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Abstract

We introduce a novel evolutionary formulation of the problem of find-
ing a maximum independent set of a graph. The new formulation is based
on the relationship that exists between a graph’s independence number
and its acyclic orientations. It views such orientations as individuals and
evolves them with the aid of evolutionary operators that are very heav-
ily based on the structure of the graph and its acyclic orientations. The
resulting heuristic has been tested on some of the Second DIMACS Im-
plementation Challenge benchmark graphs, and has been found to be
competitive when compared to several of the other heuristics that have
also been tested on those graphs.
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1 Introduction

Let G = (N, E) be an undirected graph of node set N and edge set F such that
n = |N| and m = |E|. An independent set (or stable set) of G is a subset S of
N containing no neighbors (nodes that are connected by an edge in G). The
set N\ S is a node cover of G, that is, a set of nodes that includes at least
one of the two end nodes of every edge. We call every subset of N whose nodes
are all neighbors of one another in G a clique. The complement G of G is an
undirected graph of node set N in which two nodes are neighbors if and only if
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they are not neighbors in G. Clearly, S is an independent set of GG if and only
if it is a clique of G.

We are concerned in this paper with the problem of finding a maximum
independent set in G, that is, an independent set of maximum size. Equivalently,
this problem can be viewed as asking for a minimum node cover in G or a
maximum clique in G. Finding independent sets (or any of the other equivalent
structures) of extremal size has several important applications. We refer the
reader to the volume that resulted from the Second DIMACS Implementation
Challenge [38] for various examples of application areas, and to [25] for further
examples from coding theory.

The problem of finding a maximum independent set in G is NP-hard (it is
NP-complete when formulated as a decision problem [39, 26]), and remains NP-
hard even if we settle for solving it approximately within n'/4~¢ of the optimum
for any € > 0 [B, Bl [[2]. That is, if a(G) is the size of a maximum independent
set of G (the independence number of G), then finding an independent set of
size at least n'/4~¢a(G) is NP-hard.

Our formulation of the maximum independent set problem is based on the
notion of an acyclic orientation of G, i.e., an assignment of directions to the
edges of G that leads to no directed cycles. Let €(G) denote the set of all
the acyclic orientations of G. For w € Q(G), let D, be the set of all chain
decompositions of the nodes of G according to w, that is, each member of D,, is
a partition of N into sets that correspond to chains (directed paths) according
to w. For d € D,, let |d| denote the number of chains in d. Our point of
departure is the following equality, which relates the independence number of
G to its acyclic orientations [23]:

G) = in |d|. 1
G = e e W

By (@), a(G) is the number of chains in the chain decomposition of N into
the fewest possible chains, according to the acyclic orientation of G for which
that number is greatest. This result is a refinement of Dilworth’s theorem [24]
and is illustrated in Figure [l where two acyclic orientations of the same graph
are shown alongside the corresponding minimum chain decompositions. In the
figure, the bottommost acyclic orientation is the one whose minimum chain
decomposition is greatest, thence a(G) = 2 for the graph in question.

As we see it, the greatest significance of () is that it spells out how the
set 2(G) can be regarded as a set of individuals, the fittest of which yields the
independence number of G.! Viewing the maximum independent set problem
from this perspective is based on taking mingep, |d| as the measure of fitness
for individual w and on searching Q(G) for an individual of maximum fitness.?

LA relation dual to the one in (@) indicates how to express the chromatic number of
G (cf. [[@]) in terms of its acyclic orientations [23]. The use of that other relation in an
evolutionary approach to find the graph’s chromatic number has been developed by one of us
and collaborators [IT].

2Q(G) is a set of vast dimensions. For example, the number of distinct acyclic orientations
of G is 2™ if G is a tree, n! if it is a complete graph (all nodes connected to all others), and
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Figure 1: Two acyclic orientations and the corresponding minimum chain de-
compositions.

We develop this evolutionary approach in the remainder of the paper, start-
ing in Section Bl where the details of the new formulation are introduced, in-
cluding how to compute an individual’s fitness and the evolutionary operators
of crossover and mutation for Q(G). We then continue in Section Bl with a de-
scription of the graphs to be used in our experiments, whose results are reported
in Section @l Conclusions are given in Section

2 The formulation

The key to a better understanding of how to use () is that mingep,, |d|, the
purported measure of fitness for individual w € Q(G), is in fact the size of an
independent set that can be unequivocally obtained from orientation w. In order
to see this, we associate a directed graph, call it D(G,w), with G oriented by w.
This directed graph has 2n + 2 nodes: two distinguished nodes, called s and ¢,
and two nodes, called i’ and ", for each node i € N. For every i € N, D(G,w)
has an edge directed from s to i’ and another from " to ¢t. For every (i,j) € E
that is directed by w from 7 to j, in D(G,w) an edge exists from i’ to j”. Node
s is therefore a source (a node with no edges directed inward) and node ¢ a sink
(a node with no edges directed outward). An illustration of this construction is
given in Figure Bl where the directed graphs corresponding to the two acyclic
orientations of Figure [l are shown.

We now regard D(G,w) as a flow network whose edges either have unit
capacity (those leaving s or arriving at t) or infinite capacity (all others), and

2" — 2 if it is a ring. In general, and remarkably, the number of members of Q(G) is given
by the absolute value of the chromatic polynomial of G (cf. [I4]) applied to the negative unit
E3].



Figure 2: Flow networks associated with the acyclic orientations of Figure [l

consider the maximum flow from s to ¢, whose value we assume to be F. This
flow is necessarily integral, as illustrated in Figure Bl where solid lines have
been used to draw edges carrying unit flow and dashed lines those carrying zero
flow. It also establishes a chain decomposition of G' according to w into n — F'
chains. Take, for example, the topmost network of Figurel where F' = 4. If we
only follow edges carrying unit flow, then we can easily trace the single chain
3 =171 = 2" 2" - 4" 4 — 5”. For the bottommost network, F' = 3 and
we get the two chains 3’ — 1”7, 1’ — 2" and 4’ — 5”. These, readily, are the
minimum chain decompositions according to the two acyclic orientations.

What is left to note is that only edges leaving s or arriving at ¢ can be sat-
urated by the maximum flow, so the corresponding minimum cut is necessarily
given by a group of such edges. In Figure @ the minimum cut in each network
is indicated by boxes enclosing the nodes other than s or ¢ that are involved
in the cut. Such nodes do necessarily constitute a minimum node cover of the
edges that do not involve s or ¢ in D(G,w), and consequently induce a node
cover in G as well ({1,2,3,4} for the topmost network, {2,3,5} for the other)
with a corresponding independent set ({5} and {1, 4}, respectively).

In general, then, we have the following [2]. If F' is the value of the maximum



flow from s to ¢t in D(G,w), then n — F is the number of chains in the minimum
chain decomposition of G according to w and F' is the size of a node cover in
G. Consequently, n — F' is also the size of an independent set in G. In order
to determine the actual nodes that constitute this independent set, it suffices
to look at the minimum cut in D(G,w) and at the node cover it induces on
the edges of D(G,w) that do not touch s or ¢. This node cover corresponds
to a node cover in G as well, whose complement with respect to IV is then the
desired independent set.

We now turn to the three key elements of our formulation, namely how to
assess an individual’s fitness and how crossover and mutation operate. We have
designed these elements in such a way that they can be used directly in most
standard templates of fitness-maximization genetic algorithms [30), B5]. What
is novel in our formulation is the adoption of Q(G) as the search space out of
which populations are formed. Not only do the acyclic orientations of G relate
cleanly, as we have discussed, to the independent sets of GG, but also they allow
for evolutionary operators that are simple and yet effective in several aspects of
the evolutionary search. We will come to them shortly.

Fitness evaluation

For w € Q(G), let f(w) denote the fitness to be maximized over Q(G) while
searching for a maximum independent set of G. By ([l), we have

= min |d 2
f(w) = min |d, (2)
that is, the fitness of individual w is the number of chains in the minimum chain
decomposition according to that orientation.
It follows from our preceding discussion that f(w) can be assessed along the
following steps:

1. Construct the flow network D(G,w).
2. Compute the value F' of the maximum flow from s to ¢t in D(G,w).
3. Let f(w)=n—F.

We note, with regard to Step 2, that only the value F' of the maximum flow is
needed for fitness evaluation, not the actual flow. In other words, what is needed
is the maximum total flow incoming to ¢, not the particular assignment of flows
to all edges. When a push-relabel method is used to compute the maximum flow,
it is a simple matter to separate the computation into two phases [29]: the first
phase computes F' but may leave excess flow at some nodes; the second phase
corrects this by returning flow in order to eliminate excesses. Conveniently, one
of the most successful implementations currently available of a maximum-flow
algorithm does precisely this [22], and as such allows the computation to stop at
the end of the first phase, right after ' has been found. What is also convenient
is that, when push-relabel methods are thus implemented, at the end of the



first phase the minimum cut is also known, which is useful for determining
the independent set that corresponds to the best individual found during the
evolutionary search, in the manner we indicated earlier in this section. We
return to this in Section HEl

Crossover

The crossover of the two individuals wy,ws € Q(G) to yield the two offspring
wi,wh € Q(G) is best described in terms of a linear representations of the
individuals involved. For individual w € Q(G), the representation we adopt,
denoted by L(w), is the sequence L(w) = (i1,...,4n), where i1,...,i, are the
nodes of G. In this sequence, and for 1 < z,y < n, node i, appears to the left
of iy (ie., x < y) if (ig,iy) is an edge of G and is oriented by w from i, to iy.
For example, both (3,1,4,2,5) and (3,4, 1,2,5) are valid linear representations
of the bottommost acyclic orientation of Figure [[l Clearly, L(w) represents w
unambiguously, though not uniquely.

Now let L(w1) = (i1,...,4n) and L(wz) = (J1,--.,Jn). Let also z such that

1 < z < n be the crossover point. Then L(wj) = (i,...,4,) and L(w)) =
(415, Jh), where
o (ify..npil) = (i1, ... 02);
e (i’ 1,...,i,) is the subsequence of (ji,...,J,) comprising all nodes that
are not in (i1, ...,4,);
b <¢717 B 7.7;> = <j17' 7]z>7
® (j.iys---,J;) is the subsequence of (i1,...,%,) comprising all nodes that
are not in (ji,..., ).

Notice that the L(w}) and L(w}) thus determined are valid linear represen-
tations of acyclic orientations, since, by construction, both sequences contain all
nodes from G. Furthermore, w] and wj inherit edge orientations from w; and
ws as follows:

e Edges joining nodes in the set {¢/,...,7,} to any other nodes are oriented
by wi exactly as by w;.

e Edges joining nodes in the set {i’,,...,,} exclusively are oriented by
w) exactly as by ws.

e Edges joining nodes in the set {ji,...,j.} to any other nodes are oriented
by w} exactly as by ws.

e Edges joining nodes in the set {j.,,...,j,} exclusively are oriented by
wh exactly as by w;.



Mutation

Like crossover, our mutation operator is defined in terms of the linear repre-
sentations of individuals. We use single-locus mutation at the mutation point
z with 1 < z < n. For individual w € Q(G), the mutation operator turns node
1, into a source, thus yielding another acyclic orientation w’. That w’ is indeed
acyclic has been argued elsewhere [I0)]: in essence, a directed cycle through i,
would be required for w’ not to be acyclic, which is impossible, i, being a source
according to w'.

We also refer the reader elsewhere ([I1]], Section 4) for an argumentation as
to why this type of mutation does more for the evolutionary search than sim-
ply to allow occasional random jumps loosely intended to escape local optima.
Specifically, what is shown is that, for any two acyclic orientations w,w’ € Q(G),
there necessarily exists a finite sequence of mutations that turns w into w’. So
this operator can be regarded as providing the search space Q(G) with an under-
lying fundamental connectedness that allows, at least in principle, every acyclic
orientation to be reached regardless of where the evolutionary search is started.

3 The experimental test set

In this section we give a brief description of the benchmark graphs used in
the experiments reported in Section Bl They have all been extracted from the
DIMACS challenge suite [49]. That suite is structured from the perspective of
finding maximum cliques, so the graph types listed next characterize G.

c-fatn-c [34]. This graph comes from fault-diagnosis problems [I3] and its set
of n nodes is partitioned into n/clogn sets of approximately equal sizes. Edges
are deployed so that every node is connected to every other node in its own set
and in the two sets that are neighbors to its own (according to an arrangement
of the sets into a ring).

johnsonW-w-d [34]. This graph arises in problems from coding theory. It has
n= (va) nodes, each node labeled with a W-digit binary number having exactly
w 1’s. Two nodes are joined by an edge if the Hamming distance between their
labels (the number of digits at which they differ) is at least d.

kellerd HT]. This graph is derived from another with 4 nodes which arises
in connection with proving Keller’s 1930 conjecture false for high dimensions.
The conjecture is that a “tiling” of Euclidean d-dimensional space by unit cubes
necessarily contains two cubes meeting in a full (d — 1)-dimensional face.

hammingW-d [34]. This graph comes from coding-theory problems also and has
n = 2" nodes, each node labeled with a W-digit binary number. Two nodes
are connected if the Hamming distance between their labels is at least d.



sann_f x [36]. This graph is artificially constructed on n nodes to have a
maximum clique whose size is determined beforehand. Its number of edges
is fn(n —1)/2; x is only used to differentiate among instances.

sanrn_p [B6]. This is a random graph on n nodes, generated by adding an edge
with constant probability p between any two distinct nodes [I5]. It is expected
to have dimensions close to those of sann_f _x for f = p.

brockn x [I8]. This is a random graph on n nodes, designed to have a maximum
clique much larger than would be expected from the nodes’ degrees. The number
x is used for instance differentiation.

p-hatn-x [46]. This is a random graph on n nodes whose density is based on
two parameters. This contrasts with the usual random graphs with fixed edge
probability [15], leading to node degrees that are more spread and to larger
cliques also. The number x differentiates among instances.

MANN_ax [44]. This graph gives the clique formulation of the instance Ax of the
Steiner triple problem. This formulation is obtained by a conversion from the
set-covering formulation of that problem [A3].

Details on the graphs we used in our experiments are given in Tables M and
For each G, the tables give the values of n and m (the number of edges in
G), as well as a(G), when known from design characteristics.

4 Experimental results

Henceforth, we refer as WAO to the algorithm that results from the formulation
of Section This denomination is an acronym after “Widest Acyclic Orien-
tation,” as by ([@) what is sought during the evolutionary search is an acyclic
orientation whose minimum chain decomposition has the most chains over Q(G).

WAO iterates for g generations, each one characterized by a population of
fixed size s. After generating the last population, it outputs the best individual
found during the entire evolutionary search. For k > 1, the kth population is
obtained from the k—1st population as follows. First an elitist step is performed,
resulting in the transfer of the fs fittest individuals from the current population
to the new, with 0 < f < 1. Then WAO performs the following iteration until
the new population is full: with probability p., two individuals are selected
from the current population and the crossover operator is applied to them,
the resulting two individuals being then added to the new population; with
probability 1 — p., one single individual is selected from the current population
and then is subjected to the mutation operator before being added to the new
population.

In order to decide on an appropriate selection method, we ran several initial
experiments on reasonably-sized graphs. From these experiments emerged not



Table 1: Benchmark graphs.

G n m Q)
c-fat200-1 200 18,366
c-fat200-2 200 16,665
c-fat200-5 200 11,427
c-fat500-1 500 120,291
c-fat500-2 500 115,611
c-fat500-5 500 101,559
c-fat500-10 500 78,123
johnson8-2-4 28 168
johnson8-4-4 70 560

johnsonl6-2-4 120 1,680
johnson32-2-4 496 14,880

keller4 171 5,100
hamming6-2 64 192
hamming6-4 64 1,312
hamming8-2 256 1,024

hamming8-4 256 11,776

san200.0.7_1 200 5,970 30
san200.0.7_2 200 5,970 18
san200.0.9_1 200 1,990 70
san200.0.9_2 200 1,990 60
san200.0.9_3 200 1,990 44
san400.0.5_1 400 39,900 13
san400.0.7_1 400 23,940 40
san400.0.7_2 400 23,940 30
san400.0.7_3 400 23,940 22
san400.0.9_1 400 7,980 100

only the selection method of our choice but also the suite of parameters we
would adopt in all further experiments (we discuss these later). The selection
method we used in our experiments picks individuals proportionally to their
linearly normalized fitness in the current population. For 1 < k < s, this means
that the kth fittest individual-—that is, w such that f(w) is the kth greatest—is
selected with probability proportional to

o) =2~ (£=1) - ()

Ties between two individuals are broken by taking the individual that was added
to the current population first as the fitter one. In (B, L is the factor by which
the linearly normalized fitness of the fittest individual in the current population
(the & = 1 case) is greater than that of the least fit individual (the k& = s
case); that is, L = g(w1)/g(ws), where w; and w, are those two individuals,
respectively.



Table 2: Benchmark graphs (continued from Table [II).
G n m  afQ)
sanr200.0.7 200 6,032
sanr200.0.9 200 2,037
sanr400.0.5 400 39,816
sanr400.0.7 400 23,931
brock200_1 200 5,066 21
brock2002 200 10,024 12
brock200_3 200 7,852 15
brock200.4 200 6,811 17
brock400_1 400 20,077 27
brock4002 400 20,014 29
brock400_3 400 20,119 31
brock400.4 400 20,035 33
p-hat300-1 300 33,917
p-hat300-2 300 22,922
p-hat300-3 300 11,460
p-hatb500-1 500 93,181
p-hatb500-2 500 61,804
p-hat500-3 500 30,950
MANN_a9 45 72
MANN_a27 378 702

We present our results in comparison to those obtained by the heuristics
of the DIMACS challenge [38]. This is not to say that the best results known
to date are necessarily the ones obtained by those heuristics, since several new
methods have appeared in the meantime for the maximum independent set
problem under one of its guises (e.g., [T9, [T6] and their references). However,
all those more recent methods invariably go back to the DIMACS challenge
heuristics as references for comparison, so those heuristics serve as an indirect
basis for other comparisons as well. One exception to this comparison rule
we have adopted is the genetic-algorithm approach of [I], which, like WAO,
employs a nontrivial crossover operator. We present next a brief description of
all the eleven heuristics to which we compare WAO directly.

B&C [7]. This is a branch-and-cut method for which cutting planes are gen-
erated based on the more general technique of [6]. It starts with an integer
programming formulation of the maximum clique problem, and proceeds from
the initial relaxation by generating new cutting planes and incorporating them
into the current linear program.

CLIQMERGE [B]. This heuristic is based on a procedure that finds a maximum
clique in the subgraph induced by the nodes of two cliques when they are merged
together. The essence of the method is to find a maximum bipartite matching
in the complement of this subgraph.

10



SQUEEZE [I7]. This is a branch-and-bound algorithm for the maximum inde-
pendent set problem. Its lower bounds are obtained through a reduction to the
problem of minimizing a general quadratic 0-1 function.

CBH [27]. This is an interior-point approach (cf. [32]) to the determination of
maximum independent sets. Following a continuous formulation of the problem,
a relaxation of it is solved and the resulting solution is rounded by a heuristic
based on [20, H].

RB-cLIQUE [B1]. This method uses backtracking “coordinates” as the entities
on which restricted backtracking is to be applied while seeking a maximum
clique. The restrictions to which the backtracking coordinates are subject are
given as input.

ATA [33]. This strategy employs recurrent neural networks (cf. [9]) to find
maximum cliques. The crux of the approach is an adaptive procedure for the
determination of appropriate threshold parameters and initial state for the neu-
ral network.

SA&GH [35]. This is a blend of heuristics to find maximum cliques. In most
cases it employs simply simulated annealing [#0], but for very dense graphs the
greedy heuristic of [37] is used.

XSD [B6]. This is a family of heuristic methods to find maximum cliques.
The methods are all related to neural-network models and include deterministic
and stochastic descent approaches, with or without an intervening learning step
between restarts.

B&B [#4]. This is a branch-and-bound approach to the maximum independent
set problem. Upper bounds are obtained through a procedure derived from edge
projection, a specialization of the clique projection of [A2].

XT [47]. This is a family of three variants of tabu search [28], two deterministic
and one probabilistic.

OCH [0. This is a genetic algorithm for the maximum independent set prob-
lem. Each individual is an n-digit binary number, each digit indicating whether
the corresponding node is in the independent set or not. The centerpiece of
the method is the so-called optimized crossover, which generates one optimal
offspring based on the same merging procedure of CLIQMERGE and one other
having a random character.

All the experiments we report on were conducted with ¢ = 10n, s = 1.5n,

f =0.05, p. = 0.2, and L € {15,30}. As we indicated earlier, these reflect
policies and values that emerged from early experiments on reasonably-sized

11



graphs. They by no means represent optimal decisions of any sort, since the
number of possible choices is, naturally, far too large.

In all experiments, we also made use of the maximum-flow code of 2], which
implements the algorithm of [22], to compute the value of f(w) as explained in
Sectionl As we also indicated in that section, it suffices for the maximum-flow
computation to stop right after completing its first phase, since the value of the
maximum flow, and hence the size of the independent set that the individual
contributes, is already known at this point. We also recall that running the
maximum-flow code through its first phase only is sufficient even for the best
individual found during the whole evolutionary search. In this case, what we
need is to enumerate the members of the independent set contributed by that
individual, not simply to know its size, but this can be obtained by examining
the minimum cut that is also already known as the first phase ends.

Our results are shown in Figures Bl and Bl and in Tables Bl through B The
two figures show, for ten graphs selected from Tables [[l and Bl the evolution of
the best fitness (as given by () ever found for an individual as the generations
elapse during the best of twenty independent runs (the one that eventually
yielded the largest independent set for that graph). In other words, they show
the size of the largest independent set yet identified. These ten graphs were
selected because, in terms of what is shown in Figures Bl and B, they have led
the evolutionary search to behave either in a way that we found to be somewhat
typical or a way that yields interesting insight. We return to this shortly.

Tables Bl through Bl show the results obtained by WAO alongside the results
of the competing algorithms we outlined earlier in this section. Tables BHH
refer to the graphs in Table [l while Tables BHJ refer to those in Table Bl For
each graph G, the tables give the value of a(G), when known from design
characteristics, and the sizes of the maximum independent sets obtained by the
algorithms on GG, when available. The result reported for WAO on each graph
is the best result found over twenty independent runs. For the other methods,
the results reported are the best results they yielded, as published in [38]. The
number appearing in parentheses next to “WAQO” in Tables B and Bis the value
of L that was used to obtain the results listed in the corresponding column.

The several runs of WAO were executed on a relatively wide assortment of
machine architectures, so we refrain from providing detailed timing data. Also,
comparing running times to those of the other methods—obtained roughly one
decade ago—would be cumbersome however we tampered with the numbers
seeking to compensate for the technological gap. Given these constraints, all
we do is mention that each of our runs tended to complete somewhere between
very few seconds and a week, depending on the graph at hand.

WAQO is a competitive method, by all that can be inferred from Tables BH&
We have in the tables used a bold typeface to indicate the instances on which
WAO performed at least as well as the best performers. Several entries are thus
marked, and for many that are not WAO is seen to have fallen short by a very
narrow margin.

Returning to the plots in Figures Bl and Bl may highlight some of the patterns
that help explain success or failure at meeting the best performers’ figures during

12



our experiments with WAQO. Of the ten graphs to which those figures refer, three
correspond to cases in which WAO missed by a narrow margin (san400.0.9_1,
sanr400.0.7, and brock2004) and one to a case in which it missed widely
(brock400.4). What seems to distinguish one group from the other is that in
the latter case the plot becomes flat early in the evolution, perhaps signaling an
inherent hardness at escaping some particularly difficult local maximum. For
the three graphs in the former group, however, and in fact for the six graphs
in the figures outside either group, evolution seems to lead to fitness growth
more or less steadily along a comparatively larger number of generations, even
though for the san graphs it nearly stalls for a significant number of generations
before it gains momentum again. In the case of san400.0.9_1, particularly, it
appears quite likely that a few more generations would have bridged the narrow
gap between the 98 that WAQO achieved and the 100 of its best contenders.

5 Concluding remarks

We have in this paper introduced WAOQO, a novel evolutionary heuristic for the
maximum independent set problem. WAO is based on a view of the problem
that relates independent sets to the acyclic orientations of the graph, and seeks
to identify an acyclic orientation that is widest (has the decomposition into the
fewest number of chains that requires the most chains) over the set of all the
acyclic orientations of the graph. It incorporates no additional sophistication
into the usual evolutionary-algorithm machinery, but rather into the design of
the individuals’ representations and the evolutionary operators, all based on
complex graph-theoretic notions.

We have found our new heuristic to perform competitively when compared to
several others on the DIMACS benchmark graphs. Notwithstanding this, there
certainly is room for further investigation and improvements. For example, there
may exist a better set of parameters for the evolutionary search, just as there
may exist a better functional dependence of g and s on n (and perhaps also on m,
unlike what we adopted in our experiments). Likewise, it is also conceivable that
the formulation itself may be improved by the incorporation of optimizations
into the crossover or mutation operator, or even by the introduction of new
operators.

Acknowledgments

The authors acknowledge partial support from CNPq, CAPES, the PRONEX
initiative of Brazil’s MCT under contract 41.96.0857.00, and a FAPERJ BBP
grant.

13



Fitness

Fitness

Fitness

Fitness

60 140
55
120
50
45 100
40 3 80
2
35 2
[
30 60
25 40
20
20
15 c-fat200-5 c-fat500-10
10 0
500 1000 1500 2000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Generation Generation
75 100
70 90
65 80
60
70
55 2
2 60
50 i
50
45
20 40
35 30
san200_0.9_1 san400_0.9_1
30 20
0 500 1000 1500 2000 0 500 1000 1500 2000 2500 3000 3500
Generation Generation
45 22
20
40
18
35 w16
2
g
s
[
30 14
12
25
10
sanr200_0.9 sanr400_0.7
20 8
500 1000 1500 2000 0 500 1000 1500 2000 2500 3000 3500
Generation Generation
16 24
15 22
14 20
13 w18
2
g
£
12 [ )
1 14
10 12
brock200_4 brock400_4
9 10
0 500 1000 1500 2000 0 500 1000 1500 2000 2500 3000 3500
Generation Generation

Figure 3:

14

Fitness evolution for

selected graphs.

4000

4000

4000



40 50

45

35
40

30 35

Fitness
Fitness

25 30
25

20
20
p_hat300-3 p_hat500-3

15 15
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Generation Generation

Figure 4: Fitness evolution for selected graphs (continued from Figure B).

Table 3: Comparative performance on the benchmark graphs of Table [l

G a(G@) B&C CLIQMERGE SQUEEZE CBH
c-fat200-1 12 12 12
c-fat200-2 24 24 24
c-fat200-5 58 58 58
c-fat500-1 14 14
c-fatb00-2 26 26
c-fat500-5 64 64
c-fat500-10 126 126
johnson8-2-4 4 4 4
johnson8-4-4 14 14 14
johnsonl16-2-4 8 8 8
johnson32-2-4 16 16
keller4 11 11 11 10
hamming6-2 32 32 32
hamming6-4 4 4 4
hamming8-2 128 128 128
hamming8-4 16 16 16 16
san200.0.7_1 30 30 30 15
san200.0.7_2 18 18 18 12
san200.0.9_1 70 70 70 46
san200.0.9.2 60 60 60 36
san200.0.9_3 44 44 44 30
san400.0.5_1 13 13 8
san400.0.7_1 40 20
san400.0.7_2 30 30 15
san400.0.7_3 22 14
san400.0.9_1 100 100 50
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Table 4: Comparative performance on the benchmark graphs of Table [ (con-
tinued from Table ).

G a(G) RB-cLiQquE ATA SA&GH XSD
c-fat200-1 12
c-fat200-2 24
c-fat200-5 58
c-fatb00-1 14
c-fatb00-2 26
c-fatb00-5 64
c-fat500-10 126
johnson8-2-4 4
johnson8-4-4 14
johnsonl6-2-4 8
johnson32-2-4 16
keller4d 11 11 11 11
hamming6-2 32
hamming6-4 4
hamming8-2 128
hamming8-4 16 16 16 16
san200.0.7_1 30 30
san200.0.7_2 18 15
san200.0.9_1 70 70
san200.0.9.2 60 60
san200.0.9_3 44 36
san400.0.5_1 13 9
san400.0.7_1 40 33
san400.0.7_2 30 19
san400.0.7_3 22 16
san400.0.9_1 100 100
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Table 5: Comparative performance on the benchmark graphs of Table [ (con-
tinued from Table H).

G al(G) B&B XT OCH WAO (15) WAO (30)
c-fat200-1 12 12 12
c-fat200-2 24 24 24
c-fat200-5 58 58 58
c-fat500-1 14 14 14
c-fat500-2 26 26 26
c-fat500-5 64 64 64
c-fat500-10 126 126 126
johnson8-2-4 4 4 4
johnson8-4-4 14 14 14
johnsonl6-2-4 8 8 8
johnson32-2-4 16 16 16
keller4 11 11 11 11 11
hamming6-2 32 32 32
hamming6-4 4 4 4
hamming8-2 128 128 128
hamming8-4 16 16 16 16 16
san200.0.7_1 30 30 16 16
san200.0.7_2 18 15 14 14
san200.0.9_1 70 70 70 70
san200.0.9.2 60 60 60 58
san200.0.9_3 44 36 37 44
san400.0.5_1 13 13 8 8
san400.0.7_1 40 40 20 20
san400.0.7_2 30 30 17 17
san400.0.7_3 22 16 16 16
san400.0.9_1 100 100 54 98
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Table 6: Comparative performance on the benchmark graphs of Table

G a(G) B&C CLIQMERGE SQUEEZE CBH
sanr200.0.7 18 18
sanr200.0.9 41 41
sanr400.0.5 12
sanr400.0.7 20 20
brock200_1 21 21 20
brock2002 12 12 11 12 12
brock200_3 15 15 14
brock200.4 17 16 17 16
brock400_1 27 23
brock400_2 29 25 24
brock400_3 31 23
brock400_4 33 25 24
p-hat300-1 8 8 8 8
p-hat300-2 25 25 25
p-hat300-3 36 36 36
p-hatb00-1 9 9
p-hat500-2 36 35
p-hat500-3 49
MANN_a9 16 16
MANN_a27 126 126 121
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Table 7: Comparative performance on the benchmark graphs of Table B (con-
tinued from Table [).

G a(G@) RB-cLIQUE ATA SA&GH XSD
sanr200.0.7 18
sanr200.0.9 41
sanr400.0.5 12
sanr400.0.7 21
brock200_1 21 20
brock200_2 12 12 11 11 10
brock200_3 15 15
brock200_4 17 17 16 16 16
brock400_1 27 24
brock400_2 29 25 25 25 24
brock400_3 31 24
brock400_4 33 33 25 25 24
p-hat300-1 8 8 8 8
p-hat300-2 25 25 25 25
p-hat300-3 35 36 36 34
p-hat500-1

p-hat500-2

p-hat500-3

MANN_a9

MANN_a27 126 125 126 126
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Table 8: Comparative performance on the benchmark graphs of Table B (con-
tinued from Table ).

G a(G) B&B XT OCH WAO (15) WAO (30)
sanr200.0.7 18 17 18
sanr200.0.9 42 42 41
sanr400.0.5 12 11 11
sanr400.0.7 20 20 19
brock200_-1 21 21 19 19
brock200_2 12 12 11 11 10 9
brock200_3 15 14 13 13
brock200_4 17 17 16 16 15 15
brock400_-1 27 24 21 22
brock400_2 29 25 24 21 22
brock400_3 31 24 22 22
brock400_4 33 33 25 24 23 22
p-hat300-1 8 8 8 8 7
p-hat300-2 25 25 25 24 25
p-hat300-3 36 36 36 34 36
p-hat500-1 9 9 9
p-hatb00-2 36 34 35
p-hat500-3 49 49 48
MANN_a9 16 16 16
MANN_a27 126 125 126 126 126
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