Online scheduling with a buffer on related machines

Gyorgy Dosa Leah Epstein

Abstract

Online scheduling with a buffés a semi-online problem which is strongly related to the basic online
scheduling problem. Jobs arrive one by one and are to be assigned to parallel machines. A buffer of a
fixed capacityK is available for storing at mogt” input jobs. An arriving job must be either assigned
to a machine immediately upon arrival, or it can be stored in the buffer for unlimited time. A stored job
which is removed from the buffer (possibly, in order to allocate a space in the buffer for a new job) must
be assigned immediately as well. We study the case of two uniformly related machines of speed ratio
s > 1, with the goal of makespan minimization.

Two natural questions can be asked. The first question is whether this model is different from stan-
dard online scheduling, that is, is any size of buffér> 0 already helpful to the algorithm, compared
to the casd(= 0. The second question is whether there exists a conkiasb that a larger buffer is no
longer beneficial to an algorithm, that is, increasing the size of the buffer above this threshold would not
change the best competitive ratio further. Previous work [15, 19, 5] shows that in the-casealready
K =1 allows to design % competitive algorithm, which is best possible for aldy> 1, whereas the
best possible ratio fokK = 0 is g Similar results have been show for multiple identical machines [5].

We answer both questions affirmatively, and show that a buffer off§ize2 is sufficient to achieve
the a competitive ratio which matches the lower boundKor— oo for anys > 1. In fact, we show
that a buffer of sizéd<{ = 1 can evidently be exploited by the algorithm for any 1, but for a range of
values ofs, it is still weaker than a buffer of size 2. On the other hand, in the gase, a buffer of size
K =1 already allows to achieve optimal bounds.

1 Introduction

Scheduling of jobs arriving one by one (also calkkegr lisi) is a basic model in online scheduling [18]. The
system consists of a set of processors that can process a sequence of arriving jobs. Eashigbhas
a processing timg; associated with it (also called size), needs to be assigned to a processor upon arrival.
The processors ammiformly related in the sense that a processgdrad a speed;, and the time to process
job 5 on machineg is p7 The completion time, or load, of a machine is the total time needed to process
the jobs assigned to |t (| e., the total processing time, divided by the speed), and the goal is to minimize the
maximum load of any machine, also called thakespan

We consider online algorithms. For an algorittdnwe denote its cost byl as well. An optimal offline
algorithm that knows the complete sequence of jobs in advance, as well as its cost are destedlby
this paper we consider the (absolute) competitive ratio. The competitive radasthe infimumR such
that for any input,A < R - oPT. If the competitive ratio of an online algorithm is at m@stthen we say
that it isC-competitive.

This model is strict in the sense that decisions need to be done without sufficient information on the
future. Lower bounds on the competitive ratio already for identical speed machines [10, 1, 11] often make
use of one large job that arrives when the assignment is very balanced, for that, the exact assignment of all

*Department of Mathematics, University of Pannonia, VesaprHungarydosagy @almos.vein.hu
fDepartment of Mathematics, University of Haifa, 31905 Haifa, Isie@el@math.haifa.ac.il

jobs which arrived so far must be fixed. A natural way to possibly overcome this is the usage of lookahead.
This means that the scheduler needs to assign a job while seeing a prefix of the future jobs in the sequence,
where the prefix is of some fixed length> 1. It is not difficult to see, however, that for any constéant
lookahead is not useful, since it is possible to augment the sequence by many jobs of size zero.

Several semi-online models, which allow the usage of various types of information on future jobs, have
been introduced. Some relevant models are as follows. Zhang and Ye [20] studied a model, in which it is
known in advance that the largest job is last, and the scheduler is notified when this last job arrives (see also
[9]). Some models assume a priori knowledge on the input already in the beginning of the input sequence,
such as the total size of all jobs [15, 2, 3], bounds on possible job sizes [14], the cost of an optimal schedule
[4, 6], or other properties of the sizes, e.g., an arrival in a sorted order [13, 17, 7].

The variant we study in this paper is one where the scheduler is given a constant length buffer, that can
be used for temporary storage of jobs. SpecificallyHet> 1 be an integer. The buffer may contain up
to K jobs at any time. Upon arrival of a job, the scheduler can do one of the following actions. The first
one is assignment of the new job to a machine. The second one is removal of a job from the buffer, and the
assignment of this removed job to some machine. This latter action can be repeated several times without
additional arrivals of jobs. The last action is the insertion of the new job into the buffer, if it was not assigned
to a machine. This can be done if the buffer contains at rhost 1 jobs at this time. Thus, at every time
there may be at mogt + 1 jobs which arrived already, but not were assigned yet.

This model was first studied for the case of two identical speed machines by Kellerer et al. [15], and by
Zhang [19]. In both papers, an algorithm of competitive r%tjcwhich usesk = 1 was designed. It was
shown in [15] that this competitive ratio is best possible for &ny 1, that is, using a larger buffer cannot
be beneficial. Note that fak = 0, and identical machines, the best possible competitive ra§q1§, 10].

We compare our results with the cake= 0 ands > 1 (see [8]). In this case, the tight competitive ratio is
24l if 5 < YOI ~ 1,618, and*tL if s > V3L,

The case ofn related machines was studied by Engl&@zmen and Westermann [5]. They designed a
2 + e-competitive algorithm with a buffer size af. In the same paper, [5], the casemafidentical speed
machines was studied extensively, and tight bounds on the competitive ratio for every valueefe
found. These bounds are achievable with a buffer of 6ige:) (see also [16], for previous results on the
case of multiple identical speed machines).

In this paper, we consider two related machines. We denote the speed ratio between the speeds of the
two machines by > 1, and assume without loss of generality that the speed of the first machine (also called
theslowmachine) is 1, and the speed of the second machine (also callestheachine) iss. The number
of jobs (which is unknown until all jobs have arrived) is denotechby

We introduce some notations. Tintdés considered to be the time at which théh jobs has arrived,
but was not considered yet. We defiReto be the total size of all jobs that have arrived by that time,

t
that is, of the first jobs P, =) p;. We denote the cost (i.e., makespan) of an optimal schedule for the
j=1
subsequence of the firsjobs (that is, of the first jobs, without leaving any jobs in the buffer) kyT;. We

haveoPT = OPT,. Let M; = max p;.
1<5<i

We use the following lower bounds aPT;. The standard lower bounds aveT; >
L We letLB} = i andLB? = i
A third lower bound which is useful in some cases is developed as follows.1 Letm(i) < i be

such thatp,,,;y = M;. Let M = O N If both jobs of sizesM; and M/ (which are the two
SIS)7FmM(L

largest jobs in the sequence) are assigned to the same machinepthen . Otherwise, at least
one of them is assigned to the first machine ands®; > min{M;, M/} = M. Therefore, we let
LB} = min{M], M} Since in most cases the first two lower bounds are sufficient, wegt=

M
S

andopPT; >

M, +M!
S

max{LB}, LB?}.
We letL¢ and L} denote the total processing time (on the relevant machine) of jobs assigned to the first
machine and second machine, respectively, at firtteat is, after jobs have arrived, but before tlxh job

was dealt with. The completion times of these machines at that timg{aaad L;. Note that the final cost

n+1
of an algorithm is not computed using just the loads atthe 1-th time,L’fJrl andL2T, but we need to

take into account the assignment to machines of the jobs stored in the buffer.
2
We show that the best possible competitive ratio for an arbitrary val%isf% forl <s< @
32_‘”;1 for ‘/52“ <s<2 andji—f for s > 2. These competitive ratios are achievable alreadysfor 2,
and in the case > 2, even forK = 1. We shed some light of the cagé = 1 for s < 2, in particular,

we give tight bounds ogi—f on the competitive ratio fox/2 < s < 2 and K = 1, and relatively close

bounds forl < s < /2. Thus we show that a buffer of siZé = 1 allows to get reduced competitive ratio
compared to the cad€ = 0, for anys > 1.

2 Algorithms for the caseK =1

We start with the case where the buffer has a single slot. Note that if an algorithm can use a buffer of size
K > 0, the algorithm is forced to assign some job only aftes 1 jobs have arrives.

2.1 A simple algorithm

The first arriving job can be stored in the buffer until a second job arrives. Upon the arrival of a second job,
either the job in the buffer or the new job should be assigned. The algorithm keeps one job in the buffer
at all times (possibly replacing this job with the new arriving job), as long as jobs keeps arriving. At the
time when it is known that no further jobs will arrive, the job in the buffer must be assigned. The following
algorithm always stores a job of largest size in the current input in the buffer, that is, at-timga job of
size M, is in the buffer. The algorithm uses a paramet¢s) > 1.

Algorithm Largest-Las(LL)

1. Store the first job in the buffer. Lét} = L3 = 0, P, = p; andM; = p;.

2. For each arriving job of indexact as follows.

2.1. Let P, = P,_1 + pi, My = max{M,_1, p;}. Consider the new job of indexand the job in the buffer.
Let X; > Y; be their sizes. Store the job of sig in the buffer.

2.2.If L} +Y; < C(s) - LB, then assign the job of siZ§ to the first machine and l€t} ; = L} + Y,
L?,, = L}. Otherwise assign it to the second machine and}et = L}, L? ; = L} + .
3. The last job which remains in the buffer is assigned to the second machine.

: PR (s+1)? 2(s+1) +2
We analyze the algorithm fdr < s < /2. Note that in this ranges 17 < o3 < i1

Theorem 1 Algorithm LL with the paramete€(s) = 2(;31) has a competitive ratio of’(s) for any

1 < s < v/2. No other choice of parametér(s) can lead to a smaller competitive ratio.

Proof. We prove the upper bound first. Assume that the statement is not true. We consider a minimal
counter example (in terms of the number of jobs), and assume by scalingrthat 1. Note that by the
definition of the algorithm, assigning a job to the first machine can never cause the algorithm to violate the
competitiveness, thus we assume that the final load of the second machine é%%]édise., the total size

of jobs assigned to it excee&éﬁf%). No job has size of more tha#) therefore, at least two jobs were

3

assigned to the second machine. Febe the last job ever assigned to the second machine by Step 2. We
consider two cases.

If Z is assigned to the second machine at a time when the job oksize/hich is the last job assigned
to the second machine, did not arrive yet. Sittes assigned by step 2, there exists a time at which a job
of size X; is stored in the buffer, and is the job of sizeY; which is going to be assigned. At this time,
LI +Y, > 2(,55++21)L3t, andLB, > L, whereP; = L} + sL? + Y, + X,. Since the job of sizé\,, arrives
later, we haveP?, > P, + X,,.

The total size of jobs assigned to the second machirselﬁs+ V,+X, =P —-L - X; + X, <

P X+ Xo— 2B+ Y, < P+ Xy~ 2B = 5 B+ X < 225 Pa + 325X, < LB, +

273 . 52+35 2S(S+1)

s+2LBn_— S OPT< =5, _ ' ' .
If Z is assigned to the second machine at a time wkigns already present in the buffer. We assume

that Z is the job of sizeY,,. Otherwise, ifZ is the job of sizeY; for somet < n, then we get that

after the assignment of this job, at least one job is assigned to the first machine, but the final load of the

. sL24Yi+ X,
second machine |§%. Therefore, removing the jobs of siz&g, 1, ..., Y, results in a smaller
example in which the second machine has the same load, i.e., a smaller counter exampleZ Since

assigned to the second machine, we hb&{& Y, > Q(SSj;)LBn and since this is a counter example, then

SL2 + Y, + X, > 2640 > 25 p Taking the sum and usingB,, > =, we getP, + Y, > 242p,
andX, >V, > -5 P,. Onthe other hand?, > L, + Y, + X,, > S%ZP” + %5 P, = P,,, which leads to
a contradiction.

We next prove that the analysis of the performance is tight, and that using a different parameter cannot
reduce the competitive ratio. Using(s) < 1 implies a competitive ratio of at Ieaét;—l, as follows.
Consider a sequence which contains two jobs of sizasds. LBs = 1, and thereforéL assigns both jobs
to the second machine. @(s) > 1, the sequence consists of four jobs, of sizess?, s, s? + s, s2 + 5. An
optimal assignment of these jobs is to assign the first job to the first machine, the second job to the second
machine, and one additional job to each machine. This gives a makespan®fNote thatL B, > 1 and
LB3 > 2. Since2 — s? < 1 < s,and2 — s> + s < 2, both the first job and the second job are assigned to
the first machine. If at least one additional job is assigned to the first machine, it achieves the{oad
Otherwise, the second machine achieves a load@f+ 1). m

Note that it is possible to prove that this algorithm has a competitive ratio of at E@stor any

V2 < s < 2,usingC(s) = ii—% We omit the proof since we present an additional algorithm later, whose
competitive ratio it} for anys > 1.
We have showed that a buffer of sike= 1 reduces the competitive ratio compared with the best bound

for the casei = 0, for which the best competitive ratio #:t.

2.2 A second algorithm

We letC(s) = gi—f We define an additional algorithm, which is optimal in some cases stated below.
Algorithm Small-Large(SL)

1. Store the first job in the buffer. Lét} = L3 = 0, P, = p; andM; = p;.

2. For each arriving job of indexact as follows.

2.1 Let P, = P,_1 + pi, My = max{M;_1,p;}. Consider the new job of indexand the job in the buffer.
Let X; > Y; be their sizes.

2.2 1f L} +Y; < Cy(s) - LB, then assign the job of siZg to the first machine and store the job of size
X, in the buffer, and lef},, = L} +Y;, L, = L?. Otherwise assign the job of si2¢ it to the
second machine and store the job of Sizén the buffer, and leL.}, | = L}, L? | = L? + &t

3. The last job which remains in the buffer is assigned as followsn lbet the total number of jobs. Assign
the job which is still in the buffer to the first machine if the resulting load would not excgés) - LB,
and otherwise assign it to the second machine.

Theorem 2 Algorithm SL has a competitive ratio of at moét; (s) for all s > 1. This is best possible for
anys > 2 and anyK > 1, and best possible foy2 < s <2andK = 1.

Proof. We prove the upper bound first. Assume that the statement is not true. We consider a counter

example, and scale it so that the cost of an optimal solution for this sequened ilearly, in the optimal

solution the load of the first machine is at mest 1, and the load of the second machine is at m@st- 1),

and the total size of jobs in the sequence is at mest 1)*. Let A denote the job which is assigned last,

i.e. the job remaining in the buffer after all jobs have arrived. We consider a specific optimal schedule.
Note that by the definition of the algorithm, assigning a job to the first machine would never cause the

algorithm to violate the competitiveness, thus we assume that the final load of the second machine, after

all jobs have been assigned, is more tliaris)(s + 1) = s + 2. Therefore, the final load of the first

machine is less thafs + 1)* — s(s + 2) = 1. Let Z denote the job which is assigned last to the second

machine (and its size)/ can either be the jobl, or a different job. We next prove th#t > s + 1.

Let a be the load of the first machine at the time in whig€his assigned to the second machine. Then

a < 1 since it cannot exceed the final load of the first machine. Sihisassigned to the second machine,

a+ 7 > 5+2L where L is the value of the lower bound at the time of assignment. Using the second

lower bound, since the total size of jobs assigned to the second machine exgeeds), L > ats(st?)

- s+l
at this time, it follows that, + Z > &% “+jff2) from which we get (by using < 1), (s +)

(s+2a—(s+1)a+s(s+2)>=s(s+2°—(2+s—-1)a>s(s+2)°—(s>+s—1) =
which impliesZ > s + 1.

Let U be the job, which is assigned to the slow machine in the optimal schedule, and is atssgihed
the second machine by the algorithm. If there is not such job, the total size of jobs assigned to the second
machine cannot exceeds + 1), which would be a contradiction. Moreovéf,and Z are different jobs,
sinceU < s+ 1andZ > s+ 1, furthermore,U and A are different jobs, since ifl is assigned to the
second machine, theA and Z are the same job. It follows thaf is assigned to the second machine at
some step, while an additional job is present in the buffer. Siriéds assigned to the second machine,
U is the job of sizeX;, and there exists a job of si2¢ < X; which is stored in the buffer at this time.
At the termination time of the algorithm, the total size of jobs assigned to the second machine is more
thans(s + 2), but for the optimal solution it is at mos{s + 1). Therefore, a total size of more than
must be caused by jobs which are assigned to the first machine in the optimal solution, and therefore, just
after the assignment @f to the second machine, its lodd, ;, satisfiesL?,, > 1. The load of the first
machine at the same time satisfigls ; < 1, since the final load of the first machine is less thaNote that

L +Y, =L +Y, > 8+2 2LB; > gﬁ Li ;st must hold, otherwise the job of si2é would be assigned
to the first machine at the tlme of arrival of th¢h job, instead of assigning the job of siXg to the second
machine. From this inequality we get thiat + Y; > sé(j;r?)l > 1.

We next prove that starting this time, at each tithe- ¢ (the time just after th¢’ — 1-th job has been
assigned), the buffer contains a job of sige < s + 1, which satisfiesL%, + by > 1. We prove this by
induction. Consider th¢/-th job, which has sizey. If py < by < s+ 1 then there are two options.

If the smaller job is assigned to the first machine, the job in the buffer is not replaceﬂthqur by >

L}, + by > 1, and otherwise, the job of sizg is stored in the buffer, and similarly to the above argument,

Ly +py > Z2LBy > (S” (L +py + s), andL}, + py > 1. If py > by, then we claim that the job in

the buffer is not replaced. ff it is replaced, then this means that it was assigned to the first machine, but this
would result in a load larger than 1, and we assume that this never happens. We have proved that the last

job which is stored in the buffer has size of at mest 1, but it is not assigned to the first machine, since its
assignment to the first machine would result in a load larger than 1. Therefore this lasZjobi@vever,
we showed that this job has size larger tkan 1, which is a contradiction.

We next prove lower bounds for cases where /2. Note thatii—% < s holds fors > /2.

To prove a lower bound for > 2, let K > 1 be an arbitrary integer size of buffer. The sequence starts
with many very small jobs of size > 0, of total sizel + Ke. Denote the loads of first and second machines,
respectively, after the arrival of these jobsdyndj3, wherea + 5 > 1. The cost of an optimal solution at
this moment is'E5<.

If 5> ;77, one further job of size arrives. The cost of an optimal solution is no larger thah Ke.

The cost of the resulting solution got is at leash {a + s, ﬁj‘s} > min {s, gi—f} = ij—f Lettinge tend
to zero implies the lower bound in this case.

Consider next the case whete> Sﬁ Two further jobs arrive, with the sizés = (s + 1)a, and
X=sY—-1=s(s+1)a—1.Note,thatX - Y =(s—1)Y —-1=(s—1)(s+1)a—1>s—-2>0,i.e.,

X > Y. The cost of an optimal solution is at mast+ K¢, since we can create a solution which assigns the

job of sizeY and a total size of very small jobs &f¢ to the first machine, and all other jobs to the second
machine. If at least one of the two big jobs is assigned to the first machine, then the makespan is at least
a+ (s+ 1)a = (s + 2)a, otherwise both of them are assigned to the second machine, and its load will be
B+X+Y >1—a+(s+1)a+s(s+1)a—1=s(s+2)q,thusin both cases, the makespan is at least

(s + 2)a, and the statement follows by lettiagend to zero.

We next prove a lower bound for the cagé < s < 2 andK = 1. This lower bound does not hold for
larger values of<". The first two jobs have sizdsands + 1. At this time, sinceX’ = 1, one job must be
assigned. There are four cases.

If the first job is assigned to the first machine, a third job of size s — 1 arrives. An optimal solution
assigns the second job to the first machine, and the other jobs to the second machine, and has a makespan of
s+ 1. If at least one additional job is assigned by the algorithm to the first machine, we get a makespan of
at leastmin{s + 2, s* + s}, which gives a competitive ratio of at leastn{% s} = 2. Otherwise, the
makespan is at leas(s*> + 2s) = s + 2 as well, which proves the lower bound in this case.

If the second job is assigned to the second machine, a third job ofssizé)? arrives. At this time, the
cost of an optimal solution ié“‘s—l)Q, by assigning the last job to the second machine, and the other jobs to
the first machine, and singe+ 2 < @ The competitive ratio is at leastt- (55111)2 =14 47 = =,
if the last job is assigned to the second machine, and atdesberwise.

If the second job is assigned to the first machine, no further jobs arrive. The cost of an optimal solution
is at most%, by using the solution which assigns the first job to the first machine, and the second job to
the second machine. The cost of the algorithm-s1. The competitive ratio is.

If the first job is assigned to the second machine, no further jobs arrive. If the second job is assigned to
the first machine, we get the previous case again. Otherwise, we get a makeé@%manfd a competitive

ratio of at Ieast;i%. m

Note that the last lower bound construction can be used for the intewdll, /2), and yields a lower
bound ofs.

3 Tight bounds for K > 2

We have shown that using a buffer of size 1 allows to design an algorithm of best possible competitive ratio
forany K > 1, for s > 2. The same holds for = 1 by the results of [15, 19]

Therefore, we consider the cabec s < 2, in this section, and design algorithms which use a buffer of
size K = 2, which have the best possible competitive ratiofbe> 2.

Let Ca(s) = ;jijfl, if s < @ and if@ <5 <2,05(s) = % Note thatC5(s) < 3 for
1<s<2.

The algorithm always keeps the two biggest jobs seen so far in the buffer. In additibsty it uses a
parameters(s) which is defined to bés%1 if s < @ and otherwiseﬁ. Note that since > 1, ca(s)
is well defined and positive.

Algorithm Three-JobgTJ)
Store the first job in the buffer. If the sequence stops, assign this job to the fast machine. Otherwise, store
the second job in the buffer as well. L&, > Y, be the sizes of these two jobs afd = X5 + Y5, In
addition, letL} = L% = 0.

For any arriving job of index > 3 act as follows.

1. LetP, =P 1+ p:.

2. Let Z; < Y; < X; be the sorted list of sizgs,Y; 1, X;_1. We haveL} + sL? + Z; + Y; + X; = P,.
The jobs of sizes(; andY; become the contents of the buffer.

3. The job of sizeZ; is assigned as follows.

(@) If Y; > (Ca(s) — 1) P, then assign the job of siz& to the second machine, 1&(™ = L and
Lt+1 — Lt + Zt
2 2 s "
(b) If L} +Y; > ea(s) (sL? + Z;), then assign the job of siz& to the second machine, 1&{™" =
LtandLit =L + Z.
(c) Otherwise assign the job of siz& to the first machine, lek{™ = L} + Z, and L5t = L&.

After all jobs have arrived, let be the number of jobs. We consider all four assignment of the remaining
two jobs and choose the one with minimum makespan. Specifically, the four assignments are as follows. In
the first assignment, the job of si2é, is assigned to the fast machine and the job of %iz¢o the slow
machine. In the second assignment, the job of Bjzis assigned to the fast machine and the job of &ize
to the slow machine. In the third assignment, both jobs are assigned to the fast machine and in the fourth
assignment, both jobs are assigned to the slow machine.

We prove the following theorem.
Theorem 3 TJ has a competitive ratio @f»(s) for anyl < s < 2, which is best possible for ay > 2.

Proof. If the sequence consists of a single job, then the assignment is optimal. If it consists of two jobs, then
all possible assignments are considered, which results in an optimal solution as well. We therefore assume
that at least one job was assigned by Step 3.

Suppose that the statement is not true and consider an instance what violates it. We scale this instance so
that the makespan of an optimal solutiori isThen in the optimal solution the total sizes of jobs assigned to
the the first machine and second machine (respectively) are at modtat most. The total sum of the jobs
is therefore at most + 1. By our assumption on the instance, the algorithm terminates with a makespan of
more thanCsy(s). If the competitive ratio is violated, this means that either the first machine receives a total
size of jobs of more tha@'s(s) or that the second machine receives a total size of jobs of at40bét)

We first claim that a makespan of more th@s(s) cannot be created as long as jobs are being assigned
by Step 3. We consider three cases. If a job of sizds assigned in Step 3(a), then the total size of
jobs in the buffer is at leask; + Y; > 2Y; > 2(Ca(s) — 1)P,. Assume thal‘LfJrl > (Cy(s). We have
sL? | =sLi+Zy < P—X;—Y; < (3—2Ca(s)) P, < (3—2C4(s)) P, < (3—2C5(s))(s+1) , which gives

(3 —2C3(s))(s + 1) > sCy(s), that is equivalent t@s(s) < giig This is impossible foil < s < @

7

1

__Ss _1 s—1 1
s24s+1 > 35427

s2—s+1 > 35+2 for

sinceCsy(s) — 1 = and for@ < s < 2,sinceCy(s) — 1 =

s> /3~ 122

If a job of size Z; is assigned in Step 3(b), then by the assignment conditigs)(sL? + Z;) <
P, — sL} — Z; — X;. Therefore(ca(s) + 1)(sL? + Z;) < P, < P, < s+ 1. ThussL?; < ﬁ

V541 s+l si(stl) o os(s+D)? V5+1
Forl <'s < %5, we get02(s)+1 = Prstl S P11 T 5Cs(s), and for 5= < s < 2, we have
s+l (s+1)(s?-s) R
ca(s)+1 = s2—s+1 < s+l SCQ(S).

If a job of sizeZ, is assigned in Step 3(c), then by the assignment condifips, Y; < co(s) (P, — L} —
Y; — X;). Therefore, usingZ; < Y; < Xy, (ca(s) + 1)(L} + Z;) < (ca(s) + 1)(L +Y3) < ca(s)Pr <

c2(8)(s Cc2(8)(S S 2
ca(s) P < ea(s)(s+1). ThusL},) < 20D Forl < s < Y3, we get2lletl) — LU — 0y (s),
and for@ < s < 2,we hav 626(25()3()5111) = 82‘"’;11 < Szf;l = Cy(s), bys? > s + 1.

We consider the assignment of the last two jobs. Denote the sizes of jobs, which remain in the buffer
after the job of sizeZ,, has been assigned, by = Y,, and X* = X,,. All other jobs are called regular.
As shown above, at the time just before the assignment of the jobs o¥3izmd X *, the makespan is
no larger tharCs(s). If by assigning one or two of the last two jobs to the first machine, the load of the
first machine exceedS;(s), this means that the total size of jobs assigned to the second machine does not
exceeds + 1 — Ca(s). On the other hand, if by assigning one or two jobs of the last two jobs to the second
machine, the load of the second machine excéeds), this means that the load of the first machine does
not exceeds + 1 — sCy(s). Note thatCs(s) < £t1 in both cases, thus+ 1 — sCs(s) > 0.

We claim that we can assume that prior to the assignment of the last two jobs, the loads of the first
machine and the second machine respectively do not exceetl — sCs(s) and%@(s), respectively.
We already showed that these loads do not excggd). If the first load is at least + 1 — sCy(s), then
assigning both last jobs to the second machine would result in a load of lesS'4t@gn If the second load

is at IeastLCQ(s), then assigning both last jobs to the first machine would result in a load of less than

CQ(S).
For the last two jobs, we define a notion of bebig or small as follows. A job is calledbig, if assigning
it (temporarily) to the first machine, the load of the first machine would excgés), otherwise it is called
small. It follows that each big job has a size of more thant- 1)(C2(s) — 1). Recall that the two jobs
remaining in the buffer at the end of the process are the two largest jobs among all jobs. We consider three
cases, according to the number of small jobs and the number of big jobs.
Case 1. If both remaining jobs are small, we consider two options. If by assigning the job okSize
to the first machine, its load becomes larger than1 — sCs(s), then assigning the job of si2é* to the
second machine would result in a total size of jobs of at st (s + 1 — sCa(s)) = sCa(s). Otherwise,
we haveY™* < X* < s+ 1 — sCs(s). Thus, assigning both these jobs to the first machine would result in a
load of at mosR(s + 1 — sCy(s)). Assume by contradictio®(s + 1 — sCa(s)) > Ca(s), or equivalently,
Ca(s)(25 +1) < 2(s +1). Forl < s < Y51 we haveCsy(s) — 1 = 52— > 5. For VL 5 < 9,
we haveCsy(s) — 1 = ﬁ > Tlﬂ which leads to a contradiction.
Case 2. Next, suppose that there is exactly one big job, then this must be the job df siaed the job
of sizeY™* is a small job. We consider the assignment of the big job to the second machine and the small job
to the first machine. In this assignment, the load of the first machine does not eéxgegdnd therefore
the load of the second machine must be more tHgR). By our assumption on the instancé’ < s. Thus
sL?1+1 > sCy(s) — X* > sCa(s) —s > 0, sinceCs(s) > 1for1 < s < 2. Therefore at least one regular
job was assigned to the second machine. Consider the moment during the execution of the algorithm when
the last such job was assigned to the second machine, and assume that this was the jdh .of e are
two cases considered according to whether it was assigned to the second machine in Step 3(a) or 3(b).
Subcase 2a. The job of sizeZ, is assigned to the second machine in Step 3(a). We show that the job

of sizeY; will be later assigned to the first machine. If it becomes a regular job, this holds since the job of
size Z; is the last job regular job which assigned to the second machine. Otherwise, it is the jobYof size
and we assume that it is assigned to the first machine in the last step.

If the job of sizeX; does not become the job of si2€*, then the job of sizeX; also will be either
assigned later to the first machine as a regular job, or if it becomes the job df sigedt assigned to the
same machine as well. In this case the final load of the first machine is therefore a&least > 2Y; >
2(Co(s) — 1)P;. It follows thatsL? + Z; < P, — X; — Y; < (3 — 2C3(s)) P;. On the other hand, we have
SLZ, 4+ X* = sLi + Zy + X* > sCa(s), or sLi + Z; > sCa(s) — s. Thus the final load of the first

%. By our assumption, this load
If

is smaller thams+ 1 — sCs(s). We getCh(s) < £53.1f 1 < s < V5EL thenCy(s) —1 = 2o >

@ < s < 2,thenCy(s)—1 = z*=15 > 5 (which holds fors > 3). Therefore, we get a contradiction.
We next consider the case where the job of sizebecomes the job of siz&*. In this case, the total

load of the second machine would remain at mst- ¥; < P,(1 — (Ca(s) — 1)) < (2 — Ca(s))P, <

(2 Ca(s)(s +1). If 1 < s < Y5+ then(2 — Co(s))(s + 1) = EHDEED — Gy ()8 HL < sOy(s).

If @ < s<2,then(2—Cy(s))(s+1) = % = 02(8)83_85# < 505(s), sinces > /2.
Therefore, we get a contradiction.

Subcase 2b. The job of sizeZ; is assigned to the second machine in Step 3(b). Therefore, by the
assignment condition, at this momenjt+ Y; > ca(s) (sL7 + Z;) holds. Since the final load of the second
machine, excluding the job of siz&*, satisfiessL? + Z; = sL?Hrl > sCs(s) — s, we get that the final
load of the first machine is at leab}t + Y* > L} +Y; > sca(s)(Ca(s) — 1), and thus, the final load of the
second machine is at mosg—2¢2(=)(C2(=)=1),

If1<s< @, thenscy(s)(Ca(s) — 1) = 2 ands +1 — 2L = ciCan) L sCo(s). If

s24s+1" s24-s+1 s24s+1

@ < s < 2,thensca(s)(Ca(s) — 1) = ands +1— 52—13+1 = SszH = sC(s). Therefore, we
get a contradiction.

Case 3. There are two big jobs at the end of the algorithm, whose size¥ aand X*. We would
like to show that the ratio between the total size of jobs assigned to the first machine and the the total size
of jobs assigned to the second machine is at mgsy just after all regular jobs have been assigned. If no
regular jobs are ever assigned to the first machine we are done.

Otherwise, consider the moment when the last regular job of&jze assigned to the first machine.
Then by the assignment rul&; + Y; < c3(s) (sLi + Z;) holds, from which it follows thatl; + Z; <
ca(s) (sLi 4+ ;) sinceZ; <Y, holds for allt < n. The job of sizeY; cannot be the big job of sizE*
sinceP; < P, < s+ 1, andY; < (Ca(s) — 1)P < (Ca(s) — 1)(s + 1), but a big job has a size of more
than(Ca(s) — 1)(s + 1). Thus, the job of siz&} is assigned the second machine as a regular job at some
timet’ > t. Furthermore, all other further jobs that are assigned as regular jobs are assigned to the second
machine as well, so just before assigning the jobs of sizeand X*, the load of the first machine is no
larger thares(s) times the total size of jobs on the second machine.

The sum of sizes of all regular jobs (i.e., all jobs excluding the jobs of siZeand X*) is at most
s+1-—2Y*.

The load of the first machine, after all regular jobs are assigned, is therefore acg%%(ﬁl—ﬂ/*).
Since both last jobs are big, assigning the job of $iZzdo the first machine would increase its load to more
thanCs(s), we have-20)L (s + 1 - 2Y*) + Y* > Cy(s).

machine including all jobs would be more thaiCs(s) — 1) P, >

>

1
s2—s+1"

2(s)+1
2
If 1< s < Y3 then 20 (s41-2Y*)+Y* —Cy(s) = 2y (s+1 -2y)+ Bty [=
Y* z;;zﬁ > 0 leads to a contradiction sind&* > 0 ands? < s + 1.
If V5L < 5 < 2, then 20 (s+1-2Y %)+ Y = Ca(s) = i (s+1-2Y)+ 5=V - 50 =

(Y* — 1)32;;1 > 0. We consider the third lower bound aPT. If the two large jobs are assigned to the
second machine in an optimal solution, thgn* < Y* + X* < s, and therefor&™ < 5 < 1. Otherwise,
the job assigned to the first machine has size of at most 1, so¥¢ainl. Therefore, we get a contradiction
sinceY* < 1 ands® > s+ 1.

We next prove matching lower bounds. Consider the intetval s < @ and letK > 1 be an

arbitrary integer size of buffer. We give a sequence for which any algorithm has a competitive ratio of at

(s+1)
IeaSt52+5+1 1+ 52 s+1
The sequence starts with many very small jobs of size 0, of total sizel. Denote the total size of
jobs assigned to the first and second machines, respectively, after the arrival of thesejailsy where

a+ (8 > 1— Ke. The cost of an optimal solution at this momentj_s. Therefore, ifa > Qiﬂrl then

the lower bound follows. Moreover, if > 245 the lower bound is implied as well. Thus suppose that

s2+s4+1"
s+1 s2+s H _ s+1 $2+s
agS2+S+1,andﬁ§82+s+1,|.e. Ke<a< and Ks§ﬁ§82+s+1.0ne

1
}) . s2+s+1) s2+s+1 s2+ +1
further job of sizes arrives. The cost of an optimal solution becorhes
The machine which receives the last job would have a larger completion time than the other machine.

If the second machine receives this job, then the makespﬁi-ils_ 1+ 5 > 1+ — Ke

2-|-s—|—1 s
If the first machine receives this job, then the makespan-iss >

5452 +s+1
¢ Kets= = Srer 2
242541 — (s+1)
552+s+1 — Ke = s24s+1 Ke.)

In both cases the statement follows from lettiniggnd to zero.

Consider the interva@ < s < 2,and letK > 1 be an arbitrary integer size of buffer. We give a
sequence for which any algorithm has a competitive ratio of at Ieaisf (note that* +1 < Sﬁ < sin
this range). The first phase is as in the previous case, and the vafueks are deflned similarly.

Assume first thatt > - S —5_ — Ke, then one last job of sizearrives. The makespan in this case is at

—s+1
least

1 2 K
min{a—i—s,ﬁ—i_s}>min{s,1+ﬁ}>min{1+,1+/8}:1+/6>S_5_
S s s s

s2+s+1

S

Consider next the case whetie > ﬁ Then let two further jobs arrive, where the sizes of the
jobs arey = £=5tlg andX = sY — 1. Note thatX —Y = (s~ 1)Y — 1 = (s — 1) £=2Hlo 1 =
(s* = s+ 1) a—1> 0, from which we gel” < X.

An optimal solution would be to assign to the first machine, and the other jobs to the second machine,
which gives a makespan af. If at least one of the two last jobs is assigned to the first machine by the
algorithm, then the makespan is at least- Y = (1 + %)a = ga, which gives the required

competitive ratio sinc®PT = 52;_751“04. Otherwise both of them are assigned to the second machine, and
the total size of jobs assigned to the second machineswilld + X =1—-a—-Ke+(s+1)Y -1 =

(s +1) <=2ty —a — Ke = 42254 K¢, thus the makespan tends to at Ieﬁéﬁf—_la > "o again
(fore - 0). m

References

[1] S. Albers. Better bounds for online schedulitglAM Journal on Computing9, 1999.

[2] E. Angelelli, A. Nagy, M. G. Speranza, and Zs. Tuza. The on-line multiprocessor scheduling problem with
known sum of the taskslournal of Scheduling7(6):421-428, 2004.

[3] E. Angelelli, M. G. Speranza, and Zs. Tuza. Semi-online scheduling on two uniform proce¥hemetical
Computer Scien¢893(1-3):211-219, 2008.

10

[4] Y. Azar and O. Regev. Online bin stretchinbheorectial Computer Scienc268:17—41, 2001.

[5] M. Englert, D.Ozmen, and M. Westermann. The power of reordering for online minimum makespan scheduling.
In Proc. 48th Symp. Foundations of Computer Science (FOZIBB. To appear.

[6] L. Epstein. Bin stretching revistedcta Informatica 39(2):97-117, 2003.

[7] L. Epstein and L. M. Favrholdt. Optimal non-preemptive semi-online scheduling on two related machines.
Algorithms 57(1):49-73, 2005.

[8] L. Epstein, J. Noga, S. S. Seiden, J. Sgall, and G. J. Woeginger. Randomized Online Scheduling on Two Uniform
Machines.Journal of Schedulingd(2):71-92, 2001.

[9] L. Epstein and D. Ye. Semi-online scheduling with “end of sequence” informatloarnal of Combinatorial
Optimization 14(1):45-61, 2007.

[10] U. Faigle, W. Kern, and G. Turan. On the performance of online algorithms for partition probléwts.
Cybernetica9:107-119, 1989.

[11] T. Gormley, N. Reingold, E. Torng, and J. Westbrook. Generating adversaries for request-answer games. In
Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (Si2D83 564-565,
2000.

[12] R. L. Graham. Bounds for certain multiprocessing anomabedl. System Technical, 45:1563-1581, 1966.
[13] R.L. Graham. Bounds on multiprocessing timing anomal&aM J. Appl. Math17:416-429, 1969.
[14] Y. He and G. Zhang. Semi on-line scheduling on two identical machi@esputing 62(3):179-187, 1999.

[15] H. Kellerer, V. Kotov, M. G. Speranza, and Zs. Tuza. Semi online algorithms for the partition probleena-
tions Research Letter21:235-242, 1997.

[16] S.Li, Y. Zhou, G. Sun, and G. Chen. Study on parallel machine scheduling problem with buffeaclrof the
2nd International Multisymposium on Computer and Computational Sciences (IMSCCS28§99 278-281,
2007.

[17] S. Seiden, J. Sgall, and G. Woeginger. Semi-online scheduling with decreasing jolGypeeations Research
Letters 27(5):215-221, 2000.

[18] J. Sgall. On-line scheduling. In A. Fiat and G. Woeginger, editOrdjne Algorithms - The State of the Art
chapter 9, pages 196—231. Springer, 1998.

[19] G. Zhang. A simple semi on-line algorithm fdt2//C.. with a buffer. Information Processing Letters
61:145-148, 1997.

[20] G. Zhang and D. Ye. A note on on-line scheduling with partial informati@emputersts Mathematics with
Applications 44(3-4):539-543, 2002.

A Thecasek =1landl < s < 2

We consider the range for which the previous bounds are not tight, whickeig1, v/2). We conjecture

that neither the lower bound afiax{s, jfﬂ} nor the upper bound cﬁ‘“’i are tight. We motivate this
conjecture by considering several special cases. A case for which a better upper bound can be achieved

(s = %), a case where < sfjjﬂ (s = 6) and an upper bound higher thé;ﬁ% can be achieved, and a
(s+1)?

st and an upper bound higher thagan be achieved.

case where >

11

A.1 Algorithm

. . . . 4
We dgflne anew algqr!thm. The algorithm uses a parandetey > s. We later analyze it fog = 3.
Algorithm Two-ConditiongTC)
1. Store the first job in the buffer. Lét} = L3 = 0, P, = p;.
2. For each arriving job of indexact as follows.

2.1 LetP, = P,_1+p. LetP, = P,y + py, My = max{M,_1,p;}. Consider the new job of indexand
the job in the buffer. LefX; > Y; be their sizes. The job of sizg; is stored in the buffer.

2.2 Consider the following conditions.

o sL7+Y; <s(C(s)—1)P,
e sL?+Y, + X, <s-C(s)- LBy

If both conditions hold, then assign the job of siZeto the second machine, and let,, = L},
L7, =L7+%.

2.3 Otherwise, assign it to the first machine andllgt, = Ly + V3, L7, | = L7.

3. The last job which remains in the buffer is assigned to the second machine.
We show that the algorithm performs slightly better thanfor s = % , which was shown to have a
competitive ratio of exactly 1.4 for this value of

Theorem 4 For s = %, the competitive ratio of the algorithm usidg(s) = v ~ 1.3907364 is at mosty,
wherey is the solution off2? — 422 + 102 — 25 = 0.

Proof. Note thats = § < v < 1.4 = % < =L = T therefores + 1 — sy > 0. We also use

v > 3(28131121 = 32,7 > % = Yandy > 352 — 8. Suppose that the statement is not true and consider
an instance what violates it. Assume thatt = 1, then we havd] + sLy + X,, + Y, = P, <s+1 = %

Due to the definition of the algorithm, the competitive ratio can be violated either by the last job assigned
to the second machine, or by some job which is assigned to the first machine. Assume first that the violation
is caused by the last assigned job. Consider the situation at the time when the last job assigned to the
second machine. If this machine contains no jobs at all, clearly the load of this machine does not exceed
1, sinceX,, < s. Otherwise, consider the previous job assigned to the second machine. Let the time of
assignment bé&. We claim that the job of siz&,» and the last job which remains in the buffer are not the
same job, otherwise by the definition of the algorithm, the total size of jobs assigned to the second machine
issL? +Yy + Xy <s-v-LBy < syOPT = s7.

We get that the job of siz& is assigned to the first machine at some later time. Therefgre>
Ll}, + Xy. Since the job of siz&) is assigned to the second machine, then by the first condﬁt[cmet/ <
s(y—1)Py, and due to the violation of competitive ratid,2 + X,, = sL? + Yy + X,, > sv. UsingX,, < s
we gets(y — 1)Py > sy —sandPy > 1.

We havest, + Yy < S(’}/ - 1)Pt/, i.e., Py = SLL% + Yy + Lg, + Xp < S(’y - 1)Pt/ + L%, + Xy, Or
Ll + Xy > Pu(s+1—sy) > s+1— sy. We get that the total size of all jobs is at ledt + X,, =
(LL + Xp) + (sL? + Yy + X,,) > s+ 1 — sy + sy = s + 1, which is a contradiction.

Assume next that at some timg a job of sizeY; is assigned to the first machine and violates the
competitive ratio. We can in fact assume that n, since removing some jobs and scaling the input if
necessary may only increase the competitive ratio. TherelfdreY,, > yandsL2+X,, = P,—L.-Y, <
P,—vy<s+1—7.ThusY, < X, <P, —y<s+1—~vimpliesL. >~v—Y, >2y—s—1>0,since
~ > s > 1. Therefore, the first machine contains at least one job in addition to the job df,size

12

We analyze the conditions which led to the assignment of the job oft§jZe the first machine. The
first condition must hold sincelL? + X,, < P, — v < s(y — 1)P,. To prove the last inequality, assume

by contradiction thaf’,, — v > s(y — 1) P,, or equivalentlyP, (s + 1) > v(sP, + 1). Usingvy > s(gsislfl
we getP, (s> +s+1) > (s + 1)(sP, + 1) or P, > s + 1 which is a contradiction. Thus, it must be the
case that the second condition does not hold, Rg.+ L}l = sL?I +Y.,+X, >sy- LB, > S’yj_—"l, or
Ly < P(1-235)<s+1-s7.

SinceLl + Y, > v we haveX,, > Y, > (s+ 1)(y — 1). ThereforesL} = P, — L} - Y,, — X,, <
s+1—vy—(s+1)(y—1) = 2s+2—(s+2)~. Note that in an optimal schedule, each one of the two jobs of sizes
Y, and.X,, must be assigned to different machines, siger Y, > 2(s+1)(v—1) > 2(s+1)- 5357 > s,
sinces? < s+1. Note that the first machine must actually contain at least three jobs. Otherwise, if it contains
two jobs, then the first job assigned to it has a size of more2han s — 1 and it must be assigned to one
of the machine in an optimal solution together with a job of size more thanl)(y — 1). We get a total
size of more tharis + 3)y — 2(s + 1) > s, by the value ofy, which leads to a contradiction.

Denote the sizes of the two jobs assigned to the first machine before the lastYolabgY; , where
t' < t < n. Consider first the job of siz&. If this job is not one of the two jobs of size§, andY,,, then
it is eventually assigned to the second machine in step 2.2sBhd> sL? + X;. Due to the choice of the
timet, we haveL. = L} + Y;. We test the two conditions at the time of assignment of the job ofi$ize

Assume that the first condition does not hold. Then we fiavel —sv)(sL2+Y;) > s(y—1) (L} +X3).
UsingsL? +Y; <sL?+ X; < L2 <s+1-y—-X,andL} + X; > L} +YV, = L. >~y -Y, >v—- X,
weget(s+1—sy)(s+1—v—X,) > s(y—1)(y — X,). Simplifying, we get(s + 1)? — v(s® + s +
1) + X, (2s7 — 2s — 1) > 0. We havey > 25t so usingX,, < s+ 1 — v we get(s + 1)% — y(s* +
s+ 1)+ (s+1—7)(2sy—2s—1) > 0. Simplifying the last expression givest+ 1 < (s + 3 — 27)~,
or 672 — 13y + 7 < 0, which does not hold fofy > % and leads to a contradiction. Assume next that the
second property does not hold. We géf +Y; + X; > s-v-LB; > Hb= ;—Wl(sL% + LI+ Y+ Xy),
ie., (s+1—sy)(sL? + X3) + (s + 1)Y; > sy(L} +Y;). SincesL? > sL? + X; > Y;, we have
(s+1—sy)(sL? + X))+ (s+1)Y; < (25 +2—57)sL2 < (2s+2—sy)(s +1 -~ — X,,). Using
Li+Y, =L >~v—-X,,weget(2s +2—sy)(s+1—v—X,) > sy(y — X,,). Simplifying we
get2(s +1)2 — (s +2)(s+ 1) > 2X,(s + 1 —s7) > 2(s + 1)(y — 1)(s + 1 — sv). This results in
3272 4 94~ — 154 < 0, which does not hold fo > 2, thus we reach a contradiction.

Therefore we are left with the case where the job of sizés one of the jobs of sizeX,, andY,,, thus
X: > (s +1)(v — 1), and there is another job of at least this size to arrive. Thus P, — Y,,. We have
P, = L} + sL? +Y; + X;. We again check which condition led to the assignment of the job ofisize
the first machine.

Assume that the first condition does not hold. Weget- X; > sL2 +Y; > s(y — 1) P, and therefore
X <P(s+1—5y)<(s+1—s7)(P,—Y:). Weget(s+1)(y—1)(s+2—s7) <Yi(s+2—s7) <
(s+1—57)P, < (s+1—s57)(s+1). Simplifying, we getsy? —v(3542)+25+3 > 0, 0r4y2 —18y+17 > 0,
which does not hold fory > 1.35.

Therefore it must be the case that the second condition does not hold, we-det- v — X,, +Y; >
sL24Y; > sL}+Y; > s-y-LB—X; > (y—=1)Yy, usingLB; > 2. ThusY; > y(y—1)(s+1)+y—s—1 =
(s +1)7* — sy — (s + 1).

Note thaty; + Y, > (s+ 1)y —sy—(s+ 1)+ (s+1)(y = 1) = (s + 1)¥*+v—-2(s+ 1) > 1,and
2V, + Y, >2(s+ 172 =25y —2(s + 1)+ (s + D) (y—1) =2(s +)2+ (1 —s)y—3(s+1) > s, 50
the three jobs of sizeg, Y,, and X, are the three largest jobs, out of which two must be assigned to the fast
machine in an optimal solution. These two cannot be the jobs of Bjzand.X,,. ThusY; + Y,, < s, and
thereforel] = L. —Y; >y -V, - Y, > v —s.

Recall that a job of siz&). is the last job which was assigned to the first machine before the job of size
Y;. We consider the job of siz&,. If this job is not one of the three largest jobs, then it is assigned to the

13

fast machine at step 2.2 and we havgé > sL? + Xy andL} = L}, + Y, +Y;. We test the two conditions
at the time of assignment of the job of si¥g.

Assume that the first condition does not hold. Then we liave —sv)(sL2+Yy) > s(y—1)(LL+Xy).
Usingst,JrYt/ < sL?,—i—Xt/ <sL2<s+1—-y—X,<s+1—y—(s+1)(y—1), Lt,—i—Y;/—i—Y}—i—Y =
L >~andY; +Y, <sgives(s+1—sy)(2s+2— (s +2)7) > s(y — 1)(y — s). Simplifying, we get
(s24+8)7v2 —2y(s + 1)? + (s* +4s + 2) > 0 which does not hold.

)(sLy +
Xy) + (s + 1Yy > sy(L} + Yy) = syLi > sy(y — s). SlnceY}/ § sLt, + Xy < sL2 - X, <
s+1l—y—(s+1)(y—1),weget2s+2—sy)(s+1—v—(s+1)(y—1)) > sy(y —s). The left
hand side is equal to approximat@ly)8684 whereas the right hand side is equal to approximatgl§c44,
which leads to a contradiction.

Thus the job of sizeX,. is one of the three largest jobs, and we haye< s — Y, —Y; < s— (s +
1)y2 —~y+2(s+1) if the job of sizeY} is assigned to the fast machine in an optimal solution, and otherwise
Yo <1-Y, <1-(s+1)(y—1). The first bound is larger, therefore we uge < s — Y,, — ¥V} <
s—(s+ 1)y —v+2(s+1) ~ 0.096525.

At this time, the joby} is assigned to the first machine, therefore at least one of the two conditions does
not hold. Assume by contradiction that the first condition does not hold. Weﬂa;"veg sL?2 — X, <
s+1—y—(s+1)(y—1),andXy >Y; > (s + 1)v*> — sy — (s + 1). ThussL? + Y} < 0.127131 and
Xy > 0.32536276. We get(— 3v)(sL? + Yy) > 3(v — 1)(Xy + L},), which does not hold.

Assume by contradiction that the second condition does not hold. Usind, > X, we get
sL? +Yy > (v — 1)Xy. However, the bounds on the two values are equal (by the definitioh afhich
is a contradiction as well.

Since none of the options is possible, we conclude that the counter example does nat exist.

A.2 Improved lower bounds for some small values o§

We consider two values of, namelys = % ands = g and show slightly higher lower bounds than those
shown in the body of the paper. The lower bounddes g shown in the body of the paper is approximately
1.3296, and the lower bound which was shownsfet % is %.

Theorem 5 The competitive ratio of any algorithm which uses a buffer of Bize 1 is at Ieast% fors =9

5 .
The competitive ratio of any algorithm which uses a buffer of Kize 1 is at leastl1.37 for s = %.

Proof. We first consider the case= 2. Let0 < e < 15155 be a number such thatis an integer.

The sequence starts with many very small jobs of size 0, of total sizel. Denote the total size of
jobs assigned to the first and second machines, respectively, after the arrival of theseq@gllsy where
1—e¢<a+ g <1. Atthistime, OPT— m = 5 and therefore, in order not to achieve a competitive ratio
of at least3, it follows thata: < 4 - 5 = 22, andﬁ <8. B -2 ThusE <a< .

If the next and last job has a size g)fthen after |ts arrivabPT = 1. Assigning this job to to the slow
machine would create a makespan of at Ie%str > § thus the last job must be assigned to the fast
machine. However, in order not to achieve a competitive rat@ die load of the second machine must be
lower than$ - £, thusj3 < 1 - & = 2 must hold, which implies = 22 < o < 2 = 130,

Assume that the job of S|z§e does not arrive after all, and instead two jObS of siXes 3andY = 2
arrive. At this timeopt = 5583 — 38 — 29 ~ 26364, by assigning the job of siz& to the fast
machine, the job of siz& to the slow machine, and spreading the small jobs to allow the two machines
equal completion times.

At this time, at least one of the two larger jobs must be assigned to one of the machines. We consider

several cases. If the job of siZ€ is assigned to the slow machine, then the makespan will be at least

14

a+3 > 3.6 > 0PTsinces - & ~ 3.5152. Similarly, if at this time, the job of siz& is assigned to the
fast machine, then either the job of siXewill be assigned to the slow machine, and the previous proof can
be used, or the load of the fast machine would becémeX + Y > 4.8, whereas; - £ - 22 < 4.8.

Consider the case that the job of si¥eis assigned to the slow machine. Then an additional job of
size X’ = 3.11 arrives, which is the last job. At this momeapPT = 4.05, by assigning a job of siz&’,
a job of sizeY’, and a total of 0.06 of the small jobs to the fast machine, and all other jobs to the slow
machine. Next, if one of the two remaining jobs is assigned to the slow machine, then we get a load of at
leastae +1.84+3 > 54 = §OPT, and otherwise both these jobs are assigned to the fast machine and its load
willbe 8+ 6.11 > 18 +6.11 > & - 2opT, and the lower bound holds.

Thus only one case remains, where one job of 8izznd one job of siz& had arrived, and the job of
size X = 3 is assigned to the fast machine. In this case an additional job o¥'sizel.8 arrives, and two
such jobs are present. One such job must be assigned to one of the machines.

Suppose that a job of siZéis assigned to the slow machine. Then a final job of Zize §(1+3+ 1.8+

1.8) = 9.12 arrives. We havepPT = 7.6. The makespan will be at leastin {a +18+ 7, 5*3;’2} >

min §0.6 + 1.8 + 9.12, B3I 1049 > 4. 76,

Finally, consider the case where the job of sizés assigned to the fast machine. A third job of size
Y = 1.8 arrives, which results in two pending jobs of this size. At this monaart = % where in an
optimal solution two jobs of siz& are assigned to the slow machine, the other two jobs are are assigned to
the fast machine, and the small jobs are spread to let the two machines have equal loads.

If an additional job of siz&” is assigned to the fast machine, then the total size of jobs assigned to it is
6+3+18+18>6.99 > g%% Otherwise, a job of siz& is assigned to the slow machines, and the
last job of sizel/ = $(1 + 3 + 1.8 + 1.8 + 1.8) = 11.28 arrives ancbPT = 9.4. The makespan will be at

leastmin {a + 1.8 + U, HHLSUY > min {0.6 -+ 1.8 + 1128, WIS _ 1368 > 494,

We have thus showed that in all possible cases the lower bound holds as required.
4

To prove a lower bound for = 3, Let% < ¢ < 1.4 the value of the lower bound which is proved. The
sequence starts as in the previous case, with the possibility that an additional job @fnsiagearrive. In
this case, the resulting bounds erarel — § < a < % We next have a job of siz&¥ and a job of siz&”,
whereY < X, and the values ok andY” are chosen sothatY + 1) < X andY < (s — 1)X + s.

At this time there are three possible inputs. In the first input the sequence stops, in the second input
an additional job of sizeX arrives, and in the third input, a job of sizé = s(sX + s + 1) arrives. We
give bounds oropPTin the three cases. In the first case, it is possible to assign the job oX' dia¢he fast
machine, and the other jobs to the slow machine. Sineel < % we getorT < % In the second case,
it is possible to assign jobs of sizé§ andY to the fast machine, and all other jobs to the slow machine.
Since™* < X + 1, we haveoPT < X + 1. In the third case the large job is assigned to the fast machine
andopPT= sX + s+ 1.

If the job of sizeX is assigned to the slow machine or the job of sizes assigned to the fast machine,
the first input is used. The makespan is at leaist{o + X, 22X

If the job of sizeY is assigned to the slow machine, the second input is used. The makespan is at least
min{a +Y + X, %}

If the job of sizeX is assigned to the fast machine, the third input is used. The makespan is at least
min{a + Z, W}

It is not difficult to verify that the choic& = 8.6 andY = 4.2 yields the required lower bounaa

15

