
On the Hardness of Approximating the MIN-HACK Problem

Ramkumar Chinchani, Duc Ha, Anusha Iyer, Hung Q. Ngo, and Shambhu Upadhyaya
Computer Science and Engineering,

201 Bell Hall
State University of New York at Buffalo,

Amherst, NY 14260, USA.�
rc27,ducha,aa44,hungngo,shambhu � @cse.buffalo.edu

Abstract

We study the hardness of approximation for the MINIMUM HACKING problem, which roughly
can be described as the problem of finding the best way to compromise some target nodes given a few
initial compromised nodes in a network. We give three reductions to show that MINIMUM HACKING

is not approximable to within ����� �	��

�����
� where ������� �� ����� ������
 , for any �! "�$#%� . In particular, the
reductions are from a PCP, from the MINIMUM LABEL COVER problem, and from the MINIMUM

MONOTONE SATISFYING ASSIGNMENT problem. We also analyze some heuristics on this problem.

1 Introduction

The MINIMUM COST HACKING problem (MIN-HACK for short), recently introduced in [4], can roughly
be described as the problem of finding an optimal method to hack into a set of target nodes given an initial
set of compromised nodes of a network represented by a directed graph & . The graph & is referred to as
the key challenge graph. For the hacker to traverse an edge ')(+*-,/.1032 of the graph, the hacker has to pay
some price. The edge ' to be visited has a key challenge 465 such as some authentication data, or records
in a database. If the hacker possesses the key 475 , then he only needs to pay a small price 8
9 , otherwise
he has to pay a larger price 8;: for traversing the edge. Each node 0 possesses some piece of information< *-032 , which might be a key to traverse some edge in the graph. Hence, the more number of nodes the
hacker is able to hack into, the more keys (information) he possesses, and thus the more likely he will be
able to hack into the rest of the nodes with lower cost.

The MIN-HACK problem has been shown to be =?> -hard in [4]. In this paper, we address the ques-
tion of how hard it is to approximate MIN-HACK to within some ratio. We will show that MIN-HACK is
not approximable to within @�A%*CBD2FE�(HGJILKNMPOJQ�RCS�T�U , where VW(+XZY :

KNMPOJKNMPO\[%Q , for any 8)]^X%_�G . This negative
result will be shown via three reductions, which are of independent interests, at least for pedagogical
reason. The reductions are from MINIMUM LABEL COVER (MLC), from a PCP characterization of =`>
(mimicking an idea of Dinur and Safra [7]), and from the MINIMUM MONOTONE SATISFYING ASSIGN-
MENT (MMSA) problem. In fact, there is an hierarchy of MMSA numbered from MMSA a , b�(+X;.\G6.�c%c%c
Our reduction shows that MIN-HACK is on top of this hierarchy, namely for any b!dfe ,

PCP g MMSA hig MLC g MMSA jiglk�k%k7g MMSA aDg MIN-HACK .
where g denote the relation “polynomially related approximation ratio.” Although quite unlikely, if
MIN-HACK can be approximated to within @�Am*-B/2 , then the hierarchy collapses. We have not been able to
reduce any problem in “class e ” to MIN-HACK. (Class e consists of problems with non-approximability
ratio Bon like MAX-CLIQUE and COLORING [3].) We also analyze the approximation ratios of some
common-sense heuristics for this problem.

1

The rest of the paper is organized as follows. Section 2 formally presents our problem and related
background materials. Sections 3, 4, and 5 present three different reductions to show the hardness of
MIN HACK. Section 6 gives our analysis of several Dijkstra’s like heuristics for this problem.

2 Preliminaries

2.1 NP optimization problems, approximation algorithms, and approximation ratios

More detailed definitions and notations relating to optimization problems and approximation algorithms
can be found in several books such as [8, 10, 11]. We briefly define related concepts here.

Following [5], an NP optimization problem � is a e -tuple *�� . sol . cost . OPT 2 , where� � is the set of polynomial-time recognizable instances of � .� For each ����� , sol *�� 2 is the set of feasible solutions for � . Feasible solutions are polynomially
bounded in size and polynomial-time decidable.� For each �	�	� .�
�� sol *�� 2 , cost *
�/.�
 2 – a positive integer – is the objective value of the solution
 . The objective function cost is polynomial-time computable.� Lastly, OPT ���������o.�������� refers to the goal of the optimization problem: finding a feasible
solution maximizing or minimizing the objective value.

The class of NP optimization problems is denoted by NPO. The class NPO PB consists of NPO problems
whose objective functions are polynomially bounded.

We use � *
�o2 to denote the optimal objective value of an instance � of problem � . Given a feasible
solution
 for an instance � of � , the approximation ratio of
 is� *��D.�
32FEL(������ cost *
�/.�
 2� *�� 2 . � *�� 2

cost *
�/.�
 2�! c
Given a function " E$#&% '$(, an "3*CBD2 -approximation algorithm) for � is a polynomial-time

algorithm which, on input instance �*��� , returns a feasible solution
 for � such that
� *��D.�
32,+�"3*.- �/-N2 .

We will use) *�� 2 to denote cost *
�/.�
 2 , the cost of the solution returned by) on � .

2.2 The MIN-HACK problem

In a recent paper [4], we have devised a model for computer system vulnerability assessment. The model
can roughly be described as follows.

An instance of the model is constructed by a security analyst who is aware of the computational
infrastructure. Before formally defining the model, let us first motivate its formulation.

Any physical entity on which some information or capability can be acquired is represented as a
vertex of a graph, which shall be called the key challenge graph. Let 0 be the set of vertices. Typically,
vertices are points in the network where some information may be gained such as a database server or
simply any computer system whose resources can be used or misused.

Each piece of information or capability present at any vertex 0 is represented as a key called < *-032
(or key *C032). Let 1 denote the set of keys. For example, records in a database, passwords stored on a
computer, or computational resources of a computer can be represented as keys. When an attacker visits
a vertex, he is empowered with this additional information or capability.

If there is a channel of access or communication between two physical entities which facilitates inter-
action, then a directed edge is created between the two corresponding vertices, pointing to the direction

2

of the allowed interaction. Multiple channels of communication are possible, hence there can be multiple
edges between two vertices. Let � be the set of edges.

The presence of a security measure or an enforced security policy protects the resources and allows
only authorized interaction. This deterrence is represented as a key challenge on the corresponding
channel of communication. An example of a key challenge is the password authentication required prior
to accessing to a server.

If a user does not have the right key to the key challenge, then he incurs a significant cost in breaking
or circumventing the security policy; legitimate access incurs only a smaller cost of meeting the key
challenge. For example, when password authentication is used, if a user knows the password, he incurs
little or no cost, while another user who doesn’t know the password will incur a higher cost in breaking
the password. The cost metric is a relative quantity signifying the amount of deterrence offered by one
security measure over another. It has been abstracted as a non-negative integer for the purposes of our
model. Figure 1 illustrates the building block of our model.

u v

Key �
I Key ��� A S � A�� R

Key �

Figure 1: Basic building block of a key challenge graph. Key 5 is the key challenge of the edge ')(*-,/.1032 ,
8
: is the cost one has to pay to traverse *-,/.1032 without having Key 5 , and 8�9] 8
: is the corresponding
cost if the attacker has the key.

The starting point of an attack could be one or more vertices in the graph, which are assumed to be
initially compromised by the attacker. Let 0	� denote this set.

The target of an attack could also be one or more vertices in the graph. In case of multiple targets,
the goal is to compromise all of them. Let the set of target vertices be denoted by 0	
 . An example of a
target is a source code repository for a commercial product.

In what follows, we formalize the aforementioned concepts.

Definition 2.1 (Key Challenge Graph). A Key Challenge Graph & is a tuple:

& (* 0Z.��
��1 . 0 � . 0�
P. < .PV�2$.
where 0 is the set of vertices, � is the set of directed edges (we allow multi-edges, i.e. & is a multi-
graph), 0�� is the initial set of compromised vertices, 0
 is the set of target vertices (0
�� 0�� (��),< E 0 % 1 is a function that assigns keys to vertices, V E�� %&1�� #���# is a function that assigns key
challenges and costs to edges.

For instance, < *-0 :\2 (4�� means that the key 4�� can be obtained at vertex 0 : , V3* '�:\2 (* 4 :�.�8
:�.�8�9�2
implies an assignment of a key challenge to edge 'J: , which requires an attacker to produce the key 4 : .
If he cannot do so, then he incurs a cost 8�: ; otherwise, he incurs a smaller cost 8m9 . An adversary begins
his attack at some point in the set of compromised nodes in the graph and proceeds by visiting more and
more vertices until the target(s) is reached. At each visited vertex, the attacker adds the corresponding
key to his collection of keys picked up at previous vertices. Once an attacker compromises a vertex, he
continues to have control over it until the attack is completed. Therefore, any vertex appears exactly once
in the attack description. While a trivial attack can be performed by visiting all reachable vertices until
the target is reached, cost constraints occlude such free traversals.

3

Definition 2.2 (Attacks and successful attacks). An attack is a finite and ordered sequence of a vertices
*-06:�.P0�9
.%c�c%c�.P0�� 2 satisfying the following conditions:

1. for each b � �6X .%c%c�c�. � � , there is some vertex ,��*0 � � �%0 : .%c%c�c�.P0 a��o: � such that *C,D.P0 a 2 � � ,

2. 0 � � �m0 : .%c�c%c�.10 � � (� ,

The first condition is meant to say that the attacker must get to a new vertex 0 a via a visited (or
compromised) vertex , . A successful attack is an attack that contains all target nodes in 0

The next important aspect of the model is the cost metric. Although an attack is defined exclusively
in terms of vertices, the cost incurred by the attacker at a vertex is mainly dependent on the edge that he
chooses to visit the vertex. We first define the cost of traversing an edge and then the cost of visiting a
new vertex. The latter is the basic unit of cost metric in our model.

Definition 2.3 (Cost of Traversing an Edge). Let 0�� be the set of visited vertices so far, including the
initially compromised vertices, i.e. 0 �	� 0
� . For , ��0
� and 0 _��0
� , the cost of traversing the edge
' (*-,/.1032 � � , given that V3* ' 2W(* 4 .P8 : .�8�9�2 , is 8 : if 4 _� � < *�� 2 -
� � 0 � � ; otherwise, it is 8%9 . (In
general, 8 :�� 8%9 .)

If ' (*C,D.P032 _� � , for technical convenience we assume that V3* ' 2 (*�4 .�� .�� 2 , where 4 is some
unique key no node has.

Definition 2.4 (Cost of Visiting a New Vertex). Define 0�� as above. The cost of visiting a new vertex
0 _�*0 � is defined to be

� *C0 . 0 � 2Z(� ��� � cost of traversing *C,D.P032 -�,��*0 � ��c (1)

The cost of an entire attack is measured as a sum of the effort required to compromise individual
vertices by attempting to counter the key challenges on the edges with or without the keys that an attacker
has already picked up.

Definition 2.5 (Cost of an attack). The cost of an attack *C03:�.%c�c%c%.10�� 2 is defined as:

MINHACK *C0 : .�c%c�c�.P0 � 2Z(
��

a��/:
� *C0 a . 0 a 2\. (2)

where 03aD(0�� � �m06:�.%c�c%c�.10 a��o: � .
The MIN-HACK problem is the problem of finding a minimum cost successful attack, given a key

challenge graph.

2.3 The MINIMUM LABEL COVER � (MLC �) problem

Given � � # (, an instance to the MLC � problem consists of:

(i) a bipartite graph & (+*�� � 0
��� 2 ,
(ii) two sets � : and � 9 of labels, one for � and one for 0 , and

(iii) for each edge '�� � , a relation � 5 � � : ��� 9 which defines admissible pairs of labels for that
edge.

4

A labelling *��J:�.�� 9%2 is a pair of functions: �J:`E � % G�� S and � 9 E$0 % G�� ��� � � � . Basically,
a labelling associates a set of labels to each , � � , and a non-empty set of labels to each 0�� 0 . A
labelling covers an edge ' (*-,/.1032 � � if, for every label � 9 assigned to 0 , there is some label � :
assigned to , such that *��
:%.	� 9�2 � �)5 . A labelling is a complete cover (or complete label cover) if it
covers all edges. Let � (�m,D:%.�c%c%c�.1, Q � . The
 � -cost of a labeling *��J:%.��;9 2 is the
 � -norm of the vector
*.-���:m*C, :\2 -�.�c%c�c�.�-���:m*C, Q 2�-N2 ��
 Q . Specifically,

 � -cost *���:%.��;9�2Z(+*.-���:m*C, :\2 - ��� k%k�k � -���:m*-, Q 2 - � 2 :�� � c
And,
�� -cost *��J:�.�� 9�2 (����� � - �J:m*C, a 2�- E�X + b + B � . The MLC � problem is to find a complete cover
with minimum
 � -cost.

It is not necessary to assign more than one label to any vertex 0�� 0 . If a complete label cover
assigns multiple labels to some vertex 0 ��0 , then the labeling obtained by removing all but one label
from 0 is also a complete covering. Consequently, henceforth we can impose the condition that vertices
in 0 get only one label each.

Hardness results for this problem were devised in [2,7,9]. The current best result is that of [7], which
says that MLC � is NP-hard to approximate to within � * G ILKNMPO�Q�R S�T�U$2 , where V (*������������!B/2 � A .�� 8] X%_�G .

2.4 The MINIMUM MONOTONE SATISFYING ASSIGNMENT (MMSA) problem

A monotone boolean formula � is a boolean formula over the basis � � .�! � , i.e. � uses only binary
connectives � , and ! . Equivalently, � is a rooted binary tree where each internal node is labeled with
either � or ! and has exactly two children, and each leaf is a boolean variable.

The MINIMUM MONOTONE SATISFYING ASSIGNMENT (MMSA) was considered in [1] in relation
to the problem of finding the length of a propositional proof. The MMSA problem is the problem of
finding a truth assignment satisfying a monotone boolean formula which minimizes the number of TRUE

variables. The problem was shown to be at least as hard as LABEL-COVER.
For each positive integer b , MMSA a is the restriction of MMSA to formulas of depth b . For instance,

MMSA h ’s instances are monotone boolean formulas of the form AND of OR’s of AND’s. Following [7],
let g denote the relation “polynomially related approximation-ratio”. The authors showed that, for all
bZd e ,

PCP g MMSA hig MLC g MMSA j g k�k%k6g MMSA a (3)

3 Reducing MMSA to MIN-HACK

We need to quote the following result from Dinur and Safra [7].

Theorem 3.1. It is NP-hard to approximate MMSA h to within a ratio of � *�@�A%*CBD2P2 for any 8] Xm_�G ,
where

@;Am*-B/2 EL(HG ILKNMPOJQ�R S T�U .?VW(+X Y X
���"������� A B c (4)

Thus, MMSA in general is not approximable to within @ A *-B/2 , assuming P #(NP. We now describe a
reduction from MMSA to MIN-HACK so that the approximation ratio is preserved (with a linear blow-up
in input size).

Given a monotone boolean formula $�*��/: .%c%c�c%.�� � 2 . It is useful to think of $ as a full binary tree % ,
each of whose internal node is either an AND or an OR, and each of whose leaves is labeled with one of
the variables �D:�.%c�c%c�.�� � . We give a name to each internal node of % (beside the label AND or OR) to
distinguish all nodes of % .

5

�

�
��

��
� �

dummy node

���
S	�

�
�
�

���
S �

�
�
�

� �
�

�
�
�

�����
�

�
�
�

�
S

� � �
S

���

�
S
� �

���
� �
�

�
���

��� �
�

�
�
�

�

�

���
�
�
�
���

starting node

target node

Figure 2: Example of the reduction from MMSA to MIN-HACK

The key challenge graph &�� (* 0Z. � ��1 . 0���. 0
 . < .�V�2 is constructed from $ as follows. (Refer to
Figure 2 for an illustration of the reduction.)

The key set 1 is the set of all labels of nodes in % , along with three dummy keys � , 4 , and 4�� . The
three dummy keys are not the key challenge of any edge in &�� .

The compromised node set 0	� consists of just a node � . We abuse notations a little bit here by naming
this node with the key it has.

The target node set 0
 consists of a node � whose key is the label of the root of % . The idea is that,
getting to this node is the same as verifying that $ is satisfied by some truth assignment.

The graph &�� consists of two main stages: the truth assignment and the verification stages.
The truth assignment stage consists of � edges from � to � nodes with keys � : .�� 9 .%c�c%c�.�� � . One

always has to pay a cost of X to get to any of these nodes. These edges have key challenge 4 (a dummy
key). Getting to node � a corresponds to assigning � a to be TRUE. Hence, the number of keys from���D:�.%c�c%c�.���� � the attacker gets is the same as the number of TRUE variables in a truth assignment for $.
For convenience, all nodes �D: to � � are connected to a dummy node which has key 4 � , another dummy
key not used anywhere else. The cost to get to the dummy node is always � . The key challenges of edges
leading to the dummy node is, again, 4 .

The verification stage is designed to make sure that the combination of keys that the attacker gets
from the first stage corresponds to a truth assignment satisfying $. There are two types of components
for this stage: the AND components, and the OR components. For every internal node with children �
and 8 of % , we construct a component corresponding to .

If is an AND node, then connect the dummy node to a node with key via another auxiliary node.
See Figure 3 for an illustration. The idea is that, to get the key , one needs the keys of both of its
children � and 8 , otherwise one pays a price of � . Node that, one can use a cost of � � X to represent
� . This point will become more obvious later.

If is an OR node, then to get the key we only need either key � or key 8 (see Figure 4).
Recall a note earlier saying that � can be represented by � � X . The proof of the following lemma

asserts this point.

Lemma 3.2. For any positive integer � . The monotone boolean formula $ has a truth assignment with
at most � TRUE variables if and only if there is a successful attack on the graph &!� with cost at most � .

Proof. Note that a true assignment with all � variables assigned to TRUE would satisfy $, and that a
successful attack on &"� of cost � can always be found (the attacker can get all keys including corre-
sponding to a postorder traversal of %). Hence, if � d � � X , then the theorem is trivially true. We

6

�

dummy node

�

�
�

�

� �������
	�� � � �
����	��

Figure 3: AND component

!

dummy node

8�

* �
.�� . �J2

* 8 .�� . ��2

Figure 4: OR component

assume � + � .
For the forward direction, assume $ has a truth assignment of cost � . Let � be the set of TRUE

variables in this assignment. The attack in &�� begins by getting all keys corresponding to variables in �
with cost � (- � - . The internal nodes’ keys can then be obtained with zero cost since $ is satisfied by
assigning all variables in � to be TRUE. The backward direction is similar.

Theorem 3.3. For every positive constant 8] Xm_�G , it is NP-hard to approximate the MIN-HACK prob-
lem to within a ratio of � *�@�A�*CBD2P2 .
Proof. This follows directly from Lemma 3.2 and Theorem 3.1.

We now have an “upper bound” for the hierarchy of MMSA mentioned in relation (3):

PCP g MMSA hig MLC g MMSA jiglk%k�k7g MMSA aDg MIN-HACK (5)

Consequently, if MIN-HACK is approximable to within (some constant times) @JAm*-B/2 , then the hierarchy
collapses after MMSA j .

4 Reducing LABEL-COVER to MIN-HACK

In this section, we present a reduction from MLC : to MIN-HACK which preserves the approximation
ratio. Since MLC : was shown to be not approximable to within @�Am*-B/2 for any 8] X%_�G (unless P =
NP) [7], this reduction gives another proof of the hardness result for MIN-HACK.

Consider an instance of MLC : consisting of a bipartite graph & (*�� � 0 . � 2 , label sets � :%. � 9 ,
and relation �)5 � � : � � 9 for each edge ' � � . We shall construct in polynomial time an instance of
MIN-HACK

& ��� (+* 0 ��� . � ��� ��1 . 0�� . 0
 . < .�V�2
7

such that there is a complete covering for & ��� of cost at most 8 if and only if there is a feasible attack on
&�� 5�� of cost at most 8 , for any positive integer 8 . Let � (�m,/:%.�c%c%c�.1, Q � , 0^(�%06:�.%c%c�c�.P0�� � , � :F(- � :�- ,
and � 9 (- � 9 - .

Note that MLC : has the
 : -cost, i.e. the cost of a labeling is the total number of labels at all vertices
in � , counting multiplicities. Without loss of generality, we assume that & ��� is feasible, namely the
labeling * �J:%.��;9�2 where ��:
*-,o2 (�W: , for all , � � , and

�;9;*C032 � �
I�� � � R��	�

� � 9 -�* �m: .�� 9�2 ��. � 0 �*0 c
This trivial labeling has cost � � : .

The construction of & ��� consists of two main components (see Figure 5): *-b 2 the label acquisition

�
�

�
�

�
� ���

Label verification

Label acquisition

���

Figure 5: Overview of the reduction from MLC : to MIN-HACK

component corresponds to assigning labels to the vertices and paying the corresponding costs, and *-b b 2
the label verification component corresponds to asserting that the labeling is valid.

The initial compromised vertex is 0�� , i.e. 0�� (�%0 � � , and the target vertex is 0
 , i.e. 0
 (�%0
 � .
Abusing notation, we shall also use the name of a node to denote the key it possesses. (Nodes in our
reduction will have different keys.)

We first define the vertices in the label acquisition component (see Figure 6). There is a vertex

��� ����� �� �

���

��� ����� �� �

����� ��� �� � ���� � � �� �

�
� �

�� ��� �
�
�
� ���

�
� �

�
� � ���

�� � �
Figure 6: The label acquisition component

*-, a�.�� :! 2 (whose key is *C, a .	� :! 2) for each , a � � , � :! � � : , and *-0 a .�� 9! 2 for each 0 a � 0 , and for each
� 9! � � 9 . The idea is that, if vertex *�� .���2 is visited in an attack, then � is in the set of labels for � ,

8

where � � � � 0 , and � � � : � � 9 . The edges in the label acquisition component are all of the form
-0 ��.m�� .�� 2P2 , where � � � � 0 and ��� � : � � 9 . For each 0 a � 0 , the edges ' (*-0�� .
*C0
a .�� 9! 212 have
V *�' 2 (+*C0 ��. �6. ��2 , namely we can assign any label � 9! to 0 a for “free.” On the other hand, for each , a � � ,
the edge ' (*C0 ��.m*C, a .�� :! 212 has V3*�' 2 (* 4 .mX;. �J2$. where 4 is some elusive key no vertex possesses. The
idea is that adding a label � :! to the set of labels of a vertex , a imposes a cost of X .

With the verification component we aim to verify that, for every 0�� 0 , we have picked up some
label � 9 � � 9 for 0 such that, for every edge *C,D.P032 � � , � I�� � � R contains * �m:�.	� 9�2 for some �
: � � : for
which we do have key *C,D.��m:$2 , namely �m: was chosen to be in the label set of , . Thus, the verification
component consists of a series of smaller components � a , each of which is meant to verify the above fact
for 0 a .

For any 0 ! ��0 , the component � ! consists of the following vertices (see Figure 7):

����� ���
�
� �

�
�

����� ���
�� � �

� �
�
� ���

�
� � � � ��

�

� �
�
� ���

�� � � � � ��
�

� ���	� � ��� ��� � � ��
�

� ��� � � ���

 ��� � � ��

�

����� � � ��� ���
�
� �

����� � � ��� ���
�� � ������ � � � � ���

�� � �

����� � � � � ���
�
� �

Figure 7: The label verification component � !

(i) the starting vertex 0 ! to enter the component,

(ii) a vertex *
� ! .�� 9� 2 for every label � 9� � � 9 , and

(iii) a vertex *
� ! .P, a .�� :� 2 for every label � :� � � : and every , a/� � such that *C, a .P0 ! 2 � � .

The edge set for component � ! is defined as follows. There is an edge *-0 ! .m*
� ! .	� 9� 2P2 for every label
� 9� � � 9 , where

V3*P*-0 ! .
*
� ! .�� 9� 2P212Z(���*C0 ! .�� 9� 2$. � � : � X . ���!c
The idea is that, in order to visit *�� ! .�� 9� 2 we must have picked up a label � 9� for vertex 0 ! , otherwise we
would be paying a very high cost. In the picture, we use � to denote � � : � X .

Let �F*-032 (��m, a S .%c�c%c�.P, a�� � be the set of neighbors of 0 ! in & . There is an edge in � ! of the form
1
� ! .	� 9� 2$.
*�� ! .P, a S .��

: 212 for every label � : such that * � : .	� 9� 2 � � I���� S � ��� R . Thus, there are as many copies

of this edge as there are such � : . The copy of the edge corresponding to � : has key challenge *C, a S .��
: 2 ;

otherwise, a price of � is to be paid. The idea is that, in order to walk from *�� ! .�� 9� 2 to *
� ! .P, a S .��
9� 2 , we

need to have one of the keys *-, a S .��
: 2 , which means the labeling has covered the edge *C, a S .10

! 2 � � . If
it so happens that there is no such � : , we put between *�� ! .�� 9� 2 and *
� ! .P, a S .��

: 212 an edge with the elusive
key challenge 4 , and the “infinity” cost � � : � X . That completes the verification that edge *-, a S .10

! 2
is covered. We need to also check that *C, a �
.P0 ! 2$.%c�c%c�.m*C, a��J.P0 ! 2 are covered. This is done by serially
connecting similar components, one for each , a �
.�c%c%c�.1, a�� .

This construction can clearly be done in polynomial time, and it is easy to verify that & has a complete
covering of cost at most if and only if & ��� has a feasible attack of cost at most . Specifically, when
 d � � : � X (the infinity cost) we use the trivial attack corresponding to the trivial cover which assigns
� : to each vertex in � . When + � � : , we use the trivial correspondence between a complete labeling
and a successful attack as laid out in the construction of the MIN-HACK instance.

9

5 Reducing PCP to MIN-HACK

In this section, we give a direct proof that MIN-HACK is not approximable to within @7A%*CBD2 for any
8] Xm_�G by using a PCP characterization of NP with almost polynomially small error probability [6].
This PCP characterization can be summarized in the following theorem, which we quote from [7].

Theorem 5.1 (Dinur et al. [6]). Let 8)] Xm_�G be arbitrary and � + ���"������� A B . Let �H(��� : .%c%c�c�.�� Q � be
a system of boolean constraints over variables � (� � : .�c%c%c�.�� � � such that each constraint depends on
� variables, and each variable takes values in a field � of size � *�G ILKNMPO�Q�R S TJS��
	���
���2 . Then, it is NP-hard
to decide between the following two cases:

Yes: There is an assignment to the variables such that all � :�.%c�c%c%.�� Q are satisfied.
No: No assignment can satisfy more than � *PXm21_ - � - fraction of the �Za .
The general strategy to prove a hardness result for MIN-HACK is to show that if the MIN-HACK

is approximable to within a certain ratio, then it is possible to distinguish between the YES and the NO

instances of the boolean constraint satisfaction problem mentioned in Theorem 5.1. The idea is to find a
“gap-preserving” reduction from � to an instance of MIN-HACK. We shall follow the line of Dinur and
Safra [7]. The following reduction shows that the three problems MLC� , MMSA, and MIN-HACK are
closely related.

Suppose we are given an instance � (����:�.�c%c�c�.�� Q � as in Theorem 5.1 with � variables � (���D:�.%c�c%c�.�� � � . For each � ��� , let ��� denote the set of all constraints � which depend on � . For each
constraint � ! , let � ! S .%c�c%c�.�� !
 denote all the variables that � ! depends on.

An attack graph & ��� can be constructed with more or less the same format as the reduction from
MLC. Figures 8 and 9 are almost self-explanatory. The graph & ��� has 0 � as the initially compromised

Satisfiability verification components

Assignment acquisition component

� ��
�

�
�

���� �

��� � ����� ��� ���� ����� � �

��� ��� �! � � �� �
� � ��� �! � � �� �

Figure 8: Overview of the reduction from PCP to MIN-HACK

vertex, 0
 the target vertex, and two types of components: the assignment acquisition component and a
series of satisfiability verification components, one for each � ! , X +#" +fB . (The edges or nodes with no
labels are dummy edges and nodes, with dummy keys and costs zeros.)

The assignment acquisition component consists of vertices of the form *
� a�. � 2 , for all � a � � and
 � �$� . As usual, we use nodes’ labels to also denote the keys the nodes have. To get the key *�� a .� � 2 ,
the attacker has to pay the price of - �%� � - .

In the satisfiability verification component for � ! (see Figure 9), there are a number of parallel paths,
one for each assignment "`E � %&� which satisfies � ! . In order to get through this verification com-
ponent for � ! , the attacker needs to have at least one complete set of keys *
� ! S .�"3*�� ! S 2\.%c�c%c�.
*
� !
 .�"3*�� !
 2for some assignment " that satisfies � ! .

Lemma 5.2 (Completeness). If � is satisfiable, then there is a successful attack on & ��� with cost B'� .

10

�
�

� ��� � � ��� ��� � � � � � � ��
�

� ��� � � ��� � � � � � � � � ��
� � ��� � � ��� ��� � � � � � � ��

�

Figure 9: The satisfiability verification component for � !

Proof. Let " be some assignment which satisfies � . A successful attack can be constructed by first
grabbing all the keys *�� a .�" *
� a�212 , b�(+X;.�c%c�c�. � . The total cost of getting these keys is

� �a��/: - � � � -;(B'�?.
since each constraint is dependent on � variables.

To get to 0
 , the attacker can then get through the components of the � ! by following the path
corresponding to " in each � ! .

Lemma 5.3 (Soundness). Consider any 8] X%_�G , and let @?(^@�Am*-B/2 . If there is a successful attack on
& ��� with cost at most @7B'� , then there is an assignment satisfying a Xm_3*�G3*�G � @32���2 fraction of constraints
in � .

Proof. For each ��� � , let) *�� 2Z(� � � - the attacker visited node *��D. 2.�Jc
Note that visiting *
�/.� 32 incurs a cost of - �%� - . Hence, the cost of the entire attack is

�

� ���
- � � - -) *�� 2 - +�@7B � c (6)

Consider the probability distribution on � where every elements of � are chosen by first uniformly
choose a constraint � at random, and then choose a variable � that � depends on at random. The
probability of picking a particular � is � 	�
��Q

:
� (�� 	�

�Q � . Hence, relation (6) implies

E ��� -) *
�o2�- � (�

� ���
- � � -
B � -) *
�o2�- +�@ c

Call a variable � bad if -) *
�o2�- � G � @ . By Markov inequality,

Prob� � -) *
�o2�- � G � @�� + Prob� � -) *�� 2 - � G � E ��� -) *�� 2 - ���o] X
G � c

In other words, the probability of hitting a bad variable in this distribution is at most Xm_3*�G � 2 . We thus
have

X
G � � Prob� � 	 � � � � � � is bad �

(Prob� � 	
� � contains a bad variable� k Prob� � � � � is bad - � contains a bad variable�

d Prob� � 	
� � contains a bad variable� X�

11

Consequently, at least half of the � contains no bad variable.
To this end, define a random assignment �" E � % � by assigning to � some �"3*
�o2 �) *
�o2 uniformly.

Since the attack was successful, for each � ! the attacker must have gotten through one of the parallel
paths in the verification component for � ! corresponding to some assignment " that satisfies � ! . The
probability that "3*�� 2 (��" *
�o2 for all � � � ! is

� � � � � :
� � I � R � , which is at least Xm_3*�G � @ 2 � for the � !

which do not contain bad variables. Combined with the fact that at least half of the � ! do not contain
bad variables, we conclude that there is some assignment that satisfies a Xm_ * G3*�G � @ 2 � 2 fraction of � as
desired.

A PCP proof of Theorem 3.3. For any 8] Xm_�G , we want to show that there is no @ A *CBD2 approximation
for MIN-HACK, unless P=NP. Pick any 8 � such that 8] 8 �] Xm_�G . Pick � and � in Theorem 5.1
such that � (&� *������������ A�� BD2 and - � - (� *�@ A � *CBD2P2 . With these parameters, it is easy to see that
X%_3*�G3* G � @32 � 2 � � *1Xm21_ - �*- .

Consider the construction of & ��� described above. We will show that, if there is a @ -approximation
algorithm for MIN-HACK, then the algorithm can also be used to decide the YES and NO instances of the
constraint satisfaction problem.

Given an instance � of the constraint satisfaction problem. The strategy is to run the @ -approximation
algorithm on the instance & ��� constructed from @ and report YES iff the answer is at most @7B � . Clearly,
if � is a yes-instance, then the answer is at most @7B � because, by the completeness lemma the optimal
solution is at most B � . On the other hand, by the soundness lemma the approximation algorithm returns
an answer at most @7B'� only when a fraction of � � *PX%2P_ - �*- constraints of � are satisfied, implying �
is a yes instance.

6 Analysis of some heuristics for MIN-HACK

In this section, we analyze two variations of Dijkstra’s like heuristics for MIN-HACK, which are being
implemented and evaluated as part of our research project. To simplify presentation, we shall assume
that there is only one initial compromised node (i.e. 0 � (� � �) and one single target (i.e. 0
 (� � �). The
lower bounds on the approximation ratios hold for the general case, nevertheless.

The first obvious idea is to mimic Dijkstra’s algorithm for the � - � shortest path problem. We start
with a set � (� � � , and keep adding into � the cheapest possible vertex we can reach (using both the
cost function and the combination of keys we get so far). In the process, each newly added vertex 0 has
information about which sequence of vertices was used to get to 0 . We use VER-SEQ *-032 to denote the
sequence of vertices leading to 0 . Initially, VER-SEQ *-032 (NIL (the empty sequence) for all vertices.
Let cost *-032 denote the current estimated cost of getting to 0 , all of which are � except for the cost of �
being � . After all vertices are reached, we take the sequence leading to � as the final answer. Note that
we cannot stop after � is reached, because there might be a cheaper sequence to � if we are willing to go
further. The pseudo code for this idea is as follows.

DIJKSTRA-BASED HEURISTIC

1: ��� � , cost * �
2	� �
2: cost *C032	� � for all 0 �*0HY�� � �
3: VER-SEQ *-032	� NIL for all 0 ��0
4: while - � - #(- 0 - do
5: Choose 0 from 0HY
� with smallest cost *C032
6: ����� � �%0 �
7: Let
 be the collection of keys in VER-SEQ *-032 � �%0 �
8: for each , � 0HY��m0 � such that *C0 .1,o2 � � do
9: Let * 4 .�8
:�.P8%9 2�� V3*-0 .P, 2

12

10: if ,�_� VER-SEQ *-032 and 4��
 and cost *-032 � 8%9)] cost *-,o2 then
11: cost *C, 2	� cost *C032 � 8%9
12: VER-SEQ *C, 2	� � VER-SEQ *-032$.10 � // adjoining 0 at the end of VER-SEQ *C032
13: end if
14: if ,�_� VER-SEQ *-032 and 4 _�
 and cost *-032 � 8 :] cost *-,o2 then
15: cost *C, 2	� cost *C032 � 8 :
16: VER-SEQ *C, 2	� � VER-SEQ *-032$.10 �
17: end if
18: end for
19: end while
20: Return VER-SEQ * �12
Proposition 6.1. The algorithm above does not approximate the optimal solution to within any ratio.

Proof. Consider a graph & consisting of a directed path ��.1079 .�c%c%c�.10 Q � 9m.�� , and another directed edge
* ��.P06:\2 . All edges from on the path has 8 : -cost ��
 (, 8�9 -cost zero, and key challenge < *C0 :\2 . The edge
* ��.P06:\2 has 8%9 -cost equal to � and key challenge < * �
2 . It is obvious that the optimal solution has cost � ,
while the algorithm above returns the sequence � ��.P0 9 .�c%c%c�.10 Q � 9 .�� � of cost *-B Y Xm2 (*-B Y X%2PG KNO �

.

The problem is clear. The sequence VER-SEQ *-032 does not allow us to take advantage of the fact that
we might be able to wander away from 0 and come back to 0 with zero cost. This idea can easily be
incorporated into the algorithm, namely each time we add a new vertex 0 into � , we also check around
0 to see if any vertex can be added for free. If this is the case, we can modify VER-SEQ *C032 accordingly.
Thus, the sequence VER-SEQ *-032 may include 0 more than once. Let us call this strategy MODIFIED

DIJKSTRA HEURISTIC.

Proposition 6.2. The algorithm MODIFIED DIJKSTRA HEURISTIC has at least an exponential approxi-
mation ratio.

Proof. This modified heuristic will be able to detect a cost � attack to � . However, it will not be able to
detect that there might be a small cost “sacrifice” we can make.

Consider the example build as in the previous proposition. The only difference is that the 8 9 -cost of
* ��.P06:\2 is now X . The same solution is still returned. The input size of the problem is � *-B ��� 32 . The ratio
between the solution returned by the new heuristic and the optimal solution (*CB Y Xm21GJKNO �

) is exponential
in terms of the input size.

One may be asking, “what if we look around 0 up to a radius 4 and keep all possible combinations,
including the ones with costs greater than � ?” Since there are up to 4 � � Q �o:� � (*-B Y X%2�*-B Y G�2 c%c�cm*-B Y 432
combinations of ways to get from 0 , the radius 4 can only be a constant for the algorithm to have
polynomial running time. The same conclusion holds about the exponential approximation ratio. We
simply put vertex 06: in the example above at a distance 4 � X from � .

References
[1] M. ALEKHNOVICH, S. BUSS, S. MORAN, AND T. PITASSI, Minimum propositional proof length is NP-hard to linearly

approximate, J. Symbolic Logic, 66 (2001), pp. 171–191.

[2] S. ARORA, L. BABAI, J. STERN, AND Z. SWEEDYK, The hardness of approximate optima in lattices, codes, and
systems of linear equations, J. Comput. System Sci., 54 (1997), pp. 317–331. 34th Annual Symposium on Foundations
of Computer Science (Palo Alto, CA, 1993).

[3] S. ARORA AND C. LUND, Hardness of approximation, in Approximation Algorithms for NP-Hard Problems,
D. Hochbaum, ed., PWS Publishing Company, 1997, pp. 399–346.

13

[4] R. CHINCHANI, A. IYER, H. Q. NGO, AND S. UPADHYAYA, Towards a theory of insider threat assessment, in Pro-
ceedings of the International Conference on Dependable Systems and Networks (DSN 2005, Yokohama, Japan), IEEE,
2005.

[5] P. CRESCENZI, V. KANN, R. SILVESTRI, AND L. TREVISAN, Structure in approximation classes, SIAM J. Comput., 28
(1999), pp. 1759–1782 (electronic).

[6] I. DINUR, E. FISCHER, G. KINDLER, R. RAZ, AND S. SAFRA, PCP characterizations of NP: towards a polynomially-
small error-probability, in Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999), ACM, New York,
1999, pp. 29–40 (electronic).

[7] I. DINUR AND S. SAFRA, On the hardness of approximating label-cover, Inform. Process. Lett., 89 (2004), pp. 247–254.

[8] D. S. HOCHBAUM, ed., Approximation Algorithms for NP Hard Problems, PWS Publishing Company, Boston, MA,
1997.

[9] C. LUND AND M. YANNAKAKIS, On the hardness of approximating minimization problems, J. Assoc. Comput. Mach.,
41 (1994), pp. 960–981.

[10] C. H. PAPADIMITRIOU, Computational complexity, Addison-Wesley Publishing Company, Reading, MA, 1994.

[11] V. V. VAZIRANI, Approximation algorithms, Springer-Verlag, Berlin, 2001.

14

