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An exponential (mathing based) neighborhood for the VehileRouting ProblemEri Angel 1, Evripidis Bampis 1, and Fanny Pasual 1AbstratWe introdue an exponential neighborhood for the Vehile Routing Problem (vrp) with unitustomers' demands, and we show that it an be explored eÆiently in polynomial time byreduing its exploration to a partiular ase of the Restrited Complete Mathing (rm)problem that we prove to be polynomial time solvable using ow tehniques. Furthermore,we show that in the general ase with non-unit ustomers' demands the exploration of theneighborhood beomes an NP-hard problem.Keywords: loal searh, exponential neighborhood, vehile routing problem, mathing1 IntrodutionThe intratability of many ombinatorial optimization problems motivated the use of heuristialgorithms that aim to �nd a nearly optimal solution in a reasonable amount of omputationtime. An important lass of heuristis is the lass of loal searh algorithms [AL97℄. A loalsearh algorithm starts with a feasible solution and iteratively tries to improve it by searhingat eah iteration the \neighborhood" of the urrent solution, i.e. a set of feasible solutionsthat are lose to the urrent solution. The quality of the returned solution (loal optimum) aswell as the omputation time of suh an algorithm are very losely related to the hoie of theneighborhood struture. An important parameter of the struture of a neighborhood is its size:intuitively, the larger the neighborhood is, the better the quality of the returned solution is,but at the same time the longer it takes to searh the neighborhood at eah iteration. Thus,a larger neighborhood does not neessarily implies a more eÆient heuristi algorithm. This isthe reason why many reent works are foused on exponential neighborhoods and try to iden-tify the borderline between neighborhoods that an / that annot be explored eÆiently, i.e.,in polynomial time with respet to the size of the input [AEOP02℄. Studies in this vein havebeen onduted for di�erent ombinatorial optimization problems, inluding sheduling prob-lems [CPvdV02, Hur99℄, the traveling salesman problem [Gut99, GYZ02℄ and generalizationssuh as the quadrati assignment problem [DW00℄. For some of these problems there existsexponential neighborhoods that an be searhed in polynomial time (TSP, sheduling) whereasfor others, like the quadrati assignment problem, the situation is more diÆult sine the searhof various types of exponential neighborhoods leads to NP-hard optimization problems.In this paper, we fous on the Vehile Routing Problem (vrp) [TV01℄. The design of expo-nential neighborhoods for this problem has been previously addressed. Ergun et al. [EOAF02℄have proposed several exponential neighborhoods, and they showed how to �nd a good neighbor-ing solution by proposing a heuristi for searhing a onstrained shortest path on an auxiliarygraph (a similar approah was used in [TP93℄). Xu and Kelly [XK96℄ proposed a tabu searh in1IBISC { Universit�e d'�Evry Val d'Essonne, CNRS FRE 2873 {, 523 Plae des Terrasses, 91000 �Evry, Frane.Tel: 33 1 60 87 39 06; Fax: 33 1 60 87 37 89; E-mail: fe.angel, bampis, f.pasualg�ibis.univ-evry.fr1



whih a large neighborhood is searhed using a minimum ost ow problem. However, in aseseveral deletions/insertions of lients our in a single route simultaneously, the ost of the owmay only approximate the atual move ost.In this paper, we onsider a new neighborhood of exponential size de�ned by mathings thatadapts the exponential neighborhood introdued by Gutin for the traveling salesman problem[Gut99℄ to the vrp problem. Gutin proved that, in the ase of the traveling salesman problem,the neighborhood is polynomial time searhable using a redution to the minimum weightedperfet mathing problem in bipartite graphs. We prove in what follows that the exponentialneighborhood that we introdue here for the vrp an also be (fully) explored in polynomialtime in the ase where eah ustomer asks for exatly one unit of goods. To do so, we give aredution to a partiular ase of the Restrited Complete Mathing (rm) problem [IRT78℄, themin wprm problem de�ned below, that we solve by using ow tehniques. Furthermore, weshow that the problem beomes NP-hard for non-unit demands.Overview. In the remaining part of this setion, we introdue formally the variants of the vrpthat we onsider throughout this paper, the min wprm problem and some notations that weuse in the sequel. In Setion 2, we de�ne the exponential neighborhood for the vrp. In Setion3, we give a redution of the problem of exploring the proposed neighborhood for unit demandsto the min wprm problem, and in Setion 4, we solve this problem using ow tehniques. InSetion 5 we show that the onsidered neighborhood annot be explored in polynomial time inthe general ase of the vrp where the ustomers are allowed to ask for any arbitrary quantityof goods. Setion 6 onludes the paper.Notation and de�nitions. The Vehile Routing Problem (vrp) is de�ned as follows: nustomers must be served from a single depot. Eah ustomer asks for some amount of goodsand a vehile of apaity C is available to deliver goods. Sine the vehile apaity is limited, thevehile has to periodially return to the depot for reloading. It is not possible to split ustomerdelivery. Therefore, a vrp solution is a olletion of tours where eah ustomer is visited onlyone, and the quantity of goods delivered along a tour does not exeed the vehile apaity C.In the �rst part of the paper, we will onsider a restrited version of the vrp in whih thedemand of eah ustomer is exatly one, and thus the number of ustomers served per tour isat most C. We all this variant the vrp with unit demands. In the last part we onsider thegeneral vrp problem as de�ned above.From a graph theory point of view the vrp with unit demands may be stated as follows:Let G(V;E) be a omplete graph with node set V = f0; 1; 2; :::; ng and ar set E. In this graphmodel, 0 is the depot and the other nodes are the ustomers to be served. Eah ar (i; j) isassoiated with value di;j representing the distane (or travel time) between i and j. The goalis to �nd a set of tours of minimum total distane (travel time). Eah tour starts from andterminates at the depot 0, eah node must be visited exatly one and the length of eah touris at most C.Example 1. Figure 1 shows an instane of the vrp with unit demands, where there are 7ustomers. The apaity of the vehile is 4 and the distane matrix is shown on Figure 1 Left.A solution of ost 16 is shown on Figure 1 Right (the ost is the total length of the tours, i.e.2
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5Figure 1: Left : Distane matrix. Right : A solution of the vrp with unit demands.the sum of the lengths of the ars of the tours). There are 2 tours: in the �rst one the vehilevisits the ustomers 1, 2, 3, 4 and go bak to the depot, and in the seond tour it visits thelients 5, 6, 7 and go bak to the depot.The Restrited Complete Mathing (rm) problem an be de�ned as follows: in a bipartitegraph G(V;E), i.e. in a graph where V an be partitioned into two disjoint sets, V1 and V2 withall edges having one endpoint in V1 and the other endpoint in V2, a setM � E is a mathing if novertex of V is inident with more than one edge ofM . The size of a mathingM is the number ofits edges. If jV1j � jV2j and every vertex x 2 V1 is inident with an edge ofM , then the mathingis said to be omplete. Let E1; E2; : : : ; Ek be subsets of E, and r1; r2; : : : ; rk positive integers.The restrited omplete mathing problem (rm) onsists in determining whether there exists aomplete mathing M for G whih also satis�es the restritions:jM \Ej j � rj 8j 2 f1; : : : ; kg:It has been shown in [IRT78℄ that this problem is NP-omplete (redution from the satis�abilityproblem of Boolean expressions). For the ase of a single restrition, the authors presented apolynomial time algorithm.We are interested in the following subproblem of rm: The set of subsets E1; E2; : : : ; Ek isnot arbitrary but it orresponds to a partition of V2: T1; T2; : : : ; Tk. For every j 2 f1; : : : ; kg,let Ej be the set of all the edges of E whih have an endpoint in Tj . The Partiular RestritedComplete Mathing problem (prm) is to determine whether there exists a omplete mathingM for G whih also satis�es the restritions:jM \Ej j � rj 8j 2 f1; : : : ; kg:In the weighted version of prm, every edge [v; w℄ has a weight vw. Our aim is to �nd aminimum-weight partiular restrited omplete mathing. We will all this version min wprmin the sequel. As usually, m will denote the number of edges of G.Example 2. Figure 2 shows an example of an instane of min wprm: we have a (omplete)bipartite graph with V1 = f2; 4; 5; 7g, V2 = T1[T2, T1 = f0; 6g and T2 = f00; 1; 3g. E1 is the set ofall the edges whih have 0 or 6 as endpoint: E1 = f[2; 0℄; [2; 6℄; [4; 0℄; [4; 6℄; [5; 0℄; [5; 6℄; [7; 0℄; [7; 6℄g,3



and E2 is the set of edges whih have 00, 1, or 6 as endpoint, that is the remaining edges. Figure2 Right represents the distane matrix (or the ost matrix), i.e. it indiates the osts betweenverties of V1 and verties of V2. We �x r1 = r2 = 2. Figure 2 Left represents a solution ofthe min wprm problem: edges f[2; 0℄; [4; 1℄; [5; 00 ℄; [7; 6℄g form a minimum-weight partiularrestrited omplete mathing of ost -4.
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Figure 2: An instane of the min wprm problem, with V1 = f2; 4; 5; 7g; V2 =f0; 00; 1; 3; 6g; T1 = f0; 6g; T2 = f00; 1; 3g and r1 = r2 = 2. Left : An optimal solution withost �4. Right : Distane matrix.2 An exponential neighborhood for the vrpLoal searh remains the main pratial tool for �nding near optimal solutions for large instanesof the vrp. Let us onsider the following loal searh algorithm:We start with an arbitrary feasible solution S of the vrp. Then, in this solution, we hoosea subset of ustomers, whih will be onsidered as mobile. The other ustomers and the depotwill be �xed. Let us all verties the set of lients and the depot. A neighbor solution of S isa solution S0 in whih eah mobile vertex has been inserted between two �xed verties of theinitial solution (these two verties may possibly be both the depot in the ase where the only�xed vertex of a tour is the depot). Note that we an insert at most one vertex between two�xed verties and so the number of mobile verties must be smaller than or equal to the numberof ars in the graph of �xed verties, whih is smaller than or equal to twie the number of �xedverties. Note also that the number of tours annot inrease: it is onstant, or dereases in thease where the only �xed vertex of a tour is the depot and no mobile vertex is inserted in thistour.We do not fous in this paper on the best way to determine the initial solution and the setof mobile verties. The set of mobile verties may be for example randomly hosen among the4



set of all verties. It would ertainly be preferable not to let all the verties �xed in a tour if thequantity of delivery goods in this tour (number of verties in the ase of unit demands) is equalto the apaity of the vehile. Indeed no mobile vertex ould be inserted in this tour. In suha tour, moving at least a few verties from the set of �xed verties to the set of mobile vertiesould only improve the quality of the best neighbor solution, sine it would just add some newpossible solutions in the neighborhood. It is easy to hek whenever a ouple (initial solution,set of mobile verties) has a non-empty neighborhood. This is the ase if and only if the twofollowing onditions are satis�ed. First, it must be possible to insert all the mobile vertiesbetween two �xed verties, i.e. the number of ars in the graph where the mobile verties havebeen removed has to be larger than or equal to the number of mobile verties. Moreover it mustbe possible to obtain a neighbor solution where every tour has a quantity of delivered goods(length, in the ase of unit demands) smaller than or equal to the vehile apaity C. In thease of the vrp with unit demands, if, step by step, we add a mobile vertex to the tour whihhas the smallest length, then the length of the longest tour must be smaller than or equal to C,when all the mobile verties have been inserted.Example 3. Figure 3 shows an initial solution of ost 16 (Left). The �xed verties form a newgraph (Right), in whih we an at most insert one mobile vertex between two (�xed) verties.Figure 4 shows a neighbor solution of Figure 3 Left. The ost of this new solution is 11 (thedistane matrix is the one given in Figure 1). The orientation of eah tour is preserved duringthe onstrution of the neighbor solution.
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Figure 4: A solution of ost 11 for the vrp.Let us denote the above de�ned neighborhood the multi-insertion neighborhood. We onsider5



a deepest loal searh proedure, and therefore at eah step we look for the best neighbor solutionof the urrent solution. This solution (ties are broken arbitrarily) is the urrent solution of thenext step. To obtain an eÆient algorithm, the time needed to �nd a best neighbor solution ateah step must be polynomial.Theorem 2.1 In the multi-insertion neighborhood, the number of neighbor solutions of a solu-tion may be exponential, even for the vrp with unit demands.Proof : Let us onsider the following Vehile Routing Problem: we have n lients to supply(where n is an even number) and the apaity of the vehile is at least n. Let us suppose thatthe initial solution is a solution in whih there is only one tour and that we have n2 mobileverties. The number of neighbor solutions is then (n2 + 1)! 2Sine the number of neighbor solutions is possibly exponential, we annot enumerate all thesolutions and look for the best one, but we have to �nd a method to get the best neighborsolution in a polynomial time. In order to do that, we will now show that it is possible to reduethe searh of the best solution of the multi-insertion neighborhood into a partiular restritedweighted mathing problem.3 Redution of the neighborhood exploration to the min wprmin the ase of unit demandsIn this setion, we will say that, given a solution S and a set of mobile verties, S0 is a neigh-bor of S if and only if S0 an be obtained by a step of the following loal searh algorithm:S0 is obtained from S by removing the mobile verties and by inserting eah of them betweentwo �xed verties. S0 is a best neighbor of S if and only if S0 is a neighbor of S and there isno other neighbor of S whih has a ost (a total distane of the tours) smaller than the ost of S0.Let us suppose that we have an instane of the vrp with unit demands: a distane matrixD (where di;j is the distane from i to j), a vehile apaity C, an initial feasible solution S(represented as a graph G(V;E)) and a set of mobile ustomers. Let k denotes the number oftours in S. In S, eah �xed vertex u has a suessor s(u) whih is the �xed vertex whih followsit in the tour (we have s(u) = u if u is the depot and it is the only �xed vertex of a tour). Forexample, if S is the solution represented in Figure 3 Left, the suessor s(1) of vertex 1, is 3. Itis the diret suessor of 1 one we removed the mobile edges (see Figure 3 Right).Let us model the searh of the best solution in the neighborhood of S by a mathing problem.Let G0(V 0; E0) be a omplete bipartite graph suh that V 0 = V1 [ V2, where the verties of V1are the mobile ustomers and the verties of V2 are the �xed ustomers plus k opies of thedepot. We have then E0 = f[u; v℄ j u 2 V1; v 2 V2g. The weights of the edges are de�ned asfollows: let u 2 V1 and v 2 V2, the weight of the edge [u; v℄ is equal to dv;u + du;s(v) � dv;s(v).If an edge [u; v℄ belongs to the mathing we obtained, it means that the vertex u is insertedbetween the verties v and s(v). Let fT1; T2; : : : ; Tkg be a partition of V2 suh that for eahi 2 f1; : : : ; kg, the verties of Ti are the �xed ustomers of the ith tour of S and one opy of thedepot. Let ri = C � jTij + 1. Our aim is to �nd in G0 a minimum-weight omplete mathing6



M suh that the number of edges in M \Ei is smaller than or equal to ri, for eah i 2 f1; : : : ; kg.Example 4. Figure 2 shows the mathing instane orresponding to the vrp instane whoseinitial solution is showed in Figure 3. The distane matrix (of G0) is shown in Figure 2 Right.In Figure 2 Left, we did not draw all the edges but only the four edges whih belong to theminimum-weight partiular restrited omplete mathing (of ost -4). This optimal solutionorresponds to the solution of Figure 4 for the vrp (the best neighbor solution of the instaneof Figure 3): we start with the initial solution of Figure 3 and insert vertex 2 between 0 and6, and 7 between 6 and 0, in the �rst tour (the tour whose �xed verties are those of T1) andwe insert 4 between 1 and 3, and 5 between the depot (0' is a opy of the depot) and 1 in theseond tour.Theorem 3.1 Let S be a feasible solution of the vrp with unit demands and let � be a subsetof the verties of S de�ned as mobile. Let G0 be the bipartite graph whih orresponds to themulti-insertion neighborhood of S (G0 is onstruted as stated above). The solution M of themin wprm problem on G0 gives us a best neighboring solution S0 of S, and S0 is the solutionwhih orresponds to S in whih we have removed the mobile verties and then inserted eahmobile edge as follows: if [u; v℄ 2M , vertex u is inserted between the verties v and s(v).Proof : If we hoose [u; v℄ in M , it means that we insert the mobile vertex u between the �xedverties v and s(v): the ost of [u; v℄ is equal to dv;u + du;s(v) � dv;s(v), whih is the ost to gofrom v to u, plus the ost to go from u to s(v) (s(v) is the �xed suessor of v), minus the ostto go from v to s(v). Thus, the sum of the weights of the edges in M is the sum that we have toadd to the total distane of the tours in the graph of the �xed verties of G to obtain the totaldistane of the tours of S0. Therefore, the smaller this sum is, the smaller the total distaneof S0 will be. Let us now show that all the neighbors of S an be represented by a partiularrestrited omplete mathing in G0 and that only the neighbors of S are represented by suh amathing.We know that the number of mobile verties is smaller than or equal to the number of arsin the graph of �xed verties (otherwise we ould not insert eah mobile vertex between two�xed verties and S would not have any neighbor). This number is smaller than or equal tothe number of �xed verties (not taking into aount the depot), plus the number of tours inthe graph. Indeed, for eah �xed vertex exept the depot, there is one and only one outgoingar, and the number of outgoing ars of the depot is equal to the number of tours, k. Thus,the number of ars in the graph of �xed verties is equal to jV2j, and we dedue from it thatjV1j � jV2j. Therefore, sine M is a omplete mathing of G0, all the verties of V1 belong to M .This means that all the mobile verties will be inserted in S0. Moreover, sine M is a mathing,eah vertex is inserted at most one. So eah mobile vertex u is inserted one and only one inS0 and it is inserted between two �xed verties (v and s(v), whih are both �xed verties, byonstrution).Let us now show that the solution obtained is feasible: eah tour must ontain the depotand there must be at most C+1 verties in a tour (C lients and the depot). We know that, foreah i 2 f1; : : : ; kg, the number of edges in M \Ei is smaller than or equal to ri = C � jTij+1.jTij is the number of �xed verties of the ith tour and it ontains the depot. The number of7



edges in M \Ei is the number of mobile verties added to this tour. The number of verties inthe ith tour of S0 is then jTij+ jM \Eij � C + 1 and the ith tour ontains the depot.Thus, eah solution of the partiular restrited omplete mathing problem orresponds to aneighbor of S and eah neighbor of S orresponds to a solution of the partiular restrited om-plete mathing problem. Sine S0 is the solution of minimum ost, S0 is the best neighbor of S. 24 Resolution of the min wprm problemThe min wprm problem an be expressed by an integer linear program as follows: We havea bipartite graph G = (V;E) with verties V = (V1; V2), and a partition fT1; T2; : : : ; Tkg ofverties of V2. Let fE1; E2; : : : Ekg be a partition of the edges E suh that [u; v℄ 2 Ei if and onlyif v 2 Ti. Minimize X[u;v℄2E uvxuv (1)subjet to: Xv2V2;[u;v℄2E xuv = 1 8u 2 V1 (2)Xu2V1;[u;v℄2E xuv � 1 8v 2 V2 (3)X[u;v℄2Ei xuv � ri 8i 2 f1; : : : ; kg (4)xuv 2 f0; 1g 8[u; v℄ 2 E: (5)We have xvw = 1 if the edge [v; w℄ belongs to the mathing we look for, and xvw = 0otherwise. Equation (1) means that our goal is to minimize the weight of the hosen edges (thismeans for the vrp that the distane to onnet the mobile verties to tours of the �xed vertieshas to be as small as possible). Sine jV1j � jV2j, Equations (2) et (3) mean that we are lookingfor a mathing (for the vrp, Equation (2) means that eah mobile vertex must be inserted oneand only one, and Equation (3) means that at most one mobile vertex is inserted between two�xed verties). Equation (4) represents the onstraint apaities (for the vrp, the number ofmobile verties inserted in a same tour has to be smaller than or equal to the remaining apaityof the vehile).Sine the onstraint matrix of the linear program is totally unimodular (see [ABPW06℄), wean polynomially solve it by using linear programming tehniques. However it is more onve-nient to use ow tehniques to solve this problem.We an express the min wprm problem by the following ow problem: we have an orientedgraph G0 = (V 0; E0) where eah ar (u; v) has a ost wu;v and a apaity Capu;w, we have asoure and a sink and we are looking for a maximum ow of minimum ost. The verties V 0 are8



the soure, verties V1 and V2 (also belonging to G), k verties fa1; a2; : : : ; akg, and the sink.The soure has an outgoing ar towards eah vertex of V1. Eah vertex u 2 V1 has an outgoingar towards vertex v 2 V2 if and only if there is an edge [u; v℄ 2 E. Eah vertex u 2 Ti hasan outgoing ar towards vertex ai, and verties fa1; a2; : : : ; akg have an outgoing ar towardsthe sink. The ost of all the ars are 0, exept for the ars between the verties of V1 and theverties of V2: the ost of ar (u; v) is equal to the ost of this edge in the orresponding minwprm problem: wu;v = u;v. The apaity of all the ars is 1, exept for the ars betweenverties fa1; a2; : : : ; akg and the sink: the apaity of the ar between ai and the sink is equal tori. jV1j units of ow are released from the soure. For example, Figure 5 shows the ow instaneorresponding to the min wprm problem instane shown on Figure 2.
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Figure 5: Flow instane orresponding to the mathing instane of Figure 2. Ars are orientedleft to right. The apaity of eah ar is equal to Cap, or 1 when Cap is not written. The ostof eah ar is equal to 0 exept for the ars between the verties of V1 and the verties of V2.We an polynomially �nd the maximum ow of minimum ost using a ow algorithm [AMO93℄.Knowing this solution, we an dedue a solution to the orresponding min wprm problem: anedge between verties of V1 and V2 belongs to the minimum weight mathing if and only if thereis one unit of ow whih goes through this edge in G0. Indeed, eah vertex of V1 releases oneunit of ow, there is at most one unit of ow whih goes through eah vertex of V2, and no morethan ri ows units ome from verties of Ti.Given the redution presented in the previous setion, we obtain the following result.Corollary 4.1 The problem of �nding the best solution in the exponential multi-insertion neigh-borhood, for the vrp problem with unit demands, an be solved in polynomial time.9



One an notie that to use the multi-insertion neighborhood within a tabu searh framework,one needs to identify a move with minimum positive ost. This an be easily done, by solvinga set of instanes of the maximum ow of minimum ost. In eah instane the ost of an edgeis �xed to a large value, in order to prevent a mobile vertex to be inserted in the same positionthan the initial solution.5 Case where the demands of the ustomers are arbitraryWe have onsidered so far a restrited version of the vrp in whih the demand of eah ustomeris exatly one. We may ask whether the exponential neighborhood that we have introdued analso be explored in polynomial time if the demands of the ustomers are arbitrary, i.e. if eahustomer asks for a number (integer) of units of goods, whih is not neessarily one. In thisase, the multi-insertion neighborhood is the one explained in Setion 2, and in whih a solutionis feasible if and only if the sum of the demands of the ustomers in the same tour is smallerthan or equal to the apaity of the vehile.Theorem 5.1 It is NP-hard to �nd the best solution in the multi-insertion neighborhood if thedemands of the ustomers are arbitrary, and this even if the distanes (in the matrix of thedistanes) are all equal to 1.Proof : We give a redution from the Partition problem [GJ79℄: Given n � 3 integer numbersx1; : : : ; xn withPni=1 xi = 2L for some integer L , the task is to deide whether there is a subsetB � f1; : : : ; ng suh that Pi2B xi = L. Given an instane of Partition, we onstrut thefollowing instane of our problem:We have a depot and 3n� 4 ustomers. In the initial solution there are n+2 tours: n toursof length 2, in whih there is only one ustomer to be served, and 2 tours in whih there aren�2 ustomers per tour. The mobile verties are the ustomers of the n �rst tours (the tours oflength 2); the other ustomers and the depot are �xed verties. Figure 6 shows suh an instanewhen n = 5. Eah �xed ustomer has a demand of 1, eah mobile ustomer i has a demandequal to xi, and the vehile apaity is n � 2 + Pni=1 xi2 . The distane between every ouple ofverties is 1.We now have to insert the mobile verties between the �xed ones, and we wish to minimizethe total distane of the tours. The best solution is obtained when the ost of adding a mobilevertex to the tours of �xed verties is 1: the total distane is then equal to 3n � 2. This ispossible if and only if the mobile verties are not inserted in a tour where the only �xed ver-tex is the depot, that is if they are inserted in the large tours. Sine the vehile apaity isn � 2 + Pni=1 xi2 , and sine eah �xed ustomer has a demand of 1, the sum of the demands ofthe mobile ustomers inserted in a tour has to be smaller than or equal to Pni=1 xi2 . The totalsum of the demands of the mobile verties is equal to Pni=1 xi, so this is possible if and only ifthere exists a partition (M1;M2) of the mobile ustomers suh that the sum of the demands ofustomers of M1 is equal to the sum of the demands of ustomers of M2, that is if there is asolution of the Partition problem. 210
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[AL97℄ E. Aarts and J.K. Lenstra. Loal Searh in Combinatorial Optimization. Wiley,1997.[AMO93℄ R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: Theory, Algorithms,and Appliations. Prentie Hall, 1993.[CCPS97℄ W.J. Cook, W.H. Cunningham, W.R. Pulleybank, and A. Shrijver. Combinatorialoptimization, hapter 5. Wiley, 1997.[CPvdV02℄ R.K. Congram, C.N. Potts, and S.L. van de Velde. An iterated dynasearh algorithmfor the single-mahine total weighted tardiness sheduling problem. INFORMS Jour-nal on Computing, 14(1):52{67, 2002.[DW00℄ V.G. Deineko and G.J. Woeginger. A study of exponential neighborhoods for thetravelling salesman problem and for the quadrati assignment problem. Mathemat-ial Programming Ser. A 87, pages 519{542, 2000.[EOAF02℄ O. Ergun, J.B. Orlin, and A.S-Feldman. Creating very large sale neighborhoodsout of smaller ones by ompounding moves: A study on the vehile routing problem.MIT Sloan Working Paper No 4393-02, Otober 2002.[GJ79℄ M.R. Garey and D.S. Johnson. Computers and intratability. A guide to the theoryof NP-ompleteness. W. H. Freeman, San Franiso, 1979.[GLS93℄ M. Gr�otshel, L. Lov�asz, and A. Shrijver. Geometri Algorithms and CombinatorialOptimization. Springer-Verlag, 1993.[Gut99℄ G. Gutin. Exponential neighbourhood loal searh for the traveling salesman prob-lem. Speial issue of Computers and Operations Researh on the traveling salesmanproblem, 26:313{320, 1999.[GYZ02℄ G. Gutin, A. Yeo, and A. Zverovith. Exponential neighborhoods and dominationanalysis for the TSP. In G. Gutin and A.P. Punnen, editors, Traveling salesmanproblem and its variations, pages 223{256. Kluwer, 2002.[Hur99℄ J. Hurink. An exponential neighborhood for a one-mahine bathing problem. ORSpetrum, 21(4):461{476, 1999.[IRT78℄ A. Itai, M. Rodeh, and S.L. Tanimoto. Some mathing problems for bipartite graphs.Journal of the ACM, 25:517{525, 1978.[TP93℄ P.M. Thompson and H.N. Psaraftis. Cyli transfer algorithms for multivehilerouting and sheduling problems. Operations Researh, 41:935{946, 1993.[TV01℄ P. Toth and D. Vigo. The Vehile Routing Problem. Soiety for Industrial andApplied Mathemati Press, 2001.[XK96℄ J. Xu and J.P. Kelly. A network ow-based tabu searh heuristi for the vehilerouting problem. Transportation Siene, 30:379{393, 1996.12


