
Evaluating Parallel Simulated Evolution Strategies for

VLSI Cell Placement

SADIQ M. SAIT, MUSTAFA IMRAN ALI and ALI MUSTAFA
ZAIDI
Computer Engineering Department, King Fahd University of Petroleum &

Minerals, Dhahran-31261, Saudi Arabia. email: {sadiq, mustafa,

alizaidi}@ccse.kfupm.edu.sa

Abstract. Simulated Evolution (SimE) is an evolutionary metaheuristic that has
produced results comparable to well established stochastic heuristics such as SA, TS
and GA, with shorter runtimes. However, for optimization problems with a very large
set of elements, such as in VLSI cell placement and routing, runtimes can still be very
large and parallelization is an attractive option for reducing runtimes. Compared
to other metaheuristics, parallelization of SimE has not been extensively explored.
This paper presents a comprehensive set of parallelization approaches for SimE when
applied to multiobjective VLSI cell placement problem. Each of these approaches
are evaluated with respect to SimE characteristics and the constraints imposed by
the problem instance. Conclusions drawn can be extended to parallelization of SimE
when applied to other optimization problems.

Keywords: optimization, parallel algorithms, evolutionary metaheuristic, simu-
lated evolution, VLSI cell placement, cluster computing

1. Introduction

Simulated evolution (SimE), proposed by Kling and Banerjee [1], be-
longs to the class of general purpose stochastic metaheuristics. It has
been applied to a variety of optimization problems in VLSI design
automation, computer network design, and other domains [2]. The
SimE algorithm is based on the principles of evolution. However, unlike
Genetic Algorithms (GA), only a single solution is evolved instead of
a population of solutions. Also, unlike Simulated Annealing (SA) and
Tabu Search (TS), each move in SimE is a compound move and the
element(s) perturbed are selected probabilistically based on their fitness
values and not entirely randomly.

Parallelization of metaheuristics aims to solve complex problems and
traverse larger search spaces in a reasonable amount of time. The goals
of parallelization can be to achieve either lower runtimes for the same
quality solutions as the sequential algorithm or higher quality solutions
in a limited amount of time [4, 5, 6]. From a computational point of
view, metaheuristics are algorithms from which functional and data
parallelism can be extracted. However, metaheuristics usually operate

c© 2006 Kluwer Academic Publishers. Printed in the Netherlands.

sait_jmma.tex; 10/12/2006; 14:41; p.1

2 SAIT ET AL.

upon irregular data structures, such as graphs, or upon data with strong
dependencies among different operations and as such remain difficult to
parallelize using only data and functional parallelism [4]. Furthermore,
when parallelizing metaheuristics, not only speed-ups are important
but also the maximum achievable qualities. Therefore, to achieve any
benefit from parallelization requires not only a proper partitioning
of the problem for a uniform distribution of computationally inten-
sive tasks, but more importantly, a thorough and intelligent traversal
of a complex search space for achieving good quality solutions. The
tractability of the former issue is largely dependent on parallelizability
of both the cost computation and perturbation functions while the
latter issue requires that the interaction of parallelization strategy with
the intelligence of the heuristic must be considered, as it directly affects
the final solution quality obtainable, and indirectly the runtime due to
its effect on algorithm’s convergence.

In this paper the parallelization of SimE is explored when it is
applied to a multiobjective VLSI cell placement problem with the
goal of achieving scalable speed-ups for the best solution qualities ob-
tained with the serial algorithm. To this end, various parallelization
approaches are investigated and a comparison amongst them with re-
spect to SimE metaheuristic characteristics and problem instance in-
teraction is presented. The paper is organized as follows: Section 2
explains the combinatorial optimization problem. In section 3.1, a brief
description of the SimE algorithm is given and an analysis of sequential
implementation’s runtime is given. In Section 4, the work is put in
context of previous work while Section 5 describes parallel strategies
and experimental results. General observations are given in Section 6,
and Section 7 concludes the paper.

2. Optimization Problem and Cost Functions

In this section, the optimization problem is formulated along with the
cost functions and constraint used in the optimization process.

2.1. Problem Formulation

This work addresses the problem of VLSI standard cell placement with
the objectives of optimizing power consumption, timing performance
(delay), and wirelength while considering layout width as a constraint.
Semi-formally, the problem can be stated as follows:

A set of cells or modules M = {m1,m2, ...,mn} and a set of signals
S = {s1, s2, ..., sk} is given. Moreover, a set of signals Smi

, where Smi
⊆

sait_jmma.tex; 10/12/2006; 14:41; p.2

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 3

S, is associated with each module mi ∈ M . Similarly, a set of modules
Msj

, where Msj
= {mi|sj ∈ Smi

} is called a signal net, is associated
with each signal sj ∈ S. Also, a set of locations L = {L1, L2, ..., Lp},
where p ≥ n is given. The problem is to assign each mi ∈ M to a unique
location Lj , such that all of the considered objectives are optimized
subject to the constraints [3].

2.2. Wirelength Cost:

Interconnect Wire length of each net in the circuit is estimated and
then total wire length is computed by adding the individual estimates:

Costwire =
∑

i∈M

li (1)

where li is the wirelength estimation for net i and M denotes total
number of nets in circuit.

2.3. Power Cost:

Power consumption pi of a net i in a circuit can be given as:

pi ≃
1

2
· Ci · V

2
DD · f · Si · β (2)

where Ci is total capacitance of net i, VDD is the supply voltage, f is
the clock frequency, Si is the switching probability of net i, and β is a
technology dependent constant.

Assuming a fix supply voltage and clock frequency, then power dissi-
pation of a cell depends on its capacitance and its switching probability.
Hence, the above equation reduces to the following:

pi ≃ Ci · Si (3)

The capacitance Ci of cell i is given as:

Ci = Cr
i +

∑

j∈Mi

C
g
j (4)

where C
g
j is the input capacitance of gate j and Cr

i is the interconnect
capacitance at the output node of cell i.

At the placement phase, only the interconnect capacitance Cr
i can

be manipulated while C
g
j comes from the properties of the cell from

the library used and is thus independent of placement. Moreover, Cr
i

depends on wirelength of net i, so Equation 3 can be written as:

pi ≃ li · Si (5)

sait_jmma.tex; 10/12/2006; 14:41; p.3

4 SAIT ET AL.

The cost function for estimate of total power consumption in the
circuit can be given as:

Costpower =
∑

i∈M

pi =
∑

i∈M

(li · Si) (6)

2.4. Delay Cost:

This cost is determined by the delay along the longest path in a circuit.
The delay Tπ of a path π consisting of nets {v1, v2, ..., vk}, is expressed
as:

Tπ =
k−1
∑

i=1

(CDi + IDi) (7)

where CDi is the switching delay of the cell driving net vi and IDi

is the interconnect delay of net vi. The overall circuit delay is equal
to Tπc , where πc is the longest path in the layout (most critical path).
The placement phase affects IDi because CDi is technology dependent
parameter and is independent of placement. Using the RC delay model,
IDi is given as:

IDi = (LFi + Rr
i) × Ci (8)

where LFi is load factor of the driving block, that is independent of
layout, Rr

i is the interconnect resistance of net vi and Ci is the load
capacitance of cell i given in Equation 4 .

The delay cost function can be written as:

Costdelay = max{Tπ} (9)

2.5. Width Cost:

Width cost is given by the maximum of all the row widths in the layout.
The layout width is constrained not to exceed a certain positive ratio
α to the average row width wavg, where wavg is the minimum possible
layout width obtained by dividing the total width of all the cells in the
layout by the number of rows in the layout. Formally, width constraint
can be expressed as below:

Width − wavg ≤ α × wavg (10)

sait_jmma.tex; 10/12/2006; 14:41; p.4

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 5

2.6. Overall Fuzzy Cost Function:

Since three objectives are being optimized simultaneously, there should
be a cost function that represents the effect of all three objectives in
form of a single quantity. In this work, the use of fuzzy logic is proposed
to integrate these multiple, possibly conflicting objectives into a scalar
cost function. Fuzzy logic allows us to describe the objectives in terms
of linguistic variables. Then, fuzzy rules are used to find the overall
cost of a placement solution. The following fuzzy rule has been used:

IF a solution has SMALL wirelength AND LOW power consump-
tion AND SHORT delay THEN it is an GOOD solution.

1.0
C i/O i

1.0

g i
* g i

i
cµ

Figure 1. Membership functions

The above rule is translated to and-like OWA fuzzy operator [9] and
the membership µ(x) of a solution x in fuzzy set GOOD solution is
given as:

µ(x) =



























β · min
j=p,d,l

{µj(x)} + (1 − β) · 1

3

∑

j=p,d,l
µj(x);

if Width − wavg ≤ α · wavg,

0; otherwise.

(11)

Here µj(x) for j = p, d, l, width are the membership values in the
fuzzy sets LOW power consumption, SHORT delay, and SMALL wire-
length respectively. β is the constant in the range [0, 1]. The solution
that results in maximum value of µ(x) is reported as the best solution
found by the search heuristic.

The membership functions for fuzzy sets LOW power consumption,
SHORT delay, and SMALL wirelength are shown in Figure 1. The
preference of an objective j in overall membership function can be
varied by changing the value of gj . The lower bounds Oj for different
objectives are computed as given in Equations 12-15:

Ol =
n

∑

i=1

l∗i ∀vi ∈ {v1, v2, ..., vn} (12)

sait_jmma.tex; 10/12/2006; 14:41; p.5

6 SAIT ET AL.

Op =
n

∑

i=1

Sil
∗

i ∀vi ∈ {v1, v2, ..., vn} (13)

Od =
k

∑

j=1

CDj + ID∗

j ∀vj ∈ {v1, v2, ..., vk} in path πc (14)

Owidth =

∑n
i=1 Widthi

of rows in layout
(15)

where Oj for j ∈ {l, p, d, width} are the optimal costs for wire-length,
power, delay and layout width respectively, n is the number of nets
in layout, l∗i is the optimal wire-length of net vi, CDi is the switching
delay of the cell i driving net vi, IDi is the optimal interconnect delay
of net vi calculated with the help of li, Si is the switching probability of
net vi, πc is the most critical path with respect to optimal interconnect
delays, k is the number of nets in πc and Widthi is the width of the
individual cell driving net vi.

3. Simulated Evolution Algorithm

3.1. Description of Metaheuristic

The structure of the SimE algorithm is shown in Figure 2. SimE as-
sumes that there exists a solution Φ of a set M of n (movable) elements
or modules. The algorithm starts from an initial assignment Φinitial,
and then, following an evolution-based approach, it seeks to reach bet-
ter assignments from one generation to the next by perturbing some
ill-suited components while retaining the remaining ones. A cost func-
tion Cost associates with each assignment of movable element mi a
cost Ci. The cost Ci is used to compute the goodness (fitness) gi of an
element mi, for each mi ∈ M . The goodness measure must be strongly
related to the target objective of the given problem. Hence in SimE
approach, the quality of a solution can be measured as the quality of
all its constituent elements.

The algorithm has one main loop consisting of three basic steps,
Evaluation, Selection, and Allocation. The three steps are executed in
sequence until the solution average goodness reaches a maximum value,
or no noticeable improvement to the solution fitness is observed after
a number of iterations.

The Evaluation step consists of evaluating the goodness gi of each
element mi of the solution Φ. The goodness measure must be a single
number expressible in the range [0, 1]. It is defined as:

gi =
Oi

Ci

sait_jmma.tex; 10/12/2006; 14:41; p.6

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 7

where Oi is an estimate of the optimal cost of element mi, and Ci is
the actual cost of mi in its current location. Since three objectives are
being optimized, a multiobjective goodness measure developed in [7] is
used.

The second step of the SimE algorithm is Selection. Selection takes
as input the solution Φ together with the estimated goodness of each
element, and a bias value B to compensate for non-ideal nature of
the calculated goodness values. It partitions Φ into two disjoint sets; a
selection set S and a partial solution Φp of the remaining elements of
the solution Φ. Each element in the solution is considered separately
from all other elements. The probability of assigning an element mi to
the set S is based on its goodness gi. The selection operator has a non-
deterministic nature, i.e, an individual with a high goodness (close to
one) still has a non-zero probability of being assigned to the selection set
S. It is this element of non-determinism that gives SimE the capability
of escaping local minima. In this work, a biasless selection function
developed in an earlier work [7] as been used.

Allocation is the SimE operator that has the most important im-
pact on the quality of solution. Allocation takes as input the set S

and the partial solution Φp and generates a new complete solution Φ′

with the elements of set S mutated according to an allocation function
Allocation [2]. The goal of Allocation is to favor improvements over the
previous generation, without being too greedy. A variety of heuristics
can be used in this step [1]. In this work, the ‘sorted individual best fit
method’ [7] has been used.

3.2. Runtime Analysis of Sequential Algorithm

To determine the contribution of each of the cost functions and SimE
operators to overall execution time, the serial implementation was pro-
filed using gprof (GNU profiler) tool. Two separate versions of programs
were analyzed for various test cases executed for same number of itera-
tions. Of the two versions, the first optimized only wirelength and power
while the other focused on all three objectives. The results obtained
showed that for first and second versions respectively 98.4% and 98.5%
of time was spent in the allocation function, 0.6% and 0.5% of time
was spent in wirelength calculation (excluding wirelength re-calculation
calls made in allocation routine), 0.2% and 0.4% of time was spent in
goodness evaluation, and 0.2% of time was spent in delay calculation
in the second version. Thus, it is obvious that for the given problem
instance with the ‘sorted individual best-fit’ method, allocation routine
heavily influences the runtime of the algorithm. The impact of this is
discussed in Section 5.

sait_jmma.tex; 10/12/2006; 14:41; p.7

8 SAIT ET AL.

ALGORITHM Simulated Evolution(B, Φinitial)
NOTATION
B: Bias Value. Φ: Complete solution.
mi: Module i. gi: Goodness of mi.
ALLOCATE(mi, Φi): Allocates mi in partial solution Φi

Begin

INITIALIZATION;
Repeat

EVALUATION:
ForEach mi ∈ Φ evaluate gi;

SELECTION:
ForEach mi ∈ Φ DO

begin

IF Random > Min(gi + B, 1)
THEN

begin

S = S ∪ mi; Remove mi from Φ
end

end

Sort the elements of S
ALLOCATION:

ForEach mi ∈ S DO

begin

ALLOCATE(mi, Φi)
end

Until Stopping Condition is satisfied
Return Best solution.
End (Simulated Evolution)

Figure 2. Simulated evolution algorithm.

4. Related Work

The field of parallel metaheuristics has rapidly expanded in the past
ten to fifteen years and parallel versions of metaheuristics have been
increasingly proposed. Several excellent surveys, taxonomies and syn-
theses have also been published [4, 5, 6], which present a global view of
the field and generalize the various strategies used into broad classes.
To put the exploration approach taken in this work into context, the
parallel approaches attempted for SA, GA and TS are briefly discussed.

sait_jmma.tex; 10/12/2006; 14:41; p.8

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 9

4.1. Simulated Annealing

4.1.1. Move Acceleration
Several efforts to determine and exploit parallelism have focused on
move computation, as this is a fundamental component performed
numerous times during each annealing run. The underlying idea is to
partition different, non-interacting portions of the move evaluation task
across several processors in parallel. Each individual move is evaluated
faster by breaking up the overall task into subtasks such as selecting a
feasible move, evaluating the cost changes, deciding to accept or reject,
and perhaps updating a global database. Concurrency is obtained by
delegating these individual subtasks to different processors.

Such a strategy, referred to as move-acceleration or move-decomposition,
involves a close interaction between processors, and has less potential
for parallelism in terms of the amount of parallel work performed and
the number of processors that can be employed. Such methodologies
are largely restricted to shared memory architectures and preserve all
the properties of the serial algorithm [8].

4.1.2. Parallel Moves
In this method, moves are computed independently and in parallel by
several processors. Since the global system state is partitioned across
the processors, the independent computation and subsequent state up-
date of interacting moves causes the locally held view of the global sys-
tem state in each processor to become inconsistent with the local views
in other processors. Consequently, errors are introduced in move evalu-
ation. The impact of such errors may be kept at a minimum through fre-
quent exchanges of state-update information between processors. How-
ever, this approach implies significantly increased inter-processor com-
munication, thereby restricting its application in a cluster-of-workstations
environment.

4.1.3. Multiple Markov Chains
Multiple Markov chains (MMC) call for the concurrent execution of
separate simulated annealing chains with periodic exchange of solu-
tions [20]. This approach is particularly promising since it has the
potential to use parallelism to increase the quality of the solution.

4.1.3.1. Non-interacting Scheme The algorithm can be understood if
the sequential simulated annealing procedure is considered as a search
path where moves are proposed and either accepted or rejected depend-
ing on particular cost evaluations and also a starting random seed.
The search path is essentially a Markov chain, and parallelization is

sait_jmma.tex; 10/12/2006; 14:41; p.9

10 SAIT ET AL.

accomplished by initiating different chains (using different seeds) on
each processor. Each chain then explores the entire search space by
independently performing the perturbation, evaluation, and decision
steps. After each processor has completed the annealing schedule, the
solutions are compared and the best is selected.

4.1.3.2. Periodic Exchange Scheme (Synchronous MMC) In this scheme,
processing elements (PEs) exchange local information including the
intermediate solutions and their costs after a fixed time period. Then,
each PE restarts from the best of the intermediate solutions. Com-
pared to the non-interacting scheme, a communication overhead in this
periodic exchange scheme would be introduced. However, each PE can
utilize the information from other nodes thereby reducing unproductive
computations and idle time. With such communication, these inde-
pendent Multiple Markov chains can collectively converge to a better
solution.

4.1.3.3. Dynamic Exchange Scheme (Asynchronous MMC) The sta-
tistical data collected during execution may be utilized to adaptively
control the SA process in each Markov Chain to further reduce the
execution time. For example, the acceptance rate which is closely re-
lated to the annealing state can control communication instances. The
periodic exchanges that were discussed earlier may introduce unnec-
essary and untimely communication, thereby wasting time. Moreover,
an intermediate solution derived at an insufficiently cooled state can
hamper the convergence of other communicating Markov chains.

Soo-Young and Kyung proposed an asynchronous MMC model, which
adaptively determines when information is to be exchanged [20]. Com-
munication is permitted based on satisfying certain conditions. First, a
certain period of time has to elapse, i.e., to allow each PE sufficient inde-
pendent annealing. Second, these working nodes exchange information
only when necessary, rather than at a fixed schedule, e.g., when other
PEs have arrived at a significantly better solution. In this way, these
processing elements can more efficiently guide each other to a higher
quality solution. This is known as the dynamic exchange scheme, and
is an asynchronous MMC model.

4.2. Genetic Algorithms

Over the years, parallel Genetic Algorithms have been broadly classified
into the following three models [14, 15]:

1. Global single-population master-slave GAs

sait_jmma.tex; 10/12/2006; 14:41; p.10

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 11

2. Single-population fine-grained GAs, and

3. Multiple-population coarse-grained GAs

4.2.1. Global Single-Population Master-Slave ParGA
This model follows the Master-Slave paradigm where a single popula-
tion is maintained on the Master, while evaluation of fitness and/or
the application of Genetic Operators is distributed among several slave
processors. In this model, selection and crossover consider the entire
population and hence it is also known as the Global Parallel GA.
As in the serial GA, each solution may compete and mate with any
other in the population; also the selection operation determines the
new population from the complete set of older population and their
offsprings.

The most common operation that is parallelized is the evaluation
of solutions, as the fitness of each chromosome is independent of any
other. A fraction of the population is assigned to each processor, and
communication occurs only as each slave receives its subset and returns
the fitness values. The method does not affect the behavior of the GA
algorithm, and follows the same search pattern as serial GAs.

4.2.2. Single-Population Fine-Grained ParGA
Fine-Grained Parallel GAs maintain only one population, but have a
spatial structure that limits interaction between individual solutions.
An individual can only compete and mate with its neighbors, i.e., se-
lection and crossover is restricted to a small neighborhood. However,
these neighborhoods overlap, thus allowing good solutions to dissemi-
nate across the entire population. This model is suitable for massively
parallel computers with the ideal case of having only one individual
solution for each processing element available.

4.2.3. Multiple-Population Coarse-Grained GAs
Multiple-Population GAs provide a more sophisticated parallelization
strategy wherein several subpopulations evolve independently on indi-
vidual processors and exchange individuals periodically. This exchange
of solutions is called migration and is a core aspect of this parallel
model. Multi-population GAs are known with different names. They
are referred to as Multi-deme parallel GAs (drawing on the analogy of
natural evolution), Distributed GAs (as they are often implemented on
distributed parallel architectures), and Coarse-grained GAs (since the
computation to communication ratio is usually high). This model of
parallel GAs is very popular, but also the most difficult to understand

sait_jmma.tex; 10/12/2006; 14:41; p.11

12 SAIT ET AL.

due to the effect of migration and a large number of influential param-
eters. There is no hierarchical master-slave structure but rather, a peer
model with migration between demes controlled by various parameters.

4.3. Tabu Search

Parallel TS has drawn the attention of many researchers, especially in
comparison with similar acceleration strategies applied to other heuris-
tics. The first reported studies were published in the early 90’s [16,
17, 18]. Crainic et al. [19], classified the different parallel tabu search
heuristics based on a taxonomy along three dimensions as enumerated
below.

− The first dimension is Control cardinality, where the algorithm
is either 1-control, where one processor executes the search and
distributes tasks to other processors or p-control, where each pro-
cessor is responsible for its own search and communicates with
other processors.

− The second dimension is Control and communication type,
where the algorithm can either follow a rigid synchronization (RS)
and knowledge synchronization (KS) approach or it can be Col-
legial (C), and Knowledge Collegial (KC). The former is a syn-
chronous operation mode where the process is forced to establish
communication and exchange information at specific, explicitly de-
fined points. The latter is an asynchronous operation mode where
the processors can independently decide on communication de-
pending on the global characteristics of good solutions, the search
strategy and the possible content of that communication

− The third dimension is Search differentiation where the algo-
rithm can be SPSS (Single Point Single Strategy), SPDS (Single
Point Different Strategies), MPSS (Multiple Point Single Strat-
egy), or MPDS (Multiple Point Different Strategies).

In addition to this type of classification, a more general category
based on processor communication is also used. This divides various
approaches as either Synchronous or Asynchronous. In the former,
various processors working with the same solution, communicate in
a synchronous manner, where the managing processor orchestrates the
activities of all others. In asynchronous strategies, each processor com-
municates independently of other nodes using either the master-slave
or peer-to-peer model.

sait_jmma.tex; 10/12/2006; 14:41; p.12

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 13

4.3.1. Synchronous Parallel Tabu Search
In this approach, the master is primarily in-charge of controlling move-
ment in the search process, while the slaves are used for distributing
workload. Depending on the variants of this strategy, slave processors
may start with either the same or different initial solution. After search-
ing its allocated part of the current neighborhood, each slave process
reports its best move back to the master. The master process selects the
best among these, subject to tabu conditions. If the stopping criteria
are met then the search stops; otherwise the master determines a new
set of moves and distributes them among the slaves which continue
with the search. This approach, by Crainic’s classification, would be a
1-control, RS, SPSS algorithm.

4.3.2. Asynchronous Parallel Tabu Search
In this approach, each processor explores a subset of the neighborhood
of its current solution. Each of these is competing with its neigh-
bors (its adjacent processors) in finding a superior solution. When
the stopping criteria are met, every processor reports its best solu-
tion. Similar asynchronous parallel tabu search implementations for
the traveling salesman and quadratic assignment problems have been
reported in [16]. Its classification is p-control, C, MPSS algorithm.

4.4. This work

In this paper follows the approach taken in [4] and classify the various
attempted strategies into three comprehensive types according to the
source of parallelism. These are [4]:

1. Type I (Low-Level Parallelization): The limited functional or data
parallelism of a move evaluation is exploited or moves are evaluated
in parallel. This strategy, called low-level parallelism, aims to sim-
ply speed-up the sequential algorithm without changing the search
space traversal path taken by the algorithm.

2. Type II (Domain Decomposition): This approach obtains paral-
lelism by partitioning the set of decision variables. The partitioning
reduces the size of solution space, but it needs to be repeated to
allow the exploration of the complete solution space. The traversal
is different than the sequential algorithm.

3. Type III (Parallel Searches): Parallelism is obtained from multiple
concurrent explorations of the solution space.

Unlike SA, GA, TS and many other metaheuristics, parallelization of
SimE has not been explored extensively and no comparison among
strategies has been made. The only parallelization strategy reported [1]

sait_jmma.tex; 10/12/2006; 14:41; p.13

14 SAIT ET AL.

was for a single objective (wirelength) VLSI cell placement that can be
classified under type II. In this paper, a more complex multiobjec-
tive cost function is used and comparion of the parallel strategies is
presented considering the complete spectrum of parallelization types
discussed here.

5. Parallel Strategies and Experiments

The parallel SimE strategies were implemented in C along with MPICH
ver.1.2.5 Messsage Passing Interface library. A dedicated cluster was
used comprising of eight 2GHz Pentium-4 machines with 256MB RAM,
connected with fast ethernet, and running RedHat Linux ver.7.2. The
strategies were tested on ISCAS-89 benchmark circuits. They are of
various sizes in terms of number of cells and paths, and thus offer a
variety of test cases. In all the results tables, runtimes are in seconds
and the solution qualities, denoted by µ(s), is the fuzzy cost measure
discussed in Section 2.

5.1. Type I Parallelization

As stated earlier, a type I parallelization aims to speed up the sequential
algorithm without modifying its search behavior. For a type I parallel
SimE strategy, parallelization of goodness evaluations seems intuitive as
it is done at the level of individual elements, although the dependencies
among elements has to be taken into account to ensure correctness.
However, the allocation routine has a sequential dependence among
its operations and it cannot be partitioned without deviating from
the sequential algorithm behavior. Hence, the implemented SimE type
I parallelization focuses only on distribution of cost calculations and
goodness evaluation.

In the multi-objective cost computation, the calculation of wire-
length of each net must precede the calculation of power and delay. The
wirelength calculation of each net is independent of other nets and thus
can be performed in parallel. The same applies to power computations.
The calculation of delay costs involves operating on given critical paths,
finding the delay of each and then finding maximum delay among all
paths. These can also be performed in parallel. This results in a fairly
clean partitioning as long as cost computations are concerned. However,
the complications lie in goodness evaluations for wirelength, power and
delay.

The calculation of wirelength and power goodness values of each cell
requires that the wirelength of all fan-in cells be known [7]. This com-
plicates the partitioning of cells among processors; if a processor needs

sait_jmma.tex; 10/12/2006; 14:41; p.14

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 15

ALGORITHM TypeI Parallel SimE Master Process

NOTATION
(* Φ is the complete solution. *)

Begin

INITIALIZATIONS;
Repeat

EVALUATION:
(* For each slave process. *)
ParFor

Slave Process(Φ)
(* Broadcast Current Placement. *)

EndParFor

ParFor

Receive Partial Goodness Values
EndParFor

SELECTION;
Sort the elements of S;
ALLOCATION;

Until (Stopping Criteria is Satisfied)
Return (Best Solution)

End. (*Master Process*)

Figure 3. Outline of Master Process for Type I Parallel SimE Algorithm.

to calculate the wirelength of cells not in its partition, the potential
gain of cost computation division is reduced to the extent of duplicate
calculations performed. The situation is worse for delay goodness cal-
culations as all the cells on an assigned long path may not lie in the
same assigned partition, resulting in many duplicate calculations across
processors. In addition, all processors need to know the computed delay
of all long paths in the circuit to calculate the delay goodness of cells in
its partition, requiring additional costly communication. Furthermore,
during allocation at the master node, additional cost calculations may
be required when calculating the goodness gains for those cells which
are not the members of partition at the master node.

Since delay goodness partitioning has complex communication re-
quirements, and secondly, profiling results indicate that most of the
time is spent for wirelength/power cost and goodness calculations, the
type I parallel algorithm was implemented for only wirelength and
power optimization to observe the results of partitioning. Figures 3
and 4 show the outline of the type I parallel SimE algorithm. The
partial cost and goodness computations are carried out by all processors
including the master processor, which then receives goodness values

sait_jmma.tex; 10/12/2006; 14:41; p.15

16 SAIT ET AL.

ALGORITHM TypeI Parallel SimE Slave Process(Φ)
NOTATION
(* Φ is the complete solution. *)
(* Φsis the partition assigned to slave s. *)
(* mi is module i in Φs. *)
(* gi is the goodness of mi. *)

Begin

Receive Placement
Calculate Partial Costs
ForEach mi ∈ Φs evaluate gi EndForEach;
Send Partial Goodness Values

End. (*Slave Pocess*)

Figure 4. Outline of Slave Process for Type I Parallel SimE Algorithm.

from all processors and performs selection and allocation. The slave
processors are then updated with the new solution.

The results of type I implementation are shown in Table I. Due
to lack of space, the solution quality for each circuit is not shown
as it doesn’t vary between serial and parallel versions. The results
show that there is no benefit of type I parallelization because of poor
workload division owing to duplicate calculations. Furthermore, there
is an increase in the runtime of parallel algorithm as the parallelization
overheads well exceed the little workload distribution. Also, no change
in runtimes is observed with increasing processors. Interestingly, the
ratio of serial to parallel runtimes remains almost the same across the
different test cases and processor counts.

Table I. Results for Type 1 Parallel SimE

Ckt Cells Seq. Times for Parallel

Name Time p=2 p=3 p=4 p=5

s1196 561 92 130 130 130 130

s1488 667 187 263 263 263 263

s1494 661 190 268 268 273 270

s1238 540 91 127 129 131 130

s3330 1561 3750 5480 5463 5467 5453

sait_jmma.tex; 10/12/2006; 14:41; p.16

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 17

ALGORITHM TypeII Parallel SimE Master Process
NOTATION
(* ks: Set of row indices for each process s. *)
(* Φ: The complete current solution. *)

INITIALIZATIONS;
Begin

Repeat

ForEach s ∈ m Generate Row Indices ks EndForEach;
(* For each slave process. *)

ParFor

Slave Process(Φ, ks)
(* Broadcast cur. placement and row-indices. *)

EndParFor

ParFor

Receive Partial Placement Rows
EndParFor

Construct Complete Solution
Until (Stopping Criteria is Satisfied)

Return Best Solution.
End. (*Master Process*)

Figure 5. Outline of Master Process for Type II Parallel SimE Algorithm.

5.2. Type II Parallelization

The domain decomposition method involves the partitioning of a com-
plete solution into smaller domains to be optimized in parallel. For
SimE, this implies the parallelization of all its operators, including
Allocation. Hence, the search behavior of the parallel algorithm will
differ from the serial algorithm. Allocation function division requires
that alterations performed by the individual sub-allocation functions
on the sub-solutions should not overlap, thus allowing the concurrent
relocation of several selected cells at a time. After each iteration, the
sub-solutions are merged to avoid missing parts of the search space
and then re-partitioned. The elements are partitioned row wise among
the m processors. This type of partitioning facilitates the adaptation
of SimE to type II parallelization as each row can be easily processed
independently. A processor s, 1 ≤ s ≤ m would be assigned a subset
Φs of the solution Φ. Then, each processor s will evaluate the goodness
of each element in Φs and run the Selection step to partition Φs into
a selection subset Ss and a partial solution of remaining cells Φp

s (See
the serial algorithm in Figure 2 for comparison).

sait_jmma.tex; 10/12/2006; 14:41; p.17

18 SAIT ET AL.

0

1

2

3

4

5

6

7

P1

P2

P3

P4

(a) Odd Iterations (b) Even Iterations

Figure 6. The row allocation pattern when 8 rows are allocated to 4 processors
during (a) odd numbered iterations (partitioning pattern 2); (b) even numbered
iterations (partitioning pattern 1).

This type of parallelization strategy has been attempted earlier for
standard cell placement on a network of workstations [1]. The row
allocation pattern that was proposed in [1] is made up of two alternating
sets. In the even iterations, each slave gets a slice of ⌈K

m
⌉ rows, (where

m is the number of processors, and K is the total number of rows
in the placement) while in the odd iterations the jth slave gets the
set of rows j, j + m, j + 2m, and so on. Figure 6(a) shows the row
distribution pattern for odd-numbered iterations while Figure 6(b) is
the partitioning for the even-numbered cycles when 8 rows are used
with 4 processors. It was stated that with this fixed pattern of assigning
rows to slaves in alternate steps, each cell can move to any position on
the grid in at most two steps [1].

The pseudocode of the type II parallel SimE is given in Figures 5
and 7. As can be seen, one of the processors (the master) is in-charge
of running SimE on a particular partition as well as performing the
following tasks periodically at the end of each iteration: (1) receive the
partial placements from all other processors and combine them into a
new solution, (2) obtain a new row allocation, and finally, (3) distribute
the new solution and row allocation among the processors. The number
of rows assigned to each processor depends on the size of the placement
and the number of processors. This is repeated for all iterations until
the termination condition is met.

The consequence of Allocation parallelization, however, is that each
processor only has a limited freedom of cell movement, which reduces
even further with increasing number of processors on a given number
of total rows. This affects the optimum cell movement, making it more

sait_jmma.tex; 10/12/2006; 14:41; p.18

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 19

Table II. Results for Wirelength-Power Type II Parallel SimE Strate-
gies.

Ckt. µ(s) Seq. Processors Fixed Random

Name Time Row Pattern Row Pattern

s1196 0.684 92 2 45 50

3 36 (95) 38

4 33 (94) 32

5 29 (89) 31

s1488 0.673 186 2 105 102

3 60 (98) 65

4 37 (94) 45

5 43 (92) 36

s1494 0.650 49 2 42 44

3 60 35

4 176 29

5 196 (94) 25

s1238 0.719 72 2 95 32

3 116 (96) 23

4 167(94) 20

5 185 (93) 14(95)

s3330 0.699 2765 2 1900 1091

3 930 (99) 574

4 748 373

5 724 (97) 378

difficult for cells to reach their optimal locations in the same number
of iterations as the sequential algorithm. Also, some error in optimum
cell position determination is introduced as each processor considers
the cells outside its partition as not changing positions.

To observe if a different row allocation pattern than the one men-
tioned earlier [1] can lead to a different behavior, random row allo-
cation [11] was also attempted in the experimentation. Two parallel
multiobjective algorithms, a wirelength-power only and the other in-
cluding delay optimization as well, were implemented using two types
of row allocation patterns for each. No division of wirelength and delay
cost calculations was done because of little potential gain as evident by
the profiling results and type I parallelization.

sait_jmma.tex; 10/12/2006; 14:41; p.19

20 SAIT ET AL.

Table III. Results for Wirelength-Power-Delay Type II Parallel SimE
Strategies.

Ckt. µ(s) Seq. Processors Fixed Random

Name Time Row Pattern Row Pattern

s1196 0.634 134 2 96 85

3 37 70

4 36 55

5 43(98) 30

s1488 0.523 244 2 54 50

3 39 80

4 76 45

5 70 50

s1494 0.626 253 2 116 (88) 235

3 73 (87) 93

4 110 (86) 115

5 103 (87) 96 (98)

s1238 0.666 187 2 38 110

3 78 75

4 83 35

5 34 (98) 78

s3330 0.674 13007 2 4676 (90) 3171

3 2604 (87) 1658 (90)

4 2062 (83) 1105 (86)

5 1336 (80) 1031 (86)

Tables II and III show the results of type II parallel SimE for two
and three objectives optimization respectively. For the results in Ta-
ble II, the serial algorithm was run for 3500 iterations while the parallel
runs were done starting at 4000 iterations and 500 additional iterations
added with every additional processor. In Table III, the serial version
ran for 5000 iterations and 1000 more iterations for each additional
processor were done. This was done because additional iterations are
required for the type II parallel algorithm to converge because of par-
titioning. In cases where the parallel algorithm failed to achieve the
highest serial quality, the time shown is for the percentage of serial
quality indicated in brackets. The tables show that the speed-up trend
and solution qualities are better in case of random row allocation for
both optimization versions. It is evident that parallelization of alloca-

sait_jmma.tex; 10/12/2006; 14:41; p.20

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 21

ALGORITHM TypeII Parallel SimE Slave Process(Φ, ks)
NOTATION
(* Φs are the rows assigned to slave s. *)
(* mi is module i in Φs. *)
(* gi is the goodness of mi. *)

Begin

Receive Placement And Indices
EVALUATION:

ForEach mi ∈ Φs evaluate gi EndForEach;
SELECTION:

ForEach mi ∈ Φs DO

Begin

If Random > Min(gi + B, 1)
Then

Begin

Ss = Ss ∪ mi; Remove mi from Φs

End

End

Sort the elements of Ss

ALLOCATION:
ForEach mi ∈ Ss Do

Begin

Allocate(mi, Φi
s)

(* Allocate mi in local partial solution rows Φi
s. *)

End

Send Partial Placement Rows
End. (*Slave Process*)

Figure 7. Outline of Slave Process for Type II Parallel SimE Algorithm.

tion function in type II strategy, which constitutes more than 95% of
runtime (Section 3.2), leads to significant speed-ups, though at the cost
of achieving lower than maximum serial qualities in some cases.

5.3. Type III Parallelization

Type III parallelization or parallel searches aim for a concurrent ex-
ploration of the search space with parallel threads that may or may
not interact (by exchanging some kind of information). In the simplest
form of parallel search, each thread independently performs a separate
search with a different randomization. However, it has been observed
that there is seldom any speed-up in this method as this is equivalent to
multiple independent runs of the serial algorithm. Strategies in which
threads communicate with others have shown promising results for SA,

sait_jmma.tex; 10/12/2006; 14:41; p.21

22 SAIT ET AL.

GA and TS [4, 5, 6]. Hybrid algorithms have also been proposed in
which, for instance, GA is used with parallel threads of SA or some
other metaheuristic or vice versa.

Parallel searches are effective if the search subspaces of the various
threads do not overlap (or have minimal overlap) so that all threads
should concurrently search distinct parts of the solution space (ideally).
In case of SimE, although the selection operator is non-deterministic,
the outcome is highly dependent upon the goodness values. With two
threads of SimE using the same solutions but with different random-
ization, the set of cells selected will not differ much. As such, this does
not guarantee the required non-overlapping concurrent exploration of
different areas of a search space. Also, the SimE allocation operator
that has the greatest impact on final solution quality is deterministic.
Compared to this, SA, TS, and GA, exhibit more randomness in their
search operators and thus lend themselves to different randomization
with parallel searches as compared to SimE.

To explore type III parallelization of SimE, a parallel SimE was im-
plemented on the lines of asynchronous multiple Markov chain parallel
simulated annealing [8], where a central processor keeps track of the
best solutions found so far among all threads. Since there is no workload
division in parallel searches, the only way to achieve any speed-up is to
enable threads to assist each other in rapidly reaching better solutions
and by minimizing the time wasted in iterations in which no good
solutions are found. It is observed that initially the solution rapidly
evolves to a certain quality after which successive good solutions are
found after a number of inferior ones. The interval of exchanges of best
solution with the central processor was varied. Each thread keeps track
of the number of successive times it fails to improve the current solution
and resets this counter every time a better solution is found. After a
certain set limit, called the retry threshold, is exceeded, the thread
starts checking at the central processor if a better solution is available.
The master either provides a better solution or accepts the solution
of the requesting processor if it is better than what master already
has. Furthermore, to keep the master updated with the best solution
found so far among all threads, so that any requesting thread may be
benefited, each processor always communicates the best solution found
recently to the master. Thus the parallel algorithm tries to ensure that
each processor is given a chance to diversify and evolve solution on its
own while a better solution is made available if present. The outline of
a slave thread in type III parallel SimE algorithm is given in Figure 8.

The results for Type III parallel SimE are shown in Table IV. The
processors start from at least 3 as one processor is required as a cen-
tral store. Both the serial and parallel algorithms were run for 2500

sait_jmma.tex; 10/12/2006; 14:41; p.22

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 23

ALGORITHM TypeIII Parallel SimE Slave Process
NOTATION
(* Count is the current retry value. *)

Begin

INITIALIZATIONS;
Repeat

EVALUATION;
SELECTION;
Sort the elements of S

ALLOCATION;
Calculate Costs;
If CurCost > BestCost

Then

Begin

Inform Master;
Count = 0;
End

Else

Count = Count + 1
EndIf

If Count > Retry Threshold

Then

Begin

If Costmaster < Costcur

Then Get New Placement
End

Until (Stopping Criteria is Satisfied)
End. (*Slave Process*)

Figure 8. Structure of the Type III Parallel Simulated Evolution Algorithm.

iterations at each processor. All runs were performed using the same
starting solution but with different randomization seeds. Four different
retry values of 50, 100, 150 and 200 iterations were tested. The runtimes
show little deviation from the serial runtime. This indicates that the
search derives negligible benefit from cooperating processes. Since there
is no workload division, the results are virtually identical to the serial
algorithm runs, though for higher threshold values consistently higher
quality results, sometimes exceeding the serial quality, were obtained.
These results strongly relate to the property of SimE that indepen-
dent searches are not diversified enough when based solely on different
randomizations to assist each other in reaching better solutions in less
time than the serial algorithm.

sait_jmma.tex; 10/12/2006; 14:41; p.23

24 SAIT ET AL.

Table IV. Results for Type III Parallel SimE

Ckt. µ(s) Seq. Retry Time for Parallel

Name Time Val. p=3 p=4 p=5

s1494 0.673 121 50 130 122 130

100 118 113 115

150 125 120 115

200 110 119 110

s1238 0.719 72 50 70 71 68

100 64 60 62

150 70 66 70

200 71 60 60

6. General Observations

Based on results of the three parallelization strategies, some overall
observations can be made. Although it appears that the structure of
the generic SimE algorithm lends itself easily to a low-level paralleliza-
tion, the nature of cost functions (problem instance) and the type of
allocation method used dictate the degree of parallelism possible. Type
I parallelization would be suitable if goodness calculation is computa-
tionally intensive, there is a sparse data dependence among elements
and/or the allocation function can be parallelized without affecting its
outcome. Secondly, domain decomposition implicitly divides the solu-
tion and parallelizes all SimE operators, but the ability to achieve high
quality solutions depends again upon the problem instance or the design
of allocation operator to cope with parallel domains, i.e., maintaining
the algorithm’s convergence properties. Lastly, parallel searches are not
beneficial to SimE due to its metaheuristic search behavior, as men-
tioned in Section 5.3, unless some mechanism to diversify the search
are introduced additionally. Use of a different allocation function at
each thread can be one way of achieving this, whereby the searches are
directed in different directions by exploiting the different ways of opti-
mizing the given problem with different allocation functions. Another
promising idea might be the use of concepts borrowed from population
based evolutionary metaheuristics, such as GA, in conjunction with
parallel SimE threads. For instance, solutions from independent, paral-
lel threads may be combined intelligently using crossover operators that

sait_jmma.tex; 10/12/2006; 14:41; p.24

EVALUATING PARALLEL SIMULATED EVOLUTION STRATEGIES 25

take advantage of SimE goodness measure to produce better starting
solutions for the next SimE iterations in each of the parallel threads.

Parallel SA [10], GA [13] and TS [12] were also implemented for the
same optimization problem and it was found that parallel cooperative
searches best suited SA and GA, while a type I parallelization of TS
gave the best speed-ups. At present, a fair and thorough comparison
among these different parallelized metaheuristics is being explored.

7. Conclusions

The paper explored parallel SimE strategies for a multiobjective VLSI
cell placement, studying the applicability of each class of paralleliza-
tion to the SimE algorithm structure with a given problem instance.
Comparing strategies in an identical setup, it was identified why one
particular strategy is more suitable than the other for SimE paralleliza-
tion using the placement problem as an example of a large optimization
instance. The paper identifies the generalities of SimE parallelization
that can be extended to other problem instances as well.

Acknowledgements

The authors thank King Fahd University of Petroleum & Minerals
(KFUPM), Dhahran, Saudi Arabia, for support under Project Code
COE/CELLPLACE/263.

References

1. Kling, R. M. and Banerjee, P.: ESP: Placement by Simulated Evolution. IEEE

Transaction on Computer-Aided Design, 3(8), 245–255 (1989)
2. Sait, S. M. and Youssef, H.: Iterative Computer Algorithms with Applications in

Engineering: Solving Combinatorial Optimization Problems. IEEE Computer
Society Press, California (1999)

3. Sait, S. M. and Youssef, H.: VLSI Physical Design Automation: Theory and

Practice. World Scientific Pubishers (2001)
4. Crainic, T. G. and Toulouse, M.: Parallel Strategies for Metaheuristics. In

Glover, F. W. and Kochenberger, G. A. (eds.) Handbook of Metaheuristic, pages
465–514, Kluwer Academic Publishers (2003)

5. Cung, V.-., Martins, S. L., Ribeiro, C. C. and Roucairol, C.: Strategies for the
Parallel Implementation of Metaheuristics. In Ribeiro, C. C. and Hansen, P.
(eds.) Essays and Surveys in Metaheuristics, pages 263–308, Kluwer Academic
Publishers (2001)

sait_jmma.tex; 10/12/2006; 14:41; p.25

26 SAIT ET AL.

6. Ekşiog̃lu, S. D., Pardalos, P. M. and Resende, M. G. C.: Models for Parallel and
Distributed Computation - Theory, Algorithmic Techniques and Applications.
In Corrêa, R., Dutra, I., Fiallos, M. and Gomes, F. (eds.) Parallel Meta-

heuristics for Combinatorial Optimization, pages 179–206, Kluwer Academic
Publishers (2002)

7. Sait, S. M. and Khan, J. A.: Simulated Evolution for Timing and Low Power
VLSI Standard Cell Placement. Elsevier Engineering Applications of Artificial

Intelligence, 16(5-6), 407–423 (2003)
8. Chandy, J. A., Kim, S., Ramkumar, B., Parkes, S. and Banerjee, P.: An Evalu-

ation of Parallel Simulated Annealing Strategies with Application to Standard
Cell Placement. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 16(4), 398–410 (1997)
9. Yager, R. R.: On Ordered Weighted Averaging Aggregation Operators in

Multicriteria Decisionmaking. IEEE Transaction on Systems, MAN, and

Cybernetics, 18(1), 183–190 (1988)
10. Sait, S. M., Zaidi, A. and Ali, M. I.: Asynchronous MMC based Parallel SA

Schemes for Multiobjective Standard Cell Placement. In: Proceedings of the

IEEE International Symposium on Circuits and Systems, Kos, Greece, 21 - 24
May 2006

11. Sait, S. M., Ali, M. I. and Zaidi, A.: Multiobjective VLSI Cell Placement
using Distributed Simulated Evolution Algorithm. In: Proceedings of the IEEE

International Symposium on Circuits and Systems, Kobe, Japan, 23 - 26 May
2005, pages 6226–6229

12. Minhas, M. R. and Sait, S. M.: A Parallel Tabu Search Algorithm for Opti-
mizing Multiobjective VLSI Placement. In Springer-Verlag, Lecture Notes in

Computer Science Series, pages 587 – 595 (2005)
13. Sait, S. M., Faheemuddin, M., Minhas, M. R. and Sanaullah, S.: Multiobjective

VLSI Cell Placement using Distributed Genetic Algorithm. In: Proceedings

of the Genetic and Evolutionary Computation Conference, Washington, D.C.
USA, 24 - 29 June 2005, pages 1585 – 1586

14. Adamidis, P: Review of Genetic Algorithms Bibliography. Technical Report,
Aristotle University of Thessaloniki, Greece (1994)

15. Cantú-Paz, E.: A Survey of Parallel Genetic Algorithms. In Calculateurs

Parallles, Reseaux et Systems Repartis (1998)
16. De Falco, I., Del Balio, R., Tarantino, E. and Vaccaro, R.: Improving Search

by Incorporating Evolution Principles in Parallel Tabu Search. In: Proceedings

of the First IEEE Conference on Evolutionary Computation, Orlando, Florida
USA, 27 - 29 June 1994, pages 823 – 828

17. Taillard, E.: Some Efficient Heuristic Methods for the Flow Shop Sequencing
Problem. European Journal of Operational Research, 417, 65–74 (1990)

18. Garica, B.-L., Potvin, J.-Y. and Rousseau, J.-M.: A Parallel Implementation
of the Tabu Search Heuristic for Vehicle Routing Problems with Time Window
Constraints. Computers & Operations Research, 21(9), 1025–1033 (1994)

19. Crainic, T. G., Toulouse, M. and Gendreau, M.: Towards a Taxonomy of
Parallel Tabu Search Heuristics. INFORMS Journal of Computing, 9(1), 61–72
(1997)

20. Lee, S.-Y. and Lee, K. G.: Synchronous and Asynchronous Parallel Simulated
Annealing with Multiple-Markov Chains. IEEE Transactions on Parallel and

Distributed Systems, 7(10), 993–1008 (1996)

sait_jmma.tex; 10/12/2006; 14:41; p.26

