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A QUADRATIC LOWER BOUND FOR COLOURFUL

SIMPLICIAL DEPTH

TAMON STEPHEN AND HUGH THOMAS

Abstract. We show that any point in the convex hull of each of (d+1)

sets of (d+ 1) points in R
d is contained in at least

⌊

(d+ 2)2/4
⌋

simplices

with one vertex from each set.

1. Introduction

Given a set S of points in R
d and an additional point p, the simplicial

depth of p with respect to S, denoted depthS(p), is the number of closed
d-simplices generated from points of S that contain p. This can be viewed
as a statistical measure of how representative p is of S [6]. In [5] the authors
consider configurations of d + 1 points in each of d + 1 colours in R

d. They
define the colourful simplicial depth of p with respect to a configuration S,
denoted depthS(p), as the number of d-simplices containing p generated by
sets of points from S that contain one point of each colour.

Given a configuration S = {S1, . . . , Sd+1} the core of the configuration is

the intersection of the convex hulls of the individual colours, i.e.
⋂d+1

i=1 conv(Si).
Define:

µ(d) = min
configurations S in Rd, p∈core(S)

depthS(p) (1)

The quantity µ(d) was introduced in [5]. In that paper, it was shown that
2d ≤ µ(d) ≤ d2 + 1, and conjectured that µ(d) = d2 + 1. In this paper we
prove

Theorem 1. µ(d) ≥ ⌊(d+ 2)2/4⌋.

In particular, this shows that µ(d) is quadratic. The quantity µ(d) is
used in bounding the depth of a monochrome simplicial median (i.e. point of
maximum simplicial depth) for n points in R

d via the method of Bárány [1]
as described in [5]. We remark also that in optimization, µ(d) represents the
minimum number of solutions to the colourful linear programming feasibility
problem proposed in [3] and discussed in [4].
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2. Preliminaries

We consider only configurations that have a non-empty core. Since we
compute depths using closed simplices, degeneracies that cause p to lie on
the boundary of a colourful simplex can only increase the colourful simplicial
depth by allowing p to lie in different simplices with disjoint interior. Thus,
since we are minimizing, we can assume that the core is full-dimensional and
the points of S lie in general position in R

d.
We also assume without loss of generality that the minimum in Equa-

tion (1) is attained at the origin, p = 0. We note that if some point in S is
0 then we are done since all the (d+ 1)d colourful simplices using this point
contain 0. Thus we can rescale the non-zero points of S so that they lie on
the unit sphere, Sd ⊂ R

d. Since the coefficients in a convex combination ex-
pressing 0 can also be rescaled, this does not affect which colourful simplices
contain 0.

Indeed, we observe that the colourful set {x1, . . . , xd+1} generates a colour-
ful simplex containing 0 exactly when the antipode −xd+1 of xd+1 lies in
cone(x1, . . . , xd), a pointed cone with vertex 0. Our strategy will be to un-
derstand how S

d can be covered by d-coloured simplicial cones, that is, cones
that are generated by d points of different colours. In this vein we can define
the D-depth of a point of colour i to be the number of d-coloured simplicial
cones of colours D = {1, . . . , î, . . . , d + 1} containing the point. We remark
that the D-depth of any point is at least one. This follows from the result in
[1] that every point in a colourful configuration with 0 in its core is among
the generators of at least one colourful simplex containing 0.

Let e1, . . . , ed be the standard coordinate unit vectors in R
d. Recall that the

standard cross-polytope is conv(±e1, . . . ,±ed). We will now define a condition
on 2n points that means that they “look like” the vertices of a standard cross-
polytope, with ±ei coloured with colour i.

Definition 2. A collection of 2 points in each of d colours is said to be in de-

formed cross position if the 2d different d-coloured simplicial cones generated
by the points cover Rd.

Note that some of the d-coloured simplicial cones generated by the points
in deformed cross position may overlap substantially (not just along bound-
aries). We conclude with the following Lemma, which is proved in Section 3.1.

Lemma 3. If the colourful simplicial depth of 0 is less than d2 + d, then for

any choice of a set D of d colours, there must exist a subset of S in deformed

cross position, the colours of whose vertices are given by D.



A QUADRATIC LOWER BOUND FOR COLOURFUL SIMPLICIAL DEPTH 3

3. Proof of Theorem 1

Assume that the colourful simplicial depth of 0 is less than d2 + d, so that
the lemma applies.

Choose a set of points P1 in deformed cross position on the colours {2, . . . , d+
1}. Pick a point v from S with colour 1. Its antipode is in at least one
{2, . . . , d+ 1}-coloured simplicial cone generated by vertices of P1. The ver-
tices of that cone together with v yield a colourful simplex containing 0.
This procedure yields d + 1 colourful simplices, one for each element of S
with colour 1.

Now choose a set of points P2 in deformed cross position on the colours
{1, 3, . . . , d+1}. Let v be a point from S with colour 2 which does not appear
in P1. There are d − 1 of these. As before, each of these points, together
with some vertices from P2, generate a colourful simplex containing 0. Since
we are using vertices of colour 2 which were not used in the first step, the
colourful simplices generated at this step are distinct from those generated
at the first step. This yields d− 1 colourful simplices.

Repeat this procedure, at the i-th step choosing points in deformed cross
position on the colours {1, . . . , î, . . . , d+ 1}, and then considering those ver-
tices of colour i which have not appeared in any Pj for j < i. This gives
d+1− 2(i− 1) new colourful simplices. Hence the total number of colourful
simplices produced is at least: (d+1)+(d−1)+· · · =

⌊

(d+ 2)2/4
⌋

as desired.

Remark 4. This improves the lower bound of 2d from [5] starting at d = 4.

Remark 5. The authors have recently learned that Bárány and Matoušek in-
dependently found a quadratic lower bound for µ(d) [2]. Their bound is
µ(d) ≥ 1

5
d(d+ 1). They also give a lower bound of 3d if d > 2 which exceeds

(d+ 2)2/4 when d = 3, 4, 5, 6, 7.

3.1. Proof of Lemma 3. Without loss of generality, let D = {1, . . . , d}.
Consider the D-depth of a point in S

d. If every point were of D-depth at
least d, then wherever the points coloured d+ 1 are, each of their antipodes
is in at least d D-coloured simplicial cones, and thus the depth of 0 is at least
d2 + d.

Assuming the colourful simplicial depth of 0 is less than d2 + d, there is
some point x ∈ S

d which is in no more than d − 1 D-coloured cones. Thus,
we can choose a set of points w1, . . . , wd such that wi is of colour i and
generates no D-coloured cone containing x. Let z1, . . . , zd be the vertices of
some D-coloured cone containing x, with zi of colour i.

We claim that P = {zi}∪{wi} is in deformed cross position. Let Pd be the
union of d-coloured simplices on the set P . Consider the map f which maps
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P
d to S

d by x → x/||x||. We want to show that this map is onto. Suppose
otherwise. Let X be the simplex of Pd whose vertices are {z1, . . . , zd}. Let Y
be the union of the other simplices of Pd. Let Z = X ∩ Y be the boundary
of X .

Let A be the intersection of Sd with the D-coloured cone generated by the
{zi}. Let B be the boundary of A.

By definition, f(X) = A. Thus, if f is not onto, there is some point y 6∈ A
such that y is not in the image of f . Also observe that x /∈ f(Y ), by our
choice of points {wi}.

Now, define a map π which retracts Sd\{x, y} onto B. Clearly, restricted to
Z, (π◦f)|Z = f |Z is a homeomorphism, and generates the non-zero homology
of B. But π ◦ f : Y → B shows that (π ◦ f)|Z is null-homotopic, which is a
contradiction.

Thus f must be onto, and our set of points is in deformed cross position.
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