
Journal of Combinatorial Optimization, 10, 211–225, 2005
c© 2005 Springer Science + Business Media, Inc. Manufactured in The Netherlands.

On Split-Coloring Problems

T. EKIM tinaz.ekim@epfl.ch
D. de WERRA dewerra.ima@epfl.ch
Institute of Mathematics—ROSE, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne-Ecublens,
Switzerland

Received November 19, 2003; Revised June 1, 2005; Accepted June 2, 2005

Abstract. We study a new coloring concept which generalizes the classical vertex coloring problem in a graph
by extending the notion of stable sets to split graphs. First of all, we propose the packing problem of finding the
split graph of maximum size where a split graph is a graph G = (V, E) in which the vertex set V can be partitioned
into a clique K and a stable set S. No condition is imposed on the edges linking vertices in S to the vertices in K .
This maximum split graph problem gives rise to an associated partitioning problem that we call the split-coloring
problem. Given a graph, the objective is to cover all his vertices by a least number of split graphs. Definitions
related to this new problem are introduced. We mention some polynomially solvable cases and describe open
questions on this area.

Keywords: split-coloring, vertex covering by split graphs, partitioning, packing

1. Introduction

Packing and partitioning problems in graphs have been widely studied by many authors for
years. Maximum stable set and maximum clique problems are the basic packing problems
and their associated partitioning problems are called respectively graph coloring and vertex
covering by cliques. These problems, especially the graph coloring have many applications
in scheduling (de Werra et al., 2005), timetabling, etc. but on the other hand, they are known
to be among the most difficult NP-hard problems. In this paper, we define a new problem
which includes the graph coloring problem and extends its field of application.

First of all, we consider the problem of finding in a graph G an induced split graph
of maximum size. A split graph is a graph G = (V, E) in which the vertex set V can
be partitioned into a clique K and a stable set S. No condition is imposed on the edges
linking vertices in S to the vertices in K . This maximum split graph problem gives rise
to an associated partitioning problem that we call the split-coloring problem. It is a vertex
coloring problem of a graph where we replace stable sets by split graphs. Given a graph,
the objective is to cover all vertices by the least number of induced split graphs.

This problem is motivated both by applications and by theoretical properties as auto-
complementarity and heredity. As a related application of the concept of split graph, we
can mention a telecommunication problem which consists of assigning terminal nodes to
concentrators and install concentrators and links in order to ensure an optimal traffic routing.
We observe that split graphs appear in this problem since concentrators are represented by

212 EKIM AND de WERRA

cliques and terminal nodes assigned to a same concentrator constitute a stable set (Gourdin
et al., 2002). The paper is organized as follows : in the second section some preliminary
results are presented. We give an integer programming model of the split-coloring problem
in section three. The fourth section is the resolution of the split-coloring problem in some
special classes of graphs as for instance cacti. In section five, we give lower and upper
bounds for χS in arbitrary graphs. Finally, the last section mentions some open questions
for further research.

In what follows, Kl denotes a clique on l vertices, Cl a cycle on l vertices and Pl a path
on l vertices.

2. Preliminary results

Split graphs are characterized as follows:

Theorem 1 (Földes and Hammer, 1976). For every graph G = (V, E), the following
conditions are equivalent:
1. G is a split graph,

2. G and Ḡ are triangulated,

3. G does not contain 2K2, C4 or C5.

One can remark that as the complement of a split graph is again a split graph, solving
the split-coloring problem in a graph is equivalent to solve it in the complementary graph.
More generally, if we can solve it in a class of graphs C then we can also solve it in the
class C containing the complements of all graphs in C and vice versa, thereby the problem
of split-coloring the vertices of a graph is an auto-complementary problem.

On the other hand, we know that if G is a split graph then all subgraphs of G are also
split graphs. This hereditary property with respect to vertices can be effectively exploited
in the conception of algorithms.

The split-coloring problem is a very intriguing one because it generalizes the classical
graph coloring problem and furthermore, it has never been studied systematically to our
knowledge. A corresponding edge covering problem has been studied though (see Mahadev
and Peled, 1995).

Let us call a subset S of vertices split-independent (s.i.) if the subgraph induced by S
is a split graph. Then, our basic packing problem called maximum split graph, consists in
finding the split-independence number αS(G) of G, which is the maximum cardinality |S|
of a s.i. set S. In other words, we search for a maximum size induced split graph in G. It
should be trivially noted that αS(G) ≥ max(α(G), ω(G)) + 1 where α(G) is the stability
number and ω(G) is the maximum clique size. Moreover, one can observe that for any graph
G, we have α(G) + ω(G) − 1 ≤ αS(G) ≤ α(G) + ω(G) since a maximum clique and a
maximum stable set have at most one vertex in common. The problem of finding αS(G) is
obviously NP-hard:

Theorem 2. For a fixed k and a given graph G, it is NP-complete to determine whether
αS(G) ≥ k.

ON SPLIT-COLORING PROBLEMS 213

Proof: The maximum clique problem is reduced to maximum split graph problem. Let
the graph G = (V, E) (which is not a stable set) be an instance of maximum clique problem.
We will consider the graph G ′ = G ⊕ IN obtained from G by adding a stable set IN of size
N ≥ |V | which is completely linked to G, i.e., any vertex of V is linked to every vertex of
IN . Assume there is an algorithm for the maximum split graph problem which gives αS(G ′)
when applied to G ′. Now, note that IN is the only maximum stable set in G ′. On the other
hand, any maximum clique of G ′ is in the form Kmax ∪ {x} where Kmax is a maximum
clique of G and where x ∈ IN . This implies that there are no disjoint maximum clique and
maximum stable set in G ′, hence the graph induced by Kmax ∪ IN is a maximum split graph
in G ′ of cardinality αS(G ′) = ω(G ′) + N − 1 = ω(G) + N . The size of a maximum clique
in G could be then easily computed by the formula ω(G) = αS(G ′) − N . But this is not
possible since maximum clique is NP-complete, consequently, so it is the maximum split
graph problem.

The split-coloring problem consists in minimizing the number of split graphs which
cover all the vertices of G. This minimum number is called the split-chromatic number and
we denote it by χS . A trivial upper bound for χS(G) is min(χ (G), θ (G)) where χ (G) is
the chromatic number and θ (G) is the minimum number of cliques covering the vertices
of G. We say that a graph G = (V, E) is k-split-colorable if there exists a partition of V
into k split graphs. Although split graphs had been extensively studied by many authors
(see Földes and Hammer, 1976, 1977; Hammer and Simeone, 1981; Benzaken et al., 1985;
Chernyak and Chernyak, 1991), this problem does not seem to have been studied to our
knowledge. The only coloring problem related to split graphs which appears extensively in
the literature deals with the case where the edge set of a graph has to be covered (Chernyak
and Chernyak, 1991; Mahadev and Peled, 1995). However, this problem of edge coloring
by split graphs has neither the hereditary character nor the auto-complementarity property
mentioned above. We know that split graphs can be recognized in O(|V |2) time (Mahadev
and Peled, 1995). In other words, the problem of determining for a given graph G = (V, E)
whether χS(G) = 1 can be solved in O(|V |2) time.

Now, let us define a new notion which will be useful in our study.

Definition 1. A graph G is called k-split-critical if and only if χS(G) = k and ∀v,

χS(G − v) = k − 1.

According to this definition, 2K2, C4 and C5 are obviously the unique 2-split-critical
structures.

Let H be a graph, we denote by k H a graph having k connected components isomorphic
to H . In what follows H will be replaced by an odd cycle or a clique. By abuse of language,
we often call k H , the graph consisting of k induced H . In order to characterize some 3-split-
critical graphs and as a preliminary for further developments, we mention the following three
facts. In what follows, OC denotes an odd cycle, i.e., a cycle on an odd number of vertices.

Fact 1. For any odd cycle OC of length at least 5, we have χS(OC) = 2; a 2-split-coloring
is obtained by choosing one clique (of size one or two) and two stable sets.

214 EKIM AND de WERRA

Figure 1. 3OC is 3-split-colorable.

Fact 2. For any two induced odd cycles and of length at least 5, we have χS(2OC) = 2;
a 2-split-coloring is obtained by choosing one clique on each cycle and two stable sets in
the remaining graph.

Fact 3. Three induced odd cycles cannot be 2-split-colored, i.e., χS(3OC) ≥ 3.

Fact 3 is easily deduced from fact 2 since the third odd cycle can not be partitioned into
two stable sets that we could color with the first two colors. Therefore, we have to assign
a new color to at least one vertex of the third odd cycle as shown in figure 1. Cliques are
encircled so that one may distinguish them from the stable sets of same color.

Proposition 1. A graph G consisting of three induced odd cycles 3OC or its complement
Ḡ = 3OC is 3-split-critical.

Proof: It suffices to notice that we cannot do better than the coloring in figure 1 to split-
color 3OC and that in this way, the inequality of fact 3 turns to be an equality. In addition,
the auto-complementarity of the split-coloring problem gives the result.

Proposition 1 means that whenever a graph G contains a subgraph 3OC or its comple-
ment, the split-chromatic number of G is at least 3. However, the number of induced odd
cycles do not play any key role in the determination of χS for χS ≥ 3 because χS(mOC) = 3,
∀m ≥ 3. We also know that the forbidden induced graphs of Proposition 1 do not cover
all 3-split-colorable cases; there are examples of graphs which do not contain any of these
structures but where χS(G) = 3. It would be interesting to characterize 2-split-colorable
graphs by forbidden induced configurations. On the other hand, the results of Brandstädt
et al. in Brandstädt et al. (1998) implies that 2-split-colorability is polynomially solvable in
all graphs. The following theorem can be derived from results in Brandstädt et al. (1998).

Theorem 3. For fixed k ≥ 3 and a graph G, it is NP-complete to determine whether
χS(G) ≤ k.

Proof: We prove this by reduction from the problem of vertex covering by cliques. Given
an instance G of vertex covering by cliques, we transform this graph into G ′ by adding k

ON SPLIT-COLORING PROBLEMS 215

stable sets of size k + 1 each. They are then completely linked to each other and to G. It
is clear that in a k-split-coloring of G ′, all color classes will be a split graphs having one
stable set of size k +1 and a clique in G. Otherwise, assume that one stable set is taken in G
and the other k − 1 stable sets are all added stable sets of size k + 1. But then, there remains
one added stable set which has no vertex in any already fixed stable sets and hence, whose
vertices have to be partitioned into k cliques which is impossible since it has k + 1 vertices.
Therefore, it suffices to see that there is a k-split-coloring for G ′ if and only if there is a
vertex covering by cliques of the vertices of G of size k.

Although split-coloring is NP-complete in general, there are some easier cases. For
example, bipartite graphs and trees are 2-colorable in the classical sense so they are also 2
split-colorable (unless we have a split graph).

We have already seen that 3K3 and 3K 3 are 3-split-critical graphs. In fact, one may
generalize this result to the case of k-split-coloring:

Proposition 2. kKk, k induced cliques of size k, and kK k, k joined stable sets of size k
with complete links, are k-split-critical.

Proof: One sees immediately that we cannot have a (k − 1)-split-coloring. To split-color
kKk with k colors we assign repetitively a new color to a split graph consisting of an
inclusion-wise maximal uncolored (sub-)clique of a Kk and a stable set having one vertex
in each remaining maximal (sub-)clique. One may observe that removing any vertex makes
our graph (k − 1)-split-colorable.

On the other hand, we notice that mKk with arbitrary large m is still k-split-colorable,
i.e., we do not increase χS by adding new Kk’s, but it is no more k-split-critical. This fact
can be observed for mK4 in figure 2 where cliques of different split graphs are encircled so
that one may distinguish them from the stable sets of same color.

We will see in Section 5 that the above proof gives a hint for computing a lower bound
of χS(G) for arbitrary graphs.

Figure 2. mK4 is 4-split-colorable.

216 EKIM AND de WERRA

3. An integer programming model

One may suggest the following integer programming model for our split-coloring problem
in a given graph G = (V, E) with |V | = n.

min
∑

j

z j

xi j =
{

1 if vertex i is in the clique of split graph j

0 otherwise
(1)

yi j =
{

1 if vertex i is in the stable set of split graph j

0 otherwise
(2)

xi j + xk j ≤ 1 if ik /∈ E, j = 1, . . . , l (3)

yi j + yk j ≤ 1 if ik ∈ E, j = 1, . . . , l (4)∑

i

(xi j + yi j) ≤ nz j , j = 1, . . . , l (5)

∑

j

(xi j + yi j) = 1, i = 1, . . . , n (6)

z j ∈ {0, 1}, j = 1, . . . , l

Here l is an upper bound of χS(G). We may choose l = � n
3 	 since G can be trivially

� n
3 	-split-colored by assigning one color to any triple of vertices.
Constraints of type 1 and 2 define the decision variables xi j which give the vertices of G

to be assigned to the clique of the split graph j and yi j the vertices in G to be assigned to the
stable set of the split graph j . Constraints (3) express that no two vertices not linked in G
can be in a same clique and conversely, constraints (4) mean that no two vertices linked in
G can be in a same stable set. Constraints (5) say that the number of vertices assigned to one
split graph can not exceed n if this split graph exists and 0 otherwise. Finally, constraints
(6) make sure that every vertex is colored by exactly one color. The number of colors used
is then given by the variables z j ; z j = 1 means that color j is used in a solution and z j = 0
says that the color j is not used.

One can notice that this model has O(n2) decision variables and O(n3) constraints.
Advanced techniques have to be applied in order to solve this integer program for graphs
having a large number of vertices. However its interest is theoretical and this formulation
may be a basis for more efficient formulation involving additional constraints.

The above formulation suggests the following representation of our split coloring prob-
lem: let k be a positive integer and let 1, . . . , n be the nodes of G. We construct a graph G(k)
by first taking k copies G1, . . . , Gk of G, let ŷi j (i = 1, . . . , n) be the nodes of G j . Then we
take k copies Ḡ1, . . . , Ḡk of Ḡ (the complement of G); let x̂i j (i = 1, . . . , n) be the nodes
of Ḡ j . Then for each i (1 ≤ i ≤ n) we form a clique on nodes ŷi1, . . . ŷik, x̂i1, . . . x̂ik . The
resulting graph is G(k). We can then state:

Proposition 3. G has a k-split-coloring iff G(k) has a stable set S with |S| = n.

ON SPLIT-COLORING PROBLEMS 217

Proof: There is a one-to-one correspondence between stable sets S with n nodes in G(k)
and k-split-colorings of G or equivalently integral solutions of the integer LP model (where
k colors are used):

ŷi j ∈ S ⇔ yi j = 1

x̂i j ∈ S ⇔ xi j = 1

This means that ŷi j is in S if and only if node i is in the stable set of the split graph j and
similarly, x̂i j is in S if and only if node i is in the clique of the split graph j .

Remark. If we simply consider G(1), then one sees there is a one-to-one correspondence
between (maximum) split graphs in G and (maximum) stable sets in G(1). It is interesting
to notice that as soon as G contains an induced P3, G(1) is not perfect (it contains an induced
C5).

4. Split-coloring in some classes of graphs

In this section, we study the maximum split graph and split-coloring problems in some
restricted classes of graphs where we may hope to find polynomial algorithms.

4.1. Cacti

A cactus is defined as a connected simple graph where no two elementary cycles share an
edge. In other words, no two elementary cycles have more than one common vertex. Let
us remark that a tree is a cactus. Conversely, when each cycle of a cactus is contracted to a
vertex, then we get a tree.

Note that in cacti, the size of a clique is at most three. For the split-coloring of cacti, we
will concentrate on elementary odd cycles since the only connected components remaining
after coloring odd cycles are even cycles, paths and trees and once again, they are 2-colorable
in the classical sense, i.e., 2-split-colorable by choosing only two stable sets. Moreover, we
know that a cactus is bipartite if it contains no (elementary) odd cycles (de Werra et al.,
2005) and hence it is 2-split-colorable. On the other hand, cacti are 3-split-colorable because
they are 3-colorable in the classical sense. In conclusion, the split-coloring of cacti boils
down to be a decision between 2 and 3-split-colorability. In the process of finding the split
independence number of a cactus, the assignment of a vertex to a stable set and/or to a clique
associated to a split graph is strongly related to the structure (even or odd cycle, bridge)
to which this vertex belongs. We will see that we have to proceed differently for vertices
located in an odd cycle than for others. First, we need a procedure listing all odd cycles in
a cactus.

Although in arbitrary graphs the number of odd cycles can grow exponentially in the
number of vertices, their number is bounded above by � n−1

2 	 in cacti. This bound corresponds
to the number of odd cycles in a cactus where a single central vertex is shared by all cycles
of length three formed by the other n − 1 vertices. In order to include odd cycles of a cactus

218 EKIM AND de WERRA

G = (V, E) with |V | = n, |E | = m in a list L, we first observe that any 2-connected
component of a cactus is a cycle and we apply the algorithm of Tarjan (1972) to detect all
separating vertices and all cycles. This is a depth first search algorithm which provides a
list of blocks and a list of separating vertices (cut-nodes) for any arbitrary graph in time
linear in O(m). We recall that a block is a maximal non-separable subgraph, so it may be
either a 2-connected component or an isthmus (Berge, 1983). Having a list of all blocks, it
suffices to eliminate edges and cycles of even length to obtain L.

4.1.1. Split independence number in cacti. In this section, we concentrate on the problem
of finding an induced split graph of maximum size in a cactus G = (V, E), |V | = n, |E | =
m. In other words, we try to find a stable set S and a clique C in G such that |S ∪ C | is
maximum. For this purpose, we will first describe a simple algorithm for a maximum stable
set in a cactus, since, to our knowledge, such an algorithm has not been given elsewhere.

We adopt a dynamic programming approach. Given a cactus G and its lists of cycles and
separating vertices, one can construct a corresponding arborescence A in the following way:

• Each cycle, edge not contained in a cycle and separating vertex in G is represented by a
vertex in A,

• Vertices corresponding to two cycles or to two separating vertices in G are not linked in
A,

• Two vertices are linked in A if and only if they correspond to a cycle and a separating
vertex contained in it,

• All the edges in A are oriented towards a chosen separating vertex (preferably one closest
to a leaf).

Having such an arborescence A, one can label separating vertices (v j) in increasing order
according to the exploration sense of A. Then, an other label may be given to vertices
representing cycles in such a way that labels of cycles linked to and oriented towards v j

would be smaller than the labels of cycles linked to and oriented towards vi whenever j < i .
An example of labeling can be seen in the figure 3 where the labels of cycles, edges and

Figure 3. An arborescence A corresponding to graph G.

ON SPLIT-COLORING PROBLEMS 219

separating vertices (black ones) of G are determined by means of the arborescence A. This
way of labeling of G is not unique but defines perfectly a direction for exploring the original
graph G by dynamic programming.

What we have to do now is to describe one step of the procedure which consists in finding
a maximum stable set in a caterpillar, i.e., a tree with the property that the removal of its
leaves results in a path. One may start in the exploration order of separating vertices and
compute the stability number in the subgraph G1 lying in the lower part of v1 (which consists
of cycle(s) oriented towards v1) according to two scenarios: v1 is excluded in the maximum
stable set of G1 or it is authorized. Hence, for any separating vertex v j , we will compute
two weights; ve

j = maximum weight of a stable set in G j − v j , and va
j = maximum weight

of a stable set containing v j in G j . Having computed ve
j and va

j for a separating vertex,
we can replace G j − v j by one vertex v(G j) of weight ve

j since its best contribution to a
maximum stable set of G, which in this case does not contain v j , is equal to ve

j . On the
other hand, taking v j in a stable set will imply that we add va

j vertices in a maximum stable
set of G and that v(G j) cannot be taken in the same stable set. Consequently, the weight of
the vertex v j will be equal to va

j .
One can explore a whole cactus G repeating this procedure until we obtain a maximum

stable set of G. Note that both for computing ve
j and va

j , the problem with which we
have to deal is exactly the maximum weighted stable set problem in a caterpillar, which
is easily solved. Once an optimal solution is obtained, this maximum weight contains as
information the set of vertices giving the corresponding maximum stable set. The number
of calculations of this kind is equal to the number of separating vertices. The Algorithm
StableCactus describes the application of the above idea in order to find a maximum stable
set in a cactus. In figure 4, the method is represented for graph G of figure 3. At each step,
only the weights that we need are shown in brackets. Note that the remaining graph after
the application of Algorithm StableCactus is either a path or a cycle with an edge pending
from one of its vertices, therefore the final computation of the algorithm is trivial.

Algorithm StableCactus

1. Set the weights of all vertices to 1;
2. Determine separating vertices and L; then construct an arborescence A;
3. For any separating vertex v j (considered in the exploration order of A) compute:

Figure 4. Computing the stability number of a cactus G.

220 EKIM AND de WERRA

(a) ve
j = maximum weighted stable set of G j not containing v j ;

(b) va
j = maximum weighted stable set of G j containing v j ;

(c) Replace G j by a vertex x of weight ve
j , assign the weight va

j to v j , link x and v j ;

4. Compute the weighted stability number of the remaining graph.

From the above discussion we have:

Lemma 1. For a cactus G, α(G) can be found in time linear in O(m + k), where k is the
number of separating vertices in G.

Theorem 4. For a cactus G, an induced split graph of maximum size can be found in
linear time.

Proof: First of all, Algorithm StableCactus returns a maximum stable set Smax giving
α(G). Observe that we have α(G) + ω(G) − 1 ≤ αS(G) ≤ α(G) + ω(G) for any graph.
Having the list of all odd cyclesL, we search for a K i

3 in it which verifies α(G−K i
3) = α(G)

for a maximum stable set Si
max of G−K i

3. If such a pair (K i
3, Si

max) exists, then it constitutes a
split graph of maximum cardinality αS(G) = α(G)+3 in G. Otherwise any pair (K i

3, Si
max)

is a split graph of maximum cardinality αS(G) = α(G) + 2. Whenever L contains no K3,
a clique of size 2 can be chosen in such a way that none of its vertices is contained in a
maximum stable set Smax of G. This claim is true since there would necessarily be two
adjacent vertices of an odd cycle which do not figure in Smax. Finally, if L contains no odd
cycles, then obviously αS(G) = α(G) + 1.

4.1.2. Split-coloring in cacti. Having the list of all odd cycles of G, we will consider an
auxiliary graph G ′ = (V ′, E ′) where every vertex v′

i corresponds to an odd cycle OCi of
G, hence |V ′| = |L| = L . Two vertices v′

i and v′
j are linked if and only if the distance

between OCi and OC j is at most 1.

Algorithm Cactus

1. Construct G ′;
2. If there is a stable set of size three in G ′ then χS(G) = 3, otherwise:

(a) Choose v′
1 and v′

2 such that v′
1v

′
2 /∈ E ′ and set K ′1 = {v′

1}, K ′2 = {v′
2} and R = ∅;

(b) For every vertex v′
i ∈ V ′, if v′

iv
′
1 ∈ E ′ and v′

iv
′
2 /∈ E ′ then store v′

i in K ′1, if v′
iv

′
2 ∈ E ′

and v′
iv

′
1 /∈ E ′ then store v′

i in K ′2 else store v′
i in R;

(c) For every vertex v′
i ∈ R, if v′

i is adjacent to every vertex in K ′1 (resp. in K ′2) then
remove v′

i from R to K ′1 (resp. to K ′2);
(d) If R = ∅ then K ′1 and K ′2 are both cliques and G is 2-split-colorable;
(e) Otherwise ∃v ∈ V ′ which constitutes a clique neither with K ′1 nor with K ′2; G is a

OC5-cactus which is 3-split-colorable.

ON SPLIT-COLORING PROBLEMS 221

Theorem 5. Algorithm Cactus decides in O(L3) time whether a cactus is 2 or 3-split-
colorable.

Proof: We first remark that the stability number of G ′ is the largest number of induced
odd cycles in G. To be more precise, we are not interested in the exact value of α(G ′)
because we know that α(G ′) ≥ 3 yields a 3-split-colorable cactus due to fact 3. So, a simple
procedure which tests for every triplet in G ′, in O(L3) time, whether it forms a stable set
or not does the job. Having such a triplet, we may claim that our cactus is 3-split-colorable
and otherwise we fix an arbitrary pair of non-adjacent vertices v′

1, v′
2 corresponding to two

induced odd cycles in G.
Having two cliques covering the vertex set V ′ of G ′, we can trivially split-color G with

two colors. More precisely, the existence of a clique in G ′ implies that there is a set of odd
cycles in G which are pairwise at distance at most 1 and that there is a clique in G of size 1,
2 or 3, which touches at least one vertex of each odd cycle of this set. In other words, these
two cliques K ′1 and K ′2 in G ′ tell us exactly how to choose two cliques K 1 and K 2 in G,
each one associated to a split graph. Then using fact 1, we may conclude that a partition
of the vertex set V ′ into two cliques corresponds to a 2-split-coloring of G. That is why
Algorithm Cactus searches for a partition into K ′1 and K ′2 that we would like to be cliques.
According to this aim, K ′1 contains only vertices which are adjacent to v′

1 and so does K ′2.
We can see in figure 5 how these two cliques imply a 2-split-coloring.

In general, the phase of vertex-assignment yields two cliques K ′1 and K ′2 because of the
fact that we have at most two induced odd cycles. There is only one case which is easily
detected by Algorithm Cactus, where we do not obtain this result. It is due to the possible

Figure 5. An example of split-coloring of a cactus.

222 EKIM AND de WERRA

Figure 6. OC5-cacti are 3-split-colorable.

type of connection between two fixed induced odd cycles OC1 and OC2: OC1 and OC2

linked by a OC5. This exception called a OC5-cactus, appears in figure 6 where odd cycles
of length 5 around the central OC5 can be indifferently replaced by odd cycles of any length.
As shown in figure 6, odd cycles can be added in a way similar to odd cycles labeled 4 and
5, sharing any vertex of the central OC5. We observe that there is no way to partition the
vertices of a OC ′

5-cactus into two cliques.

It follows that a cactus G is 2-split-colorable if and only if there are at most two induced
odd cycles and G is not a OC5-cactus; it will be 3-split-colorable otherwise.

Here we find an other 3-split-critical structure in addition to the ones of Section 2: a OC5-
cactus with unique odd cycles linked to each vertex of the central OC5 is 3-split-critical.

4.2. Triangulated graphs

4.2.1. Split independence number in triangulated graphs

Theorem 6. For a triangulated graph G = (V, E) where |V | = n and |E | = m, the
split-independence number αS(G) can be obtained in O(D(n + m)) time where D is the
number of maximum cliques in G.

Proof: We can enumerate all maximal cliques of a triangulated graph G = (V, E) in
O(n+m) time (Tarjan and Yannakakis, 1985) exploiting the fact that a triangulated graph has
a perfect elimination order which can start with any simplicial vertex (Dirac, 1961; Fulkerson
and Gross, 1965). On the other hand, for a triangulated graph G, a maximum stable set can
be found by a similar approach, again in O(n +m) time (Gavril, 1972). It is easily seen that
a maximum stable set and a maximum clique cannot share more than one vertex. Therefore,
in the best case, a maximum split graph would have α(G) + ω(G) vertices and otherwise
α(G)+ω(G)−1 vertices. It suffices to find a maximum stable set S′

i in G − K i where K i is
a maximum clique. It should be trivially noted that α(G) − 1 ≤ |S′

i | ≤ α(G). If there exists
S′

i such that |S′
i | = α(G) for some i , then S′

i is also a maximum stable set in G and K i ∪ S′
i

ON SPLIT-COLORING PROBLEMS 223

is a maximum split graph of size αS(G) = α(G) + ω(G). Otherwise, we can conclude that
there is no pair of maximum clique and maximum stable set having no shared vertex. In this
case, any pair (K i , S′

i) forms a maximum split graph of size αS(G) = α(G) +ω(G) − 1. To
decide, we only run once the algorithm finding all maximal cliques in G and D times the
algorithm finding a maximum stable set in G − K i where D is the number of maximum
cliques.

4.2.2. Split-coloring in triangulated graphs

Theorem 7. For a triangulated graph G, the split-coloring problem can be solved in
O(n2(m + n)) time.

Proof: This follows from Hell et al. (2004) by observing that their algorithm finds, for
a fixed k, a collection of k stable sets so that the remaining vertices can be covered by
a minimum number l of cliques. Clearly, this partitioning gives a split-coloring of value
max(k, l). It is obtained in O(n(m + n)) time. By repeating this algorithm for at most n
different values of k, one can find a minimum split-coloring.

We would like to mention a final observation on arbitrary graphs. We notice that an
approach similar to Turán’s theorem (see Berge, 1983 Ch. 13) has no meaning in the
framework of split-coloring problem. Turán’s theorem deals with the question of finding
a lower bound on the number of edges of a graph with n vertices and stability number
α(G). The analogous problem for split-coloring would be to find a lower bound on the
number of edges of a given graph G with split-independence number αS(G). We observe
that decreasing the number of edges in a graph does not increase systematically its split-
independence number; it may happen that the removal of one edge may increase the split-
independence number or decrease it. Let us show this on a very simple example. We take a
C4 as a graph having αS(G) = 3. Deleting any edge gives a P4 with a split-independence
number of 4. When we remove the edge in the middle of this P4, we obtain a 2K2 with
again αS(G) = 3.

5. Bounds of χS in arbitrary graphs

5.1. A lower bound for χS

We have already mentioned at the end of Section 2 that the proof of Proposition 2 would
serve as a hint to obtain a lower bound of χS in arbitrary graphs. Let us determine a procedure
which gives an ordered set of induced maximal cliques in an arbitrary graph G.

Procedure CliquesList

1. Choose a vertex v and find a maximal clique K v containing v;
2. Store K v in K, then remove K v and its neighbours from G;
3. Repeat 1. and 2. until G = ∅;
4. Reorder K = {K i } in non-increasing order of clique sizes.

224 EKIM AND de WERRA

Figure 7. Optimal split-coloring of K.

Procedure CliquesList returns a list K of induced maximal cliques in G. In other words,
there is no edge linking vertices of any pair of cliques in K. Moreover, this list is maximal
in the sense that adding any new maximal clique in K introduces edges between cliques.
An optimal split-coloring χS(K) of K constitutes a lower bound for χS(G) since in the best
case, G would be split-colored by the first χS(K) colors without any need of new colors;
χS(K) ≤ χS(G). Therefore, let us concentrate on the optimal split-coloring of a set of
induced cliques of arbitrary sizes.

Our approach can be visualized in a diagram where cliques K i are represented on the x
axis as columns of length proportional to their cardinalities ri . Respecting the non-increasing
order of clique sizes while doing this implies that we can read on the y axis the number r∗

i of
cliques K k such that rk ≥ i . In this formulation, our problem consists in finding the largest
k such that min(rk, r∗

k) ≥ k. This amounts to finding the largest square that can be inserted
under the stairs. We may use the following strategy: choose repetitively the largest remaining
(not entirely colored) clique as the clique of a new split graph Gi (or color) and one vertex
(not colored) from every other clique as the stable set of the same split graph. Each Gi is
represented in figure 7 by a grey broken line (with breakpoint at entry (i, i)). Repeating this
until no vertex remains uncolored gives rise to a split-coloring which uses exactly k colors.
In figure 7 we have K = {K 1

8 , K 2
8 , K 3

7 , K 4
6 , K 5

6 , K 6
5 , K 7

3 , K 8
3 , K 9

2 , K 10
2 , K 11

1 } and we
obtain a 5-split-coloring which is optimal.

5.2. An upper bound for χS

Assume that we have a k-coloring (not necessarily an optimal coloring) of G given by stable
sets (S1, . . . , Sk). For any p ≤ k, an optimal clique cover of (S1 ∪· · ·∪ S p) together with an
optimal coloring of (S p+1 ∪ · · · ∪ Sk) constitutes a split-coloring of G in max

{
θ (S1 ∪ · · · ∪

S p), χ (S p+1 ∪· · ·∪ Sk)
}

colors. Therefore, the split-chromatic number of G, χS(G), would
be less than or equal to the minimum on p of this quantity. Furthermore, one can determine
the minimum on any possible p-tuple of stable sets. Hence, the upper bound is expressed
in the following way: χS(G) ≤ minp{minSi1 ∪···∪Si p {max{θ (Si1 ∪ · · · ∪ Si p

); χ (G − (Si1 ∪
· · · ∪ Si p

))}}}.
Beyond the theoretical interest of this upper bound, one can identify cases where it can

be efficiently used in practice. First of all, if we can compute χ (G) in polynomial time
then we will be able to take into account a least number of stable sets in searching for the

ON SPLIT-COLORING PROBLEMS 225

minimum on p. For instance, this is the case for perfect graphs. Furthermore, in this context,
θ (Si1 ∪ · · · ∪ Si p

) and χ (G − (Si1 ∪ · · · ∪ Si p
)) can also be computed in polynomial time,

providing an overall complexity of polynomial time to obtain an upper bound. One may
search for conditions (on G or on the optimal coloring of G) for this upper bound to be
tight. Note that, once more, we are more likely to find such a condition on perfect graphs.

6. Conclusion

A new type of coloring problem is introduced and some basic results are discussed. Several
open questions arise from this work. For instance, for which classes of graphs can the
split-coloring and/or maximum split graph problems be solved in polynomial time? On the
other hand, it would be interesting to study the approximability properties of split-coloring
problems. Development of techniques to solve the integer programming model of Section 3
is also a natural direction for further research.

References

C. Benzaken, P. Hammer, and D. de Werra, “Split graphs of Dilworth number 2,” Discrete Mathematics, vol. 55,
pp. 123–127, 1985.

C. Berge, Graphes, Bordas, Paris, 1983.
A. Brandstädt, V. Le, and T. Szymczak, “The complexity of some problems related to graph 3-colorability,”

Discrete Applied Mathematics, vol. 89, pp. 59–73, 1998.
Z.A. Chernyak and A. Chernyak, “Split dimension of graphs,” Discrete Mathematics, vol. 89, pp. 1–6, 1991.
D. de Werra, M. Demange, J. Monnot, and V. Paschos, “A hypocoloring model for batch scheduling,” Discrete

Applied Mathematics, vol. 146, pp. 3–26, 2005.
G. Dirac, “On rigid circuit graphs,” Abh. Math. Sem. Univ. Hamburg, no. 25, pp. 71–76, 1961.
S. Földes and P. Hammer, “On split graphs and some related questions,” in Problèmes Combinatoires et Théorie

des Graphes, Orsay, France, Colloques Internationnaux C.N.R.S. 260, 1976, pp. 139–140.
S. Földes and P. Hammer, “Split graphs,” Congressum Numerantium, vol. 19, pp. 311–315, 1977.
D. Fulkerson and O. Gross, “Incidence matrixes and interval graphs,” Pacific Journal of Math., vol. 15, pp. 835–855,

1965.
F. Gavril, “Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum

independant set of a chordal graph,” SIAM J. Comput., vol. 1, pp. 180–187, 1972.
E. Gourdin, M. Labbé, and H. Yaman, “Telecommunication and location,” in Facility location, Springer, Berlin,

2002, pp. 275–305.
P. Hammer and B. Simeone, “The splittance of a graph,” Combinatorica, vol. 1, pp. 275–284, 1981.
P. Hell, S. Klein, L. Nogueira, and F. Protti, “Partitioning chordal graphs into independent sets and cliques,”

Discrete Applied Mathematics, vol. 141, pp. 185–194, 2004.
N. Mahadev and U. Peled, Threshold Graphs and Related Topics, Ann. Disc. Mat., North-Holland, vol. 56, 1995.
R. Tarjan, “Depth first search and linear graph algorithms,” SIAM J. Comput., vol. 1, pp. 146–160, 1972.
R.E. Tarjan and M. Yannakakis, “Addendum: Simple linear time algorithms to test chordality of graphs, test

acyclicity of hypergraphs and selectively reduce acyclic hypergraphs,” SIAM J. Comput., vol. 14, no. 1, pp. 254–
255, 1985.

