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Abstract

In this paper, we formulate and investigate the following problem: given integérandr where
k>r >1,d > 2, and a prime powed, arranged hyperplanes oﬂF’; to maximize the number of
r-dimensional subspaceslbg each of which belongs to at least one of the hyperplanes. The problem
is motivated by the need to give tighter bounds for an error-tolerant pooling design based on finite
vector spaces.

1 Introduction

Designing good error-tolerant pooling design is a central problem in the area of non-adaptive group
testing [9], which has many practical applications including DNA library screening [8, 10, 21], multiple
access control [5-7,17, 26], and error correcting/detecting superimposed codes [11-15], to name a few.

To date, there are relatively few papers addressing the problem of designing and analyzing error-
tolerant pooling designs [1,3,4,16,19,20,22,24]. In [22], Ngo and Du introduced a non-adaptive pooling
design based on finite vector spaces, which was later found to be highly error-tolerant by D’yachkov et
a. [10]. The analysis of the design in [10] was not very tight. In this paper, we give a tighter analysis of
the design. This is done via formulating a new and very interesting hyperplane arrangement problem on
finite fields.

To formally describe our problem, we first need a few definitionsO1Amatrix M is said to be
d-disjunct if and only if no column is contained in the uniondbthers. (Here, columns are viewed
as characteristic vectors of sets of rows.}i-Alisjunct matrix corresponds precisely to a pooling design
which can identify at most negative items. For the design to tolerate a few errors in outcomes, it is not
sufficient for a column to just not be covered dpthers. Ad*-disjunct matrix is a matrix where, given
anyd + 1 columnsCy, C1, ..., Cy, the setlCy \ C; U--- U Cy has at least elements. It is easy to show
that ad*-disjunct matrix can deteet— 1 errors and corredt(z — 1)/2| errors.

The construction in [22] is as follows. Letbe a prime power aneh, k, r» be integers such that
m >k >r > 1. Let My(m, k,r) be the0l-matrix whose rows are indexed bydimensional subspaces
of F;* and whose columns are indexed bylimensional subspaces Bf*. M,(m, k,r) has al in row
R and columnC' if and only if R is a subspace af'. It is easy to see that/,(m, k, d) is d-disjunct (the
containment method by Macula [18]). Later, D’yachkov et al. [10] realized that we do not have to take
r = d for My(m, k,r) to bed-disjunct ¢ could be a lot smaller thas, evenr = 1 works sometimes).
Moreover, the construction can, in general, tolerate a lot of errors. Specifically, their main result was that,
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for anyd + 1 k-dimensional subspacé%, C1, ..., Cy of F7*, the number of--dimensional subspaces
each of which belongs t6y but not otheiC; is at least

ol e
r q r q r q
and that the bound is tight faf < ¢ + 1. Here, for any non-negative integers n, [;Z]q denotes the

Gaussian coefficient, to be defined in the next section.

The number of columns a¥/,(m, k,r) is [’,’j] o exponentially larger thag+ 1. Hence, it is desirable
to devise tight bounds for the case whes 1 < d < [’,?] — 1. In this paper, we partially address this
problem. In the process, we formulate a new — to the best of the author’s knowledge — hyperplane
arrangement problem on finite fields.

The rest of this paper is organized as follows. Section 2 motivates the hyperplane arrangement prob-
lem and presents preliminary results on the problem. Section 3 gives tighter bounds for the original group
testing problem using results from Section 2. Section 4 concludes the paper with additional remarks and
a conjecture.

2 An extremal hyperplane arrangement problem on finite fields

2.1 Motivation and notations
Henceforth, we shall usg:; )., (or (a),, for short) to denote the-shifted factorial
(@)n = (a;@)n = (1 —a)(1 —aq) ... (1 —ag"™").

The g-analogue of a natural numberis denoted byn],, and the Gaussian coefficient is denoted by
]+ They are defined as follows.

[O]q = 0
[n]q = 1+q+...+qn71’n21
{n] {O whenn < m
- @n__ _ (=¢")..(A=q"~"*) .
" e = Uoflalmt o) otherwise.

We shall drop the subscrigtand write[n] and [;}J when there is no potential confusion as to wi.
Our notations are standard in tieseries literature [2].
For any vector spac&, let X denote the set of all-dimensional subspaces &f, anddim(X) the

dimension ofX. Then, it is well known (see, e.g. [25]) that

dim(X)] |

r

x| = [
For any vector space% andY,
XNy =XnY (1)

because any vector space which is a subspaceé afid a subspace af is also a subspace of the vector
spaceX NY. Note that, in generaX U Y is not a vector space, and

XUY #spafX uUY).
The matrixM,(m, k, r) is d*-disjunct for

z=min{[Co \ C1U---UCy| : Cp,C1,...Cqared + 1 differentk-dimensional subspaces Bf' }.



Thus, we want to find:-dimensional subspac€$, C1, . .., Cq of F* that minimizes the quantity
[Co\CrU---UCql.
Foranyi € {1,...,d}, letH; = C; N Cy, then

[Co\C1U---UCy| = [Co\(CLNCo)U---U(CqnCo)l

= [Co\ (C:NCo)U---U(Cyn o)l

= |Co\HiU---UHql|
For|Cy\ C1 U---UCy| to be minimized, we can assume thatM]}lare hyperplanes af,. The number
of hyperplanes oty is [kfl] = [k]. Thus, whend < [k] we can also assume that thg aredifferent
hyperplanes of’y; because, gived hyperplanesd, ..., H;, we can take the span of each of them
with a vectorv ¢ Cj to reconstruct the’;. For the group testing problem, we will address the case
whend > [k] in a later section. In this section, we only consider the case when [k]. Because
|Co \ C1 U --- U Cy| is minimized wherfH; U - - - U Hy| is maximized, the above discussion motivates
the following problem.

Problem 1 (Our Hyperplane Arrangement Problem). Given ak-dimensional vector spacg overF,,
and an integed such that < d < [k], find d hyperplaned?y, ..., H, of C thatmaximizeshe following
quantity

|HyU--- U Hyl.

At least, find good upper bounds for the quantity.
The result in [10] can be restated as follows

Theorem 2.1 (D’yachkov et al.). Given integers: < k — 2, andd < [k|. LetHy,. .., H; bed different
hyperplanes of &-dimensional vector space ovEy. Then,

fhu--um!éd{k_l}—(d—l)[k_z} 2

T r

The bound is tight wheti < ¢ + 1.

2.2 Initial observations

By inclusion-exclusion, we have
d

Fo-Uf = Y07 Y

=1 TC{1,...,d} teT
|T'|=1
d .
- Yot Y Nw
=1 TC{1,....d} teT
|T|=1
d .
- dim ((),e He
_ Z(_l)z 1 Z |: (;GT ):| (3)
=1 TC{1,...,d}
|T|=1

As we will see later, it is not easy to determine the dimension of the intersection of a given number of
arbitrary hyperplanes. That is why inclusion-exclusion does not help us directly solve the problem. Next,
for any two vector spacek andY’,

dim(X) 4+ dim(Y) = dim(spaffX UY)) + dim(X NY).



In particular, if X is a hyperplane anH is a proper subspace ofadimensional vector space, then either
Y C X ordim(Y) = dim(X NY) 4+ 1. To see this, suppos€ has dimension < £ — 1. If Y Z X,
thendim(spartX UY')) = k, which implies

dim(Y) =k + dim(X NY) — dim(X) = dim(X N Y) + 1.

In words, a hyperplane either contairisor “cut into” Y at one dimension lower than that Bf. This
observation leads to the following simple yet important lemma.

Lemma 2.2. Let Hy,. .., H, be somer hyperplanes of af-dimensional vector space ovEf, whose
intersection isl = H; N ---N H,. Let H be any hyperplane not containing and setY; = H N H;,
i€{l,...,z}. Then, for any subse&t C {1,...,z}, we have

dim <ﬂ H) = dim (ﬂ Y) +1 (4)

€S €S

Proof. BecauseH does not contaid, H does not contaimies H, foranyS. Thus,

dim (ﬂ H) = dim (Hm ﬂH) +1 = dim <ﬂ(HmH)> +1 = dim (ﬂ Y) + 1.

€S €S ies €S
O

TheY; actually are hyperplanes &f. What this lemma tells us is that, the inter-relationship (in terms
of dimensions of intersections) between the hyperpldhges. . , H, is the same as the inter-relationship
between the hyperplanés, ..., Y, of H. The hyperplane¥i,..., Y, form a down-scaled picture of
Hq,...,H,insideH.

Consider ari-dimensional subspace of ak-dimensional vector spaceoverF,. Let! be an integer
wherei < [ < k. Then, the number dfdimensional subspaces 8fcontainingX is [’;:Z] In particular,
wheni = k — 2 the number of hyperplanes that contaiiss

k—(k—2) 2
= = 1. 5
P R R ©
Lastly, the following identity is thg-analog of the Pascal’s triangle identity for binomial coefficients
[25]:
n n—1 _m|n—1
e R ©
m q m q m q

2.3 The cases ot and 5 hyperplanes

Using the basic observations in the previous section, when there are a constant number of hyperplanes it
is possible to enumerate all possible classes of arrangements (with respect to our objective function). In
this section, we will compute the objective function for all arrangementsasfd5 hyperplanes. These
arrangements will serve as the base case to prove generic bounds in the next section.

We will be working on ari-dimensional vector spacgoverF,, namelyS is isomorphic tde]. For
any set of (at least two) hyperplangs let 2:(7) be the maximum number of hyperplanesHnwhose
intersection has dimensidn- 2. Note that2 < z(H) < ¢ + 1. Also define

Tl

HeH

g(H) =

We first consider thd-hyperplane case.



Lemma 2.3. LetH = {H1, Ho, H3, H,} be a set ofl hyperplanes o]Ff].
() If z(H) =4, then

r r

g(H) = g1V :=4[l_ 1] —3[5_2]- (7)

This case can only hold when> 3.

g(H) = g{¥ ::4[l_1}—5[l_2}+2[l_3] 8)

(i) If z(H) = 3, then

(iii) If z(H) = 2, then there are two cases:

JH) = oY 4[l_1}—6[l_2}+4[l_3}—{l_4] ©

T r

g(H) =gY = 4[l_1}—6[l_2}+3[l_3} (10)

r

Moreover,g§4) > g§4) > g§4) > gé(fl).
Proof. Caseqi) and(i7) follow straightforwardly from the inclusion-exclusion formula (3) and Lemma

2.2. Suppose(H) = 2, thenWW = Hy N Hy N Hs has dimension — 3. If H, does not contaifl” then

H,; N Hy N H3 N Hy has dimension — 4, and the formula fog§4) follows from (3) again. (Note that,
when! < 3 all formulas follow trivially.) Thus, the last case is whéih C Hy. LetV; = H4 N H;, for

i =1,2,3. Because(H) = 2, theV; are three different hyperplanesif. Moreover,V;NVoNVs = W,
anddim(V;) =1 — 2fori = 1,2, 3. We can computg(H) as follows, noting Lemma 2.2,

g(H) = [HiUHyUH;3|+ |Hy\ Hi U Hy U Hj|
= [H{UH;UH;|+|Hy\ ViUV, U V5|
= |[HyUHy UHs|+ [Hy| — [V, UV, U V3|
-1 — — — — —
= G D)6
r 4 r r r r

(4)

O
Lemma 2.4. LetH = {H1, Hy, Hs, Hy, H5} be a set ob hyperplanes oFf].
(i) If z(H) =5, then
-1 -2
g<H>=g§5):=5[ ]—4[ ] (12)
T T
This case can only hold when> 4.
(i) If x(H) = 4, then
-1 -2 -3
g(H) = g% :_5[ }—7[ }+3[ } (12)
r r r

This case can only hold when> 3.



(iii) If z(H) = 3, then there are three cases:

gH) =gy = 5 -8 +4 : (13)
L T ] L T ] L T ]
-1 [1—2 (13 1—4
gy =g = 5! Y =o' TP 47 —2[ ] (14)
A L 7 L 7 T
-1 _[1—2] _[1-3]
gH) =gP = 5 -9 +5 . (15)
L 7 ] L 7 ] L 7 ]
The last case (ojé‘r’)) can only hold whemg > 3).
(iv) If z(H) = 2, then there are four cases:
[l —1] (1 — 2] — —4
s =g = 5" -1 0 [l 3} } 4[l } (16)
L T L 7 ] r r
[1—1] [l — 2] — —4 —
o)y =g¢® = 5" 1 10 +10[l 3} 5[l } + {l 5], (17)
L T L 7 ] T T T
1 —1] 71— 2] l— 1—4
gH) =g = 5 ~10 + 9{ 3] —3 ] (18)
L T ] L T ] T T
g(H) =g = o R ] +6{l_3]. (19)
T L 7 ] T

The last case (ojff) can only hold whem > 3).

Moreover,g§5) > 955) > g§5) > 9515) > g§5); and 9515) > gé5) > g§5) > gés) > 955)- Also,gés) > gé5)
wheng > 4.

Proof. e Caseqi) and (i) follow straightforwardly from the inclusion-exclusion formula (3) and
Lemma 2.2.

e Supposer(H) = 3, and assum& = H; N Hy N Hs has dimensior — 2. LetV; = H, N H;,
fori =1,2,3,andU = H; N Hy N H3 N Hy. Sincex(H) = 3, H, does not contai” and thus
dim(U) =1 — 3 by Lemma (2.2). We consider three cases as follows.

Case 1: H; contains som&; for i = 1, 2, 3. Note thatH; cannot contain two differerit; because
the span of two different; is exactly H,. Without loss of generality, assumé& C Hs. In this
caseH, H,, Hs, H, intersectH; at 3 different hyperplanes (aff5), becausdi; and H, intersect
H; at the same hyperplang. Lemma 2.2 and the inclusion-exclusion formula (3) gives

|F1UUF5’ = ’EUEUE|+|F4\H4QH1UH4QHQUH4QH3’+
’E\H5ﬂH1U“-UH5ﬁH4’

-1 [—2 -1 -2 l—
e s ) R RO B ) R
T T r r r
Case 2: H; containsU but does not contain any/; for ¢ = 1,2, 3. In this caseH1, Hs, H3, Hy

intersectH at4 different hyperplanes all of which contaibs It follows that

|[HiU---UH;5| = [HiUHyUH;s|+ [Hg\ HeOHy U Hy N Ho U Hy N Hal +
’E\H5QH1U--~UH5QH4‘

= (LD (D
(=2 2 -




Case 3: Hs does not contaily. This is the situation of Lemma 2.2. We have

|[HiU---UHs| = |HiU---UHy|+|Hs\ HsNHy U---UHsN Hy
-1 -2 [ —
= (5]
T T T
=57 -] -
T T T T

o If x(H) = 2, thenW = H; N Hy N H3 has dimensiori — 3. The formula forgé5) comes from
the case whettl, and Hs both containiV; g§5) is obtained wheV C Hy butW ¢ Hj or vice
versa;g§5) is obtained wherlV is neither a subspace &f, or Hs and H5 does not contain the

intersection/ = Hi N Hy N H3 N Hy, andg§5) is obtained whe®V is neither a subspace éf,
nor Hs, yet Hs does contairl/. The computation is similar to the previous case.
]

2.4 Tighter bounds and the packing arrangement

We first consider the simplest case whes 1. The total number of lines (i.6.-dimensional subspaces)
of ak-dimensional vector spaceoverlF, is

LetV be anyk—2-dimensional subspace §f andHy, . . ., H,11 be the set of all hyperplanes containing
V. Then, the inclusion-exclusion formula (3) gives

— —-— k—1 k—2 ¢1-1 ¢F2-1 -1
HU---UH, | = 1 — = 1 - = .
[Hy U g+1l = (a+ )[ ) ] q[ . ] (¢+1) i e 1

The following theorem follows immediately.
Theorem 2.5. Whenr = 1 andd > ¢ + 1, the maximum value ¢ff; U --- U Hy| is exactly[k], the

total number of lines irb. One way to obtain this maximum is to haye 1 of the hyperplanes contain
a (k — 2)-dimensional subspace 6f

For the rest of this section, we can assumie 2. We first give a particular arrangement called the
packing arrangemenwhich proves to be optimal in certain cases.

Definition 2.6 (Packing Arrangement). Supposé + ¢ < d < 1+ g + ¢°. Let S be thek-dimensional
vector space that the hyperplanes belong to.lLee any(k — 2)-dimensional subspace §f andW be
any (k — 3)-dimensional subspace ®f. The packing arrangementf d hyperplanes is an arrangement
in whichgq + 1 hyperplanes, sa¥f, . .., H,1, all containl” and the rest of the hyperplanes contdin

We could define the packing arrangement for larger values éfowever, for the purposes of this
paperd < 1 + ¢ + ¢ is sufficient. The following lemma tells us the “cost” of this arrangement.

Lemma 2.7. Considerl +¢ < d < 1+ g+ ¢%, and letH, ..., H; be in the packing configuration.
Then,

|HlU...U}Id|:d[k;1] (g 1)~ (L4 g+ ¢D) {k;ﬂ +q(d—q—1)[k;3]. (20)



Proof. Without loss of generality, assundéy, . .., H,; intersect at ¢k — 2)-dimensional subspade
and the rest of the hyperplanes contaifta- 3)-dimensional subspad& C V. Consider any?; where
g+1<i<d LetV; = H;nHj forje{1,...,i—1}. Note that allV; containl¥; and, due to Lemma
2.2 it is easy to see thaf, ..., V, aredifferenthyperplanes ofi;. Moreover, the total number of
hyperplanes irff; that containi¥” is exactlyl + ¢. Hence,

{‘/17---7‘/;1-1-1} = {Vlv"'a‘/;:—l}-

Consequently,
|H;\HiU---UH; 1| = [H;\HiNH;U---UH;_1NH|
= [F\VAU- UV
= [HA\ViU- U Vo]
= [ = [ UVl
- [
Finally,

d

q+1
U@+ > [m\H U UH_|
i=1 i=q+2

AR e R R s

— d{kzl} —(d(g+1) —(1+q+¢%) [kZQ] +q(d—q—1)[k;3]-

d
Um
=1

O

Theorem 2.8. Supposel < [k]. Consider anyd hyperplanesH, ..., H; of a k-dimensional vector
spaceS overF,. Letz be a maximal number of hyperplanes intersecting ifka- 2)-dimensional
subspacé” C C. Then,
— — kE—1 k—2 k — k—2 k —
mroeomm <t [ Y s (7)) e

T r r
Proof. Without loss of generality, assunié,, . . ., H, intersect al/ of dimension(k — 2), and no other
H; containsV’. We invoke Lemmas 2.2 and formula (3) again. Siht;edoes not contaif/, it is easy
to see that, foil < j < z, the vector spacelg; = H; N H; are all distinct with dimension one less than
Hj. Also, the intersection of th&; has dimension one less th&n It follows that

EAT T = AV u = [ = [ ey [

Consequently,
d T d

UHi = UHi+ Z ‘HZ‘\H1U'-'UH1‘_1‘

=1 =1 i=x+1

d
[+ > E\FU- U
=1 i=x+1

= e[ e (] [ e[
T e (] [)

A
=
&




We get Theorem 2.1 for free.
Corollary 2.9 (Same as Theorem 2.1)Suppose < d < ¢g+1. Then, for anyl hyperplaneddy, ..., Hy
of ak-dimensional vector spacg overF, we have

\PAU---um\Sd[kzl]—(d—l)[k_Q} (22)

r
Moreover, there exists an arrangement of hyperplanes achieving the right hand side.

Proof. Without loss of generality, suppogé, . .., H, intersect at somék — 2)-dimensional subspace
V', and no othetd; containsl’. Note that2 < = < d. Thusz(x — d — 1) < —d. The triangle identity

(6) gives
T T r—1
Relation (21) implies

o oms < o' [ o)

ol

T T

The inequality is tight because equality can be obtained by chodshygerplaneddy, ..., H; all of
which contain gk — 2)-dimensional subspadé. O

Theorem 2.10. Supposel > ¢ + 2 andk > r > 2. Then, for anyd hyperplanesHy, ..., H; of a
k-dimensional vector spacg overlF, we have

|HlU---UHd|§d[k;1} —(2d—3)[k;2} +(d—2)[k;3]. (23)

Moreover, whenl = ¢ + 2 the packing arrangement achieves the bound.

Proof. Without loss of generality, suppogé, . .., H, intersect at somék — 2)-dimensional subspace
V, and no otherH; containsV. Note that, in this caseé < = < ¢+ 1, and thuse(x — d — 1) <
2(2—-d—1) = —-2(d —1). Relation (21) implies

[ ol e (7 [7))
= e raa

Whend = ¢ + 2, we only have to verify that the right hand side of (23) is the same as that of (20), which
is mechanical. 0

[Hi U UH,

IN

Theorem 2.11. Supposel > ¢+ 3 andk > r > 2. Then, for anyd hyperplanesH,, ..., H; of a
k-dimensional vector spacg overF, we have

‘HIU...Udegd[k;l} —(3d—7)[k;2] +(2d—6)[k;3]. (24)

Moreover, whenl = ¢ + 3 the packing arrangement achieves the bound.



Proof. Letx = x({H;,...,Hy}). Without loss of generality, suppodé,, ..., H, intersect at some
(k — 2)-dimensional subspadé, and no othel; containsV’. Consider two cases as follows.
Case l:z > 3. Notethaty < ¢g+1<d—-2,andthustc(z —d—1) <3(3—-d—1) =-3(d—2).

Relation (21) implies
U e (- 1)

= d[k;l] —(3d—7)[k;2} +(2d—6)[k_3}

|Euuﬁd|

IN

r

Case 2:x = 2. Applying Lemma 2.3 with = k£ we get

- k—1 k—2 k—3 k—4
‘H1UH2UH3UH4‘SmaX{g§4);gz(14)}:g§4):4|: :|—6|: :|+4|: :|—|: :|

T r T T
Consider anyH; with ¢ > 4. Forj = 1,2,3,4, letV; = H; N H;. Then, theV; are four different
hyperplanes of{;, because: = 2. Applying Lemma 2.3 with = k — 1 we get

o - E—2 k—3 k—4
ViUVLUVaU V| > mln{g§4),g§4),g§4)7g§4)} =g§4) =4[ } —6[ ] +3{ }

T T T
Hence,

N N k—1 k—2 k—3 k—4
|Hi\H1UH2UH3UH4|:|Hi\—|V1UV2UV3UV4S[ . }—4[ . ]4—6[ . }—3[ . ]

Putting them all together, we get

d
UH:
i=1

d
= [HIUH,UHs UH,|+ ) |H\ H UH, UHsUH,
=5

(A0 )-
R )
S P R s R

It is easy to see that, whén> r > 2 the last expression is at most the right hand side of (24).
Lastly, whend = ¢ + 3 the fact that the packing arrangement achieves the bound (24) is straightfor-
ward. O

IN

Theorem 2.12. Supposel > ¢ + 4 andk > r > 2. Then, for anyd hyperplanesHy, ..., H; of a
k-dimensional vector spacg overlF, we have

-2
r

rfm--.uwg[k;l}—<4d—13>[’“ (25)

]+(3d—12)[k_3].

r
Moreover, whenl = ¢ + 4 the packing arrangement achieves the bound.

Proof. The proof is similar to the previous theorem with three cases to consider:4, x = 3, and
x = 2. This time we make use of Lemma 2.4 and its various relations. O

10



3 Tighter analysis of M, (m, k, )

The results of the previous section help us analyze\fhém, k, ) construction. Firstly, we show that
M,(m, k, 1) is not a good design wheh> ¢ + 1. The result is a direct corollary of Theorem 2.5.

Corollary 3.1. Whend > ¢ + 1, thenM,(m, k, 1) is notd-disjunct.

Proof. Let Cy be ak-dimensional subspace &f'. Let Hy, ..., H,1 be hyperplanes ofy chosen
according to Theorem 2.5. Let be any vector inf;" not belonging toCy. Fori = 1,...,d, let
C; = spar{ H;,v}. Choose arbitrarily:-dimensional subspacés$, o, ...,Cy. Then, it is easy to see
thatCy \ C1 U --- U Cy = 0. O

Secondly, the number of columns df, (m, k,r) is [/'], which is exponentially larger thai], the
number of hyperplanes in fledimensional vector space. The following theorem shows a limit of the
pooling design.

Theorem 3.2.If d > [k], thenM,(m, k, r) is notd-disjunct.

Proof. Consider anys-dimensional subspacg, of F*. Let Hy, ..., H}) be the set of all hyperplanes
of Co. Letwv be any vector irfy* \ Co. For anyi = 1,...,[k], defineC; = sparv, H;}. Fori =
[k] + 1,...,d, choosek-dimensional subspacés; arbitrarily as long as they have not been chosen

before. Then|Cy \ C1 U --- U Cy4| = 0, namelyM,(m, k,r) is notd-disjunct. This is because amy
dimensional subspace 6f is also a subspace of soig, i = 1, ... [k]; thus, itis also am-dimensional
subspace of’;. O

Henceforth, we only need to consider the case when 2 andg + 2 < d < [k]. The following
corollaries follow from Theorems 2.10, 2.11, and 2.12, respectively.

Corollary 3.3. Whend > ¢ +2andm > k > r > 2, M,(m, k,r) is d*-disjunct, where

e i RRC Tt i IR L

r T T r
Moreover, the construction is exactfy-disjunct wherd = ¢ + 2.

Corollary 3.4. Whend > ¢+ 3andm > k > r > 2, M,(m, k,r) is d*-disjunct, where

R PR e R

T T T T
Moreover, the construction is exacty-disjunct wheni = ¢ + 3.
Corollary 3.5. Whend > g +4 andm > k > r > 2, M,(m, k,r) is d*-disjunct, where
k kE—1 k—2 k—3
z:H_d[ ]+(4d—13)[ ]—(3d—12){ }
r T r T

Moreover, the construction is exactfy-disjunct wherd = ¢ + 4.

Remark 3.6. Note that, to apply all the three corollaries above, we only need to find the radgela¢h

makesz > 0. It turns out that this range is quite large, and the task is mechanical. We omit this step
here. Also, it is straightforward to check that the bounds in Theorems 2.10, 2.11, and 2.12 are better than
that of Theorem 2.1.
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4 Discussions

It is very natural to ask the converse of our hyperplane arrangement problem, leading to the following:

Problem 2 (Second Hyperplane Arrangement Problem) Given ak-dimensional vector spade over
F,, and an integed such thatl < d < [k], find d hyperplanes;, ..., H; of C' that minimizesthe
following quantity

|HyU---U Hyl.

Historically, there have been quite a lot of studies on hyperplane arrangements. The extremal prob-
lems such as the problem of dividing a space into as many regions as possible given a fixed number
of hyperplanes are mostly on infinite vector spaces. Arrangement problems and results on finite fields
mostly are about algebraic and structural informatiordliMis functions, Poincarpolynomials, ...) or
topological structures. The reader is referred to [23] for a good treatment of such problems. Our two
hyperplane arrangement problems are new, to be best of the author’s knowledge.

It is possible to show that the packing arrangement is the besgtfor; + 5 (¢ > 3) and so on, but
the current method becomes too tedious to be useful. We conjecture that the packing arrangement is best
for Problem 1 wher + ¢ < d < 1 + ¢ + ¢%. We also leave open Problem 2 at this point.
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