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An exponential (mat
hing based) neighborhood for the Vehi
leRouting ProblemEri
 Angel 1, Evripidis Bampis 1, and Fanny Pas
ual 1Abstra
tWe introdu
e an exponential neighborhood for the Vehi
le Routing Problem (vrp) with unit
ustomers' demands, and we show that it 
an be explored eÆ
iently in polynomial time byredu
ing its exploration to a parti
ular 
ase of the Restri
ted Complete Mat
hing (r
m)problem that we prove to be polynomial time solvable using 
ow te
hniques. Furthermore,we show that in the general 
ase with non-unit 
ustomers' demands the exploration of theneighborhood be
omes an NP-hard problem.Keywords: lo
al sear
h, exponential neighborhood, vehi
le routing problem, mat
hing1 Introdu
tionThe intra
tability of many 
ombinatorial optimization problems motivated the use of heuristi
algorithms that aim to �nd a nearly optimal solution in a reasonable amount of 
omputationtime. An important 
lass of heuristi
s is the 
lass of lo
al sear
h algorithms [AL97℄. A lo
alsear
h algorithm starts with a feasible solution and iteratively tries to improve it by sear
hingat ea
h iteration the \neighborhood" of the 
urrent solution, i.e. a set of feasible solutionsthat are 
lose to the 
urrent solution. The quality of the returned solution (lo
al optimum) aswell as the 
omputation time of su
h an algorithm are very 
losely related to the 
hoi
e of theneighborhood stru
ture. An important parameter of the stru
ture of a neighborhood is its size:intuitively, the larger the neighborhood is, the better the quality of the returned solution is,but at the same time the longer it takes to sear
h the neighborhood at ea
h iteration. Thus,a larger neighborhood does not ne
essarily implies a more eÆ
ient heuristi
 algorithm. This isthe reason why many re
ent works are fo
used on exponential neighborhoods and try to iden-tify the borderline between neighborhoods that 
an / that 
annot be explored eÆ
iently, i.e.,in polynomial time with respe
t to the size of the input [AEOP02℄. Studies in this vein havebeen 
ondu
ted for di�erent 
ombinatorial optimization problems, in
luding s
heduling prob-lems [CPvdV02, Hur99℄, the traveling salesman problem [Gut99, GYZ02℄ and generalizationssu
h as the quadrati
 assignment problem [DW00℄. For some of these problems there existsexponential neighborhoods that 
an be sear
hed in polynomial time (TSP, s
heduling) whereasfor others, like the quadrati
 assignment problem, the situation is more diÆ
ult sin
e the sear
hof various types of exponential neighborhoods leads to NP-hard optimization problems.In this paper, we fo
us on the Vehi
le Routing Problem (vrp) [TV01℄. The design of expo-nential neighborhoods for this problem has been previously addressed. Ergun et al. [EOAF02℄have proposed several exponential neighborhoods, and they showed how to �nd a good neighbor-ing solution by proposing a heuristi
 for sear
hing a 
onstrained shortest path on an auxiliarygraph (a similar approa
h was used in [TP93℄). Xu and Kelly [XK96℄ proposed a tabu sear
h in1IBISC { Universit�e d'�Evry Val d'Essonne, CNRS FRE 2873 {, 523 Pla
e des Terrasses, 91000 �Evry, Fran
e.Tel: 33 1 60 87 39 06; Fax: 33 1 60 87 37 89; E-mail: fe.angel, bampis, f.pas
ualg�ibis
.univ-evry.fr1



whi
h a large neighborhood is sear
hed using a minimum 
ost 
ow problem. However, in 
aseseveral deletions/insertions of 
lients o

ur in a single route simultaneously, the 
ost of the 
owmay only approximate the a
tual move 
ost.In this paper, we 
onsider a new neighborhood of exponential size de�ned by mat
hings thatadapts the exponential neighborhood introdu
ed by Gutin for the traveling salesman problem[Gut99℄ to the vrp problem. Gutin proved that, in the 
ase of the traveling salesman problem,the neighborhood is polynomial time sear
hable using a redu
tion to the minimum weightedperfe
t mat
hing problem in bipartite graphs. We prove in what follows that the exponentialneighborhood that we introdu
e here for the vrp 
an also be (fully) explored in polynomialtime in the 
ase where ea
h 
ustomer asks for exa
tly one unit of goods. To do so, we give aredu
tion to a parti
ular 
ase of the Restri
ted Complete Mat
hing (r
m) problem [IRT78℄, themin wpr
m problem de�ned below, that we solve by using 
ow te
hniques. Furthermore, weshow that the problem be
omes NP-hard for non-unit demands.Overview. In the remaining part of this se
tion, we introdu
e formally the variants of the vrpthat we 
onsider throughout this paper, the min wpr
m problem and some notations that weuse in the sequel. In Se
tion 2, we de�ne the exponential neighborhood for the vrp. In Se
tion3, we give a redu
tion of the problem of exploring the proposed neighborhood for unit demandsto the min wpr
m problem, and in Se
tion 4, we solve this problem using 
ow te
hniques. InSe
tion 5 we show that the 
onsidered neighborhood 
annot be explored in polynomial time inthe general 
ase of the vrp where the 
ustomers are allowed to ask for any arbitrary quantityof goods. Se
tion 6 
on
ludes the paper.Notation and de�nitions. The Vehi
le Routing Problem (vrp) is de�ned as follows: n
ustomers must be served from a single depot. Ea
h 
ustomer asks for some amount of goodsand a vehi
le of 
apa
ity C is available to deliver goods. Sin
e the vehi
le 
apa
ity is limited, thevehi
le has to periodi
ally return to the depot for reloading. It is not possible to split 
ustomerdelivery. Therefore, a vrp solution is a 
olle
tion of tours where ea
h 
ustomer is visited onlyon
e, and the quantity of goods delivered along a tour does not ex
eed the vehi
le 
apa
ity C.In the �rst part of the paper, we will 
onsider a restri
ted version of the vrp in whi
h thedemand of ea
h 
ustomer is exa
tly one, and thus the number of 
ustomers served per tour isat most C. We 
all this variant the vrp with unit demands. In the last part we 
onsider thegeneral vrp problem as de�ned above.From a graph theory point of view the vrp with unit demands may be stated as follows:Let G(V;E) be a 
omplete graph with node set V = f0; 1; 2; :::; ng and ar
 set E. In this graphmodel, 0 is the depot and the other nodes are the 
ustomers to be served. Ea
h ar
 (i; j) isasso
iated with value di;j representing the distan
e (or travel time) between i and j. The goalis to �nd a set of tours of minimum total distan
e (travel time). Ea
h tour starts from andterminates at the depot 0, ea
h node must be visited exa
tly on
e and the length of ea
h touris at most C.Example 1. Figure 1 shows an instan
e of the vrp with unit demands, where there are 7
ustomers. The 
apa
ity of the vehi
le is 4 and the distan
e matrix is shown on Figure 1 Left.A solution of 
ost 16 is shown on Figure 1 Right (the 
ost is the total length of the tours, i.e.2
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e matrix. Right : A solution of the vrp with unit demands.the sum of the lengths of the ar
s of the tours). There are 2 tours: in the �rst one the vehi
levisits the 
ustomers 1, 2, 3, 4 and go ba
k to the depot, and in the se
ond tour it visits the
lients 5, 6, 7 and go ba
k to the depot.The Restri
ted Complete Mat
hing (r
m) problem 
an be de�ned as follows: in a bipartitegraph G(V;E), i.e. in a graph where V 
an be partitioned into two disjoint sets, V1 and V2 withall edges having one endpoint in V1 and the other endpoint in V2, a setM � E is a mat
hing if novertex of V is in
ident with more than one edge ofM . The size of a mat
hingM is the number ofits edges. If jV1j � jV2j and every vertex x 2 V1 is in
ident with an edge ofM , then the mat
hingis said to be 
omplete. Let E1; E2; : : : ; Ek be subsets of E, and r1; r2; : : : ; rk positive integers.The restri
ted 
omplete mat
hing problem (r
m) 
onsists in determining whether there exists a
omplete mat
hing M for G whi
h also satis�es the restri
tions:jM \Ej j � rj 8j 2 f1; : : : ; kg:It has been shown in [IRT78℄ that this problem is NP-
omplete (redu
tion from the satis�abilityproblem of Boolean expressions). For the 
ase of a single restri
tion, the authors presented apolynomial time algorithm.We are interested in the following subproblem of r
m: The set of subsets E1; E2; : : : ; Ek isnot arbitrary but it 
orresponds to a partition of V2: T1; T2; : : : ; Tk. For every j 2 f1; : : : ; kg,let Ej be the set of all the edges of E whi
h have an endpoint in Tj . The Parti
ular Restri
tedComplete Mat
hing problem (pr
m) is to determine whether there exists a 
omplete mat
hingM for G whi
h also satis�es the restri
tions:jM \Ej j � rj 8j 2 f1; : : : ; kg:In the weighted version of pr
m, every edge [v; w℄ has a weight 
vw. Our aim is to �nd aminimum-weight parti
ular restri
ted 
omplete mat
hing. We will 
all this version min wpr
min the sequel. As usually, m will denote the number of edges of G.Example 2. Figure 2 shows an example of an instan
e of min wpr
m: we have a (
omplete)bipartite graph with V1 = f2; 4; 5; 7g, V2 = T1[T2, T1 = f0; 6g and T2 = f00; 1; 3g. E1 is the set ofall the edges whi
h have 0 or 6 as endpoint: E1 = f[2; 0℄; [2; 6℄; [4; 0℄; [4; 6℄; [5; 0℄; [5; 6℄; [7; 0℄; [7; 6℄g,3



and E2 is the set of edges whi
h have 00, 1, or 6 as endpoint, that is the remaining edges. Figure2 Right represents the distan
e matrix (or the 
ost matrix), i.e. it indi
ates the 
osts betweenverti
es of V1 and verti
es of V2. We �x r1 = r2 = 2. Figure 2 Left represents a solution ofthe min wpr
m problem: edges f[2; 0℄; [4; 1℄; [5; 00 ℄; [7; 6℄g form a minimum-weight parti
ularrestri
ted 
omplete mat
hing of 
ost -4.
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Figure 2: An instan
e of the min wpr
m problem, with V1 = f2; 4; 5; 7g; V2 =f0; 00; 1; 3; 6g; T1 = f0; 6g; T2 = f00; 1; 3g and r1 = r2 = 2. Left : An optimal solution with
ost �4. Right : Distan
e matrix.2 An exponential neighborhood for the vrpLo
al sear
h remains the main pra
ti
al tool for �nding near optimal solutions for large instan
esof the vrp. Let us 
onsider the following lo
al sear
h algorithm:We start with an arbitrary feasible solution S of the vrp. Then, in this solution, we 
hoosea subset of 
ustomers, whi
h will be 
onsidered as mobile. The other 
ustomers and the depotwill be �xed. Let us 
all verti
es the set of 
lients and the depot. A neighbor solution of S isa solution S0 in whi
h ea
h mobile vertex has been inserted between two �xed verti
es of theinitial solution (these two verti
es may possibly be both the depot in the 
ase where the only�xed vertex of a tour is the depot). Note that we 
an insert at most one vertex between two�xed verti
es and so the number of mobile verti
es must be smaller than or equal to the numberof ar
s in the graph of �xed verti
es, whi
h is smaller than or equal to twi
e the number of �xedverti
es. Note also that the number of tours 
annot in
rease: it is 
onstant, or de
reases in the
ase where the only �xed vertex of a tour is the depot and no mobile vertex is inserted in thistour.We do not fo
us in this paper on the best way to determine the initial solution and the setof mobile verti
es. The set of mobile verti
es may be for example randomly 
hosen among the4



set of all verti
es. It would 
ertainly be preferable not to let all the verti
es �xed in a tour if thequantity of delivery goods in this tour (number of verti
es in the 
ase of unit demands) is equalto the 
apa
ity of the vehi
le. Indeed no mobile vertex 
ould be inserted in this tour. In su
ha tour, moving at least a few verti
es from the set of �xed verti
es to the set of mobile verti
es
ould only improve the quality of the best neighbor solution, sin
e it would just add some newpossible solutions in the neighborhood. It is easy to 
he
k whenever a 
ouple (initial solution,set of mobile verti
es) has a non-empty neighborhood. This is the 
ase if and only if the twofollowing 
onditions are satis�ed. First, it must be possible to insert all the mobile verti
esbetween two �xed verti
es, i.e. the number of ar
s in the graph where the mobile verti
es havebeen removed has to be larger than or equal to the number of mobile verti
es. Moreover it mustbe possible to obtain a neighbor solution where every tour has a quantity of delivered goods(length, in the 
ase of unit demands) smaller than or equal to the vehi
le 
apa
ity C. In the
ase of the vrp with unit demands, if, step by step, we add a mobile vertex to the tour whi
hhas the smallest length, then the length of the longest tour must be smaller than or equal to C,when all the mobile verti
es have been inserted.Example 3. Figure 3 shows an initial solution of 
ost 16 (Left). The �xed verti
es form a newgraph (Right), in whi
h we 
an at most insert one mobile vertex between two (�xed) verti
es.Figure 4 shows a neighbor solution of Figure 3 Left. The 
ost of this new solution is 11 (thedistan
e matrix is the one given in Figure 1). The orientation of ea
h tour is preserved duringthe 
onstru
tion of the neighbor solution.
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es 
ir
led with thi
k lines are mobile verti
es. Right :the 
orresponding graph where mobile verti
es have been removed.
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Figure 4: A solution of 
ost 11 for the vrp.Let us denote the above de�ned neighborhood the multi-insertion neighborhood. We 
onsider5



a deepest lo
al sear
h pro
edure, and therefore at ea
h step we look for the best neighbor solutionof the 
urrent solution. This solution (ties are broken arbitrarily) is the 
urrent solution of thenext step. To obtain an eÆ
ient algorithm, the time needed to �nd a best neighbor solution atea
h step must be polynomial.Theorem 2.1 In the multi-insertion neighborhood, the number of neighbor solutions of a solu-tion may be exponential, even for the vrp with unit demands.Proof : Let us 
onsider the following Vehi
le Routing Problem: we have n 
lients to supply(where n is an even number) and the 
apa
ity of the vehi
le is at least n. Let us suppose thatthe initial solution is a solution in whi
h there is only one tour and that we have n2 mobileverti
es. The number of neighbor solutions is then (n2 + 1)! 2Sin
e the number of neighbor solutions is possibly exponential, we 
annot enumerate all thesolutions and look for the best one, but we have to �nd a method to get the best neighborsolution in a polynomial time. In order to do that, we will now show that it is possible to redu
ethe sear
h of the best solution of the multi-insertion neighborhood into a parti
ular restri
tedweighted mat
hing problem.3 Redu
tion of the neighborhood exploration to the min wpr
min the 
ase of unit demandsIn this se
tion, we will say that, given a solution S and a set of mobile verti
es, S0 is a neigh-bor of S if and only if S0 
an be obtained by a step of the following lo
al sear
h algorithm:S0 is obtained from S by removing the mobile verti
es and by inserting ea
h of them betweentwo �xed verti
es. S0 is a best neighbor of S if and only if S0 is a neighbor of S and there isno other neighbor of S whi
h has a 
ost (a total distan
e of the tours) smaller than the 
ost of S0.Let us suppose that we have an instan
e of the vrp with unit demands: a distan
e matrixD (where di;j is the distan
e from i to j), a vehi
le 
apa
ity C, an initial feasible solution S(represented as a graph G(V;E)) and a set of mobile 
ustomers. Let k denotes the number oftours in S. In S, ea
h �xed vertex u has a su

essor s(u) whi
h is the �xed vertex whi
h followsit in the tour (we have s(u) = u if u is the depot and it is the only �xed vertex of a tour). Forexample, if S is the solution represented in Figure 3 Left, the su

essor s(1) of vertex 1, is 3. Itis the dire
t su

essor of 1 on
e we removed the mobile edges (see Figure 3 Right).Let us model the sear
h of the best solution in the neighborhood of S by a mat
hing problem.Let G0(V 0; E0) be a 
omplete bipartite graph su
h that V 0 = V1 [ V2, where the verti
es of V1are the mobile 
ustomers and the verti
es of V2 are the �xed 
ustomers plus k 
opies of thedepot. We have then E0 = f[u; v℄ j u 2 V1; v 2 V2g. The weights of the edges are de�ned asfollows: let u 2 V1 and v 2 V2, the weight of the edge [u; v℄ is equal to dv;u + du;s(v) � dv;s(v).If an edge [u; v℄ belongs to the mat
hing we obtained, it means that the vertex u is insertedbetween the verti
es v and s(v). Let fT1; T2; : : : ; Tkg be a partition of V2 su
h that for ea
hi 2 f1; : : : ; kg, the verti
es of Ti are the �xed 
ustomers of the ith tour of S and one 
opy of thedepot. Let ri = C � jTij + 1. Our aim is to �nd in G0 a minimum-weight 
omplete mat
hing6



M su
h that the number of edges in M \Ei is smaller than or equal to ri, for ea
h i 2 f1; : : : ; kg.Example 4. Figure 2 shows the mat
hing instan
e 
orresponding to the vrp instan
e whoseinitial solution is showed in Figure 3. The distan
e matrix (of G0) is shown in Figure 2 Right.In Figure 2 Left, we did not draw all the edges but only the four edges whi
h belong to theminimum-weight parti
ular restri
ted 
omplete mat
hing (of 
ost -4). This optimal solution
orresponds to the solution of Figure 4 for the vrp (the best neighbor solution of the instan
eof Figure 3): we start with the initial solution of Figure 3 and insert vertex 2 between 0 and6, and 7 between 6 and 0, in the �rst tour (the tour whose �xed verti
es are those of T1) andwe insert 4 between 1 and 3, and 5 between the depot (0' is a 
opy of the depot) and 1 in these
ond tour.Theorem 3.1 Let S be a feasible solution of the vrp with unit demands and let � be a subsetof the verti
es of S de�ned as mobile. Let G0 be the bipartite graph whi
h 
orresponds to themulti-insertion neighborhood of S (G0 is 
onstru
ted as stated above). The solution M of themin wpr
m problem on G0 gives us a best neighboring solution S0 of S, and S0 is the solutionwhi
h 
orresponds to S in whi
h we have removed the mobile verti
es and then inserted ea
hmobile edge as follows: if [u; v℄ 2M , vertex u is inserted between the verti
es v and s(v).Proof : If we 
hoose [u; v℄ in M , it means that we insert the mobile vertex u between the �xedverti
es v and s(v): the 
ost of [u; v℄ is equal to dv;u + du;s(v) � dv;s(v), whi
h is the 
ost to gofrom v to u, plus the 
ost to go from u to s(v) (s(v) is the �xed su

essor of v), minus the 
ostto go from v to s(v). Thus, the sum of the weights of the edges in M is the sum that we have toadd to the total distan
e of the tours in the graph of the �xed verti
es of G to obtain the totaldistan
e of the tours of S0. Therefore, the smaller this sum is, the smaller the total distan
eof S0 will be. Let us now show that all the neighbors of S 
an be represented by a parti
ularrestri
ted 
omplete mat
hing in G0 and that only the neighbors of S are represented by su
h amat
hing.We know that the number of mobile verti
es is smaller than or equal to the number of ar
sin the graph of �xed verti
es (otherwise we 
ould not insert ea
h mobile vertex between two�xed verti
es and S would not have any neighbor). This number is smaller than or equal tothe number of �xed verti
es (not taking into a

ount the depot), plus the number of tours inthe graph. Indeed, for ea
h �xed vertex ex
ept the depot, there is one and only one outgoingar
, and the number of outgoing ar
s of the depot is equal to the number of tours, k. Thus,the number of ar
s in the graph of �xed verti
es is equal to jV2j, and we dedu
e from it thatjV1j � jV2j. Therefore, sin
e M is a 
omplete mat
hing of G0, all the verti
es of V1 belong to M .This means that all the mobile verti
es will be inserted in S0. Moreover, sin
e M is a mat
hing,ea
h vertex is inserted at most on
e. So ea
h mobile vertex u is inserted on
e and only on
e inS0 and it is inserted between two �xed verti
es (v and s(v), whi
h are both �xed verti
es, by
onstru
tion).Let us now show that the solution obtained is feasible: ea
h tour must 
ontain the depotand there must be at most C+1 verti
es in a tour (C 
lients and the depot). We know that, forea
h i 2 f1; : : : ; kg, the number of edges in M \Ei is smaller than or equal to ri = C � jTij+1.jTij is the number of �xed verti
es of the ith tour and it 
ontains the depot. The number of7



edges in M \Ei is the number of mobile verti
es added to this tour. The number of verti
es inthe ith tour of S0 is then jTij+ jM \Eij � C + 1 and the ith tour 
ontains the depot.Thus, ea
h solution of the parti
ular restri
ted 
omplete mat
hing problem 
orresponds to aneighbor of S and ea
h neighbor of S 
orresponds to a solution of the parti
ular restri
ted 
om-plete mat
hing problem. Sin
e S0 is the solution of minimum 
ost, S0 is the best neighbor of S. 24 Resolution of the min wpr
m problemThe min wpr
m problem 
an be expressed by an integer linear program as follows: We havea bipartite graph G = (V;E) with verti
es V = (V1; V2), and a partition fT1; T2; : : : ; Tkg ofverti
es of V2. Let fE1; E2; : : : Ekg be a partition of the edges E su
h that [u; v℄ 2 Ei if and onlyif v 2 Ti. Minimize X[u;v℄2E 
uvxuv (1)subje
t to: Xv2V2;[u;v℄2E xuv = 1 8u 2 V1 (2)Xu2V1;[u;v℄2E xuv � 1 8v 2 V2 (3)X[u;v℄2Ei xuv � ri 8i 2 f1; : : : ; kg (4)xuv 2 f0; 1g 8[u; v℄ 2 E: (5)We have xvw = 1 if the edge [v; w℄ belongs to the mat
hing we look for, and xvw = 0otherwise. Equation (1) means that our goal is to minimize the weight of the 
hosen edges (thismeans for the vrp that the distan
e to 
onne
t the mobile verti
es to tours of the �xed verti
eshas to be as small as possible). Sin
e jV1j � jV2j, Equations (2) et (3) mean that we are lookingfor a mat
hing (for the vrp, Equation (2) means that ea
h mobile vertex must be inserted on
eand only on
e, and Equation (3) means that at most one mobile vertex is inserted between two�xed verti
es). Equation (4) represents the 
onstraint 
apa
ities (for the vrp, the number ofmobile verti
es inserted in a same tour has to be smaller than or equal to the remaining 
apa
ityof the vehi
le).Sin
e the 
onstraint matrix of the linear program is totally unimodular (see [ABPW06℄), we
an polynomially solve it by using linear programming te
hniques. However it is more 
onve-nient to use 
ow te
hniques to solve this problem.We 
an express the min wpr
m problem by the following 
ow problem: we have an orientedgraph G0 = (V 0; E0) where ea
h ar
 (u; v) has a 
ost wu;v and a 
apa
ity Capu;w, we have asour
e and a sink and we are looking for a maximum 
ow of minimum 
ost. The verti
es V 0 are8



the sour
e, verti
es V1 and V2 (also belonging to G), k verti
es fa1; a2; : : : ; akg, and the sink.The sour
e has an outgoing ar
 towards ea
h vertex of V1. Ea
h vertex u 2 V1 has an outgoingar
 towards vertex v 2 V2 if and only if there is an edge [u; v℄ 2 E. Ea
h vertex u 2 Ti hasan outgoing ar
 towards vertex ai, and verti
es fa1; a2; : : : ; akg have an outgoing ar
 towardsthe sink. The 
ost of all the ar
s are 0, ex
ept for the ar
s between the verti
es of V1 and theverti
es of V2: the 
ost of ar
 (u; v) is equal to the 
ost of this edge in the 
orresponding minwpr
m problem: wu;v = 
u;v. The 
apa
ity of all the ar
s is 1, ex
ept for the ar
s betweenverti
es fa1; a2; : : : ; akg and the sink: the 
apa
ity of the ar
 between ai and the sink is equal tori. jV1j units of 
ow are released from the sour
e. For example, Figure 5 shows the 
ow instan
e
orresponding to the min wpr
m problem instan
e shown on Figure 2.
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Figure 5: Flow instan
e 
orresponding to the mat
hing instan
e of Figure 2. Ar
s are orientedleft to right. The 
apa
ity of ea
h ar
 is equal to Cap, or 1 when Cap is not written. The 
ostof ea
h ar
 is equal to 0 ex
ept for the ar
s between the verti
es of V1 and the verti
es of V2.We 
an polynomially �nd the maximum 
ow of minimum 
ost using a 
ow algorithm [AMO93℄.Knowing this solution, we 
an dedu
e a solution to the 
orresponding min wpr
m problem: anedge between verti
es of V1 and V2 belongs to the minimum weight mat
hing if and only if thereis one unit of 
ow whi
h goes through this edge in G0. Indeed, ea
h vertex of V1 releases oneunit of 
ow, there is at most one unit of 
ow whi
h goes through ea
h vertex of V2, and no morethan ri 
ows units 
ome from verti
es of Ti.Given the redu
tion presented in the previous se
tion, we obtain the following result.Corollary 4.1 The problem of �nding the best solution in the exponential multi-insertion neigh-borhood, for the vrp problem with unit demands, 
an be solved in polynomial time.9



One 
an noti
e that to use the multi-insertion neighborhood within a tabu sear
h framework,one needs to identify a move with minimum positive 
ost. This 
an be easily done, by solvinga set of instan
es of the maximum 
ow of minimum 
ost. In ea
h instan
e the 
ost of an edgeis �xed to a large value, in order to prevent a mobile vertex to be inserted in the same positionthan the initial solution.5 Case where the demands of the 
ustomers are arbitraryWe have 
onsidered so far a restri
ted version of the vrp in whi
h the demand of ea
h 
ustomeris exa
tly one. We may ask whether the exponential neighborhood that we have introdu
ed 
analso be explored in polynomial time if the demands of the 
ustomers are arbitrary, i.e. if ea
h
ustomer asks for a number (integer) of units of goods, whi
h is not ne
essarily one. In this
ase, the multi-insertion neighborhood is the one explained in Se
tion 2, and in whi
h a solutionis feasible if and only if the sum of the demands of the 
ustomers in the same tour is smallerthan or equal to the 
apa
ity of the vehi
le.Theorem 5.1 It is NP-hard to �nd the best solution in the multi-insertion neighborhood if thedemands of the 
ustomers are arbitrary, and this even if the distan
es (in the matrix of thedistan
es) are all equal to 1.Proof : We give a redu
tion from the Partition problem [GJ79℄: Given n � 3 integer numbersx1; : : : ; xn withPni=1 xi = 2L for some integer L , the task is to de
ide whether there is a subsetB � f1; : : : ; ng su
h that Pi2B xi = L. Given an instan
e of Partition, we 
onstru
t thefollowing instan
e of our problem:We have a depot and 3n� 4 
ustomers. In the initial solution there are n+2 tours: n toursof length 2, in whi
h there is only one 
ustomer to be served, and 2 tours in whi
h there aren�2 
ustomers per tour. The mobile verti
es are the 
ustomers of the n �rst tours (the tours oflength 2); the other 
ustomers and the depot are �xed verti
es. Figure 6 shows su
h an instan
ewhen n = 5. Ea
h �xed 
ustomer has a demand of 1, ea
h mobile 
ustomer i has a demandequal to xi, and the vehi
le 
apa
ity is n � 2 + Pni=1 xi2 . The distan
e between every 
ouple ofverti
es is 1.We now have to insert the mobile verti
es between the �xed ones, and we wish to minimizethe total distan
e of the tours. The best solution is obtained when the 
ost of adding a mobilevertex to the tours of �xed verti
es is 1: the total distan
e is then equal to 3n � 2. This ispossible if and only if the mobile verti
es are not inserted in a tour where the only �xed ver-tex is the depot, that is if they are inserted in the large tours. Sin
e the vehi
le 
apa
ity isn � 2 + Pni=1 xi2 , and sin
e ea
h �xed 
ustomer has a demand of 1, the sum of the demands ofthe mobile 
ustomers inserted in a tour has to be smaller than or equal to Pni=1 xi2 . The totalsum of the demands of the mobile verti
es is equal to Pni=1 xi, so this is possible if and only ifthere exists a partition (M1;M2) of the mobile 
ustomers su
h that the sum of the demands of
ustomers of M1 is equal to the sum of the demands of 
ustomers of M2, that is if there is asolution of the Partition problem. 210
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Figure 6: Mobile verti
es are verti
es 1 to 5. Mobile vertex i has a demand of xi. The bestneighbor solution has a 
ost of 13 if and only if there is a partition of fx1; x2; x3; x4; x5g.6 Con
lusionWe have introdu
ed an exponential size neighborhood for the vrp whi
h 
an be explored inpolynomial time using 
ows te
hniques. The neighborhood that we 
onsidered is an extensionof the one proposed by Gutin [Gut99℄ for the traveling salesman problem. Given the relationbetween the two problems it was natural to investigate from a theoreti
al point of view whetherits exploration 
an be done in polynomial time in the 
ase of the vrp.We showed that the exploration of the multi-insertion neighborhood is polynomial if ea
h
ustomer asks for the same quantity of goods, no matter the distan
e matrix between 
ustomersis (distan
e matrix symetri
 or not, whi
h ful�lls or not the triangular inequality). In the 
asewhere 
ustomers ask for di�erent quantities of goods, the problem be
omes NP-hard, even ifall the distan
es (between ea
h 
ouple of 
ustomers, and between the depot and ea
h 
ustomer)are equals.We 
an also noti
e that, whereas the restri
ted 
omplete mat
hing problem in a bipartitegraph (in whi
h the mat
hing 
an 
ontain at most ri edges of the set of edges Ei) is NP-hardin the general 
ase [IRT78℄, and that it is polynomial when there is only one 
onstraint (i.e.there is only one set E1 in whi
h we 
an 
hoose at most r1 edges), this problem 
an be solved inpolynomial time if the set of edges fEig 
orresponds to a partition of V2 (and this, even if ea
hedge has a weight and that we look for a minimum-weight mat
hing).Referen
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