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Abstract. Buffer capacity allocation problems for flow-line manufacturing systems 

with unreliable machines are studied. These problems arise in a wide range of 

manufacturing systems and concern determining buffer capacities with respect to a 

given optimality criterion which can depend on the average production rate of the 

line, buffer cost, inventory cost, etc. Here, this problem is proven to be NP-hard for a 

tandem production line and oracle representation of the revenue and cost functions, 

and NP-hard for a series-parallel line and stepwise revenue function. 

 

Key words: Flow-line, Unreliable machines, Buffer allocation, Optimization, 

Computational complexity. 

 

1 Introduction 

Buffer capacity allocation problems arise in a wide range of manufacturing systems, 

such as transfer lines, flexible manufacturing or robotic assembly systems which are 

flow lines. Buffers separate any two consecutive machines. The parts are accumulated in 
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a buffer when the machines downstream are less productive than machines upstream. 

Assume that machines can breakdown. When a breakdown occurs, the corresponding 

machine is not used in production for a random repair time which is independent on the 

number of failed machines. It is assumed that there is a sufficient number of raw parts at 

the input of the system and these parts are always available. The completed parts depart 

from the system immediately. The performance of the flow-line is measured in terms of 

the average production rate, i.e., the steady state average number of parts produced per 

unit of time. 

 

In the literature, there are two types of publications. The first concerns only evaluation 

of the line performance for a given size of buffers. In the second, the buffer sizes are 

optimized. For example, (Dallery and Gershwin, 1992), (Gershwin, 1993), (Heavey et 

al., 1993), (Meerkov and Li, 2008), and (Tan and Gershwin, 2009) proposed models to 

evaluate the performance of lines with unreliable machines and fixed sizes of buffers. 

Markov models and aggregation or decomposition techniques are often used to calculate 

steady state throughput or other performance indicators for these lines provided that the 

buffer capacities are given. Based on these models for performance analysis, in, e.g., 

(Smith and Daskalaki, 1988), (So, 1997), (Gershwin and Schor, 2000), and (Shi and 

Gershwin, 2009), the optimization for buffer capacity allocation was considered with 

respect to diverse optimality criteria and for different types of lines. 

 

In the present paper, we assume that a machine can be in an operational state or under 

repair. An operational machine may be blocked and temporarily stopped in case if there 

is no room in the downstream buffer. It may also be starved if there are no parts to 

process in the upstream buffer. Otherwise operational machines are working. In what 

follows, m denotes the number of machines in a production line. A working machine i, 

i=1,…,m, is assumed to have a constant cycle time Ci and, then, the average production 

rate ui=1/Ci. 

 

It is supposed that machines break down only when they are working. The times to fail 

and times to repair for each machine are assumed to be mutually independent and 

exponentially distributed random values. Let Tb
i
 denote the average time to fail, and let 

λi=1/Tb
i
 be the failure rate for working machine i, i=1,…,m. Similarly, let Tr

i
 and µi=1/ 
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Tr
i
 denote respectively the time to repair and the repair rate for machine i. Under the 

above mentioned assumptions the system has the steady state mode (see e.g. 

(Sevast'yanov, 1962)), and performance of the system in this state is important for 

applications. 

 

Let the buffers in the system be denoted by B1,…,BN and let hj be the capacity of buffer 

Bj, which is to be decided. Denote the vector of decision variables as H= (h1, h2,…, 

hN )∈ Z+
N
, where Z+ is the set of non-negative integers. The most commonly used 

optimization criteria are:  

• Average production rate (steady state throughput) V(H); 

• Total buffer capacity B(H)=h1+h2+…+hN or buffer cost C(H) linear in H;  

• Average steady state inventory cost Q(H)= c1q1(H)+ …+cN qN(H), where qj(H) is the 

average steady state number of parts in buffer Bj, for j=1,…,N. 

 

Let us introduce the following additional notation: 

Tam amortization time of the line (line life); 

R(V) revenue related to the production rate V; 

J(H) 

dj 

cost of buffer configuration H; 

maximal admissible capacity of buffer Bj, j=1,…,N. 

 

R(V) and J(H) are assumed to be given monotone non-decreasing real-valued functions. 

The cost function J(H) may be non-linear to model some standard buffer capacities or 

penalize solutions where the total capacity of the buffers exceeds an upper bound. A 

non-linear revenue function R(V) can model the law of diminishing returns, for example, 

it can reflect the effect of overproduction by switching from strictly increasing to 

constant at a certain threshold. A stepwise revenue function can be used to model zero 

revenue in case of an unacceptably low average production rate (see e.g. Section 3). 

Consider the following criterion: 

 Max ϕ(H)=Tam R(V(H)) - J(H).  (1) 

Function ϕ(H) has to be maximized, subject to the constraints h1 ≤ d1, h2 ≤ d2,…, hN ≤ 

dN. 
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In our previous work, we proposed several metaheuristics (Dolgui et al., 2002; 2007) for 

some problems of this type. In these metaheuristics, we used a two-machine one-buffer 

Markov model (Levin & Pasjko, 1969; Dubois & Forestier, 1982; Coillard & Proth, 

1984; and Dolgui, 1993) - see some elements necessary here in Appendix - and an 

aggregation algorithm (Dolgui, 1993; Dolgui and Svirin, 1995), which is similar to the 

Terracol and David (1987) techniques to evaluate the average production rate of each 

tentative buffer allocation decision for the more general case of series-parallel lines with 

more than two machines. This aggregation approach appears to be sufficiently rapid for 

the evaluation of tentative buffer allocations within the optimization algorithms. 

 

In our previous publications, two configurations of flow lines were considered: tandem 

lines where machines are in series and lines with series-parallel machines. This paper 

deals with the computational complexity of buffer allocation problems for these two line 

configurations. 

 

2. Tandem production lines 

A tandem production line (see Figure 1) consists of machines in series. Parts move from 

one machine to the next by a transfer mechanism. There is a buffer between each two 

successive machines, so N = m-1. The input data of a problem instance consists of λi, µi, 

ui; i=1,…,m; dj, j=1,…,N; Tam, and functions R(V) and J(H). 

 

 

Figure 1. Tandem production line 

 

Consider the case of N = 1 in which there are two machines separated by a single buffer. 

For this case, there exist closed-form expressions for V(h1) (see e.g. Coillard and Proth 

(1984) and Dolgui, (1993)), so it is appropriate to assume that V(h1) may be computed 

in polynomial time. In contrast, the functions R(V) and J(h1) are assumed to be arbitrary, 

for example, they can be represented by oracles. This means that there is an algorithm, 
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formula, or table to compute such a function. In addition, the manner of this 

computation can be arbitrary and is independent of the input. A similar problem 

formulation has an exponential black box complexity as it is proved in (Dolgui, 

Eremeev, Sigaev, 2007).  To show the NP-hardness of this special case of our problem, 

we will construct a reduction similar to that of Cheng and Kovalyov (2002). 

 

Proposition 1. The buffer capacity allocation problem is NP-hard for N=1, given that 

the functions R(h1)=R(V(h1)) and J(h1) are represented by oracles. 

 

Proof. Let us define d=d1 and h=h1 for shortness. We will reduce the well-known NP-

complete Partition problem (Garey and Johnson, 1979) to the buffer capacity allocation 

problem with N=1. The recognition version of Partition can be formulated as follows: 

given n positive integers a1,a2,...,an, is there a Boolean vector (y1,y2,...,yn)∈{0,1}
n
 such 

that ∑
=

n

j

jj ya
1

= ∑
=

n

j

ja
12

1
? 

Given any instance of Partition, construct an instance of the buffer capacity allocation 

problem with N=1, Tam=1 and λi=µi=ui=1, i= 1,2. Then V(h) is a strictly increasing 

rational function of h, defined at every point h∈[0,d], as it follows from the closed-form 

expressions presented in (Dubois and Forestier, 1982; Coillard and Proth, 1984; Dolgui, 

1993). The parameter d is set equal to 2
n
-1. Let y(h) be the binary representation of 

integer h using n bits, so y(h) is a one-to-one mapping from {0,1,...,d} to {0,1}
n 
 

computable in O(n) time. Then we can define oracle for the buffer cost function such 

that J(h)=V(h), and express the oracle for the revenue function such that:  









=+

=
∑∑
==

.),(

,
2

1
)(),1(

)( 11

otherwisehV

ahyaifhV

hR

n

j

j

n

j

jj

 

Note that the functions R(h) and J(h) in this case are computable in polynomial time 

with respect to the input length of the Partition problem. Moreover, due to the strict 

monotonicity of V(h), the inequality ϕ(h)=Tam R(h) - J(h) > 0 holds if and only if y(h) 

satisfies the equation ∑
=

n

j

jj hya
1

)( = ∑
=

n

j

ja
12

1
. In such a case, the optimal value of the 
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objective function in the buffer capacity allocation problem answers the question of the 

Partition problem.  □ 

 

In the next section, we examine NP-hardness for the case of series-parallel lines with 

stepwise revenue function. 

 

3. Series-parallel line with stepwise revenue function 

For series-parallel lines, the structure of a line is described by a series-parallel digraph 

G=(V,E), where V is the set of vertices, |V|=N+2, |E|=m. Vertex vj, j=1,…,N, corresponds 

to the intermediate buffer Bj, vertex v0 models infinite supply of raw parts at the input of 

the line and vertex vN+1 corresponds to the output of the line, where all parts are 

completely processed. The arcs e1,...,em model the machines 1,…,m. Each arc ei, 

i = 1,…,m, is directed from the vertex that models the input buffer of machine i (or 

vertex v0 if the machine i receives the raw parts) to the vertex that models the output 

buffer of machine i (or vertex vN+1 if the machine produces compete parts).  

 

A graph is called series-parallel if it can be obtained from a pair of vertices connected by 

an arc (v0 and vN+1 in our case) with the help of the following two operations: (i) adding 

an arc in parallel to an existing arc; (ii) substituting an arc by a simple path where all 

arcs have the same direction as the original arc.  

 

Obviously, series-parallel lines constitute a generalization of tandem lines. Figure 2 

illustrates an example of a series-parallel line.  

 

 

Figure 2. A line with series-parallel structure 
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Many authors consider the knapsack-type problems assuming that the cost function J(H) 

is linear and that the minimum required production rate V 
0 
is given. Such problems may 

be considered in terms of our problem formulation assuming that the revenue function 

R(V(H)) is stepwise: if V(H) is above a given threshold V 
0
, then R(V(H)) equals to some 

sufficiently large constant M, otherwise R(V(H))=0. This knapsack-type problem for 

series-parallel lines turns out to be NP-hard. Again, to prove this, we need to have a 

procedure that computes the average production rate in polynomial time. It will be 

sufficient for us to present such a procedure only for series-parallel lines with a simple 

structure. By system with a simple structure, we mean any line which is represented by 

a digraph G consisting of paths starting at vertex v0 and ending at vertex vN+1, where 

each path consists of 2 arcs and different paths do not have any other common vertices 

except for v0 and vN+1. An example of a system with simple structure is provided in 

Figure3. 

 

 

 

Figure 3. Example of a series-parallel line with simple structure (several two-machine 

tandem lines in parallel) 

 

The input data of a problem instance consist of graph G, parameters λi, µi, ui, i=1,…,m, 

dj, j = 1,…,N and Tam. The functions R(V) and J(H) are given by parameters dj, 

j = 1,…,N, V
 0
 and M. Equivalently, one can neglect the functions R(V) and J(H) and 

consider the problem of minimizing the function ∑
=

N

j

jjhb
1

, subject to the constraints 

V(H) ≥ V 0
, h1 ≤ d1, h2 ≤ d2,…, hN ≤ dN. 
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Proposition 2. The problem of finding a buffer capacity allocation vector H = (h1, 

h2,…, hN)∈Z
+

N
 minimizing the function ∑

=

N

j

jjhb
1

, subject to the constraints V(H) ≥ V 0
, 

h1 ≤ d1, h2 ≤ d2,…, hN ≤ dN for a series-parallel line with a simple structure and rational 

weights b1,…, bN, V 
0
 and λi, µi, ui, i= 1,…,m, is NP-hard. 

 

Proof. See (Dolgui, Eremeev, Sigaev, 2007). 

 

Let us now consider minimization  of the average steady state inventory cost function 

Q(H). The input data of a problem instance with this criterion consist of graph G, 

parameters λi, µi, ui, i = 1,…,m, dj, j = 1,…,N and Tam. The functions R(V) and Q(H) are 

given by parameters dj, cj, j = 1,…,N, V
 0
 and M. Again, one can neglect the functions 

R(V) and Q(H) and consider the problem of minimizing the function ∑
=

N

j

jj Hqc
1

)( , 

subject to the constraints V(H)≥ V
 0
, h1 ≤ d1, h2 ≤ d2,…, hN ≤ dN. Computational 

complexity of this knapsack-type problem is considered below. 

 

Proposition 3. The problem of finding a buffer capacity allocation vector H=(h1, h2,…, 

hN)∈Z
+

N
 minimizing the function∑

=

N

j

jj Hqc
1

)( , subject to the constraints V(H) ≥ V 0
, 

h1 ≤ d1, h2 ≤ d2,…, hN ≤ dN for a line with a simple structure and rational weights 

c1,…,cN, V 
0
 and λi, µi, ui, i = 1,…, m, is NP-hard.  

 

Proof. Consider a special case of the problem with m=2N, where each path consists of 

two sequential machines indexed i,i+1, for all odd i, 1 ≤ i ≤ N. Let j = (i+1)/2 be the 

index of the buffer between machines i and i+1. Assume also that λi=2 ui , µi=4ui for all 

i=1,…,m, d1= d2=…= dN=1 and ui = ui+1 for all odd i.  

In a line with simple series-parallel structure considered here, all pairs of sequential 

machines work independently from each other, so the steady-state throughput of such a 

pair and the steady-state average number of parts in the buffer between the machines 

depend only on parameters of the two machines. Let V’j be the throughput of the two-

machine tandem line with buffer Bj, j=1,…,N. By means of formulas from (Dubois and 
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Forestier, 1982) in case hj=1 we obtain: V’j=8u2j/13, and if hj=0, we have: V’j=u2j/2, 

j=1,…,N. 

Machines within each pair have identical parameters, so qj(H) = 1/2 hj (see the 

Appendix). In the case hj=1 holds qj(H)=1/2, and when hj=0, we have qj(H)=0, j=1,…,N. 

The throughput of the whole system is V(H)=V’1+ V’2+…+ V’N. Therefore, all the 

necessary system parameters are computable in polynomial time. 

To show the NP-hardness we will again use the Partition problem, see Proposition 1. 

We set N = n , u2j= u2j+1 =aj26 /3, cj=2aj, j = 1,…,N and V
0
= ∑

=

N

j
ja

16

29
. In case hj=1 we 

have V’j= aj⋅16 /3, qj(H)= aj and otherwise V’j= aj⋅13 /3, qj(H) =0, j=1,…,N.. Therefore 

the total throughput is  

V(H)=∑
=

N

j

jV'
1

=∑
=

N

j

jjha
1

+ ∑
=

N

j

ja
13

13
=∑

=

N

j

jjha
1

+ V 
0 

- ∑
=

N

j

ja
12

1
. 

 

So, H∈{0,1}
N
 is feasible if and only if ∑

=

N

j

jjha
1

≥ ∑
=

N

j

ja
12

1
. It is easy to see that the 

Partition problem has the affirmative answer if and only if ∑∑
==

=
N

j

jj

N

j

jj haHqc
11

)( ≤ 

∑
=

N

j

ja
12

1
. Therefore the special case of buffers capacity allocation problem considered in 

this proposition is NP-hard.   □ 

 

3. Conclusion 

In this paper, we have proven NP-hardness of the buffer capacity allocation problem for 

two cases: 1) tandem production lines with oracle representation of the revenue and cost 

functions, and 2) series-parallel lines of simple structure with stepwise revenue function. 
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In this appendix we describe the production line model used for two-machine line analysis, i.e. when the 

number of buffers is N=1 and the number of machines is m=2 (Dubois and Forestier, 1982). Let h be the 

capacity of the buffer between the machines. In this case the system states can be expressed by the triple 

(α1,α2,x), where αi =0 if machine i is under repair, and  αi =1 if it is operational. The value x∈ [0,h] 

denotes the amount of buffer capacity used by the parts. In this discrete-continuous model for the two-

machine serial system we have a set of intermediate states {0,1}
2 × ] 0, h [ and the boundary states 

({0,1}
2×{0})∪({0,1}

2×{h}). Let Ai denote the binary random variable for the state of machine i, i=1,2, 

and let X be the random variable for the amount of buffer capacity used by the parts. The probabilistic 

characteristics in this model are given by the probabilities of boundary states at time t: 

Pα1α2
(0,t)=P{(A1, A2,X)=(α1,α2,0) at time t},  

Pα1α2
(h,t)=P{(A1, A2,X)=(α1,α2,h) at time t}, 

and the probability density fα1α2
(x,t) of intermediate states: fα1α2

(x,t)=∂Fα1α2
(x,t)/∂x, where Fα’1α’2(x,t) 

is the probability that at moment t the system state (A1 ,A2 ,X) is such that A1=α1, A2=α2, and X < x. The 

asymptotic steady-state distributions are described by  

Pα1α2
(0)=limt→∞ Pα1α2

(0,t),  Pα1α2
(h)=limt→∞ Pα1α2

(h,t), 

fα1α2
(x)=limt→∞ fα1α2

(x,t). 

We use the asymptotic relationships obtained in (Dubois and Forestier, 1982). For the intermediate 

states we have: 

 

0=λ1f10(x)+ λ2f01(x)-(µ1+µ2)f00(x), 

-u2 ∂f01(x)/∂x=λ1f11(x)+ µ2f00(x)-(µ1+λ2)f01(x), 

u1 ∂f10(x)/∂x=λ2f11(x)+µ1f00(x)-(λ1+µ2)f10(x), 

(u1-u2)∂f11(x)/∂x=µ1f01(x)+µ2f10(x)-(λ1+λ2)f11(x) 

 

For the boundary states three cases should be considered: u1>u2, u1<u2 and u1=u2=u. We use only the 

latter case, where the following equations can be proved: 

 

P01(h)=P00(h)= P10(0)=P00(0)=0,  

µ2P10(h)= λ2P11(h)+ uf10(h)=(λ1+λ2)P11(h), 

µ1P01(h)= λ1P11(0)+ uf01(0)=(λ1+λ2)P11(0), 

u f01(h)= λ1P11(h), uf10(0)= λ2P11(0). 

 

Solution of this system yields the analytic expressions for fα1α2
(x), Pα1α2

(0), and Pα1α2
(h). Using these 

functions one can obtain the average production rate V(h). For example in case λ1=λ2=λ, µ1=µ2=µ we 

have: 

F
10
(x)=kx, F

00
(x)=kxλ/µ, F

11
(x)=kxµ/λ, F

01
(x)=kx, 

P
11
(h)=ku/λ, P

10
(h)=2ku/µ, P

00
(h)= P

01
(h)=0, 

P
11
(0)=ku/λ, P

01
(0)=2ku/µ, P

00
(0)= P

10
(0)=0, 

where k is found from normalization condition ∑
∈
∈

}1,0{
},1,0{

2

1
α
α

 [Fα1α2
(h) + Pα1α2

(h)+ Pα1α2
(0)] = 1. 

 

In the complexity analysis within this paper we employ only the case where µ1=µ2 and λ1=λ2. Let 

I=µ1/λ1=µ2/λ2. Then the average production rate is given by: 

1

21

21

)(
)1(1

1)(

−



















+
++

++=

u
Ih

I
IuhV

µµ
µµ

. 
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The value Q(H) can be found by summing the expected amounts of parts (multiplied by the inventory 

costs) in buffers. In particular, for a two-machine tandem line as considered above, the steady state 

average number of parts in the intermediate buffer q is derived as follows. For any of the four 

combinations of the indices α1∈{0,1}, α2∈{0,1} at any moment t we can define a random value 

Z(α1,α2), assuming Z(α1, α2)= X, if the system is in a state (A1,A2,X), such that A1=α1, A2=α2 ;  

otherwise Z(α’1,α’2)=0.  

Asymptotically, as t tends to ∞, the distribution function for each random variable Z= Z(α1, α2), 

α1∈{0,1}, α2∈{0,1},  is 

FZ (x)=P{Z<x}=P{Z<x & (A1, A2) =(α1 ,α2)} + P{Z<x & (A1, A2) ≠(α1 ,α2)}. 

Note that  

{ }
{ }






=

≤
==<

otherwiseAAP

hxifxF

AAxZP

,),(),(

,),(

),(),(&

2121

2121

21

αα
αα

αα

 

by definition of Fα1α2
(x), and 

{ }
{ }





=−

≤
=≠<

.,),(),(1

,0,0

),(),(&

2121

2121

otherwiseAAP

xif

AAxZP

αα
αα  

Thus, in view of properties of expectation (see e.g. (Gnedenko, 1997)), using the definitions of 

Fα1α2
(x) and Pα1α2

(h) and the fact that FZ (x)≡1 for x>h , we obtain 

E[Z] = ∫
∞

0

 [1-FZ (x)] dx =∫
h

0

 [1-FZ (x)] dx = ∫
h

0
 [1- Fα1α2

(x) – 1+P{(A1, A2)=(α1,α2)}] dx= 

[ ]dxxFhPhF

h

∫ −+
0

)()()(
212121 αααααα , 

and in total, 

[ ] ∑∑ ∫
∈
∈

∈
∈

⋅+−=

}1,0{
},1,0{

}1,0{
},1,0{ 0

2

1

21

2

1

2121
).()()(

α
α

αα

α
α

αααα hPhdxxFhFq

h

 

With u1=u2=u, µ1=µ2 and λ1=λ2 it yields q = h/2. 

 

The above model is developed for two machines with a buffer in between. For a series-parallel line 

with more machines and buffers, the aggregation algorithm for production rate evaluation consists in 

applying the following two rules:  

R1: two machines in series are replaced with an equivalent machine 

R2 : two machines in parallel are replaced with an equivalent machine 

The parameters λ*
, µ*

, u
*
 of the equivalent machines are calculated from differential equations 

corresponding to the Markov models of two machines in series and one buffer in between (R1) or two 
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parallel machines (R2). More details on these equations may be found in (Dolgui, 1993; Dolgui et al. 

2002, 2007).  

After K-1 steps of such aggregation procedure the system reduces to a single machine with parameters 

λ*
, µ*

, u
*
 and the estimate of the overall production rate V(H) is given by u

*µ*
/(λ*

+µ*
). 

The precision of this approximate method depends on the order in which the line is aggregated. In our 

study, the replacement of type R1 is always applied where possible before the reduction of type R2.  

Machine 1 Machine 2

buffer

R1: two machines in series 

R2: two machines in parallel 

Machine 3

Machine 4

Equivalent machine 1-2

Equivalent machine 3-4

 

Fig. A1 Decomposition rules 

 

In case there are several alternatives, the rule R1 is applied to the couple of machines, separated by a 

buffer of the least capacity. The value Q(H) is estimated by summing the expected amounts of parts 

(multiplied by the inventory costs) in buffers being eliminated on each step of aggregation. 
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