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Abstract

In this paper, we studied the MINimum-d-Disjunct Submatrix (MIN-d-DS), which
can be used to select the minimum number of non-unique probes for viruses identifi-
cation. We prove that MIN-d-DS is NP-hard for any fixed d. Using d-disjunct matrix,
we present an O(log k)-approximation algorithm where k is an upper bound on the
maximum number of targets hybridized to a probe. We also present a (1+(d+1) logn)-
approximation algorithm to identify at most d targets in the presence of experimental
errors. Our approximation algorithms also yield a linear time complexity for the de-
coding algorithms.
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1 Introduction

Non-unique probe selection is a fundamental problem in computational molecular biology for
target identification (Moret and Shapiro, 1985; Steinfath et al., 2000; Borneman et al., 2001;
Wang and Seed, 2003; Rahmann, 2002, 2003; Gao et al., 2006; Thai et al., 2007; Li et al.,
2005; Thai, 2007). A probe is a short oligonucleotide of size 8-25, used for identifying targets
in a biological sample through hybridizations using DNA microarrays. A probe is called
a unique probe if it hybridizes to only one specific target; otherwise, called a non-unique
probe. Since unique probes have a strong separability of targets, identifying the presence
of targets in a sample by using unique probes is straightforward. However, finding unique
probes for every target is a difficult task due to the strong similarity of closely related targets.
Considering a set of n targets and a sample containing at most d > 1 of these targets, Schilep,
Torney, and Rahman (Schliep et al., 2003) introduced a method using non-unique probes
with group testing techniques to identify at most d targets in the following three steps:

1. Find a large set of non-unique probes as candidates and let a binary matrix M represent
the probe-target hybridizations with rows labeled by probes and columns labeled by
targets; that is, M|, j] = 1 if probe p; hybridizes to target t;; otherwise, M|i, j| = 0.

2. Select a minimum subset of probes obtained in Step 1 so that these probes can identify
up to d targets. In other words, find a minimum submatrix H of M with the same
number of columns.

3. Decode the presence or absence of targets in a sample from the hybridization results,
called test outcomes V', where V' is a column vector. If V; = 1, then probe p; hybridizes
to at least one target in the sample; otherwise, V; = 0.

In this paper, we study the steps 2 and 3, that is, finding a minimum submatrix H with
an efficient decoding algorithm. Unsurprisingly, these two problems are highly related. The
design of submatrix H must satisfy the following two conditions: (1) All unions of up to d
columns in H must be distinct. Here, the union of a set of columns is equal to the boolean
sums of these columns. (2) The time complexity of a decoding algorithm yielding from the
design of H must be efficient.

Based on the classical theory of nonadaptive group testing, Schliep et al. and Klau et
al. (Schliep et al., 2003; Klau et al., 2004) proposed a heuristic to construct a d-separable
submatrix H. A binary matrix H is called d-separable iff all unions of at most d columns are
distinct. However, it is hard to decode the test outcomes from a d-separable matrix (Du and
Hwang, 2006). Therefore, in this paper, we consider to use a d-disjunct submatrix instead.
A binary matrix H is called d-disjunct iff any union of d columns cannot contain any other
column. Decoding the test outcomes from a d-disjunct matrix is very easy with linear time
complexity (Du and Hwang, 2006). This introduces the following minimization problem:

MIN-d-DS (MINimum-d-Disjunct Submatrix): Given an m x n binary matrix M
where rows represent the probes and columns represent the targets, find a A x n submatrix



H with the same number of columns such that H has a minimum number of rows, i.e., h is
minimum, and H is a d-disjunct matrix.

In this paper, we show that MIN-d-DS is NP-hard for any fixed d > 1. We then propose
an O(log k)-approximation algorithm for the MIN-d-DS problem. Moreover, the presence of
errors due to the noise of hybridizations makes the problem become even harder. With the
experimental errors, the test outcomes may consist of false negatives or false positives. In
the former, a test i yields a negative outcome, i.e. V; = 0 when a probe p; does hybridize to
at least one target in the sample. Likewise, in the latter, a test ¢ yields a positive outcome,
i,e. V; =1 when a probe p; does not hybridize to any targets in the sample. In this case,
we present a (1+ (d+ 1) logn)-approximation algorithm to correctly identify up to d targets
with the presence of at most k errors in experiments. Unfortunately, the decoding algorithm
in the case of error tolerance become much more complicated. In this paper, we also present
a solution and its hardness to this problem.

2 Main Results

2.1 Complexity
Theorem 1 MIN-d-DS is NP-hard for any fized d > 1

Proof: It has been proved that MIN-1-DS is NP-hard (Du and Hwang, 2006). We now
show how to reduce MIN-1-DS to MIN-d-DS for any fixed d > 1 in polynomial time.

Decision Version of MIN-d-DS: Given an m x n binary matrix M and a positive
integer h (1 < h < m), determine whether M contains an h x n d-disjunct submatrix H.

Now, we first show how to reduce MIN-1-DS to MIN-2-DS. Consider an m; X n; matrix
My with a 1-disjunct submatrix h; x ny H;. We construct an instance of MIN-2-DS as
follows:

Set n=ny+1,m=myg+ (ny+1),and h = hy + (n; + 1). Let us label the columns of
M by all columns in M; plus one new column N and label the rows of M by all rows in M;
plus (ny + 1) new rows. Now, define the elements in the new cells from those new rows and
columns as follows:

1. For i =1,...,my, set M[i, N] = 0. Note that N is a new column
2. Forj=1,...,ny,set M[my+1,j] =0and M[m; + 1, N] = 1. Let label this row as B.

3. For the last ny rows and n; columns, enter one at the diagonal and for j = m; +
2,...,m1+ (n1+ 1), set M[j, N] = 1. Let label these n; rows as C.

Figure 1 shows an example of constructing an MIN-d-DS instance from MIN-1-DS for
d=2andd=3.

First, suppose that M; contains a MIN-1-DS H; with size hy X ny. Let a matrix H with
size h x n where h = hy + (n; + 1) (H is a union of H; and all new rows and new columns).
Therefore, H is a MIN-2-DS of M.
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Figure 1: A Construction of an instance of MIN-d-DS from MIN-1-DS where d = 2 and
d=3

Conversely, suppose M has an h x n 2-disjunct submatrix H. Consider a collection P of
all probes corresponding to row vectors of H. Since H is a 2-disjunct matrix, H must satisfy
this condition (*): for any column ¢y, and other 2 columns ¢, ¢, in M, there exist a row p in
H such that H[p,t] =1 and H|p,t;] = 0 for all i = {1, 2}.

Consider the following three cases:

e Case (i): typ € N and t; € M;. Then P must contain B. Otherwise, the union of 2
columns t; will contain t(, contradicting to the 2-disjunctness of H.

e Case (ii): to,t1,t2 € My. Then P must contain C' in order to satisfy (*).

e Case (iii): to € My, t; € My, and ty € N. Note that B and C' cannot satisfy condition
(*) in this case. Therefore, PN BN C must satisfy (*). Notice that PN BN C contains
exactly h; rows in M;. In this case, all entries in column N are zeros. Hence, condition
(*) is satisfied iff for any pair of columns ¢y and t; in M, there exist a row p (of hy
rows) such that M|[p,to] = 1, M[p,t;] = 0. Thus, these hy rows will form a 1-disjunct

submatrix.

In general, for any fixed d, set n = ny + (d — 1), m = my; + w, and h =

hi + w. Using the induction method, we can conclude that MIN-d-DS is NP-hard.
O

2.2  An O(logk)-Approximation Algorithm

Since each probe cannot hybridize to too many targets, we set an upper bound k on the
maximum number of targets that each probe can hybridize to. In this section, we present
an O(log k)-approximation algorithm to construct the submatrix H.
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Recall that H is a d-disjunct matrix iff the union of d columns does not contain any other
columns. Therefore, we have:

Fact 1: H is a d-disjunct matrix iff for any (d + 1) columns tg, t1, ..., t4, there exists a
row p; such that an entry H[i,0] =1 and H[i,j]=0forall j=1...d.

Such a row p; is said to cover a pair (ty, < t1,...,tq4 >). Hence, to construct matrix H
from M, we need to find a set of probes covering all pairs (¢;, < tj,...,tg1q—1 >) where
ok, (k+d—1)€e{l,...,n}and j & {k,...,(k+d—1)}. It is easy to see that this is a
special case of set cover problem (Vazirani, 2001) where the collection S is a set of possible
pairs (t]', < Thy ooy blopd—1 >).

The proposed algorithm consists of two main steps as follows:

Algorithm 1:

1. Step 1: Find a set cover C of M where C consists a set of probes such that these probes
cover all the targets. Note that in this step, we treat M as an instance of the set cover
problem. In this context, a probe covers a target if it hybridizes to this target.

2. Step 2: If C is a set of corresponding probes in a d-disjunct submatrix, then return C.
Otherwise, we will extend C to cover all other pairs as follows:

e While there exists at least one pair (to, < t1,...,t; >) not covered, choose a probe
p ¢ C such that p covers at most the non-covered pairs.

e Add p into C

Lemma 1 Let H* represent the optimal solution of MIN-d-DS problem and C* be the optimal
solution of corresponding set cover problem. Then |C*| < |H*|.

Theorem 2 Algorithm 1 will obtain a solution within a factor of O(logk).

Proof. Let H be our obtained solution. Let C be a set of probes selected in step 1 and C’
be a set of probes selected in step 2. Hence, H =CUC('.

Note that in step 1, each probe can cover k (”;k) pairs (co, < ¢1,...,¢4 >). Hence C
can cover at least k (”;k) pairs. In step 2, for each probe we pick, it can cover at most &
(kgl) pairs. Therefore, the instance of this set cover problem in Step 2 has at most k(@)
elements. Hence |C'| < 1+ log(k4™Y)|C*| < 1+ (d + 1)logk|H*|. Tt is well-known that the
greedy algorithm for the set cover at the first step has an approximation ratio of O(log k).

Combining both steps, we obtain an approximation ratio of O(log k) where d is fixed. O



2.3 Error Tolerance

In this section, we study a more general problem of non-unique probe selection. In particular,
we consider the problem where there exists at most k& experimental errors and we do not
set an upper bound on the number of targets that each probe can hybridize to. Let us first
introduce the following definitions:

Definition 1 Hamming distance: The Hamming distance of two column vectors is de-
fined as the number of different components between them.

Definition 2 k-error-correcting: A matriz H is said to be k-error-correcting if the Ham-
ming distance of any two unions of d columns must be at least 2k + 1

Definition 3 (d, k)-disjunct: H is called (d, k)-disjunct if for any column t;, t; must have
at least k + 1 I1-entries not contained in the union of other d columns.

In order to identify all the targets with at most k£ experimental errors in hybridizations,
H must have the k-error-correcting property. Note that by the definition, it is enough to see
that the (d, k)-disjunct matrix is a k-error-correcting d—separable matrix. Therefore, in the
case of error tolerance, we study the following two problems:

MIN-(d, k)-DS (Minimum (d, k)-Disjunct Submatrix): Given an m X n binary matrix
M, find a minimum (d, k)-disjunct kA x n submatrix H where h < m.

Decoding Algorithm: Given a (d, k)-disjunct matrix H, a sample s, and the test outcomes
vector V, find an algorithm to identify all the targets t; present in s where there exists at
most k experimental errors.

Since the decoding algorithm is complicated in the error tolerance, we consider two cases
of the sample space: (1) Let S(d,n) be a sample space such that for a given sample s € S,
s will have ezactly d targets from a set of n targets. (2) Let S(d,n) be a sample space such
that for a given sample s € S, s will contain at most d targets.

In this section, we present solutions on finding the (d, k)-disjunct submatrix H and
decoding the hybridization results for both S(d,n) and S(d,n) sample spaces.

2.3.1 S(d,n) Sample Space

Let a;; denote an entry at cell M[i,j]. Let k' = k + 1. The problem of finding a minimum
(d, k)-disjunct submatrix is equivalent to the following integer programming:

min Yo
subject to > ajx; > K for j=1,2,..,n
Yo (aij = (aik + . + Gigra—1y))zi > K for j k, .. .k+d—1€{l,..,n}
and j ¢ {k,....k+d— 1}
x; € {0,1} foralli=1,2,....m

(1)



where x; = 1 if probe p; is selected; otherwise, x; = 0.
Remarks:

e The first constraint is to make sure that each target is covered by at least &’ probes

e The second constraint is to make sure that each pair (¢;, < tj,...,tx4q—1 >) can be
covered by at least k' probes

Now, let E be a set of all pairs (¢, < ty, ..., tg+d—1 >). Let matrix B be a binary matrix
where rows represent m probes p; and columns represent the pairs. Let b;; be each entry at
cell Bi,j]. b;; = 1 iff probe p; covers the pair at column j.

In a (d, k)-disjunct matrix, for any pair (¢;, < tj,...,tk4a—1 >), we can find at least
k + 1 rows such that the intersection entries of these rows at column ¢; are 1 whereas the
intersection entries of these rows at d columns < t,...,tx1q—1 > are all 0. Therefore, the
integer programming (1) should be equivalent to the following:

min Yo
subject to > bijx; > K for j =1,2,.., |E] (2)

x; € {0,1} for alli =1,2,....m

To solve (2), at each iteration, we select a probe covering the most unsatisfied pairs. A
pair is unsatisfied if it has not been covered by at least k&’ probes yet. The details of this
algorithm are described in Algorithm 2.

Algorithm 2: Constructing a (d, k)-disjunct Submatrix
I—{1,2,...,m}
J—{1,2,..,|E|}
H«—0;P—0
while J # () do
Find i¢ € I such that
ZjGJ bipj = MaXies ZjeJ bij
T J = [ | Do by > 1)
end while
. for j =1...|P| do

= =
— O

12: fori=1..m do

13: if p;, € P then
14: Hlj,:| = M]i,]
15: end if

16:  end for

17: end for

18: Return H



Theorem 3 Algorithm 2 produces an approzimation solution within a factor of 1 + (d +
1)logn

Proof. Since the proof is similar to that of the set cover problem (Vazirani, 2001), we
omit it here.
O

We now consider the decoding algorithm.

Lemma 2 (Du and Hwang, 2006) Suppose testing is based on a (d, k)-disjunct matriz. If
the number of error tests is no more than k, then the number of negative results containing a
target is always smaller than that of the number of negative results containing a non-target.

Proof. For the convenience of readers, we present the proof of Lemma 2 here. Let i be
a target and j be other items in a hybridization (but not a target). Suppose the number of
negative hybridization containing 7 is [. Then these [ hybridization must receive error tests.
Therefore, there are at most k—1 error tests turning negative outcomes to positive outcomes.
Moreover, we note that if no error exists, the number of negative results containing j is at
least k 4+ 1 by the definition of (d, k)-disjunctness. Hence, the number of negative results
containing j is at least (k+1) — (k=) =1{+1>1
O
From the above lemma, we see that to decode the targets from testing based on (d, k)-
disjunct matrix for S(d,n) sample space, we only need to compute the number of negative
results containing each item and select d smallest ones. This decoding algorithm has an
O(hn)-time complexity.

2.3.2 S(d,n) Sample Space

In the S(d,n) sample space, the decoding algorithm is much more complicated. Although
Lemma 2 still holds in S(d,n), we do not know how many smallest one we should select.
Fortunately, Du and Hwang (Du and Hwang, 2006) have proven the following lemma:

Lemma 3 (Du and Hwang, 2006) There exists a decoding algorithm for a k-error-correcting
d-disjunct matriz H, running in time O((n + h)h*) where h is the number of rows (selected
probes) in H.

where a k-error-correcting d-disjunct matrix is defined as follows:

Definition 4 k-error-correcting d-disjunct matrix: A matriz H is called k-error-correcting
d-disjunct matriz if H s d-disjunct and the Hamming distance between two union of at most
d columns is at least 2k + 1.

Thus, we need to find a minimum k-error-correcting d-disjunct submatrix H in order
to find a possible decoding algorithm in S(d,n). Once we construct a k-error-correcting



d-disjunct submatrix H, we can use a decoding algorithm mentioned in (Du and Hwang,
2006), of which the time complexity is O((n + h)h¥). This time complexity is quite high.

Interestingly, the following lemma gives an efficient way to construct such a k-error-
correcting d-disjunct submatrix H with a linear decoding algorithm.

Lemma 4 FEvery (d,2k)-disjunct matriz is k-error-correcting d-disjunct matriz

Proof. Given a matrix H as a (d, 2k)-disjunct matrix. Since H is (d, 2k)-disjunct, H is
d-disjunct. Therefore, for any two different subsets of at most d columns in H, there must
be one not contained by the other. By the definition of (d, 2k)-disjunct matrix, the union of
the former contains at least 2k + 1 1-entries not appearing in the union of the latter. This
implies that the Hamming distance between these two unions is at least 2k + 1. Hence H is
also an k-error-correcting matrix.

O

From Lemma 4, instead of directly constructing a k-error-correcting d-disjunct submatrix
H, we find a (d, 2k)-disjunct submatrix H by using Algorithm 2.

Now, we consider the decoding algorithm using a (d, 2k)-disjunct submatrix H.

Lemma 5 Suppose testing done on a (d,2k)-disjunct matriz H with at most k errors, an
item is a target iff it appears in at most k negative results.

Proof. Since there are at most k errors, a target can appear in at most k negative results
(due to errors). However, a non-target item appears in at least 2k + 1 —k =k +1 > k
negative results. It implies that an item is a target iff it appears in at most £ negative results.

O

Based on the above Lemma 5, the decoding algorithm becomes quite simple. For each
item, we just need to count the number of negative results containing it. If this number is
less than k, then this item must be a target. Hence, the time complexity of this decoding
algorithm is O(hn), which is linear.
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