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Abstract. In this paper we introduce an optimization problem, which involves maximization
of the area of Voronoi regions of a set of points placed inside a circle. Such optimization goals
arise in facility location problems consisting of both mobile and stationary facilities. Let ψ be
a circular path through which mobile service stations are plying, and S be a set of n stationary
facilities (points) inside ψ. A demand point p is served from a mobile facility plying along the
circumference of ψ if the distance of p from the boundary of ψ is less than that from any mem-
ber in S. On the other hand, the demand point p is served from a particular member pi ∈ S
if it is closer to pi than from all other members in S and also from the boundary of ψ. The
objective is to place the stationary facilities in S, inside ψ, such that the total area served by
them is maximized. We consider a restricted version of this problem where the members in S
are placed equidistantly from the center o of ψ. It is shown that the maximum area is obtained
when the members in S lie on the vertices of a regular n-gon, with its circumcenter at o. The
distance of the members in S from o and the optimum area increases with n, and at the limit
approaches the radius and the area of the circle ψ, respectively. We also consider another vari-
ation of this problem where a set of n points is placed inside ψ, and the task is to locate a new
point q inside ψ such that the area of the Voronoi region of q is maximized. We give an exact
solution of this problem when n = 1 and a (1−ε)-approximation algorithm for the general case.

Keywords: Computational geometry, Optimization, Stationary and mobile facilities, Voronoi
diagrams.

1 Introduction

The main objective in any facility location problem is to judiciously place a set of facilities,
serving a set of users (or demand points), such that certain optimality criteria are satisfied.
Facilities can be stationary, like shops, factory outlets, hospitals, or mobile, which supply
provisions to the users while on the move. The set of users, on the other hand, is either
discrete, consisting of finitely many points, or continuous, i.e., a region where every point
is considered to be a user. Provided all the facilities are equally equipped in all respects, a
user always avails the service from its nearest facility. Thus, each facility a has its service
zone Z(a), consisting of the set of users that are served by it. The service zone may be
a finite set of points or a continuous region. Many variations of facility location problems
in both the discrete and continuous category, under several optimality criteria, have been
studied [12]. Maximizing the cardinality of the service zone(s) of a (type of) facility is one
such criterion. In the discrete case, it generally denotes the number of users, and in the
continuous case it generally represents the area served by that particular (type of) facility.
In the discrete case, the problem of placing a new facility amidst existing ones, such that the
number of users served by it is maximized, has been addressed very recently by Cabello et
al. [8]. They proposed a general technique for solving the problem under different relevant
metrics. Recently, Bhattacharya and Nandy have addressed the problem of simultaneously
placing two new facilities amidst other existing facilities such that the total number of
users served by the two new facilities is maximized [6]. There remain several open problems



for continuous demand regions. Dehne et al. [11] addressed the problem of locating a new
facility p amidst a set of existing facilities, such that the area of the region served by the
new facility is maximized.

We study two variations of a facility placement problem consisting of both mobile and
stationary facilities. Here the set of facilities consists of (i) a circle ψ, and (ii) a set S of
stationary points inside ψ. The boundary of the circle ψ represents the path of a few mobile
facilities so that every point on ψ is assumed to be a facility point. Our objective is to place
the points in S inside ψ such that the total area served by the members in S is maximized.
We consider another variation of this problem, where the boundary of ψ and an existing
set S is serving the region inside ψ; the objective is to place a new facility q inside ψ such
that the area served by q is maximized.

Both these problems are of emerging interest in the context of designing a service network
for disaster management. Imagine a situation where a large locality/island is under certain
disaster, e.g. flood, and the population therein needs urgent help from outside. Most of the
affected region has been rendered inaccessible. In Figure 1(a), we demonstrate a situation,
where a few mobile service stations are plying along a path R (on roads or on rescue ships)
surrounding the affected region, supplying provisions to the distressed people. A few more
stationary locations (for example p1, p2 as in Figure 1(a)) are marked at some less hazardous
locations, where facilities can be established, or provisions be supplied/air-dropped by the
rescue team. At any point of time, a person is likely to observe an accessibility condition,
i.e., he/she will only approach the nearest stationary service station, or the nearest point
on the surrounding path, whichever is nearer. Since service from a mobile station cannot be
obtained as soon as the user reaches its nearest point on the boundary of ψ, the motivation
of the proposed problems is to minimize the users’ dependency on the mobile stations for
getting the service.
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Fig. 1. Formulation of the problem

For the second problem, we again imagine a similar situation. But now apart from the
circular road plying with the mobile facilities, we have some existing stationary facilities
placed in the disaster area. A new and better-equipped service station is to be established
amidst the existing ones and our obvious aim would be to maximize the area served by
it. This problem can also be considered as an extension of the competitive facility location
problems related to Voronoi games [1, 10].



These two problems can be mathematically modeled as follows. Let the surrounding
path R be approximated by the circumference of a circle ψ of radius r, with the center at o
(Figure 1(b)). It can be shown that the zone Z(p1) of a stationary service station p1 inside
the circle ψ is an ellipse that includes the center o of ψ. For a pair of service stations p1 and
p2, the service zones Z(p1) and Z(p2) are no longer complete ellipses, but form elliptical
sectors as shown in Figure 1(b). The first problem then reduces to maximizing the area
covered by Z(p1) ∪ Z(p2), whereas the goal of the second problem is to maximize the area
covered by Z(p2), given the position of the point p1.

These two problems can be easily formulated in terms of maximizing the area of a
Voronoi region of a set of points placed inside a circle. The Voronoi diagram of a set S of n
points in Rd, denoted by V (S), is a partition of the space into |S| mutually non-overlapping
regions (excepting the boundaries) {V R(p, S)|p ∈ S}, where the region V R(p, S) = Z(p) is
the set of points in the space that are closer to the point p than to any other point q ∈ S.
This idea can be extended to the case when the members in S are general objects instead
of points [2, 15, 17]. In this paper, we consider the Voronoi diagram V (S ∪{ψ}) of the circle
ψ and a set S of points placed inside ψ, under the Euclidean metric. The Voronoi region of
a point p ∈ S is denoted by V R(p, S ∪ {ψ}) and that of ψ is denoted by V R(ψ, S ∪ {ψ}).

The optimization problems which we address can now be stated formally as follows:

P1: Given a circle ψ, place a set of n points S = {p1, p2, . . . , pn} inside ψ such that
Area{⋃n

i=1 V R(pi, S ∪ {ψ})} is maximized.

P2: Given a circle ψ and a set of n points S = {p1, p2, . . . , pn} placed inside ψ, locate a
new point q inside ψ such that Area{V R(q, S ∪ {ψ, q})} is maximized.

The properties, importance, and usefulness of Voronoi diagrams have been extensively
studied in the literature [4, 5, 7, 16] over the past few decades. The problem of maximizing
the area of Voronoi regions has been considered in the context of Hotelling game or Voronoi
game [1, 10, 15]. Maximizing the area of the Voronoi region of a particular point is addressed
in [9, 11], where the objective is to locate the position of a new point q amidst a set of n
existing points S such that the Voronoi region of q is maximized. Dehne et al. [11] showed
that the area function has only a single local maximum inside the region where the set
of Voronoi neighbors does not change, when the given points are in convex position. They
gave a numerical algorithm for locating the optimal point based on Newton’s approximation.
Cheong et al. [9] proposed a near-linear time algorithm for the same problem that locates
the new optimal point approximately, when the points in S are in general position.

Our framework considers similar area maximization problems in a different scenario. In
Section 2 we prove some basic results, which are used later in our analysis. In Section 3 we
solve a restricted version of problem P1, where the points in S are assumed to be placed
equidistantly from the center o of ψ. Under this assumption, Area{⋃n

i=1 V R(pi, S ∪ {ψ})}
is maximized when the points in S lie on the vertices of a regular n-gon with circumcenter
at o. The optimum distance of the members in S from o and the optimum area increases
with n, and at the limit approaches the radius and the area of the circle ψ, respectively.
In Section 4, we study the second problem (Problem P2). We give an exact solution of the
problem for n = 1. Moreover, for n ≥ 1, using the techniques of Cheong et al. [9], we give an
O(n/ε4+n log n) algorithm, which locates a point xa such that Area{V R(xa, S∪{ψ, xa})} ≥
(1− ε)OPTArea, where OPTArea = supx Area{V R(x, S ∪ {ψ, x})} and ε > 0. Finally, in
Section 5 we summarize our work and give some directions for future work.



2 Properties of a Voronoi Zone

In this section, we prove some simple results regarding the Voronoi diagram V (S ∪ {ψ}),
where ψ is a circle with radius r and center o and S is a set of n points placed inside ψ.
We will use δ(a, b) to denote the Euclidean distance between the pair of points a and b and
δ(a, ψ) to denote minimum distance of the point a from the circumference of the circle ψ.
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Fig. 2. The Voronoi region of p: (a) point p is inside ψ, and (b) point p is outside ψ.

Let p be a point placed inside the circle ψ. For any point q on the boundary of
V R(p, {p, ψ}), δ(q, p) = δ(q, ψ) = δ(q, q′), where q′ is the point closest to q on the circumfer-
ence of ψ. Clearly, points o, q, q′ must be collinear (Figure 2(a)). This implies, the locus E of
the point q such δ(q, p) = δ(q, ψ), satisfies δ(q, p) + δ(q, o) = δ(q, q′) + δ(q, o) = δ(o, q′) = r.
Thus, E is an ellipse with foci the points o and p, with [β1, β2] as the major axis, where β1

and β2 are the points of intersection of E with the diameter of ψ passing through the point
p. Therefore, the region enclosed by the ellipse E is the Voronoi region of p in V ({p, ψ}),
where p is a single point placed inside a circle ψ with center o and radius r (Figure 2(a)).

Consider the rectangular coordinate system, with the origin at the point o and the
horizontal axis aligned along the diameter of the circle ψ passing through the point p. Let
the coordinates of the point p be (b, 0), where b ≥ 0 is a non-negative constant. Then the
equation of the locus E can be easily shown to be:

4x2(r2 − b2) + 4r2y2 − 4bx(r2 − b2)− (r2 − b2)2 = 0. (1)

The following lemma can now be proved from (1) using simple analytic geometry.

Lemma 1. The ellipse E has the following properties:

(i) The length of the major axis of the ellipse E is independent of the location of the fixed
point p, and is equal to the radius r of the circle ψ.

(ii) The length of the minor axis of E is equal to
√

r2 − b2, eccentricity e = b
r , and the foci

are at o = (0, 0) and p = (b, 0). 2



In the limiting case, when the point p coincides with the center o (i.e. b = 0) then E
becomes a circle of radius r/2. In the other limiting case, when the point p lies on the circle
ψ (i.e. b = r) then E is the radius of the circle through p, which can be interpreted as a
degenerate ellipse with length of minor axis equal to zero. It is also interesting to note that
if the point p lies outside the circle ψ, the locus of the point q satisfying δ(q, p) = δ(q, ψ) is
a hyperbola with foci at the points o and p (Figure 2(b)).

Next, we consider the situation where more than one point is placed inside the circle ψ.
The following lemma states the nature of the elliptic zones when two points p1 and p2 are
placed inside ψ. Let E1 and E2 be the loci of the point q satisfying δ(q, p1) = δ(q, ψ) and
δ(q, p2) = δ(q, ψ), respectively. From Lemma 1, E1 and E2 are two ellipses with foci o, p1

and o, p2, respectively.
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Fig. 3. (a) Proof of Lemma 2, and (b) Demonstration of V (p1 ∪ p2 ∪ {ψ}).

Lemma 2. Let p1, p2 be two points placed inside the circle ψ, and E1, E2 be two ellipses
with foci o, p1 and o, p2, respectively. The perpendicular bisector of the line joining p1 and
p2 intersect the two ellipses E1 and E2 at a common chord.

Proof. Since p1 and p2 are two distinct points placed inside the circle ψ, and r is the
length of the major axes of both E1 and E2 (Lemma 1), none of the ellipses E1 and E2

properly contains the other. Thus, they must intersect in two distinct points, say β1 and
β2 respectively (see Figure 3(a)). Since β1 lies on both E1 and E2, we have δ(β1, p1) =
δ(β1, ψ) = δ(β1, p2). Thus, β1 lies on the bisector of p1 and p2. Similarly, β2 also lies on
the bisector of p1 and p2. Since E1 and E2 are convex, [β1, β2] is the common chord of the
ellipses E1 and E2.

Observe that by the same argument as before, the points of intersection of the ellipses
E1 and E2 must lie on the perpendicular bisector of the points p1 and p2. Now, since any
line intersects an ellipse at most two points, E1 and E2 cannot intersect at more than two
points. 2

The Voronoi diagram V ({p1, p2, ψ}), is shown in Figure 3(b). Since [β1, β2] is the per-
pendicular bisector of the line segment [p1, p2], the nearest service station for a user located



in Z(p1) = V R(p1, {p1, p2, ψ}) is p1. Similarly, the nearest service station for a user located
in Z(p2) = V R(p2, {p1, p2, ψ}) is p2.

3 Problem P1

In this section, our objective is to find the placement of the stationary service stations
S = {p1, p2, . . . , pn} inside the circle ψ such that the total area service zone of the members
in S is maximized. This is equivalent to maximizing Area{⋃n

i=1 V R(pi, S ∪ {ψ})}.
However, it is difficult to predict the behavior of the area of the union of the Voronoi

regions of two points p and q placed arbitrarily inside ψ. This motivates us to consider a
simple model where the members in S are placed at same distances from the center o of
ψ. Under this assumption, the problem of maximizing Area{⋃n

i=1 V R(pi, S ∪{ψ})} has the
following two aspects:

(i) Assuming δ(o, p1) = δ(o, p2) = . . . = δ(o, pn) = b (> 0), determine the optimal angles
between the lines [o, pi] and [o, pi+1], for i = 1, 2, . . . , n, such that Area{⋃n

i=1 V R(pi, S∪
{ψ})} is maximized.

(ii) Determine the optimal length δ(o, p1) (= δ(o, p2) = . . . = δ(o, pn)) which maximizes
Area{⋃n

i=1 V R(pi, S ∪ {ψ})}.

We begin by showing that under the equidistant assumption Area{⋃n
i=1 V R(pi, S∪{ψ})}

is maximized when all the n points are placed on the regular n-gon with circumcenter at o.

Theorem 1. Let S = {p1, p2, . . . , pn} be a set of stationary service stations placed inside
a circle ψ with center o and radius r, such that δ(o, pi) = b for all i = 1, 2, . . . , n, where b
(< r) is a given positive constant. Then Area{⋃n

i=1 V R(pi, S ∪ {ψ})} is maximized when
the members in S lie on the vertices of a regular n-gon with circumcenter at o.

Proof. Let p be any point inside ψ such that δ(o, p) = b, and E be any ellipse with foci at
o and p. The problem of maximizing Area{⋃n

i=1 V R(pi, S ∪ {ψ})} is equivalent to choosing
angles φ1, . . . , φn such that Area{⋃n

i=1 Eφi} is maximized, where Eφ denotes a copy of E
rotated by an angle φ about the center o in the clockwise direction.

For 0 ≤ u ≤ r, denote by Cu the circumference of the circle with center at the point o
and radius u. Observe that Area{⋃n

i=1 Eφi} =
∫ r
0 λ(v)dv, where λ(v) is the length of the

curve
⋃n

i=1 Eφi
∩Cv. It is easy to verify from Equation (1) that for every v ≥ 0, Cv intersects

the ellipse E in at most one circular arc. Observe that if n arcs of equal length are to be
chosen on some circle, then a regular distribution of these arcs about the circle maximizes
the length of their union. This is because, under a regular distribution of the arcs, the length
of the curve

⋃n
i=1 Eφi ∩Cv is either the length of the circumference of Cv, or the sum of the

lengths of Eφi ∩Cv, for every 0 ≤ v ≤ r. This implies that for each v ≥ 0 the function λ(v)
is maximized with a regular distribution of the n angles φ1, φ2, . . . , φn.

Therefore, Area{⋃n
i=1 Eφi} is maximized when φi = 2iπ/n, for i = 1, 2, . . . , n, and the

result follows. 2

Observe that for each pi ∈ S, V R(pi, S ∪ {ψ}) can be divided into two elliptical sub-
sectors by the line segment [o, pi]. Let θ2i−1 and θ2i be the angles subtended by these sub-
sectors at the center o of ψ as shown in Figure 4(a). Observe that

∑2n
i=1 θi = 2π, and Theorem

1 implies that Area{⋃n
i=1 V R(pi, S ∪ {ψ})} is maximized if θ1 = θ2 = . . . = θ2n = π/n.

In fact, we can use this observation to obtain a simple analytic proof of Theorem 1, as
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Fig. 4. Problem P1: (a) V (S ∪ {ψ}) when the points in S are equidistant from o but not equiangular, (b)
V (S∪{ψ}), with |S| = 6, when Area{⋃6

i=1 V R(pi, S∪{ψ})} is maximized, and (c) V (S∪{ψ}), with |S| = 8,
when Area{⋃8

i=1 V R(pi, S ∪ {ψ})} is maximized.

described below.

Remark 1: For an ellipse with origin at one of its foci, eccentricity e and semi-latus rectum
l, its polar equation is ρ = l

1−e cos θ [14]. By Lemma 1, we have e = b
r and l = r2−b2

2r . Define
a function F : [0, π] → R as follows:

F(x) =
1
2

∫ x

0
ρ2dθ =

r2

8

[
e(1− e2) sin x

1− e cosx
+ 2

√
1− e2 tan−1

(√
1 + e

1− e
tan

x

2

)]
. (2)

Then Area{⋃n
i=1 V R(pi, S∪{ψ})} = A(Θ) =

∑2n
i=1F(θi) =

∑2n−1
i=1 F(θi)+F(η), where

η = 2π − ∑2n−1
i=1 θi and Θ = (θ1, θ2, . . . , θ2n−1). To maximize A(Θ) we need to solve the

system of equations: ∂A
∂θi

= ∂
∂θi
F(θi) − ∂

∂ηF(η) = 0, for i = 1, 2, . . . , 2n − 1. Observe that
if Θ = Θ0 = (π/n, π/n, . . . , π/n), then η = π/n and ∂A

∂θi
= 0 for all i = 1, 2, . . . , 2n − 1.

This and the concavity of the function proved below implies that Θ0 uniquely maximizes
the function A.

Now, we show that function A(Θ) is concave, which immediately implies that the
Area{⋃n

i=1 V R(pi, S ∪ {ψ})} has a unique maximum at θ1 = θ2 = . . . = θ2n = π/n.

Theorem 2. The function A(Θ) is concave on the set C := [0, π]2n−1 ⊂ R2n−1.

Proof. Observe that A(Θ) =
∑2n−1

i=1 F(θi)+F(η), where η = 2π−∑2n−1
i=1 θi. Now, since the

sum of concave functions is also a concave function, to show that A(Θ) is concave on C it
suffices to prove that the function F(x) is concave on [0, π]. Since F(x) is twice continuously
differentiable on [0, π], it follows from (2) by taking derivatives that

H(x) =
d2

d2x
F(x) = −r2

4

[
e(1− e2)2 sinx

(1− e cosx)3

]
.

Now, since as e ∈ [0, 1] and sinx ≥ 0 for x ∈ [0, π], it follows thatH(x) ≤ 0, for x ∈ [0, π].
This establishes the concavity of the function F(x) on [0, π] (see Figure 5(a)), Therefore,
A(Θ) = Area{⋃n

i=1 V R(pi, S ∪ {ψ})} is concave on C. 2



We now present the procedure for computing the optimal length b (= δ(o, pi)) for all
i = 1, 2, . . . , n, where n is given. Theorem 1 says that when the maximum is attained
Area{V R(pi, S ∪ {ψ})} is the same for all i = 1, 2, . . . , n. Hence, using the polar equation
of the ellipse [14], we may write Area{⋃n

i=1 V R(pi, S ∪ {ψ})} = n
∫ π/n
0 ρ2dθ as a function

K(e, n) of the eccentricity e as follows:

K(e, n) =
nr2

4

[
e(1− e2) sin π

n

1− e cos π
n

+ 2
√

1− e2 tan−1

(√
1 + e

1− e
tan

π

2n

)]
. (3)

Finding the optimum value of b is equivalent to maximizing K(e, n) with respect to e,
or equivalently solving the equation d

deK(e, n) = 0. By checking the non-positivity of the
second derivative, it can be easily verified that the function K(e, n) is concave in e, which
implies K(e, n) has an unique global maximum.
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Fig. 5. Experimental results: (a) 3D plot of F(x) as e varies from 0 to 1, (b) Plot of K(e, n) for different
values of n and r = 1
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Fig. 6. Experimental results: (a) 3D plot of K(e, n) for a unit circle, and (b) asymptotic behavior of e(n).

The optimum values of e for different values of n, to be denoted by e(n), are obtained
by solving the equation d

deK(e, n) = 0 numerically using Mathematica 4.0. Table 1 lists the



values e(n) and the corresponding values of K(e(n), n)) = Area{⋃n
i=1 V R(pi, S ∪ {ψ})} for

different values of n. Figure 5(b) shows a plot of K(e, n) for different values of n, where ψ
is a unit radius circle. Figure 6(a) shows another 3D plot K(e, n) fixing r = 1.

Table 1. The optimum ratio e and the corresponding area for various n

n e = b
r

Area{⋃n
i=1 V R(pi, S ∪ {ψ})}

1 0.000000 0.78539r2

2 0.505879 1.09446r2

3 0.623606 1.38652r2

4 0.691382 1.61193r2

5 0.737416 1.78829r2

6 0.771153 1.92921r2

7 0.797069 2.04409r2

8 0.817647 2.13939r2

50 0.965112 2.92771r2

100 0.982216 3.03124r2

500 0.996387 3.11895r2

1000 0.998190 3.13030r2

Table 1 shows that as n increases the optimum ratio e(n) increases (see Figure 4(a)
and Figure 4(b)) and at the limit reaches 1 (Figure 6(b)). Table 1 also demonstrates that
the optimum area of the combined service zone of all the members in S increases to πr2

asymptotically.
We give formal proofs of these experimental observations in the following theorem:

Theorem 3. If e(n) denotes the value of e at which the function K(e, n) attains its max-
imum, then (a) e(n1) < e(n2), for positive integers n1 < n2, (b) limn→∞ e(n) = 1, (c)
K(e(n1), n1) < K(e(n2), n2) for positive integers n1 < n2, and (d) limn→∞K(e, n) = πr2.

Proof. Let K′(e, n) = d
deK(e, n), where K(e, n) = n

∫ π/n
0 ρ2dθ = nr2

4

∫ π/n
0

(1−e2)2

(1−e cos θ)2
dθ. In-

terchanging the order of the derivative and the integration [Theorem 7.40, Apostol [3]], we
get

K′(e, n) = n

∫ π/n

0

d

de
ρ2dθ =

nr2(1− e2)
2

∫ π/n

0

(1 + e2) cos θ − 2e

(1− e cos θ)3
dθ. (4)

(a) Let A(e, θ) = (1+e2) cos θ−2e
(1−e cos θ)3

. As 0 ≤ e < 1, K(e, n) = 0 if and only if
∫ π/n
0 A(e, θ)dθ = 0.

Consider two positive integers 1 < n1 < n2. Since K(e, n2) is concave for e ∈ [0, 1]
it follows that K′(e, n2) is non-increasing for e ∈ [0, 1]. Observe that A(e(n1), θ) = 0
if cos θ = 2e(n1)/(1 + e(n1)2). This equation has an unique solution for θ ∈ [0, π/n],
which implies that the equation A(e, θ) = 0 also has an unique solution for θ ∈ [0, π/n].
Now, since A(e(n1), 0) = 1/(1 − e(n1)) > 0,

∫ π/n1

0 A(e(n1), θ)dθ = 0, and [0, π/n2] ⊂
[0, π/n1], it follows that

∫ π/n2

0 A(e(n1), θ)dθ > 0. Therefore, K′(e(n1), n2) > 0. Hence,
K′(e(n2), n2) = 0 < K′(e(n1), n2) which implies that e(n1) < e(n2), since K′(e, n2) is
non-increasing in e.

(b) As e(n) increases with n and each e(n) < 1 for all n ≥ 1, it follows that limn→∞ e(n)
exists and is at most 1. Observe that there exists a positive integer N(e) such that
cos θ > 2e/(1 − e2) whenever θ ∈ [0, π/n] for all n ≥ N(e). This implies that whenever



n ≥ N(e), we have (1 − e2) cos θ − 2e > 0 for θ ∈ [0, π/n]. Therefore, for all n ≥ N(e),
K′(e, n) > 0. This means that given any ε > 0, we have a positive integer N(ε) such
that K′(1 − ε, n) > 0, whenever n ≥ N(ε). Now, since K′(e, n) is non-increasing in
e and K′(e(n), n) = 0, we have e(n) > 1 − ε, whenever n ≥ N(ε). This proves that
limn→∞ e(n) = 1.

(c) Observe that K(e(n), n) = Area(
⋃n

i=1 V R(pi, S ∪ {ψ})), where the points pi ∈ S are
placed on the vertices of a regular polygon at a distance e(n) from the center o of the
circle ψ. Let q /∈ S be another point such that δ(o, q) = e(n). Then

⋃n
i=1 V R(pi, S ∪

{ψ}) ⊂ (
⋃n

i=1 V R(pi, S ∪ {q, ψ})) ∪ V R(q, S ∪ {q, ψ}), and we have

K(e(n), n) < Area(

(
n⋃

i=1

V R(pi, S ∪ {q, ψ})
)
∪ V R(q, S ∪ {q, ψ})) ≤ K(e(n + 1), n + 1).

(d) Using the facts that for some constant a, limn→∞ n sin(a/n) = a, limn→∞ n tan−1(a/n) =
a, and limn→∞ n tan(a/n) = a we get, for every fixed e ∈ [0, 1)

lim
n→∞K(e, n) = (r2/4)[πe(1 + e) + π(1 + e)] =

πr2(1 + e)2

4
= `(e).

Now, let ε > 0 be given and define δ = ε/(πr2 + 1). Since limn→∞ e(n) = 1, we can find
a positive integer N(ε) such that e(n) > 1− δ and K(1− δ, n) > `(1− δ)− δ, whenever
n ≥ N(ε). It now follows from (c) that K(e(n), n) ≥ K(1 − δ, n) > `(1 − δ) − δ =
(πr2/4)(2− δ)2 − δ > πr2 − (πr2δ + δ) + πδ2/4 > πr2 − (πr2δ + δ) = πr2 − ε, whenever
n ≥ N(ε). This proves limn→∞K(e, n) = πr2. 2

4 Problem P2

In this section, we address another variation of the facility location problem involving
both mobile and stationary service stations. Given a circle ψ and a set of n points S =
{p1, p2, . . . , pn} placed inside ψ, the task is to locate a new point q inside ψ such that its
Voronoi region Area{V R(q, S ∪ {q, ψ})} is maximized. We give an exact solution of the
problem when there is only one existing stationary service station, that is, when n = 1. For
any arbitrary n ≥ 1, we give an approximation algorithm which locates a point xa such that
Area{V R(xa, S ∪ {ψ, xa})} ≥ (1− ε)OPTArea, where OPTArea = supx Area{V R(x, S ∪
{ψ, x})}.

4.1 Exact Solution for n = 1

Let us choose a coordinate system where the point o is the origin, and the line join-
ing o and the point p is the x-axis. Let p = (−a, 0), where a (< r) is a given pos-
itive constant. For a pair of points q = (x, y) and q′ = (−x, y) with x > 0, we have
Area(V R(q′, {p, q′, ψ}) ≤ Area(V R(q, {p, q, ψ}). So, it is sufficient to consider only the pos-
itive values of x for determining the optimal location of the point q. We can view this as a
two variate optimization problem, where the variables are: η = the angle between the line
segments [o, q] and [o, p], and b = δ(o, q).

We begin with the following observation:

Observation 1 Let E be an ellipse with foci at the points f1, f2 and center point o. Let β1,
β2 be two distinct points on the line segment [o, f1] such that δ(f1, β1) < δ(f1, β2). Suppose
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Fig. 7. Proof of Observation 1.

`1 and `2 are lines through β1 and β2 respectively, such that `1 is perpendicular to [o, f1]
and angle between `2 and [o, f1] is acute. If A1 (resp. A2) denotes the area of the elliptic
sector containing both o and f2 and bounded by the line `1 (resp. `2), then A1 > A2.

Proof. Let `3 be the line through β1 which is parallel to `2 and ω be the acute angle between
`1 and `3. The polar equation of the ellipse E with center at o is ρ = λ

1−e cos θ , where λ is
a constant independent of θ. Let A3 denote the area of the elliptic sector containing both
o and f2 and bounded by the line `3. Also, by A−(ω) and A+(ω) we denote the areas of
the elliptic sectors enclosed by the lines `1 and `3 above and below the major axis of E,
respectively (see Figure 7).

For 0 < α < π/2, define the function Aα : [0, π/2] → R as Aα(x) = 1
2

∫ x+α
x ρ2dθ.

By plugging in the polar equation of E and taking the derivative of Aα with respect to x,
it follows that Aα is non-increasing function of x on [0, π/2]. This implies that A+(ω) =
Aω(π/2) ≤ Aω(π/2−ω) = A−(ω), since 0 < ω < π/2. Therefore, A2 < A3 = A1 +A+(ω)−
A−(ω) ≤ A1. 2

Lemma 3. Let ψ be a circle with center o and radius r, and p = (−a, 0), be a stationary
service station inside ψ. If q is another service station placed inside ψ such that δ(o, q) = b,
(0 < b < r), then Area{V R(q, {p, q, ψ})} is maximized when η = ∠poq = π.

Proof. Let φ be a circle with center at o and radius b that intersects the positive side of the x-
axis at point q = (b, 0). We need to show that Area{V R(q′, {p, q′, ψ})} ≤ Area{V R(q, {p, q, ψ})},
where q′ 6= q is any other point on boundary of φ. If ∠q′oq = θ, the coordinates of the point
q′ are (b cos θ, b sin θ). The ellipses E1, E2 and E′

2 with one of the foci at o and the other at
p, q and q′ respectively, are shown in Figure 8(a).

Throughout the proof of this lemma, we shall refer to Figure 8(a). The equation of the
perpendicular bisector of line segment [p, q′] (denoted by uv in Figure 8(a)) is y − b sin θ

2 =
− b cos θ+a

b sin θ

(
x− b cos θ−a

2

)
. Let the line oq′ intersect the line uv at a point β′. Note that, q′β′γ,

where γ is the point of intersection of the lines pq′ and uv, is a right angled triangle, with
right angle at the point γ. Therefore, ∠γβ′q′ is acute.
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Fig. 8. (a) Proof of Lemma 3, and (b) Calculation of Area{V R(q, {p, q, ψ})}

We first assume that b ≥ a. Let [β1, β2] be the perpendicular bisector of the line segment
[p, q] that intersects oq at the point β = ( b−a

2 , 0) and δ(o, β) = the length of the line segment
[o, β] = | b−a

2 |. Now, the length of the line segment [o, β′] = b2−a2

2(b+a cos θ) ≥ b−a
2 . Thus, we have

δ(o, β′) ≥ δ(o, β) (Figure 8(a)).
Area(V R(q, {p, q, ψ}) is the region bounded by the ellipse E2 and the chord [β1, β2],

and Area{V R(q′, {p, q′, ψ})} = the region bounded by the ellipse E′
2 and the chord [u, v].

Since the ellipse E′
2 is just a rotation of the ellipse E2, Observation 1 now implies that

Area{V R(q′, {p, q′, ψ})} ≤ Area{V R(q, {p, q, ψ})}. This completes the proof of the result
when b ≥ a.

The proof of the result for the case b < a is similar. 2

Lemma 3 says that if δ(o, q) = b is fixed, Area{V R(q, {p, q, ψ})} attains a maximum
when ∠poq = π. We now compute the value of b that maximizes Area(V R(q, {p ∪ q, ψ})).
Let E1 and E2 respectively denote the elliptical sectors formed by the points p and q in the
Voronoi diagram V ({p, q, ψ}) (Figure 8(b)). Since the common chord of the ellipses E1 and
E2 is the perpendicular bisector of the line segment [p, q] (Lemma 2), the x-coordinates of
β0 and β1 are b+r

2 and b−a
2 , respectively (see Figure 8(b)). Integrating equation of the ellipse

E2: 4x2(r2 − b2) + 4r2y2 − 4bx(r2 − b2)− (r2 − b2)2 = 0, from β0 to β1, we have

Area(V R(q, {p, q, ψ})) =
1
r

∫ r+b
2

b−a
2

√
(r2 − b2)2 + 4bx(r2 − b2)− 4x2(r2 − b2)dx.

Simplifying and substituting 2x− b = y, the above integral reduces to

Area(V R(q, {p, q, ψ})) =
√

r2 − b2

r

(∫ r

−a

√
r2 − y2dy

)
= λ

√
r2 − b2

r
,

where λ =
∫ r
−a

√
r2 − y2dy is a constant independent of b. Hence, the area of the Voronoi

region of q attains a maximum when b = 0. This leads to the following theorem:



Theorem 4. Let p be a stationary service station placed inside a circle ψ of radius r and
center at o, and δ(o, p) = a, where a (< r) is a given positive constant. While placing
another service station q inside ψ, Area{V R(q, {p, q, ψ})} is maximized if q is placed at the
center o of ψ. 2

Note that even if p is placed at the center o of ψ, the optimum position of q will be at o
itself, because our objective is to maximize the Voronoi zone of q alone. When both the points
p and q coincide with o, it is natural to assume that one half of the Voronoi region is served by
p while the other half is served by q. Therefore, when p is placed at o, Area{V R(q, {p, q, ψ})}
is maximized when q coincides with p at o and Area{V R(q, {p, q, ψ})} = πr2

8 .

4.2 Approximate Solution of Problem P2

Let S = {p1, p2, . . . , pn} be a set of n points placed inside the unit circle ψ with center at
the point o. In this section we give an algorithm for locating a point xa in the interior of
ψ such that Area{V R(xa, S ∪ {ψ, xa})} ≥ (1 − ε)OPTArea, where ε > 0. The techniques
used in this section emulates the methods of Cheong et al. [9] for approximating the area
of a Voronoi region a of new point, given a set of fixed points.

Suppose S is a set of n points placed inside ψ and x /∈ S be another point which we
wish to place inside ψ. Note that the function Area(V R(x, S ∪ {x, ψ})) is continuous in x.
However, the limit of Area(V R(x, S ∪ {x, ψ})) as x approaches a point pi ∈ S might not
exist.

We define the reach of a Voronoi region V R(x, S ∪ {x, ψ}) as the distance between the
site x and the furthest point inside V R(x, S∪{x, ψ}). We denote the reach of a point pi ∈ S
by `i. The largest reach ` is the maximum of the reaches `i, for pi ∈ S.

Using this definition we now prove the following lower bound on OPTArea.

Lemma 4. OPTArea ≥ π`2/4.

Proof. Let x /∈ S be a point in the interior of ψ such that δ(x, pi) = ` for some pi ∈ S. Then
the disk C centered at the point x with radius ` contains no point of S inside it. Moreover,
since x lies on the boundary of the Voronoi cell of pi, δ(x, ψ) ≥ δ(x, pi), Therefore, the disk
C is contained in ψ.

Next, we claim that the disk D centered at x with radius `/2 is completely contained in
V R(x, S ∪ {x, ψ}). If not, there exists some point y inside the disk D with either δ(y, pj) <
δ(y, x) < `/2 for some pj ∈ S, or δ(y, ψ) < δ(y, x) < `/2. If the first case holds, then
δ(x, pj) ≤ δ(x, y) + δ(pj , y) < `, which contradicts the emptiness of the disc C. Similarly,
the second case follows.

Therefore, the disc D is contained in V R(x, S∪{x, ψ}), which implies that OPTArea ≥
Area(V R(x, S ∪ {x, ψ})) ≥ π`2/4. 2

Note that the reach of V R(x, S ∪ {x, ψ}) for any point x /∈ S is also at most `, which
means that largest reach ` is the radius of the largest empty circle in V (S ∪ {ψ}).

Let Z be the square of side length 2 circumscribing the unit circle ψ. Now we partition
Z into a grid of squares with side length `. For each grid cell Q in this partition, let Q∗ be
the grid cell Q clipped to the interior of the circle ψ. For a grid cell Q, we shall define an
estimate function E(x), such that for any x ∈ Q∗ we have,

|E(x)−Area(V R(x, S ∪ {x, ψ}))| ≤ επ`2

12
.



Let Q0 be a grid cell where supx∈Q∗0
Area(V R(x, S ∪ {x, ψ})) = OPTArea, and let

x∗ ∈ Q∗
0 be such that point with Area(V R(x∗, S ∪ {x∗, ψ})) ≥ OPTArea− επ`2

12 . For a grid
cell Q, let xQ be the point which maximizes E(x) over all points in Q∗, and xa be the point
that maximizes E(xQ) over all grid cells Q. Then

Area(V R(xa, S ∪ {xa, ψ})) ≥ E(xa)− επ`2

12

≥ E(x∗)− επ`2

12

≥ Area(V R(x∗, S ∪ {x∗, ψ}))− επ`2

6

≥ OPTArea− επ`2

4
≥ OPTArea− εOPTArea

= (1− ε)OPTArea.

Now, we need to define E(x) and describe a method to find the point xQ, for each grid
cell Q. We fix a grid cell Q, and let x be a point in Q∗. The reach of V R(x, S ∪{x, ψ}) is at
most `, and so V R(x, S ∪ {x, ψ}) can intersect only Q itself and its eight neighboring grid
cells. Consequently, all points of S participating in the definition of V R(x, S ∪ {ψ}) lie in
Q and the 24 grid cells at distance at most 2` from it. Let Q′ denote the union of these 25
grid cells, and let SQ = S ∩Q′. We now make use of the following simple lemma.

Lemma 5. [9] Let T be a square grid of density δ (> 0) in the plane, that is, the distance
between neighboring grid points is δ, and let C be a convex body of diameter at most D.
Then |Area(C)− δ2|C ∩ T || ≤ 4Dδ. 2

Let δ = επ`/96 and T be a square grid of density δ covering Q′. For any point x ∈ Q∗

define,

E(x) = δ2|V R(x, S ∪ {ψ}) ∩ T |.
Making use of the fact that the diameter of V R(x, S ∪ {x, ψ}) is at most 2`, we have by
Lemma 5,

|E(x)− V R(x, S ∪ {x, ψ})| ≤ 8`δ =
επd2

12
.

Now, to find the point xQ which maximizes E(x) for x ∈ Q∗ we need the following
lemma.

Lemma 6. If W (t) = {x ∈ Q∗|t ∈ V R(x, S ∪ {x, ψ})}, then W (t) is the largest disc with
center at t containing no point of S, which is clipped to Q∗ and contained in ψ.

Proof. Clearly W (t) =
⋂p

i=1{x ∈ Q∗|t ∈ V R(x, {x, pi})}
⋂{x ∈ Q∗|t ∈ V R(x, {x, ψ})}.

For every pi ∈ S, {x ∈ Q∗|t ∈ V R(x, {x, pi})} is the largest disk with center at t not
containing the point pi, clipped to Q∗. The result now follows from the observation that
{x ∈ Q∗|t ∈ V R(x, {x, ψ})} is the disk with center at the point t and radius δ(t, tψ), clipped
to Q∗, where tψ is the point on the circumference of ψ which is nearest to t. 2



Let WT = {W (t)|t ∈ T} and consider the arrangement A(WT ). From Lemma 6, the
problem of finding the point xQ now reduces to finding a point in Q∗ that is contained in
the largest number of clipped discs in WT .

Since the Voronoi diagram V (S ∪ {ψ}) and the largest reach ` can be computed in
O(n log n) time [17], the next theorem follows from arguments exactly similar to those in
Theorem 3.3 of Cheong et al. [9].

Theorem 5. Given a set S of n points in the plane and a parameter ε > 0, one can
deterministically compute, in time O(n/ε4 +n log n), a point xa such that Area(V R(xa, S∪
{xa, ψ})) ≥ (1− ε)OPTArea.

Proof. We start by computing the Voronoi diagram of S ∪ {ψ} and determine the largest
reach `, which takes O(n log n) time [17]. We then define the square grid, and determine
the set of points SQ relevant in each grid cell. Since a point of S is relevant in at most 25
grid cells, the total size of the sets SQ is O(n).

For each grid cell Q we take a square grid T of density δ. It consists of M = O(1/ε2)
points. For t ∈ T , the clipped disc W (t) can be determined by finding the nearest neighbor
to t in SQ ∪ {tψ}. This can be done by comparing the distance from t to each point in
SQ ∪ {tψ}. The arrangement WT is computed by a sweep-line algorithm in time O(M2),
and we pick a point xQ from the face maximizing the estimate E(xQ) by a simple traversal.

By the choice of `, every grid cell is within distance at most 2` from a point of S.
The number of grid cells handled is therefore at most O(n). Each point of S appears at
most O(M) times in a nearest-neighbor computation, and so the overall running time is
O(n log n + nM + nM2) = O(n/ε4 + n log n). 2

Following the proof of Theorem 5, it is now easy to formulate a (1− ε)-approximation
algorithm for problem P2, which runs in O(n/ε4 + n log n) time.

5 Conclusions

In this paper, we considered two problems related to maximizing the area of Voronoi regions
of a circle and a set of n points placed inside it. These are motivated from various applications
in facility location and disaster management problems, where both stationary and mobile
service stations are deployed. The interior of the circle is partitioned into the Voronoi region
of the points and the Voronoi region of the circle itself. In the first problem, the objective
is to place the points such that the total area of the Voronoi region of these points is
maximized. We considered a restricted scenario where the distances of each of these points
from the center of the circle are the same. In this case, the optimum solution is obtained
when these points lie on the vertices of a regular n-gon. The general problem is still open.
However, we conjecture that even in the general case, the optimal solution is identical to the
solution of the above-mentioned restricted problem. The rationale behind this conjecture
is the observation that the optimum is likely to be attained when the areas of the service
zones of all the stationary facilities become equal. Therefore, the special case where the
stationary facilities are assumed to be equidistant from the center of the circle, is likely to
provide the optimum solution for the general case as well.

In the second problem, a circle enclosing a set of n points is given, and the objective is to
place a new point such that its Voronoi region is maximized. We provide an exact solution
to this problem for n = 1, and propose an approximation algorithm for the general case.

It would be interesting to study similar maximization problems when the outer circle
is replaced by other bounding shapes, for example a convex polygon. Solutions of these



problems using other related distance functions are also of theoretical interest.

Acknowledgement: The author wishes to thank Professors Probal Chaudhuri, Sandip Das,
and Subhas C. Nandy of the Indian Statistical Institute, Kolkata, and Professor Rolf Klein
of the Institut für Informatik I, Universität Bonn, Germany, for their insightful suggestions.
The author is also grateful to the two anonymous referees for their critical comments, which
have greatly improved the quality of the paper.

References

1. H. K. Ahn, S. W. Cheng, O. Cheong, M. Golin, and R. van Oostrum, Competitive facility location
along a highway, 7th Annual International Computing and Combinatorics Conference, LNCS Vol. 2108,
237–246, 2001.

2. H. Alt, O. Cheong, and A. Vigneron, The Voronoi diagram of curved objects, Discrete and Computational
Geometry, Vol. 34, 439–453, 2005.

3. T. Apostol, Mathematical Analysis, Narosa Publishing House, reprinted 2002.
4. F. Aurenhammer, Voronoi Diagrams - A Survey of a Fundamental Geometric Data Structure, ACM

Computing Surveys, Vol. 23, No. 3, September 1991.
5. F. Aurenhammer and R. Klein, Voronoi diagrams: Handbook of Computational Geometry, Elsevier,

Amsterdam, 2000.
6. B. B. Bhattacharya and S. C. Nandy, New variations of the reverse facility location problem, Proc. 22nd

Canadian Conference on Computational Geometry, to appear, 2010.
7. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf, Computational Geometry: Algorithms

and Applications, 2nd ed. New York: Springer-Verlag, May 2000.
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