
The hierarchical model for load balancing on two machines ∗

Orion Chassid † Leah Epstein‡

Abstract

Following previous work, we consider the hierarchical load balancing model on two machines
of possibly different speeds. We first focus on maximizing the minimum machine load and show
that no competitive algorithm exists for this problem. We overcome this barrier in two ways,
both related to previously known models. The first one is fractional assignment, where each job
can be arbitrarily split between the machines. The second one is a semi-online model where the
sum of jobs is known in advance. We design algorithms of best possible competitive ratios for
both these cases. Furthermore, we show that the combination of the two models leads to the
existence of an optimal algorithm (i.e., an algorithm of competitive ratio 1). This algorithm
is clearly optimal for the makespan minimization problem as well. For the latter problem, we
consider the fractional assignment model and design an algorithm of best possible competitive
ratio for it.

1 Introduction

We study load balancing on two machines for cases where the two processors or machines do not
have the same capabilities.

We consider online algorithms. For an algorithm A, we denote its cost by A as well. The cost
of an optimal offline algorithm that knows the complete sequence of jobs is denoted by opt. In
this paper we measure the performance of algorithms using the (absolute) competitive ratio. For
minimization problems, the competitive ratio of A is the infimum R ≥ 1 such that for any input,
A ≤ R · opt. For maximization problems, the competitive ratio of A is the infimum R ≥ 1 such
that for any input, opt ≤ R · A.

If the competitive ratio of an online algorithm is at most C we say that it is C-competitive. If
no R satisfying the inequality exists, we say that the competitive ratio is unbounded or ∞.

The most general non-preemptive online scheduling model assumes m machines 1, . . . , m and
n jobs, arriving one by one. The information associated with a job j is a vector of pj of length m,
where pi

j is the processing time or size of job j if it is completely assigned to machine i. Each job
is to be assigned to a machine before the arrival of the next job. The load of a machine i is the

∗This work was submitted as the M.Sc. thesis of the first author.
†Department of Mathematics, University of Haifa, 31905 Haifa, Israel. orion.chassid@gmail.com.
‡Department of Mathematics, University of Haifa, 31905 Haifa, Israel. lea@math.haifa.ac.il.

1

sum of the processing times on machine i of jobs assigned to this machine. The typical goal is to
minimize the maximum load of any machine but other goals such as maximizing the minimum load
of any machine [5, 3] and minimizing the `p norm of the load vector [2] were studied as well.

This model is known as unrelated machines [1]. Many simplified models were defined, both in
order to allow the design of algorithms with good performance (which is often difficult, or even
impossible, for unrelated machines), and to make the studied model more similar to reality. In the
sequel we describe a few models which are relevant to our study.

Uniformly related machines [1, 7] are machines with speeds associated with them, thus machine
i has speed si and the information that a job j needs to provide upon its arrival is just its size, or
processing time on a unit speed machine, which is denoted by pj . Then we have pi

j = pj/si. If all
speeds are equal, we get identical machines [11].

Restricted assignment [4] is a model where each job may be run only on a subset of the machines.
A job j is associated with a processing time pj which is the time to run it on any of its permitted
machines Mj . Thus if i ∈ Mj we have pi

j = pj and otherwise pi
j = ∞. The hierarchical model

represents a situation where there is a clear order between the strength of machines, in terms of
the jobs they are capable of performing. Thus, the set Mj is a prefix of the machines for any j.

In this paper we consider the restricted related hierarchical model, where machine i has speed
si, job j has a processing time of pj on a unit speed machine, and may run on machines 1, . . . , gj .
Therefore, pi

j = pj

si
if i ≤ gj and otherwise pi

j = ∞.
We study the case of two machines. In this case, it is reasonable to assume that the machine

that is capable of running any job is faster, since this is a stronger machine. However, the opposite
case can occur in real life as well, when the machine that cannot run any job, is more specialized,
and works faster when it is running the jobs that it is capable of running.

Since we consider the case of two machines, we have gj = 1, if the job may run only on the first
machine, and gj = 2 if it can run on both. We denote by D the sum of jobs j such that gj = 1.
Throughout the paper, we denote the speed of the first machine by q and assume that the second
machine has unit speed. Since the machines are different, we need to consider both cases q ≥ 1
and q < 1, together or separately. The jobs are denoted by j1, j2, . . ., in the order of arrival and
have respective processing times p1, p2, Their hierarchies are denoted by g1, g2, We denote
the final loads of the two machines by L1 and L2, and the total processing time assigned to the
machines by P1 and P2. We have P2 = L2 and P1 = q · L1. We denote the sum of all processing
times by Σ, and if the value of Σ is known in advance, we assume Σ = 1 (which can be achieved
by scaling).
Previous results. The hierarchical model for general m was studied in [6] (see also [8]). They
designed a non-preemptive e + 1 ≈ 3.718-competitive algorithm.

Park, Chang and Lee [13] and independently Jiang, He and Tang [12] studied the problem on two
identical speed hierarchical machines. They both designed 5

3 -competitive algorithms and showed
that this ratio is best possible. In [13], the semi-online variant where the sum of job processing
times is known in advance was studied as well. A 3

2 -competitive algorithm was designed. The

2

authors further showed that this is best possible.
The paper [12] considered a restricted type of a preemptive model in which idle time is not

allowed. They designed a 3
2 -competitive algorithm and showed this is best possible. Additional

work on preemptive models can be found in [9].
Another model where each job can be arbitrarily split between the machines, and parts of the

same job can run on different machines, possibly in parallel, was studied in the restricted assignment
model [4]. It was shown there that this option does not change the order of growth of the best
possible competitive ratio, which is Θ(log n). We refer to this model as fractional assignment and
to the model where each job is assigned completely to one machines as integral assignment.
Our results. We provide a complete solution for several problems, for which we consider a
setting of two hierarchical machines, and all possible speed combinations.

The max-min model is the one where the goal is to maximize the load of the least loaded
machine. The min-max model is the one where the goal is to minimize the load of the most loaded
machine.

In this paper we first focus on the max-min model. We show that no competitive algorithm
exists for this problem. To overcome this barrier, we study two more specific previously known
models. The first one is fractional assignment, defined above. The second one is a semi-online model
where the sum of jobs is known in advance. We design algorithms of best possible competitive ratios
for both these cases. Furthermore, we show that the combination of the two models leads to the
existence of an optimal algorithm (i.e., an algorithm of competitive ratio 1). Note that the overall
competitive ratio for fractional assignment (i.e., the supremum competitive ratio for any speed)
turns out to be 2, whereas the overall competitive ratio for our semi-online model is unbounded.
The values of these ratios for q = 1, i.e., for identical speed machines are 3

2 and 2, respectively.
The optimal algorithm for the combined model is clearly optimal for the makespan minimization

problem as well. For this latter problem, we consider the fractional assignment model and design an
algorithm of best possible competitive ratio for it. The overall competitive ratio of this algorithm
is 4

3 , and this value is achieved for q = 1. Note that this is the only case we find in this paper,
where the competitive ratio is the same for two machines of speed ratio q, no matter which one of
them is the stronger machine in terms of hierarchy.

We summarize our results in table 1. All bounds are tight, thus there is a single entry for each
problem.

Note that for two uniformly related machines of speed ratio q, the best competitive ratio for
the max-min model is q + 1, which is achieved by a greedy algorithm [10].

2 Standard assignment in the max-min model

In this section we show that no algorithm with bounded competitive ratio exists in this model, and
thus more specific models need to be studied. The next theorem is valid for any q ∈ (0,∞).

3

Scheduling Problem q < 1 q ≥ 1

Integral online assignment, max-min ∞ ∞
Fractional online assignment, max-min 2q+1

q+1
2q+1
q+1

Integral semi-online assignment, max-min 1 + 1
q q + 1

q

Fractional semi-online assignment (both max-min and min-max) 1 1

Fractional online assignment, min-max (q+1)2

q2+q+1
(q+1)2

q2+q+1

Table 1: Table of results

Theorem 1 Any load balancing algorithm for max-min optimization has an unbounded competitive
ratio.

Proof Consider an algorithm A and the following sequence of jobs. The first job has the properties
p1 = 1, g1 = 2 and we must assign it to the second machine, else a second job with p2 = q, g2 = 1
arrives and after it is assigned (to machine 1) we get opt = 1 and A = 0. This implies R = ∞.

Otherwise, let M be a sufficiently large number. The second job has p2 = qM, g2 = 2 and we
must assign it to machine 1 else we get A = 0 and opt ≥ 1 and R = ∞ again.

Finally, a third job with p3 = q(qM + 1) and g3 = 1 arrives. We must assign it to machine 1
and get A = 1, since this is the load on the second machine. However, opt = qM +1 which implies
that R →∞ as M grows, for any fixed q.

¤

3 Fractional assignment in the max-min model

In this section we design an algorithm for fractional assignment. The next algorithm is defined for
any q ∈ (0,∞).
Algorithm 1

Upon arrival of a new job j,

1. If gj = 1, assign j completely to the first machine.

2. If gj = 2, split it into two parts in the ratio q : q + 1. The first machine receives a part of size
qpj

2q+1 of the job and the second machine receives a part of size (q+1)pj

2q+1 of the job.

Theorem 2 Algorithm 1 has a competitive ratio of at most 2q+1
q+1 , which is best possible.

Proof Denote by alg the cost of Algorithm 1. If no job has gj = 2 then opt = 0 and
alg = 0, thus the competitive ratio is 1. Otherwise we have L2 = P2 = q+1

2q+1(Σ − D) and
P1 = D + q

2q+1(Σ−D) = q+1
2q+1D + q

2q+1Σ and so L1 = q+1
q(2q+1)D + 1

2q+1Σ.

4

We use the following bounds on opt. Due to the sum of processing times, opt ≤ Σ
q+1 . Since

the second machine can receive jobs of a total processing time of at most Σ−D, opt ≤ Σ−D.

If D ≤ qΣ
q+1 and the minimum load is on machine 1, using opt ≤ Σ

q+1 , opt
alg ≤

Σ
q+1

q+1
q(2q+1)

D+ 1
2q+1

Σ
≤

2q+1
q+1 , since D ≥ 0.

If D ≤ qΣ
q+1 and the minimum load is on machine 2, using opt ≤ Σ

q+1 , opt
alg ≤

Σ
q+1

q+1
2q+1

(Σ−D)
≤

Σ
q+1

q+1
2q+1

(Σ− qΣ
q+1

)
=

Σ
q+1

(q+1)
2q+1

Σ
q+1

≤ 2q+1
q+1 .

If D ∈ (qΣ
q+1 ,Σ], the minimum load is on machine 2 (since (Σ − D) q+1

2q+1 < Σ − D < Σ
q+1),

alg = q+1
2q+1(Σ−D), using opt ≤ Σ−D, opt

alg ≤ Σ−D
q+1
2q+1

(Σ−D)
= 2q+1

q+1 .

To prove a lower bound, we consider an algorithm A and the following sequence of jobs. The
first job has g1 = 2, p1 = 1. Let δ be the part of this job assigned by A to the second machine. At
this time the best way to split the job is into parts of size q

q+1 and 1
q+1 and thus opt = 1

q+1 .
If δ ≥ q+1

2q+1 , then the loads of the machines are L2 = δ and L1 ≤ 1
2q+1 < δ. Thus the minimum

load is on machine 1 which leads to a competitive ratio of at least 2q+1
q+1 . Otherwise, the sequence

is continued by an additional job with g2 = 1, p2 = q. After this job we have opt = 1. Clearly,
this job must run on the first machine, and the minimum load, which is δ < 1, is on machine 2, the
competitive ratio is now 1

δ > 2q+1
q+1 . ¤

4 Semi-online assignment in the max-min model

In this section we show algorithms for the cases q ≥ 1 and q < 1. The two cases use the same basic
algorithm with different choices of parameter.

Note that the competitive ratios for q1 > 1 and q2 = 1
q1

< 1, i.e., two cases where the speed
ratio is the same, we get different competitive ratios.

In the definitions of algorithms, we denote by `2 the current load of the second machine at each
time. Recall that the total sum of processing times is 1. Let Rq = max{q + 1

q , 1 + 1
q} ≥ 2

Algorithm 2

Upon arrival of a new job j,

1. If gj = 1, assign j to the first machine.

2. If gj = 2,

(a) If `2 + pj ≤ 1− q
(q+1)Rq

, assign j to machine 2.

(b) Otherwise, if q · Rq · `2 + pj > 1, assign j to machine 1.

(c) Otherwise assign j to machine 2.

Theorem 3 Algorithm 2 has a competitive ratio of at most Rq, which is best possible.

5

Proof Denote by alg the cost of Algorithm 2. If there is no job with gj = 2 then opt = 0 and
alg = 0 and the competitive ratio is 1. Otherwise if D > q

q+1 , then all the jobs such that gj = 2
will be assigned to machine 2 by step 2(a). We can show that all jobs with gj = 2 are assigned to
this machine, and thus its load will be 1−D ≤ 1

q+1 . The inequality 1
q+1 ≤ 1− q

(q+1)Rq
is equivalent

to Rq ≥ 1, and thus all jobs with gj = 2 are assigned to machine 2 by step 2(a). As a result, the
minimum load will be on machine 2, so opt = 1−D and alg ≥ 1−D, which gives a competitive
ratio of 1 as well.

If 1
q+1 < L2 ≤ 1 − q

(q+1)Rq
, then the minimum load will be on machine 1, and opt ≤ 1

q+1 ,

alg ≥ 1
(q+1)Rq

, and thus opt
alg ≤ Rq.

If 1
(q+1)Rq

≤ L2 ≤ 1
q+1 , the minimum load will be on machine 2, then alg ≥ 1

(q+1)Rq
, opt ≤ 1

q+1 .

This implies that opt
alg ≤ Rq.

If L2 < 1
(q+1)Rq

, then the minimum load is on machine 2.
There are two cases that it can be happen. D > q

q+1 , which we already considered, and else,
some job j such that gj = 2 was assigned to machine 1 by step 2(b) of the algorithm, then by the
definition of the algorithm, the following conditions hold at the time of arrival of this job j.

1. `2 + pj > 1− q
(q+1)Rq

, and thus since `2 ≤ L2 < 1
(q+1)Rq

we have pj > 1− q
(q+1)Rq

− 1
(q+1)Rq

=
1− 1

Rq
, since job j was not assigned by step 2(a).

2. qRq`2 + pj > 1 and so L2 ≥ `2 >
1−pj

qRq
, since the job was assigned by step 2(b).

We argue that this is the only job such that gj = 2 on machine 1. If there are at least two such
jobs i, j then pi + pj > 2(1− 1

Rq
) ≥ 1 since Rq ≥ 2 for every value of q, in contradiction to Σ = 1.

Therefore all the future jobs j′ such that gj′ = 2 (if such jobs exist) will be assigned to machine 2.
If opt assigns the job j to machine 1, then using the load of machine 2, opt ≤ 1− pj −D. Since
j is the only job assigned by the algorithm to machine 1 among jobs that machine 2 can run, we
have alg = 1− pj −D. In this case, the competitive ratio is 1. Otherwise if opt assigns this job
j to machine 2, by the load of the first machine opt ≤ 1−pj

q . alg ≥ 1−pj

qRq
so we get OPT

ALG ≤ Rq.
Finally, we are left with the case L2 > 1− q

(q+1)Rq
. This means that we did the last assignment

on machine 2 at step 2(c). In this case we have that L2 > 1
q+1 so the minimum load is on machine

1.
We show that such an assignment can only happen once. If it happens for a job j, then after

job j is assigned we have a load of more than 1 − q
(q+1)Rq

on machine 2, and for every i > j for

which the algorithm reaches step 2(b), qRq`2 + pi > qRq(1 − q
(q+1)Rq

) = qRq − q2

q+1 . If q ≥ 1,

we have qRq − q2

q+1 ≥ 2q − q = q ≥ 1 since Rq ≥ 2, q2

q+1 ≤ q and q ≥ 1. If q < 1, we have

qRq − q2

q+1 ≥ q + 1− q = 1 by the definition of Rq and again by q2

q+1 ≤ q. Therefore each such job
i is assigned to machine 1. If step 2(b) is not reached, since no further job can be assigned by step
2(a), this means that job i is assigned by step 1, and thus it is assigned to machine 1.

Denote by S2 the load of machine 2 before the arrival of job j. Job j was not assigned by step
2(a) and we have qRqS2 +pj ≤ 1, since j was not assigned by step 2(b) when this step was reached.

6

The smaller load is on the first machine, so alg ≥ 1−S2−pj

q ≥ 1−pj

q (1− 1
qRq

). Since the job pj must

be assigned to one of the machines, opt ≤ max{1− pj ,
1−pj

q }.
If q ≥ 1, max{1− pj ,

1−pj

q } = 1− pj and alg ≥ 1−pj

q (1− 1
q2+1

) using the definition of Rq. This

implies that OPT
ALG ≤ q2+1

q = q + 1
q .

If q < 1, max{1 − pj ,
1−pj

q } = 1−pj

q and alg ≥ 1−pj

q (1 − 1
q+1) using the definition of Rq. This

implies that OPT
ALG ≤ q+1

q = 1 + 1
q .

To prove a lower bound for q ≥ 1, we consider an algorithm A and the following sequence of jobs.
The first job has p1 = 1

(q2+1)(q+1)
, g1 = 2. If it is assigned to machine 1, a second job with g2 = 1

and size p2 = q
q+1 + q2

(q2+1)(q+1)
arrives. It must be assigned to machine 1. If the sequence of the jobs

terminates here it leads to an infinite competitive ratio since A = 0 and opt ≥ p1. Thus the first
job must be assigned to machine 2. A second job arrives, where p2 = q

q+1 , g2 = 2. If it is assigned

to machine 2, a third job arrives with p3 = q2

(q2+1)(q+1)
, g3 = 2, and it must be assigned to machine

1 (else we get zero load on the first machine and an infinite competitive ratio). For the sequence
of three jobs, the optimal assignment is to assign the second job to the first machine and the other
jobs to the second machine. This gives opt = 1

q+1 , alg ≤ q
(q2+1)(q+1)

and opt
alg ≥ q + 1

q . Otherwise

if the second job is assigned to machine 1, a third job, where p3 = q2

(q2+1)(q+1)
, g3 = 1 arrives,

which must be assigned to machine 1. We terminate the sequence of jobs, and get opt ≥ 1
q(q+1)

(by assigning the second job to machine 2 and the other jobs to machine 1) and alg = 1
(q2+1)(q+1)

.

Then opt
alg ≥ q + 1

q .
To prove a lower bound for q < 1, we consider an algorithm A and the following sequence of

jobs. The first job has p1 = q
(q+1)2

, g1 = 2. If it is assigned to machine 1, a second job with

g2 = 1 and size p2 = 1
q+1 + q2

(q+1)2
arrives. It must be assigned to machine 1. If the sequence of the

jobs terminates here it leads to an infinite competitive ratio since A = 0 and opt > p1. Thus the
first job must be assigned to machine 2. A second and third jobs arrive, where p2 = 1

q+1 , g2 = 2,

p3 = q2

(q+1)2
, g3 = 1. For the sequence of three jobs, the optimal assignment is to assign the second

job to the second machine and the other jobs to the first machine. This gives opt = 1
q+1 . If both

jobs are assigned to the first machine we have alg ≤ p1 and otherwise, alg ≤ p3

q . In both cases,
alg ≤ q

(q+1)2
and opt

alg ≥ 1 + 1
q . ¤

5 Fractional Semi-online assignment for both the max-min and

the min-max models

In this section we show a simple algorithm which achieves an optimal solution and thus has com-
petitive ratio 1 both for maximization of the minimum load and minimization of the maximum
load.

We denote by `2 the current load of the second machine at each time. Recall that the total sum
of processing times is 1. The algorithm below has the invariant that `2 ≤ 1

q+1 .

7

Algorithm 3

Upon arrival of a new job j,

1. If gj = 1, assign j completely to the first machine.

2. If gj = 2,

(a) If `2 = 1
q+1 , assign j to the first machine.

(b) Otherwise if `2 + pj ≤ 1
q+1 , assign j to the second machine.

(c) Otherwise assign a part of j of size 1
q+1 − `2 to machine 2 and the rest to machine 1.

Theorem 4 Algorithm 3 is an optimal algorithm.

Proof By definition, machine 2 cannot have a load of more than 1
q+1 . If it has exactly this load

and then L1 = L2 = 1
q+1 . In this case the algorithm is optimal since the machines are balanced.

Otherwise, the load of the second machine is smaller than the load of the first machine. In this
case, all jobs with gj = 2 were assigned to machine 2, and machine 1 only got jobs with gj = 1, so
this is an optimal schedule as well. ¤

6 Fractional assignment in the min-max model

In this section we design an algorithm for fractional assignment. The next algorithm is defined for
any q ∈ (0,∞) and is similar to the algorithm for the max-min model, but uses different parameters.
Algorithm 4

Upon arrival of a new job j,

1. If gj = 1, assign j completely to the first machine.

2. If gj = 2, split it into two parts in the ratio q2 : q + 1. The first machine receives a part of
size q2pj

q2+q+1
of the job and the second machine receives a part of size (q+1)pj

q2+q+1
of the job.

Theorem 5 Algorithm 4 has a competitive ratio of at most (q+1)2

q2+q+1
, which is best possible.

Proof Denote by alg the cost of Algorithm 4. We have L2 = P2 = q+1
q2+q+1

(Σ − D) and

P1 = D + q2

q2+q+1
(Σ−D) = q2

q2+q+1
Σ + q+1

q2+q+1
D and so L1 = q

q2+q+1
Σ + q+1

q(q2+q+1)
D.

We use the following bounds on opt. Due to the sum of processing times, opt ≥ Σ
q+1 . Since

the first machine must receive jobs of a total processing time at least D, opt ≥ D
q .

If D ≤ qΣ
q+1 and the maximum load is on machine 1, using opt ≥ Σ

q+1 , alg
opt ≤

q

q2+q+1
Σ+ q+1

q(q2+q+1)
D

Σ
q+1

≤
q

q2+q+1
Σ+ 1

q2+q+1
Σ

Σ
q+1

≤ (q+1)2

q2+q+1
.

8

If D ≤ qΣ
q+1 and the maximum load is on machine 2, using opt ≥ Σ

q+1 and D ≥ 0, alg
opt ≤

q+1

q2+q+1
(Σ−D)

Σ
q+1

≤
q+1

q2+q+1
Σ

Σ
q+1

≤ (q+1)2

q2+q+1
.

If D ∈ (qΣ
q+1 , Σ], the maximum load is on machine 1 (since L1 = q

q2+q+1
Σ + q+1

q(q2+q+1)
D >

Σ q+1
q2+q+1

> Σ
q+1), using opt ≥ D

q and Σ ≤ q+1
q D, alg

opt ≤ L1
D/q =

q2

q2+q+1
Σ+ q+1

q2+q+1
D

D ≤ q(q+1)+q+1
q2+q+1

=
(q+1)2

q2+q+1
.

To prove a lower bound, we consider an algorithm A and the following sequence of jobs. The
first job has g1 = 2, p1 = 1. Let δ be the part of this job assigned by A to the second machine. At
this time the best way to split the job is into parts of size q

q+1 and 1
q+1 and thus opt = 1

q+1 .
If δ ≥ q+1

q2+q+1
, then the loads of the second machine is L2 = δ and the competitive ratio is at

least δ
1/(q+1) ≥

(q+1)2

q2+q+1
. Otherwise, the sequence is continued by an additional job with g2 = 1,

p2 = q. After this job we have opt = 1. Clearly, this job must run on the first machine, and we

have L1 = 1−δ+q
q >

q2

q2+q+1
+q

q = (q+1)2

q2+q+1
which is also the competitive ratio. ¤

References

[1] J. Aspnes, Y. Azar, A. Fiat, S. Plotkin, and O. Waarts. On-line load balancing with applica-
tions to machine scheduling and virtual circuit routing. J. ACM, 44:486–504, 1997.

[2] B. Awerbuch, Y. Azar, E. F. Grove, M.-Y. Kao, P. Krishnan, and J. S. Vitter. Load balancing
in the lp norm. In Proc. 36th Symp. Foundations of Computer Science (FOCS), pages 383–391.
IEEE, 1995.

[3] Y. Azar and L. Epstein. On-line machine covering. Journal of Scheduling, 1(2):67–77, 1998.

[4] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-line assignments. J. Algorithms,
18:221–237, 1995.

[5] N. Bansal and M. Sviridenko. The santa claus problem. In 38th ACM Symposium on Theory
of Computing (STOC2006), pages 31–40, 2006.

[6] A. Bar-Noy, A. Freund, and J. Naor. On-line load balancing in a hierarchical server topology.
SIAM J. Comput., 31:527–549, 2001.

[7] P. Berman, M. Charikar, and M. Karpinski. On-line load balancing for related machines. J.
Algorithms, 35:108–121, 2000.

[8] P. Crescenzi, G. Gambosi, and P. Penna. On-line algorithms for the channel assignment
problem in cellular networks. Discrete Applied Mathematics, 137(3):237–266, 2004.

[9] G. Dósa and L. Epstein. Preemptive scheduling on a small number of hierarchical machines.
manuscript, 2006.

9

[10] L. Epstein. Tight bounds for online bandwidth allocation on two links. Discrete Applied Math.,
148(2):181–188, 2005.

[11] R. L. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical J.,
45:1563–1581, 1966.

[12] Y.-W. Jiang, Y. He, and C.-M. Tang. Optimal online algorithms for scheduling on two identical
machines under a grade of service. Journal of Zhejiang University SCIENCE A, 7(3):309–314,
2006.

[13] J. Park, S. Y. Chang, and K. Lee. Online and semi-online scheduling of two machines under
a grade of service provision. Operations Research Letters, 34(6):692–696, 2006.

10

