S. Kirkpatrick, C. D. Gelatt Jr., and M. P. Vecchi. Optimization by simulated
annealing.Science, 220:671–680, 1983.

[16] D. E. Knuth.The Stanford GraphBase: A Platform for Combinatorial Computing.
Addison Wesley, New York, 1993.

[17] M. Laguna, R. Martı́, and V. Campos. Intensification anddiversification with elite
tabu search solutions for the linear ordering problem.Computers & Operations
Research, 26(12):1217–1230, 1999.

[18] H. R. Lourenço, O. Martin, and T. Stützle. Iterated local search. In F. Glover
and G. Kochenberger, editors,Handbook of Metaheuristics, volume 57 ofInter-
national Series in Operations Research & Management Science, pages 321–353.
Kluwer Academic Publishers, Norwell, MA, 2002.

[19] P. Merz.Memetic Algorithms for Combinatorial Optimization Problems: Fitness
Landscapes and Effective Search Strategies. PhD thesis, Department of Electrical
Engineering and Computer Science, University of Siegen, Germany, 2000, 2000.

[20] P. Merz and B. Freisleben. Fitness landscapes and memetic algorithm design. In
D. Corne, M. Dorigo, and F. Glover, editors,New Ideas in Optimization, pages
245–260. McGraw-Hill, London, 1999.

[21] P. Merz and B. Freisleben. Fitness landscape analysis and memetic algorithms
for the quadratic assignment problem.IEEE Transactions on Evolutionary Com-
putation, 4(4):337–352, 2000.

[22] J. E. Mitchell and B. Borchers. Solving linear orderingproblems with a com-
bined interior point/simplex cutting plane algorithm. In H. L. Frenket al., editor,
High Performance Optimization, pages 349–366. Kluwer Academic Publishers,
Dordrecht, The Netherlands, 2000.

[23] P. Moscato and C. Cotta. A gentle introduction to memetic algorithms. In
F. Glover and G. Kochenberger, editors,Handbook of Metaheuristics, volume 57
of International Series in Operations Research & Management Science, pages
105–144. Kluwer Academic Publishers, Norwell, MA, 2002.

33

[24] C. R. Reeves. Landscapes, operators and heuristic search. Annals of Operational
Research, 86:473–490, 1999.

[25] T. Schiavinotto and T. Stützle. Search space analysisof the linear ordering prob-
lem. In G. R. Raidl et al, editor,Applications of Evolutionary Computing, volume
2611 of Lecture Notes in Computer Science, pages 322–333. Springer Verlag,
Berlin, Germany, 2003.

[26] P. Stadler. Towards a theory of landscapes. In R. Lopéz-Peña, R. Capovilla,
R. Garcı́a-Pelayo, H. Waelbroeck, and F. Zertuche, editors, Complex Systems and
Binary Networks, volume 461, pages 77–163, Berlin, New York, 1995. Springer
Verlag.

[27] P. Stadler. Landscapes and their correlation functions. J. of Math. Chemistry,
20:1–45, 1996.

[28] P. F. Stadler and W. Schnabl. The landscape of the travelling salesman problem.
Physics Letters A, 161:337–344, 1992.

[29] Standard Performance Evaluation Corporation. SPEC CPU95 and CPU2000
Benchmarks.http://www.spec.org/ , November 2002.

[30] T. Stützle and H. H. Hoos. Analysing the run-time behaviour of iterated local
search for the travelling salesman problem. In P. Hansen andC. Ribeiro, editors,
Essays and Surveys on Metaheuristics, Operations Research/Computer Science
Interfaces Series, pages 589–611. Kluwer Academic Publishers, Boston, MA,
2001.

[31] T. Stützle and H.H. Hoos.
���

–
��� Ant System.Future Generation Com-

puter Systems, 16(8):889–914, 2000.

[32] G. Syswerda. Schedule optimization using genetic algorithms. In L. Davis, editor,
Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1990.

[33] E. D. Weinberger. Correlated and uncorrelated fitness landscapes and how to tell
the difference.Biological Cybernetics, 63:325–336, 1990.

34

