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1 Introduction

In an on-demand broadcasting system, the server receives the client requests for pages at

arbitrary times and serves the requests by broadcasting (sending) pages via the broadcast

channels. After the server broadcasts a page, all pending requests for that page are

satisfied. The goal of the broadcast scheduler is to arrange the order of page broadcasts

so as to minimize the total (or average) flow time of the requests.

In this paper we assume that time is discrete and represented by non-negative integers.

Every page can be broadcast to clients in one time unit. The server has m broadcast

channels, i.e., at most m different pages can be broadcast at a time. The broadcast

scheduling problem is formulated as follows. Assume that the server contains k pages,

namely P0, P1, . . . , Pk−1. The requests for these pages arrive at some integer times. Let

rt,i denote the number of requests for Pi at time t. For a schedule, let bt,i be the earliest

time at or after time t when Pi is broadcast. The flow time of a request for Pi arriving

at time t is bt,i − t + 1. Suppose the last request arrives at time n. The total flow time

of the schedule, which is to be minimized, is equal to
∑n

t=0

∑k−1
i=0 rt,i(bt,i − t + 1). Note

that an optimal schedule that minimizes the total flow time is also an optimal schedule

that minimizes the average flow time. In this paper we consider the off-line version of the

problem, in which the server is aware of all the requests in advance.

Previous work of the problem considered that the number of broadcast channels m = 1

and the number of pages k is a variable. Erlebach and Hall [6] showed that this problem is

NP-hard. Bansal et al. [1] gave an algorithm that achieved an O(
√

k) approximation, and

very recently the algorithm was improved with an approximation factor O(log2(k+n)) [2].

Besides, most of the previous works considered the resource augmentation setting. An

m-speed algorithm refers to an algorithm that utilizes m broadcast channels and an m-

speed c-approximation algorithm is an m-speed algorithm that produces schedules with

total flow time at most c times that of the schedule by the optimal 1-speed algorithm.

Kalyanasundaram et al. [10] gave an 1
ε
-speed 1

1−2ε
-approximation algorithm for any fixed

ε ∈ (0, 1
3
]. Gandhi et al. [8] gave an 1

ε
-speed 1

1−ε
-approximation algorithm for any fixed

ε ∈ (0, 1
2
]. To match the performance of the 1-speed optimal algorithm, Erlebach and

Hall [6] gave a 6-speed algorithm, which was improved to 4-speed [8] and then to 3-speed

by Gandhi et al. [9]. The on-line version of the problem was studied by Edmonds and

Pruhs [4, 5]. Bartal and Muthukrishnan [3] considered the problem that minimizes the

maximum flow time.

This paper is the first to give algorithms for finding optimal broadcast schedules

that minimize total flow time. Note that the straightforward implementation of the

dynamic programming approach will take O(nk) time. Based on a dynamic programming

technique and the concave property of the optimization function, our algorithms construct

an optimal schedule for the case when m = 1 in O(k3(n + k)k−1) time where k is the
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number of pages and the last request arrives at time n. When k is a constant, the time

complexity is O(nk−1). We generalize this result in the m channels case where a server

has 1 ≤ m < k broadcast channels. We show that an optimal schedule can be found in

O(k( k−1
m )(( k−1

m−1 )+ k)(n+ k/m)k−m) time, or O(nk−m) time when k and m are constants.

The rest of the paper is organized as follows. In order to illustrate the idea, a simple

case when m = 1 and k = 2 is considered. A straightforward dynamic programming

implementation would take O(n2) time. In Section 2, a linear-time optimal algorithm

based on the concavity of the optimization function for m = 1 and k = 2 is given. The

application of the concave property for general k is not straightforward, we have shown,

in Sections 3 and 4 respectively, how the algorithms for the cases of m = 1 and general

m can be speeded up.

2 Broadcast Scheduling for Two Pages

Assume we have m = 1 broadcast channel, and k = 2 pages (P0 and P1), and the last

request arrives at time n. Our target is to efficiently compute the minimum total flow

time for satisfying all requests.

Defintition 1. For i ∈ {0, 1} and 0 ≤ t ≤ n+1, let Fi(t) denote the minimum total flow

time in satisfying all the requests arriving at or after time t where Pi must be broadcast

at time t.

Note that Fi(n + 1) = 0 because there is no request after time n. As either P0 or

P1 is broadcast at time 0, we can see that the minimum total flow time in satisfying all

requests, denoted by F , is equal to min{F0(0), F1(0)}. In the following we show how Fi(t)

can be computed recursively. The base case is when t = n + 1,

F0(n + 1) = 0 and F1(n + 1) = 0.

In general, consider 0 ≤ t ≤ n. For F0(t), the optimal schedule must have P0 broadcast

at each time t, t+1, . . . , s− 1 for some s ≥ t+1, and then P1 broadcast at time s. Thus,

F0(t) = min
t+1≤s≤n+1

{c1(s, t) + F1(s)}

where c1(s, t) =
∑s−1

i=t (ri,0 + ri,1(s − i + 1)) is the total flow time in satisfying the requests

arriving between time t and time s − 1 inclusively. Similarly,

F1(t) = min
t+1≤s≤n+1

{c0(s, t) + F0(s)}

where c0(s, t) =
∑s−1

i=t (ri,0(s − i + 1) + ri,1).

By Lemmas 2 and 3, functions c0(s, t) and c1(s, t) can be computed in constant time

for any given s and t after an O(n)-time preprocessing.
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Lemma 2. Given a sequence of n+1 numbers, a0, . . . , an, with O(n) time preprocessing,

we can compute
∑j

k=i ak for any 0 ≤ i ≤ j ≤ n in constant time.

Proof. Compute all the prefix sums bi =
∑i

k=0 ak in O(n) time. After that, each of the

partial sums
∑j

k=i ak = bj − bi−1 can be computed in constant time.

Lemma 3. Given a sequence of n + 1 numbers a0, . . . , an, with O(n) time preprocessing,

we can compute
∑j

k=i ak(d − k) for any 0 ≤ i ≤ j ≤ n and any d in constant time.

Proof. Compute all the prefix sums bi =
∑i

k=0 ak and weighted prefix sums wi =
∑i

k=0(k ·
ak) in O(n) time. After that, each of the functions

j∑
k=i

ak(d − k) = d

j∑
k=i

ak −
j∑

k=i

(k · ak) = d(bj − bi−1) − (wj − wi−1),

can be computed in constant time.

Implementing the recursive formulas with a brute-force method, F can be found by

computing all Fi(t) for all i ∈ {0, 1} and 0 ≤ t ≤ n, which takes O(n2) time. By the

technique of Galil and Park [7], we show that F , as well as the optimal schedule, can be

found in linear time. We say that a function w() is concave if it satisfies the quadrangle

inequality, i.e., w(a, c) + w(b, d) ≤ w(a, d) + w(b, c) for a ≤ b ≤ c ≤ d. Galil and Park

proved the following theorem.

Theorem 4 (Galil and Park [7]). Given a concave function w(i, j) for integer 0 ≤ i ≤
j ≤ n and given E(0), the recurrence E(j) = min0≤i<j{D(i) + w(i, j)} for 1 ≤ j ≤ n can

be solved in O(n) time, if D(i) can be computed in constant time.

We show that our recurrences can be transformed to that of Theorem 4, and thus

they can also be solved in linear time. We give the details for the case of F0() and the

case of F1() can be done similarly. Let E(j) = F0(n− j + 1) for 0 ≤ j ≤ n + 1. The base

case is E(0) = F (n + 1) = 0. Let w(i, j) = c1(n− i + 1, n− j + 1) for 0 ≤ i < j ≤ n + 1.

We have the recurrence E(j) = min0≤i<j{D(i) + w(i, j)} for 1 ≤ j ≤ n + 1, where

D(i) = F1(n − i + 1). Given that the relevant values of F1() (resp. F0()) are already

known when D(i) is needed, D(i) can be obtained in constant time. Lemma 5 shows that

function w(i, j) satisfies the quadrangle inequality. Thus, by Theorem 4, we can find the

minimum total flow time and the optimal schedule in linear time, as given in Theorem 6.

Lemma 5. The function w(i, j) = c1(n− i + 1, n− j + 1) (resp. c0(n− i + 1, n− j + 1))

for integer 0 ≤ i < j ≤ n + 1 satisfies the quadrangle inequality, i.e., w(a, c) + w(b, d) ≤
w(a, d) + w(b, c) for integer a ≤ b ≤ c ≤ d.
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Proof. We consider the case of c1(n−i+1, n−j+1) and the case of c0(n−i+1, n−j+1) can

be proved similarly. For w(i, j) = c1(n−i+1, n−j+1) =
∑n−i

x=n−j+1(rx,0+rx,1(n−i−x+2)),

we can see that
∑n−a

x=n−c+1 rx,0 +
∑n−b

x=n−d+1 rx,0 =
∑n−a

x=n−d+1 rx,0 +
∑n−b

x=n−c+1 rx,0 and

n−a∑
x=n−c+1

rx,1(n − a − x + 2) +
n−b∑

x=n−d+1

rx,1(n − b − x + 2)

=
n−a∑

x=n−c+1

rx,1(n − a − x + 2) +
n−c∑

x=n−d+1

rx,1(n − b − x + 2) +
n−b∑

x=n−c+1

rx,1(n − b − x + 2)

≤
n−a∑

x=n−d+1

rx,1(n − a − x + 2) +
n−b∑

x=n−c+1

rx,1(n − b − x + 2). {∵ n − a ≥ n − b}

The last inequality is due to n − a ≥ n − b. Therefore we have w(a, c) + w(b, d) ≤
w(b, c) + w(a, d).

Theorem 6. An optimal schedule in minimizing the total flow time for the broadcast

scheduling problem with one channel and two pages and requests arriving at integer time 0

to time n can be computed in O(n) time.

3 Broadcast Scheduling for k Pages

In this section we consider the problem with a single broadcast channel and k pages, in

particular for k ≥ 2. We formulate the problem as a dynamic programming problem

which is a generalization of that in Section 2.

A sub-problem in the dynamic programming can be specified by a k-dimensional

vector v = (v0, . . . , vk−1). A value vi represents the earliest broadcast time of

Pi, and hence 0 ≤ vi ≤ n + k − 1. Moreover, at any time only one page is

broadcast, i.e., vi 6= vj if i 6= j.

The sub-problem corresponding to v is to find the minimum total flow time in satisfying all

the requests arriving between min0≤i≤k−1{vi} and n inclusively, with vi being the earliest

broadcast time Pi. For example, when k = 2, F0(t) defined in Section 2 refers to the

minimum total flow time over all sub-problems corresponding to the vectors v = (t, t′)

with t′ > t. For general k, there are Ω((n + k)k) possible such k-dimensional vectors

as well as sub-problems, the time complexity in solving the recurrence will be at least

Ω((n+k)k). In the following, we modify slightly the definition of the vectors corresponding

to the sub-problems so that better than O((n + k)k) time can be achieved.

The vector v = (v0, . . . , vk−1) is similar to what is defined earlier except that one of

the vi’s value is unspecified, which is represented as “∗”. If vα = ∗ for some 0 ≤ α < k,

it means that in the sub-problem corresponding to v, the earliest broadcast time of Pα is

not fixed, yet it cannot be earlier than that of all other pages.
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Defintition 7. For a vector v = (v0, . . . , vk−1), denote by vmin the minimum values

among vi besides that equals to ∗. Precisely, vmin = min0≤j≤k−1 & vj 6=∗{vj}.

The sub-problem corresponding to v, say with vα = ∗, is to find the minimum total

flow time in satisfying all the requests arriving between time vmin and n inclusively, with

vi being the earliest broadcast time of Pi for i 6= α. The earliest broadcast time of Pα

can be any possible value between vmin + 1 and n + k− 1 which is not equal to any other

vi, i.e., some integer in Cv = {t | t 6= vj for all vj 6= ∗ and vmin + 1 ≤ t ≤ n + k − 1}.

Defintition 8. Let F (v) denote the minimum total flow time for the sub-problem corre-

sponding to a vector v.

The function F (v) can be defined recursively as follows. In the base case, we let

F (v) = 0 for all v with vmin ≥ n + 1

because there is no request arriving after time n. In general, we consider 0 ≤ vmin ≤ n

and assume that vα = ∗. Although vα is unspecified, the allowable earliest broadcast time

of Pα can only be some value β ∈ Cv. Therefore, F (v) equals the minimum total flow time

among the sub-problems corresponding to v with vα assigned a value β, for each β ∈ Cv.

After a value of β is chosen, we observed a property similar to that of the recurrence

in Section 2. If vx = vmin, then the schedule must have Px broadcast at each time

vmin, vmin + 1, . . . , s− 1 where s = min{β, minvj 6=vmin & vj 6=∗{vj}} is the earliest broadcast

time of the pages other than Px. Note that there is no pending request for Px immediately

after time s−1. Thus, we can identify a “smaller” sub-problem corresponding to a vector

vβ = (vβ
0 , . . . , vβ

k−1) based on v and β as follows.

vβ
i =


∗ for i where vi = vmin,

β for i = α, i.e., vi = ∗,
vi otherwise.

(1)

Let ft,i(v
β, v) be the total flow time of the rt,i requests for Pi arriving at time t for

vmin ≤ t ≤ vβ
min − 1, i.e.,

ft,i(v
β, v) =

{
rt,i for i where vi = vmin,

rt,i(v
β
i − t + 1) otherwise.

The total flow time of the rt,i requests for Pi arriving at time t for vmin ≤ t ≤ vβ
min − 1

and 0 ≤ i ≤ k− 1, denoted by c(vβ, v), is
∑k−1

i=0

∑vβ
min−1

t=vmin
ft,i(v

β, v). To compute F (v), we

can consider the |Cv| different “smaller” sub-problems resulting from choosing the |Cv|
different values for β, i.e.,

F (v) = min
β∈Cv

{F (vβ) + c(vβ, v)}. (2)
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3.1 Straightforward Implementation

First, we give an analysis on a brute-force implementation in solving the above recurrence

of F (v). Then we present a faster implementation by generalizing the approach used in

Section 2. Similar to the case of k = 2 in Section 2, with O(kn)-time preprocessing,∑vβ
min−1

t=vmin
ft,i(v

β, v) can be computed in constant time for any given i, vmin and vβ
min − 1

(see Lemmas 2 and 3) and thus a particular c(vβ, v) can be computed in O(k) time.

Since the number of sub-problems corresponding to vβ, derived from a given v, is O(n), a

particular F (v) can be computed in O(kn) time. Lemma 9 implies that there are k(n +

k)!/(n + 1)! different sub-problems corresponding to a k-dimensional vector. Therefore,

the brute-force method in finding the minimum total flow time by computing all F (v)

takes O(k2n(n + k)!/(n + 1)!) time, or concisely, O(k2(n + k)k) time.

Lemma 9. There are k(n+k)!/(n+1)! different k-dimensional vectors v = (v0, . . . , vk−1)

with vi ∈ {∗} ∪ {0, . . . , n − k + 1} for 0 ≤ i ≤ k − 1 and exactly one of vi’s value must

equal ∗ and vi 6= vj for i 6= j.

Proof. As each vi should have a distinct value and one of them must be ∗, there are ( n+k
k−1 )

ways of choosing the k − 1 distinct values from {0, 1, . . . , n + k − 1}. Since the k − 1

distinct values have k! ways of assigning to the k positions of vi, there are altogether

k(n + k)!/(n + 1)! different possible vectors of v.

3.2 Efficient Implementation

Note that up to this stage, there is no gain in the time complexity and Ω((n + k)k) time

is still needed. In order to improve the time complexity, the concave property of the

function c(vβ, v) should be exploited as in Section 2. In the faster implementation, we

group the sub-problems, equivalently the corresponding vectors, into k2 groups denoted

as Gx,y for 0 ≤ x, y ≤ k − 1. Two vectors v and u belong to the same group Gx,y if

vmin = vx and umin = ux, and vy = uy = ∗, i.e., both sub-problems each corresponding to

v and u having Px broadcast earlier than all the other pages and the earliest broadcast

time of Py unspecified. We further divide the vectors in each group into sub-groups. Two

vectors v and v′ of the same group Gx,y belong to the same sub-group if except Px and

Py every page have the same earliest broadcast time in both sub-problems corresponding

to v and v′, i.e., vj = v′j for all j with j 6= x and j 6= y. It is clear that there are O(n)

vectors in each sub-group and we can prove that there are (n+k−1)!/(n+1)! sub-groups

in each group in the following lemma.

Lemma 10. There are (n + k − 1)!/(n + 1)! sub-groups in each group.

Proof. By symmetry, there are the same number of sub-groups in each group. Without

loss of generality, we can consider a particular group G0,1. For v ∈ G0,1, since v0 is the
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minimum among all vj except v1, no vj for 2 ≤ j ≤ k − 1 can be of value 0. The number

of sub-groups in G0,1 is equal to the number of ways of choosing k−2 distinct values from

{1, 2, . . . , n + k − 1} for v2, v3, . . . , vk−1, i.e., ( n+k−1
k−2 ). As these k − 2 distinct values have

(k− 2)! ways of assigning to v2, v3, . . . , vk−1, there are (n + k− 1)!/(n + 1)! sub-groups in

G0,1, and each other group.

Consider the set of F (v) for all vectors v of the same sub-group. We can transform

the recurrence for these F (v) to the form as in Theorem 4 of Section 2. Without loss of

generality, we consider a sub-group H from G0,1, and other sub-groups can be handled

similarly. For all vectors v in H, we have v0 = vmin and v1 = ∗ and all other vj fixed. For

ease of explanation, we assume that vj ∈ {n+2, n+3, . . . , n+k−1} for all 2 ≤ j ≤ k−1.

(The assumption is not necessary for the correctness of our algorithm.) For 0 ≤ t ≤ n+1,

let E(t) = F (v) where v0 = vmin = n − t + 1. The base case is E(0) = F (v) = 0 when

t = 0 and v0 = n + 1. For 0 ≤ s ≤ n, let u = vn−s+1 and D(s) = F (u) where

u0 = ∗, u1 = n− s+1, and uj = vj for 2 ≤ j ≤ k− 1. The construction of u (i.e., vn−s+1)

from v follows that in Equation (1). Since the values vj for 2 ≤ j ≤ k − 1 are fixed for

all v in H, there are only n + 1 values of F (u) to consider. For 0 ≤ s < t ≤ n + 1, let

w(s, t) = c(u, v), which is given as follows.

w(s, t) =
n−s∑

i=n−t+1

ri,0 +
n−s∑

i=n−t+1

ri,1(n − s − i + 2) +
k−1∑
j=2

n−s∑
i=n−t+1

ri,j(vj − i + 1)

Lemma 11 shows that the function w(s, t) satisfies the quadrangle inequality. By The-

orem 4, all F (v) for v in H can be computed in O(kn) time. Together with Lemma 10

and the fact that there are k2 groups, all F (v) of all sub-groups can be computed in

O(kn · k2 · (n + k − 1)!/(n + 1)!), or concisely, O(k3(n + k)k−1) time. Thus, we have

Theorem 12.

Lemma 11. The function w(s, t) for 0 ≤ s < t ≤ n+1 satisfies the quadrangle inequality,

i.e., w(a, c) + w(b, d) ≤ w(a, d) + w(b, c) for a ≤ b ≤ c ≤ d.

Proof. We have

w(s, t) =
n−s∑

i=n−t+1

((
ri,0 +

k−1∑
j=2

ri,j(vj − i + 1)

)
+ ri,1(n − s − i + 2)

)
.

Consider ri,0 +
∑k−1

j=2 ri,j(vj − i + 1) as a function of i, say f(i). It is easy to see that∑n−a
i=n−c+1 f(i) +

∑n−b
i=n−d+1 f(i) =

∑n−a
i=n−d+1 f(i) +

∑n−b
i=n−c+1 f(i). As in the proof of

Lemma 5, we have shown that
∑n−a

i=n−c+1 ri,1(n−a− i+2)+
∑n−b

i=n−d+1 ri,1(n− b− i+2) ≤∑n−a
i=n−d+1 ri,1(n−a−i+2)+

∑n−b
i=n−c+1 ri,1(n−b−i+2). Hence, w() satisfies the quadrangle

inequality.
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Theorem 12. An optimal schedule in minimizing the total flow time for the broadcast

scheduling problem with one channel and k pages and requests arriving at integer time 0

to time n can be computed in O(k3(n + k)k−1) time.

4 Broadcast Scheduling with Multiple Channels

Assume that there are m broadcast channels available to the server. At each time slot, the

server can broadcast at most m different pages among the k pages, where m < k. Without

loss of generality, we can assume that there is an optimal schedule that broadcasts exactly

m different pages at each time slot.

We apply the framework in Section 3 to solve the problem using the dynamic pro-

gramming approach. Each sub-problem in the dynamic programming can be specified by

a k-dimensional vector v = (v0, . . . , vk−1) where 0 ≤ vi ≤ n + dk/me − 1 represents the

earliest broadcast time of Pi. It is clear that after time n we need at most dk/me−1 time

units to satisfy all pending requests. Let t = min1≤i≤k{vi}. The sub-problem correspond-

ing to v is to find the minimum total flow time in satisfying all the requests arriving

between t and n inclusively, with vi being the earliest broadcast time of Pi. Since we

consider the schedules that broadcast m pages at each time, in particular time t, it is

sufficient to consider only those vectors v with m vj’s values equal to t.

Same as that in Section 3, we consider every vector v has one of the vj equal to ∗.
For a vector v with vα = ∗ for some 0 ≤ α < k, it means that in the corresponding sub-

problem the earliest broadcast time of Pα is unspecified but it can only be some integer

in Cv = {i | there are less than m vj’s values equal to i for 0 ≤ i ≤ n + dk/me − 1}.
We adopt the notations defined in Section 3. Let F (v) denote the minimum total

flow time for the sub-problem corresponding to v and let vmin = min1≤i≤k & vi 6=∗{vi}. We

show that F (v) can be defined recursively. For the base case, F (v) = 0 if vmin ≥ n + 1.

In general, we assume 0 ≤ vmin ≤ n and vα = ∗. Consider a schedule S for the sub-

problem corresponding to v. Let β be the earliest broadcast time of Pα. It is clear that

β ∈ Cv. Suppose vx1 = vx2 = . . . = vxm = vmin for some 0 ≤ x1, . . . , xm ≤ k − 1. S must

have all pages Px1 , . . . , Pxm broadcast at each of times vmin, vmin + 1, . . . , s − 1 where

s = min{β, minvj 6=vmin & vj 6=∗{vj}} is the earliest broadcast time of the pages other than

Px1 , . . . , Pxm . Note that there is no pending request for Px1 , . . . , Pxm immediately after

time s − 1.

We can construct a “smaller” sub-problem based on v and β. This sub-problem is

characterized by another vector, denoted by ṽβ, which is relaxed in the sense that exactly
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m ṽβ
j ’s values equal to ∗ and the vector is defined as follows.

ṽβ
i =


∗ for i where vi = vmin,

β for i = α, i.e., vi = ∗,
vi otherwise.

Similar to Definition 7, let ṽβ
min = min0≤j≤k−1 & ṽβ

j 6=∗
{ṽβ

j }. The sub-problem corresponding

to ṽβ is to find the minimum total flow time, denoted by F (ṽβ), in satisfying all requests

arriving between ṽβ
min and n inclusively, with ṽβ

j being the earliest broadcasting time of Pj

for ṽβ
j 6= ∗. We do not need to compute F (ṽβ) directly. In fact F (ṽβ) = min{F (u) | u is

a non-relaxed vector and umin = ṽβ
min and uj = ṽβ

j for all ṽβ
j 6= ∗}, which is the minimum

F (u) among those corresponding to the sub-problems with the earliest broadcast time uj

of Pj at time ṽβ
j , for all j except those with ṽβ

j = ∗.
Let ft,i(ṽ

β, v) be the flow time of the rt,i requests for Pi arriving at time t for vmin ≤
t ≤ ṽβ

min − 1, i.e.,

ft,i(ṽ
β, v) =

{
rt,i for i where vi = vmin,

rt,i(ṽ
β
i − t + 1) otherwise.

The total flow time of the rt,i requests for Pi arriving at time t for vmin ≤ t ≤ ṽβ
min − 1

and 0 ≤ i ≤ k − 1, denoted by c(ṽβ, v), is
∑k

i=0

∑ṽβ
min−1

t=vmin
ft,i(ṽ

β, v). The recurrence of

F (v) can be defined as follows,

F (v) = min
β∈Cv

{F (ṽβ) + c(ṽβ, v)}.

4.1 Straightforward Implementation

We give an analysis on a brute-force implementation in solving the above recurrence

of F (v), and then we show a faster implementation. Lemma 13 implies that there are

O(k( k−1
m )(n + k/m)k−m) different sub-problems we need to consider.

Lemma 13. There are at most O(k( k−1
m )(n + k/m)k−m) different k-dimensional vec-

tors v = (v0, . . . , vk−1) satisfying the following conditions: (i) For all 0 ≤ i ≤ k − 1,

vj ∈ {∗}∪{0, . . . , n+ dk/me−1} and exactly one of vj’s value must equal ∗; (ii) for each

0 ≤ t ≤ n + dk/me − 1, there are at most m vj’s values equal to t; and (iii) exactly m

vj’s values equal vmin.

Proof. For the vj for 1 ≤ j ≤ k, there are k( k−1
m ) combinations such that one of them is

chosen for ∗ and m of them are chosen for vmin. For the actual values of vj, we have 0 ≤
vmin ≤ n+dk/me−1 and 1 ≤ vj ≤ n+dk/me−1 for vj 6= vmin and vj 6= ∗. Therefore the

total number of different vectors is at most O(k( k−1
m )·(n+dk/me)·(n+dk/me−1)k−m−1),

i.e., O(k( k−1
m )(n + k/m)k−m).

10



If F (ṽ) for all relaxed vector ṽ are known and can be retrieved in constant time,

then the computation of F (v) for each non-relaxed vector v takes O(k(n + k/m)) time

because computing c(ṽβ, v) takes O(k) time and there are O(n + k/m) different ṽβ to be

considered. We can compute all F (ṽ) as follows. Since F (ṽ) = min{F (v) | v is a non-

relaxed vector and vmin = ṽmin and vj = ṽj for all ṽj 6= ∗}, after each F (v) is computed

we update the corresponding values of F (ṽ) where ṽmin = vmin and ṽj = vj for all ṽj 6= ∗,
if F (v) < F (ṽ). It takes O(( k−1

m−1 )) time to update for each F (v) because there are ( k−1
m−1 )

corresponding ṽ, as shown in Lemma 14. Therefore, it takes O(k(n + k/m) + ( k−1
m−1 ))

time to handle each F (v), hence O((k(n + k/m) + ( k−1
m−1 ))k( k−1

m )(n + k/m)k−m) time to

compute all values of F (v) in the brute-force implementation. If k and m are constant,

it still takes O(nk−m+1) time.

Lemma 14. For a k-dimensional non-relaxed vector v with exactly one vj’s value equals

to ∗, there are ( k−1
m−1 ) k-dimensional relaxed vectors ṽ with exactly m ṽj’s values equal

to ∗ where ṽmin = vmin and ṽj = vj for all ṽj 6= ∗.

Proof. Since there is already one vj’s value equal to ∗, we need to select m − 1 more of

vj to be ∗. Thus the number of ṽ is equivalent to the number of ways in choosing m− 1

out of the (k − 1) vj’s values with vj 6= ∗.

4.2 Efficient Implementation

Similar to the efficient implementation in Section 3, we can partition the vectors into

groups and sub-groups. Two vectors v and u belong to the same group G(x1, x2, . . . , xm, y),

if vx1 = vx2 = . . . = vxm = vmin and ux1 = ux2 = . . . = uxm = umin and vy = uy = ∗.
Furthermore, two vectors v and v′ of the same group G(x1, x2, . . . , xm, y) belong to the

same sub-group if vj = v′j for all j with j 6= x1, . . . , j 6= xm, and j 6= y. Then by Theo-

rem 4 we can compute all F (v) of v in a sub-group in O(k(n + k/m)) time. The concave

property of c(ṽβ, v) can be proved as in Lemma 11. Theorem 16 shows that the overall

time complexity of computing all F (v) is O(k( k−1
m )(( k−1

m−1 ) + k)(n + k/m)k−m). When k

and m are constants, the time complexity becomes O(nk−m).

Lemma 15. There are k( k−1
m ) groups and there are at most O((n + k/m)k−m−1) sub-

groups in each group.

Proof. The number of groups is equal to the number of ways in choosing two disjoint

subsets {y} and {x1, x2, . . . , xm} from {1, . . . , k} with one and m values, respectively,

which is (m + 1)( k
m+1 ) = k( k−1

m ). The number of sub-groups in each group is O((n +

k/m)k−m−1) because for a vector v in G(x1, . . . , x2, y) each vj can be assigned a value

in {1, . . . , n + dk/me − 1} for j 6= x1, . . . , j 6= xm, and j 6= y, which consists of at most

O((n + dk/me − 1)k−m−1), i.e., O((n + k/m)k−m−1) different combinations.
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Theorem 16. An optimal schedule in minimizing the total flow time for the broadcast

scheduling problem with m channels and k pages and requests arriving at integer time 0

to time n can be computed in O(k( k−1
m )(( k−1

m−1 )+k)(n+k/m)k−m) time, or O(nk−m) time

if k and m are constants.

Proof. By Lemmas 13 and 14, the overall time to update F (ṽ) after computing each

F (v) is O(k( k−1
m−1 )( k−1

m )(n + k/m)k−m). By Lemma 15, the overall time to compute F (v)

using the technique of Galil and Park is O(k(n + k/m) · (n + k/m)k−m−1 · k( k−1
m )), i.e.,

O(k2( k−1
m )(n + k/m)k−m). Altogether the time complexity is O(k( k−1

m )(( k−1
m−1 ) + k)(n +

k/m)k−m), or O(nk−m) if k and m are constants.
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