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Abstract Many combinatorial optimization problems can be formulated as 0/1
integer programs (0/1 IPs). The investigation of the structure of these prob-
lems raises the following tasks: count or enumerate the feasible solutions and
find an optimal solution according to a given linear objective function. All these
tasks can be accomplished using binary decision diagrams (BDDs), a very pop-
ular and effective datastructure in computational logics and hardware verifica-
tion.

We present a novel approach for these tasks which consists of an output-sensitive
algorithm for building a BDD for a linear constraint (a so-called threshold BDD) and
a parallel AND operation on threshold BDDs. In particular our algorithm is capable
of solving knapsack problems, subset sum problems and multidimensional knapsack
problems.

BDDs are represented as a directed acyclic graph. The size of a BDD is the number
of nodes of its graph. It heavily depends on the chosen variable ordering. Finding the
optimal variable ordering is an NP-hard problem. We derive a 0/1 IP for finding an
optimal variable ordering of a threshold BDD. This 0/1 IP formulation provides the
basis for the computation of the variable ordering spectrum of a threshold function.

We introduce our new tool azove 2.0 as an enhancement to azove 1.1
which is a tool for counting and enumerating 0/1 points. Computational results on
benchmarks from the literature show the strength of our new method.
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1 Introduction

For many problems in combinatorial optimization the underlying polytope is a
0/1 polytope, i.e. all feasible solutions are 0/1 points. These problems can be for-
mulated as 0/1 integer programs. The investigation of the polyhedral structure often
raises the following problem:

Given a set of inequalities Ax ≤ b, A ∈ Z
m×d , b ∈ Z

m, compute a list of all
0/1 points satisfying the system.

Binary decision diagrams (BDDs) are perfectly suited to compactly represent all
0/1 solutions. Once the BDD for a set of inequalities is built, counting the solutions
and optimizing according to a linear objective function can be done in time linear
in the size of the BDD, see e.g. (Becker et al. 2005; Behle and Eisenbrand 2007).
Enumerating all solutions can be done by a traversal of the graph representing the
BDD.

In Sect. 2 of this paper we develop a new output-sensitive algorithm for building
a QOBDD for a linear constraint (a so-called threshold BDD). More precisely, our
algorithm constructs exactly as many nodes as the final QOBDD consists of and does
not need any extra memory. In Sect. 3 the synthesis of these QOBDDs is done by
an AND operation on all QOBDDs in parallel which is also a novelty. Constructing
the final BDD by sequential AND operations on pairs of BDDs (see e.g. Behle and
Eisenbrand 2007) may lead to explosion in size during computation even if the size
of the final BDD is small. We overcome this problem by our parallel AND operation.

The size of a BDD heavily depends on the variable ordering. Finding a variable
ordering for which the size of a BDD is minimal is a difficult task. Bollig and Wegener
(1996) showed that improving a given variable ordering of a general BDD is NP-
complete. For the optimal variable ordering problem for a threshold BDD we present
for the first time a 0/1 IP formulation in Sect. 4. Its solution gives the optimal variable
ordering and the number of minimal nodes needed. In contrast to all other exact BDD
minimization techniques (see Ebendt et al. 2003 for an overview) which are based on
the classic method by Friedman and Supowit (1987), our approach does not need to
build a BDD explicitly. With the help of this 0/1 IP formulation and the techniques
for counting 0/1 vertices described in (Behle and Eisenbrand 2007) we are able to
compute the variable ordering spectrum of a threshold function.

We present our new tool azove 2.0 (Behle 2007) which is based on the algo-
rithms developed in Sects. 2 and 3. Our tool azove is able to count and enumerate
all 0/1 solutions of a given set of linear constraints, i.e. it is capable of constructing all
solutions of the knapsack, the subset sum and the multidimensional knapsack prob-
lem. In Sect. 5 we present computational results for counting the satisfiable solutions
of SAT instances, matchings in graphs and 0/1 points of general 0/1 polytopes.

BDDs

Binary Decision Diagrams (BDDs) were first proposed by Lee in 1959 (Lee 1959).
Bryant (1986) presented efficient algorithms for the synthesis of BDDs. After that,
BDDs became very popular in the area of hardware verification and computational
logics, see e.g. (Meinel and Theobald 1998; Wegener 2000).
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Fig. 1 A threshold BDD representing the linear constraint 2x1 +5x2 +4x3 +3x4 ≤ 8. Edges with parity 0
are dashed

We provide a short definition of BDDs as they are used in this paper. A BDD for
a set of variables x1, . . . , xd is a directed acyclic graph G = (V ,A), see Fig. 1a. All
nodes associated with the variable xi lie on the same level labeled with xi , which
means, we have an ordered BDD (OBDD). In this paper all BDDs are ordered. For
the edges there is a parity function par : A → {0,1}. The graph has one node with
in-degree zero, called the root and two nodes with out-degree zero, called leaf 0 resp.
leaf 1. Apart from the leaves all nodes have two outgoing edges with different parity.
A path e1, . . . , ed from the root to one of the leaves represents a variable assignment,
where the level label xi of the starting node of ej is assigned to the value par(ej ).
An edge crossing a level with nodes labeled xi is called a long edge. In that case the
assignment for xi is free. All paths from the root to leaf 1 represent the set T ⊆ {0,1}d
of true-assignments. The size of a BDD is defined as the number of nodes |V |. Let wl

be the number of nodes in level l. The width of a BDD is the maximum of all number
of nodes in a level w = max{wl | l ∈ 1, . . . , d}.

Vertices u,v ∈ V with the same label are equivalent if both of their edges with
the same parity point to the same node respectively. If each path from root to leaf 1
contains exactly d edges the BDD is called complete. A complete and ordered BDD
with no equivalent vertices is called a quasi-reduced ordered BDD (QOBDD). A ver-
tex v ∈ V is redundant if both outgoing edges point to the same node. If an ordered
BDD does neither contain redundant nor equivalent vertices it is called reduced or-
dered BDD (ROBDD). For a fixed variable ordering both QOBDD and ROBDD are
canonical representations.

A BDD representing the set T = {x ∈ {0,1}d : aT x ≤ b} of 0/1 solutions to the
linear constraint aT x ≤ b is called a threshold BDD. For each variable ordering the
size of a threshold BDD is bounded by O(d(|a1| + · · · + |ad |)), i.e. if the weights
a1, . . . , ad are polynomial bounded in d , the size of the BDD is polynomial bounded
in d (see Wegener 2000). Hosaka et al. (1997) provided an example of an explic-
itly defined threshold function for which the size of the BDD is exponential for all
variable orderings.
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2 Output-sensitive building of a threshold BDD

In this section we give a new output-sensitive algorithm for building a threshold
QOBDD of a linear constraint aT x ≤ b in dimension d . This problem is closely
related to the knapsack problem. Our algorithm can easily be transformed to work
for a given equality, i.e. it can also solve the subset sum problem.

A crucial point of BDD construction algorithms is the in advance detection of
equivalent nodes (Meinel and Theobald 1998). If equivalent nodes are not fully de-
tected this leads to isomorphic subgraphs. As the representation of QOBDDs and
ROBDDs is canonical these isomorphic subgraphs will be detected and merged at a
later stage which is a considerable overhead.

We now describe an algorithm that overcomes this drawback. Our detection of
equivalent nodes is exact and complete so that only as many nodes will be built as the
final QOBDD consists of. No nodes have to be merged later on. Let w be the width
of the BDD. The runtime of our algorithm is O(dw log(w))

W.l.o.g. we assume ∀i ∈ {1, . . . , d} ai ≥ 0 (in case ai < 0 substitute xi with 1− x̄i ).
In order to exclude trivial cases let b ≥ 0 and

∑d
i=1 ai > b. For the sake of simplicity

be the given variable ordering the canonical variable ordering x1, . . . , xd . We assign
weights to the edges depending on their parity and level. Edges with parity 1 in level l

cost al and edges with parity 0 cost 0. The key to exact detection of equivalent nodes
are two bounds that we introduce for each node, a lower bound lb and an upper bound
ub. They describe the interval [lb, ub]. Let cu be the costs of the path from the root
to the node u. All nodes u in level l for which the value b − cu lies in the interval
[lbv, ubv] of a node v in level l are guaranteed to be equivalent with the node v. We
call the value b − cu the slack. Figure 1a illustrates a threshold QOBDD with the
interval bounds set in each node.

Algorithm 1 Build QOBDD for the constraint aT x ≤ b

BUILDQOBDD(slack, level)
1: if slack < 0 then
2: return leaf 0
3: if slack ≥ ∑d

i=level ai then
4: return leaf 1
5: if exists node v in level with lbv ≤ slack ≤ ubv then
6: return v

7: build new node u in level
8: l = level of node
9: 0-edge son = BUILDQOBDD(slack, l + 1)

10: 1-edge son = BUILDQOBDD(slack-al , l + 1)
11: set lb to max(lb of 0-edge son, lb of 1-edge son + al)

12: set ub to min(ub of 0-edge son,ub of 1-edge son + al)

13: return u

Algorithm 1 constructs the QOBDD top-down from a given node in a depth-first-
search manner. We set the bounds for the leaves as follows: lbleaf 0 = −∞, ubleaf 0 =



J Comb Optim (2008) 16: 107–118 111

−1, lbleaf 1 = 0 and ubleaf 1 = ∞. We start at the root with its slack set to b. While
traversing downwards along an edge in step 9 and 10 we substract its costs. The sons
of a node are built recursively. The slack always reflects the value of the right hand
side b minus the costs c of the path from the root to the node. In step 5 a node is
detected to be equivalent with an already built node v in that level if there exists a
node v with slack ∈ [lbv, ubv].

If both sons of a node have been built recursively at step 11 the lower bound is set
to the costs of the longest path from the node to leaf 1. In case one of the sons is a
long edge pointing from this level l to leaf 1 the value lbleaf 1 has to be temporarly
increased by

∑d
i=l+1 ai before. In step 12 the upper bound is set to the costs of the

shortest path from the node to leaf 0 minus 1. For this reason the interval [lb, ub]
reflects the widest possible interval for equivalent nodes.

Lemma 1 The detection of equivalent nodes in Algorithm 1 is exact and complete.

Proof Assume to the contrary that in step 7 a new node u is built which is equivalent
to an existing node v in the level. Again let cu be the costs of the path from the root
to the node u. Because of step 5 we have b − cu 	∈ [lbv, ubv].
Case b − cu < lbv : In step 11 lbv has been computed as the costs of the longest

path from the node v to leaf 1. Let lbu be the costs of the longest path from
node u to leaf 1. Then there is a path from root to leaf 1 using node u with costs
cu + lbu ≤ b, so we have lbu < lbv . As the nodes u and v are equivalent they are
the root of isomorphic subtrees, and thus lbu = lbv holds.

Case b − cu > ubv : With step 12 ubv is the costs of the shortest path from v to leaf 0
minus 1. Let ubu be the costs of the shortest path from u to leaf 0 minus 1. Again
the nodes u and v are equivalent so for both costs we have ubu = ubv . Thus there
is a path from root to leaf 0 using node u with costs cu + ubu < b which is a
contradiction. �

Algorithm 1 can be modified to work for a given equality, i.e. it can also be used
to solve the subset sum problem. The following replacements have to be made:

1: replace slack < 0 with slack < 0 ∨ slack >
∑d

i=level ai ,
3: replace slack ≥ ∑d

i=level ai with slack = 0 ∧ slack = ∑d
i=level ai .

3 Parallel AND operation on threshold BDDs

Given a set of inequalities Ax ≤ b, A ∈ Z
m×d , b ∈ Z

m, we want to build the ROBDD
representing all 0/1 points satisfying the system. This problem is closely related to
the multidimensional knapsack problem. Our approach is the following. For each of
the m linear constraints aT

i x ≤ bi we build the QOBDD with the method described
in Sect. 2. Then we build the final ROBDD by performing an AND operation on all
QOBDDs in parallel. The space consumption for saving the nodes is exactly the num-
ber of nodes that the final ROBDD consists of plus d temporary nodes. Algorithm 2
describes our parallel and-synthesis of m QOBDDs.
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Algorithm 2 Parallel conjunction of the QOBDDs G1, . . . ,Gm

PARALLELANDBDDS(G1, . . . ,Gm)
1: if ∀i ∈ {1, . . . ,m} : i = leaf 1 then
2: return leaf 1
3: if ∃i ∈ {1, . . . ,m} : i = leaf 0 then
4: return leaf 0
5: if signature(G1, . . . ,Gm) ∈ ComputedTable then
6: return ComputedTable[signature(G1, . . . ,Gm)]
7: xi = NEXTVARIABLE(G1, . . . ,Gm)
8: 0-edge son = PARALLELANDBDDS(G1|xi=0, . . . ,Gm|xi=0)
9: 1-edge son = PARALLELANDBDDS(G1|xi=1, . . . ,Gm|xi=1)

10: if 0-edge son = 1-edge son then
11: return 0-edge son
12: if ∃ node v in this level with same sons then
13: return v

14: build node u with 0-edge and 1-edge son
15: ComputedTable[signature(G1, . . . ,Gm)] = u

16: return u

We start at the root of all QOBDDs and construct the ROBDD from its root top-
down in a depth-first-search manner. In steps 1 and 3 we check in parallel for trivial
cases. Next we generate a signature for this temporary node of the ROBDD in step 5.
This signature is a 1 + m dimensional vector consisting of the current level and the
upper bounds saved in all current nodes of the QOBDDs. If there already exists a
node in the ROBDD with the same signature we have found an equivalent node and
return it. Otherwise we start building boths sons recursively from this temporary node
in steps 8 and 9. From all starting nodes in the QOBDDs we traverse the edges with
the same parity in parallel.

When both sons of a temporary node in the ROBDD were built we check its re-
dundancy in step 10. In step 12 we search for an already existing node in the current
level which is equivalent to the temporary node. If neither is the case we build this
node in the ROBDD and save its signature.

In practice the main problem of the parallel and-operation is the low hitrate of the
ComputedTable. This is because equivalent nodes of the ROBDD can have different
signatures and thus are not detected in step 5. In addition the space consumption for
the ComputedTable is enormous and one is usually interested in restricting it. The
space available for saving the signatures in the ComputedTable can be changed dy-
namically. This controls the runtime in the following way. The more space is granted
for the ComputedTable the more likely equivalent nodes will be detected in advance
which decreases the runtime. Note that because of the check for equivalence in step 12
the correctness of the algorithm does not depend on the use of the ComputedTable.
If the use of the ComputedTable is little the algorithm naturally tends to exponential
runtime.
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Fig. 2 Dynamic programming
table for the linear constraint
2x1 + 5x2 + 4x3 + 3x4 ≤ 8.
Variables Uln,Dln are shown as
•, © resp. The light grey blocks
represent the nodes in the
ROBDD and the dark grey
blocks represent the redundant
nodes in the QOBDD

4 Optimal variable ordering of a threshold BDD via 0/1 IP formulation

Given a linear constraint aT x ≤ b in dimension d we want to find an optimal variable
ordering for building the threshold ROBDD. A variable ordering is called optimal if
it belongs to those variable orderings for which the size of the ROBDD is minimal. In
the following we will derive a 0/1 integer program whose solution gives the optimal
variable ordering and the number of minimal nodes needed.

Building a threshold BDD is closely related to solving a knapsack problem.
A knapsack problem can be solved with dynamic programming (Schrijver 1986) us-
ing a table. We mimic this approach on a virtual table of size (d + 1)× (b + 1) which
we fill with variables. Figure 2 shows an example of such a table for a fixed variable
ordering. The corresponding BDD is shown in Fig. 1a.

W.l.o.g. we assume ∀i ∈ {1, . . . , d} ai ≥ 0, and to exclude trivial cases, b ≥ 0 and∑d
i=1 ai > b. Now we start setting up the 0/1 IP shown in Fig. 3. The 0/1 variables

yli (24) encode a variable ordering in the way that yli = 1 iff the variable xi lies on
level l. To ensure a correct encoding of a variable ordering we need that each index
is on exactly one level (2) and that on each level there is exactly one index (3).

We simulate a down operation in the dynamic programming table with the
0/1 variables Dln (25). The variable Dln is 1 iff there exists a path from the root
to the level l such that b minus the costs of the path equals n. The variables in the
first row (4) and the right column (5) are fixed. We have to set variable D(l+1)n to 1
if we followed the 0-edge starting from Dln = 1

Dln = 1 → D(l+1)n = 1 (12)

or according to the variable ordering given by the yli variables, if we followed the
1-edge starting from Dl(n+ai ) = 1

yli = 1 ∧ Dl(n+ai ) = 1 → D(l+1)n = 1 (15)

In all other cases we have to prevent D(l+1)n from being set to 1

yli = 1 ∧ Dln = 0 → D(l+1)n = 0 (16)

yli = 1 ∧ Dl(n+ai ) = 0 ∧ Dln = 0 → D(l+1)n = 0 (17)

In the same way, the up operation is represented by the 0/1 variables Uln (26).
The variable Uln is 1 iff there exists a path upwards from the leaf 1 to the level l with
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min
∑

l∈{1,...,d+1}
n∈{0,...,b}

Cln + 1 (1)

s.t.

∀i ∈ {1, . . . , d} ∑d
l=1 yli = 1 (2)

∀l ∈ {1, . . . , d} ∑d
i=1 yli = 1 (3)

∀n ∈ {0, . . . , b − 1} D1n = 0 (4)

∀l ∈ {1, . . . , d + 1} Dlb = 1 (5)

∀n ∈ {1, . . . , b} U(d+1)n = 0 (6)

∀l ∈ {1, . . . , d + 1} Ul0 = 1 (7)

B(d+1)0 = 1 (8)

∀n ∈ {1, . . . , b} B(d+1)n = 0 (9)

C(d+1)0 = 1 (10)

∀n ∈ {1, . . . , b} C(d+1)n = 0 (11)

∀l ∈ {1, . . . , d} :
∀n ∈ {0, . . . , b − 1} Dln − D(l+1)n ≤ 0 (12)

∀n ∈ {1, . . . , b} U(l+1)n − Uln ≤ 0 (13)

∀n ∈ {0, . . . , b}, j ∈ {1, . . . , n + 1} Dln + Ul(j−1) − ∑n
i=j Uli − Bl(j−1) ≤ 1 (14)

∀l ∈ {1, . . . , d}, i ∈ {1, . . . , d} :
∀n ∈ {0, . . . , b − ai} yli + Dl(n+ai ) − D(l+1)n ≤ 1 (15)

∀n ∈ {b − ai + 1, . . . , b − 1} yli − Dln + D(l+1)n ≤ 1 (16)

∀n ∈ {0, . . . , b − ai} yli − Dl(n+ai ) − Dln + D(l+1)n ≤ 1 (17)

∀n ∈ {ai , . . . , b} yli + U(l+1)(n−ai ) − Uln ≤ 1 (18)

∀n ∈ {1, . . . , ai − 1} yli − U(l+1)n + Uln ≤ 1 (19)

∀n ∈ {ai , . . . , b} yli − U(l+1)(n−ai ) − U(l+1)n + Uln ≤ 1 (20)

∀n ∈ {0, . . . , ai − 1} yli + Bln − Cln ≤ 1 (21)

∀n ∈ {0, . . . , ai − 1} yli − Bln + Cln ≤ 1 (22)

∀n ∈ {ai , . . . , b}, k ∈ {n − ai + 1, . . . , n} yli + Bln + B(l+1)k − Cln ≤ 2 (23)

∀l ∈ {1, . . . , d}, i ∈ {1, . . . , d} : yli ∈ {0,1} (24)

∀l ∈ {1, . . . , d + 1}, n ∈ {0, . . . , b} : Dln ∈ {0,1} (25)

Uln ∈ {0,1} (26)

Bln ∈ {0,1} (27)

Cln ∈ {0,1} (28)

Fig. 3 0/1 integer program for finding the optimal variable ordering of a threshold BDD for a linear
constraint aT x ≤ b in dimension d
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costs n. The variables in the last row (6) and the left column (7) are fixed. We have to
set Uln = 1 if there is a 0-edge ending in U(l+1)n = 1

U(l+1)n = 1 → Uln = 1 (13)

or according to the variable ordering given by the yli variables, if there is a 1-edge
ending in U(l+1)(n−ai ) = 1

yli = 1 ∧ U(l+1)(n−ai ) = 1 → Uln = 1 (18)

In all other cases we have to prevent Uln from being set to 1

yli = 1 ∧ U(l+1)n = 0 → Uln = 0 (19)

yli = 1 ∧ U(l+1)(n−ai ) = 0 ∧ U(l+1)n = 0 → Uln = 0 (20)

Next we introduce the 0/1 variables Bln (27) which mark the beginning of
the blocks in the dynamic programming table that correspond to the nodes in the
QOBDD. These blocks can be identified as follows: start from a variable Dln set to 1
and look to the left until a variable Uln set to 1 is found

Dln = 1 ∧ Ul(j−1) = 1 ∧
n∧

i=j

Uli = 0 → Bl(j−1) = 1 (14)

We set the last row explicitly (8, 9).
At last we introduce the 0/1 variables Cln (28) which indicate the beginning of the

blocks that correspond to the nodes in the ROBDD. The variables Cln only depend on
the Bln variables and exclude redundant nodes. The first blocks are never redundant

yli = 1 → Bln = Cln (21, 22)

If the 0-edge leads to a different block than the 1-edge, the block is not redundant

yli = 1 ∧ Bln = 1 ∧
⎛

⎝
n∨

k=n−ai+1

B(l+1)k = 1

⎞

⎠ → Cln = 1 (23)

We set the last row explicitly (10, 11).
The objective function (1) is to minimize the number of variables Cln set to 1 plus

an offset of 1 for counting the leaf 0. An optimal solution to the IP then gives the
minimal number of nodes needed for the ROBDD while the yli variables encode the
best variable ordering.

In practice solving this 0/1 IP is not faster than exact BDD minimization algo-
rithms which are based on Friedman and Supowit’s method (Friedman and Supowit
1987) in combination with branch & bound (see Ebendt et al. 2003 for an overview).
Nevertheless it is of theoretical interest as the presented 0/1 IP formulation can be
used for the computation of the variable ordering spectrum of a threshold func-
tion. The variable ordering spectrum of a linear constraint aT x ≤ b is the function
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spaT x≤b : N → N, where spaT x≤b(k) is the number of variable orderings leading
to a ROBDD for the threshold function aT x ≤ b of size k. In order to compute
spaT x≤b(k) we equate the objective function (1) with k and add it as the constraint∑

l∈{1,...,d+1}
n∈{0,...,b}

Cln +1 = k to the formulation given in Fig. 3. The number of 0/1 vertices

of the polytope corresponding to this formulation then equals spaT x≤b(k). In (Behle
and Eisenbrand 2007) we provide a method for counting these 0/1 vertices.

5 Computational results

We developed the tool azove 2.0 which implements the output-sensitive build-
ing of QOBDDs and the parallel AND synthesis as described in Sects. 2 and 3.
It can be downloaded from (Behle 2007). In contrast to version 1.1 which uses
CUDD 2.4.1 (Somenzi 2005) as BDD manager, the new version 2.0 does not
need an external library for managing BDDs.

In the following we compare azove 2.0 to azove 1.1 which sequentially
uses a pairwise AND operation (Behle and Eisenbrand 2007). We restrict our com-
parison to these two tools since we are not aware of another software tool specialized
in counting 0/1 solutions for general type of problems. The main space consumption
of azove 2.0 is due to the storage of the signatures of the ROBDD nodes. We re-
strict the number of stored signatures to a fixed number. In case more signatures need
to be stored we start overwriting them from the beginning.

Our benchmark set contains different classes of combinatorial optimization prob-
lems. All tests were run on a Linux system with kernel 2.6.15 and gcc 3.3.5 on a
64 bit AMD Opteron CPU with 2.4 GHz and 4 GB memory. Table 1 shows the com-
parison of the runtimes in seconds. We set a time limit of 4 hours. An asterisk marks
the exceedance of the time limit.

In fields like verification and real-time systems specification counting the solutions
of SAT instances has many applications. From several SAT competitions (Buro and
Büning 1993; Hoos and Stützle 2000) we took the instances aim, hole, ca004 and
hfo6, converted them to linear constraint sets and counted their satisfying solutions.
The aim instances are 3-SAT instances and the hole instances encode the pigeonhole
principle. There are 20 satisfiable hfo6 instances for which the results are similar. For
convenience we only show the first 4 of them.

Counting the number of matchings in a graph is one of the most prominent count-
ing problems with applications in physics in the field of statistical mechanics. We
counted the number of matchings for the urquhart instance, which comes from a par-
ticular family of bipartite graphs (Urquhart 1987), and for f2, which is a bipartite
graph encoding a projective plane known as the Fano plane.

The two instance classes OA and TC were taken from a collection of 0/1 polytopes
that has been compiled in connection with (Ziegler 1995). Starting from the convex
hull of these polytopes as input we counted their 0/1 vertices.

For instances with a large number of constraints azove 2.0 clearly outperforms
version 1.1. Due to the explosion in size during the sequential AND operation
azove 1.1 is not able to solve some instances within the given time limit. The
parallel AND operation in azove 2.0 successfully overcomes this problem.
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Table 1 Comparison of the tools azove 1.1 and azove 2.0

Name Dim Constraints 0/1 Solutions azove 1.1 azove 2.0

aim-50-3_4-yes1-2 50 270 1 77.26 50.23

aim-50-6_0-yes1-1 50 400 1 43.97 9.59

aim-50-6_0-yes1-2 50 400 1 179.05 1.62

aim-50-6_0-yes1-3 50 400 1 97.24 4.58

aim-50-6_0-yes1-4 50 400 1 164.88 13.08

hole6 42 217 0 0.15 0.09

hole7 56 316 0 4.16 1.57

hole8 72 441 0 5572.74 29.69

ca004.shuffled 60 288 0 53.07 20.38

hfo6.005.1 40 1825 1 ∗ 1399.57

hfo6.006.1 40 1825 4 ∗ 1441.56

hfo6.008.1 40 1825 2 ∗ 1197.91

hfo6.012.1 40 1825 1 ∗ 1391.39

f2 49 546 151200 ∗ 49.50

urquhart2_25.shuffled 60 280 0 ∗ 12052.10

OA:9-33 9 1870 33 0.05 0.03

OA:10-44 10 9708 44 0.51 0.34

TC:9-48 9 6875 48 0.16 0.15

TC:10-83 10 41591 83 1.96 1.24

TC:11-106 11 250279 106 26.41 11.67
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