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Abstract
Given a number of users each of which provides a set of services with a cost for each service and
has a set of requests to be satisfied, the goal of the request-service problem is to find a feasible
solution that satisfies all requests of each user with minimum cost. In addition, a feasible solution
must satisfy an additional constraint. Specifically, if user A provides a service to user B, B should
provide a service back to A either directly or indirectly through other users. In this paper, we
studied the complexity of this problem. We show that there exists a polynomial time algorithm
that can compute a feasible solution with minimum cost if such a solution exists. However, if a
feasible solution does not exist, the problem of maximizing the number of satisfied users (i.e., all
requests of the users are satisfied) is NP-hard.
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1 Introduction
The goal of request-service problem is to find the minimum cost to provide services for a
group of users such that each user's requests are satisfied and his services are returned to
himself. The simple version of this problem is that each user has only one service and one
request while the general version is that each users has multiple services to provide and
multiple requests to be satisfied. The problem has extensive applications in research related
to barter economy, electrical marketing, and operating systems. However, it remains
unknown whether the problem can be solved with a polynomial time algorithm.

There are similar problems that have been extensively studied. For example, barter exchange
problem [7, 12, 13], specifically kidney exchange problem [1, 4, 6, 14], and fair sharing of
peer-to-peer resources problem [2, 3, 5, 10], etc. In particular, the kidney exchange problem
is that people who need to have kidney transplanted but have incompatible donors want to
obtain compatible kidneys by exchanging their donors. The problem is the same as the
simple version of our request-service problem. Abraham et. al. [1] studied the complexity of
the kidney exchange problem with an added restriction on the lengths of exchange cycles.
They showed that the kidney exchange problem is NP-hard if the lengths of the exchange
cycles are at most L, L ≥ 3, and developed an integer linear programming algorithm for the
problem [1]. The fair sharing of peer-to-peer resources problem is similar to our general
version of the request-service problem with a slight difference that in the fair sharing of
peer-to-peer resources problem, some users may not provide its resources to the system if
they get free resources from the system [10]. In this paper, we first show that the simple
version of the request-service problem can be reduced to finding the minimum cost vertex

NIH Public Access
Author Manuscript
J Comb Optim. Author manuscript; available in PMC 2011 May 2.

Published in final edited form as:
J Comb Optim. 2010 August 1; 20(2): 180–193. doi:10.1007/s10878-008-9202-9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



disjoint cycle cover in a directed graph. We then show that the general version of the
problem can be reduced to finding the minimum cost strongly connected component cover
in a directed graph G, which can be further reduced to finding the minimum cost vertex
disjoint cycle cover in another directed graph H constructed from G.

A vertex disjoint cycle cover (the size of each cycle is greater than or equal to 2) in a
directed graph corresponds to a perfect matching in a bipartite graph. The cycle cover with
the minimum weight can thus be found by computing the minimum weighted perfect
matching in the bipartite graph. This matching can be found with the Hungarian Method [8,
9] in time O(n3), where n is the number of vertices in the graph. Based on this fact, we show
that both the simple and general case request-service problems can be solved in polynomial
time. In particular, we show the simplified version of the problem for N users can be solved
in time O(N3) and the general version of the problem can be solved in time O(N12). In cases
where a valid solution does not exist, it might be more desirable to minimize the cost while
serving as many users as possible. For the simple version of the problem, because each user
has only one request, the complexity of the problem of maximizing the number of satisfied
users is the same. We show that the problem of maximizing the number of satisfied users is
NP-hard through a reduction from MAX2SAT, which is a well-known NP-hard problem
[11]. The rest of the paper is organized as follows. In section 2, we present the notations and
preliminaries needed for the paper. In sections 3 and 4, we present the solutions for both the
simple and general version of the request-service problem and the proof of the correctness of
the algorithms. In section 5, we show the NP-hardness of the problem maximizing the
number of satisfied users through a reduction constructed from MAX2SAT. To simplify the
notation, we use cycle cover to refer to vertex disjoint cycle cover in the remaining part of
the paper. We conclude the paper in section 6.

2 Preliminaries
The graphs in this paper are directed graphs. Given a graph G = (V, E), where V is the set of
vertices in G and E is the set of directed edges. Given a directed edge (u, v) ∈ E, u is the tail
of the edge and v is the head of the edge. we associate a weight value with each edge (u, v)
∈ E and we use w(u, v) to denote it. A directed cycle in G is a sequence of vertices v1, v2, ⋯,
vl in V such that (vi, vi+1) is a directed edge in G for 1 ≤ i ≤ l(here i + 1 is 1 if i = l). A cycle
cover of G is a set of directed cycles in G such that each vertex in V is contained in one and
only one directed cycle in the set. The weight of a cycle cover is the sum of weights of all
edges in the cycle cover.

3 Finding a Minimum Weighted Vertex Disjoint Cycle Cover in a Weighted
Directed Graph

Given a directed graph G = (V, E) and the weight w(u, v) of each directed edge (u, v) of G,
the problem is to find in G a set of disjoint cycles such that each vertex appears in exactly
one of the cycles and the total weight of edges in the cycles is the minimum. A well known
fact is that the problem can be reduced to computing the maximum weighted perfect
matching in a bipartite graph. The bipartite graph H can be constructed from G as follows.
The vertex set of H is composed of two sets U and T such that |U| = |T| = |V|. We label each
vertex in U and T with integers from 1 to |V|. Vertex u ∈ U is connected to vertex v ∈ T if (u,
v) is a directed edge in G. In addition, edge (u, v) in H is associated with a weight W – w(u,
v), where W is a number larger than the maximum of all edges weights in G. It is not
difficult to see that a minimum weighted cycle cover corresponds to a maximum weighted
perfect matching in H. This matching can be efficiently computed with Hungarian
Method[8] in time O(n3), where n is the number of vertices in the directed graph G.
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For the simple version of the request-service problem where each user has only one request
and one service, we can construct a weighted directed graph G with each vertex of G
represents a user. If user A provides a service that user B requests, we connect A to B with a
directed edge and the weight of the edge is assigned to be the charge user A asks for the
service. Because each user can have at most one incoming edge for its only request and the
restriction of the problem that each service each user provides needs to be returned by the
service consumer either directly or indirectly, the problem is reduced to finding the
minimum weighted cycle cover in the graph G. Therefore, the simple version of the request-
service problem is solvable in O(N3) where N is the number of users in the problem.

4 Solution to the General Version of the Request-Service Problem
Now, we show that the general version of the request-service problem can also be reduced to
the problem of finding a minimum weighted cycle cover in a directed graph. Assume that
user u has ru requests and can provide su services, we can construct a directed graph G as
follows. For each request of user u, we use a vertex to represent it. Such vertices form a set
of size ru and we use Ru to denote the set. Similarly, su vertices are used to represent the
services provided by u and we use Su to denote the set. For each user u, we create a directed
edge from every vertex in Ru to every vertex in Su. Each of such edges is assigned a weight
of 0. If user u can provide a service to fulfill a request from user v, we create a directed edge
from the corresponding vertex in Su to the corresponding vertex in Rv. The weight of the
edge is the price u charges v for that service. For each user u, we create an additional vertex
s' for each vertex s in Su and connect s' with s with two directed edges that form a loop. The
edges in each loop are assigned a weight of 0. These additional vertices are needed since
some services may not be needed in a solution. Figure 1 provides an example on the
construction of graph G.

Now, since each vertex that represents a request should have in-degree one while vertices
that represent services may have out-degree more than one in a feasible solution, the general
version of the request-service problem corresponds to a minimum weighted strongly
connected component cover (SCC cover) G ′ such that G′ is a subgraph of G covering every
vertex of G and G′ is a set of vertex disjoint strongly connected components. For
convenience, we call such G′ a minimum SCC (Strongly Connected Component) cover of
graph G.

Now, we construct a new directed graph H from G and show that a minimum weighted SCC
cover in a directed graph G corresponds to a minimum weighted cycle cover in H. We have
the following observations.

Lemma 4.1
A SCC cover in a directed graph G = (V, E) can be further decomposed into at most |E|
cycles C1, C2, C3, ⋯, Ck where k ≤ |E| such that each cycle Ci contains at least one edge that
does not appear in other cycles.

Proof—We initialize the set of cycles C to be empty and we then construct a cycle by
arbitrarily picking from the SCC cover one edge that has not been contained in any cycles in
set C. Since the edge is in a SCC cover, we are able to construct a cycle from the SCC cover
to contain this edge. We add this cycle to set C. We repeat this procedure until every edge in
the SCC cover is covered by at least one cycle in set C. Since every cycle in set C contains
an edge that is not covered by other cycles, the number of cycles in set C is at most |E|.

Based on the decomposition proposed in Lemma 4.1, we know that each edge in G is
contained in at most |E| cycles in the decomposition and we thus can split each edge into |E|
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edges and the cycles in the decomposition then become disjoint. We call such a
decomposition a cycle decomposition of a SCC cover of G and we use H to denote it. We
now show how we can reduce the problem of finding a minimum SCC cover in G to
computing a minimum weighted cycle cover in H.

To construct the new graph H, we replace each vertex u in G with |E| vertices. We denote
them with u(1), u(2), ⋯, u(|E|). If (u, v) is an edge in G from u to v, we connect u(i) and v(i)
with a directed edge from u(i) to v(i) for each 1 ≤ i ≤ |E|. An edge in G is thus replaced by a
set of |E| parallel edges. Now, the cycles in the cycle decomposition of a SCC cover of G
can be decomposed into |E| disjoint cycles. Figure 2 (a)(b) show an example of a simple
graph G and its corresponding cycle decomposition graph H. However, three issues must be
resolved before we can claim that computing a minimum weighted cycle cover in H
corresponds to a minimum weighted SCC cover in G. First, the weights of these duplicated
parallel edges need to be handled in an elegant way such that the weight of a cycle cover in
H is equal to that of a SCC cover in G. Second, the constraint that every vertex that
represents a request can only have in-degree one in the SCC cover must be satisfied in a
cycle cover of H. Third, since |E| is only an upper bound of the number of cycles that can
pass an edge in the cycle decomposition of a SCC cover, a mechanism that can cover those
“unused” vertices in H is needed. We thus need to design additional graph gadgets to
guarantee that these three issues are solved.

For the first and third issues, we need to add additional auxiliary vertices to each set of
duplicated |E| edges. In particular, each duplicated edge (u(i), v(i)) is added two intermediate
vertices i(u, v, i, 1) and i(u, v, i, 2) and the weight of edge (u(i), i(u, v, i, 1)) is assigned to be

 while edges (i(u, v, i, 1), i(u, v, i, 2)) and (i(u, v, i, 2), v) are assigned weight 0. We
create an additional directed edge of weight 0 from i(u, v, 1, 2) to i(u, v, 1, 1). We also create
edges from i(u, v, i + 1, 2) to i(u, v, i, 2) and from i(u, v, i, 1) to i(u, v, i + 1, 1), where 1 ≤ i <
|E|. All are assigned weight 0. Now we add an additional vertex p(u, v) and create two
directed edges of weight 0 from i(u, v, |E|, 1) to p(u, v) and from p(u, v) to i(u, v, |E|, 2).

Now, we add |E| helper vertices h(u, v, 1), h(u, v, 2), ⋯, h(u, v, |E|) and for each 1 ≤ i ≤ |E|,
we create four directed edges: (h(u, v, i), u(i)) of weight 0, (v(i), h(u, v, i)) of weight 0, (h(u,

v, i), i(u, v, i, 1)) of weight  and (i(u, v, i, 2), h(u, v, i)) of weight 0. Now, we connect
all the helper vertices and p(u, v) into a bi-directional clique of weight 0. In other words,
every pair of the |E| + 1 vertices are connected with two directed edges of weight 0. For the
convenience of notation, we also denote this new directed graph with H. Figure 3 shows an
example of the gadgets created for each set of parallel edges. We have the following lemma.

Lemma 4.2
A SCC cover in G corresponds to a vertex disjoint cycle cover in H of the same weight and
vice versa.

Proof—First, we show that given a SCC cover G′ in G, we are able to find a corresponding
vertex disjoint cycle cover in H. From lemma 4.1, we can decompose G′ into a set C of |E|
cycles, C = {C1, C2, ⋯, C|E|}. We can repeat the following procedure to “embed” these
cycles into H.

1. Mark every cycle in C with 0.

2. Set a variable m to be 0.

3. Arbitrarily pick one cycle in C with mark 0 and call it Ci.
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4. Find in C all cycles that are disjoint with Ci and have mark 0.

5. For each cycle found in step 4, we replace each edge (u, v) in G by edge (u(m),
v(m)) in H. This can “embed” the cycle in graph H.

6. Increase m by 1 and mark every just embedded cycle with 1.

7. Go to step 3 if C contains at least one cycle with mark 0.

Since C contains up to |E| cycles, m can never be larger than |E|. The procedure thus can
“embed” every cycle into graph H and these cycles are now vertex disjoint. Next, we show
that the remaining vertices in H can also be covered with cycles disjoint from these
embedded cycles. We can cover the remaining vertices with the following procedure.

1. Divide the edges not incident on helper or intermediate vertices in graph H into two
sets D and F such that an edge (u(k), v(k)) is in D if and only if (u, v) is an edge in
G′ and (u(k), v(k)) is not covered by the embedded cycles. An edge (u(k), v(k)) is in
F if and only if (u, v) is an edge in G but not an edge in G′ and (u(k), v(k)) is not
covered by the embedded cycles.

2. Mark each edge in D with 0.

3. Arbitrarily pick an edge (u(k), v(k)) in D with mark 0 and check whether vertices
u(k) and v(k) have been covered. If neither of them is covered, choose the cycle h(u,
v, k), u(k), i(u, v, k, 1), i(u, v, k, 2), v(k), h(u, v, k) to cover both u(k) and v(k). If u(k)
is not covered but v(k) is, choose the cycle h(u, v, k), u(k), i(u, v, k, 1), i(u, v, k, 2),
h(u, v, k) to cover u(k). Similarly, if u(k) is covered but v(k) is not, choose the cycle
h(u, v, k), i(u, v, k, 1), i(u, v, k, 2), v(k), h(u, v, k) to cover v(k). If both vertices are
covered, we choose the cycle h(u, v, k), i(u, v, k, 1), i(u, v, k, 2), h(u, v, k) to cover
vertices i(u, v, k, 1) and i(u, v, k, 2). We then mark the edge (u(k), v(k)) with 1.

4. If D still has an edge with mark 0, go to step 3.

5. For each edge (u(k), v(k)) in F, because (u, v) is not in G′, all edges (u(t), v(t))
where 1 ≤ t ≤ |E| are in F and we thus can consider them as a whole. To this end,
we use the cycle p(u, v), i(u, v, |E|, 2), i(u, v, |E| − 1, 2), ⋯, i(u, v, 1, 2), i(u, v, 1, 1),
i(u, v, 2, 1), ⋯, i(u, v, |E| − 1, 1), p(u, v) to cover all intermediate vertices. We then
use the bidirectional clique between helper vertices to cover all helper vertices h(u,
v, t), 1 ≤ t ≤ |E|.

6. For edge (u(k), v(k)) that is covered by the embedded cycles, at least one helper
vertex h(u, v, t) for edge (u, v) is not covered by the cycle constructed in above
steps. For those uncovered helper vertices, we use the bi-directional clique among
them and the vertex p(u, v) to cover all of them and p(u, v).

It is easy to check that this procedure can create a set of vertex disjoint cycles that can cover
every vertex in H that are not covered by embedded cycles. In addition, the weight of this
cycle cover is the same as that of G′ in G since for every (u, v) ∈ G′, the associated cycles
that cover corresponding vertices in H have a total weight of w(u, v) and if (u, v) is not in G′,
the associated cycles that cover the corresponding vertices have weight 0.

Now, we show that we can construct a SCC cover from a vertex disjoint cycle cover of H. In
particular, for vertex p(u, v) in H, there are only two ways to cover it in a cycle: either the
cycle formed by itself with some helper vertices of (u, v) or the cycle formed by itself with
all intermediate vertices. We pick edge (u, v) if the corresponding vertex p(u, v) in H is
covered in the former way, i.e., p(u, v) is covered with a cycle formed by itself with some
helper vertices. Therefore, to cover vertices i(u, v, k, 1) and i(u, v, k, 2) for some 1 ≤ k ≤ |E|,
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a cycle must pass through vertices u(k), i(u, v, k, 1), i(u, v, k, 2) and v(k). Thus all selected
edges in G form a SCC cover. We denote this SCC cover with G′.

Next we show that every vertex in G is contained in G′. Assume on the contrary that there
exists a vertex v in G that is not included in G′, then for each edge (u, v) incident on v in G,
(u(k), v(k)) is not an edge in G′ and (u(k), v(k)) is not covered by the embedded cycles in H.
Therefore, vertex p(u, v) is covered by a cycle formed by all the intermediate vertices
associated with edge (u, v). It thus is impossible to cover the vertex v(k) in the disjoint cycle
cover of H, which is contradictory to the assumption that G′ is constructed from a cycle
cover of H.

Now we have shown that G′ is a SCC cover of G. It is easy to see that the SCC cover
constructed this way has the same weight as that of the cycle cover of H, since for each edge
(u, v) in G′, the cycle that cover p(u, v) and some helper vertices are of weight 0. In addition,
the cycles that cover vertices u(k) and v(k) for all 1 ≤ k ≤ |E| in H have a total weight of w(u,
v).

Now, we construct graph gadgets to guarantee the constraint that each vertex for a request in
G can only have in-degree one in a vertex disjoint cycle cover. To guarantee this, consider
any parallel edge (u(i), v(i)) where v represents a request. We use T(v, i) to denote the set of
parallel edges (s(j), v(j)) where s ≠ u and j ≠ i. For edge (u(i), v(i)), we create two additional
auxiliary vertices x(u, v, i) and y(u, v, i). On (u(i), v(i)), we create an intermediate vertex t(u,
v, i). Similarly on each edge in T(v, i), we create an intermediate vertex and denote them
with t(u, v, i, 1), ⋯, t(u, v, i, |T(v, i)|). Now, we create a directed cycle by connecting x(u, v,
i) to y(u, v, i), t(u, v, i) to x(u, v, i), and y(u, v, i) to t(u, v, i) with three directed edges of
weight 0. Then for all the intermediate vertices other than t(u, v, i), we form a second
directed cycle by arbitrarily ordering the vertices with x(u, v, i) and y(u, v, i) such that the
vertices that are associated with the same edge in G are consecutive in the order with y(u, v,
i) and x(u, v, i) being the first and the last vertices, respectively. Now, we connect each pair
of consecutive vertices in the order with a directed edge of weight zero. In addition to these
two cycles, we form a third cycle that can bypass some of the intermediate vertices for the
edges in T(v, i). In particular, we connect x(u, v, i) to t(u, v, i) and then follow the reversed
order of the second cycle we just constructed. In addition, we create some directed edges
such that the intermediate vertices for some edges (possibly all edges) for a particular edge
in G can be bypassed in the third cycle. All these edges are also of weight 0. Figure 4 shows
an example of this gadget. It is not difficult to see that, to cover x(u, v, i) and y(u, v, i), if
edge (u(i), v(i)) is chosen in a cycle cover, t(u, v, i) cannot be used to cover x(u, v, i) and y(u,
v, i). Therefore, we can only pick the second cycle, which will force other edges in T(v, i)
not to be selected in the cycle cover. We denote this new directed graph with Hf and we have
the following lemma.

Lemma 4.3
A SCC cover in G where each vertex for a request has in-degree one corresponds to a cycle
cover in Hf and vice versa.

Proof—First, we show that we can construct a cycle cover in Hf from a SCC cover G′ in G
where each vertex for a request has in-degree one. From Lemma 4.2, we can construct from
G′ a cycle cover in H with the same weight. Now, we find cycles that can cover those
additional vertices in Hf. Since each vertex for a request in G′ has in-degree one, for edge
(u(i), v(i)) in the cycle cover of H, we can pick the second cycle of vertices x(u, v, i) and y(u,
v, i) to cover the two vertices and the intermediate vertices in other edges in T(v, i). For any
edge (s(k), v(k)) in T(v, i), we can use the third cycle of vertices x(s, v, k) and y(s, v, k) to
bypass the intermediate vertices on edges (u(i), v(i)) that are in the cycle cover, where 1 ≤ i
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≤ |E|, since these intermediate vertices have been covered. It is not difficult to see that these
cycles can cover all vertices in Hf without increasing the total weight of the cycle cover. For
the reversed direction, notice that to cover two additional vertices x(u, v, i) and y(u, v, i) for
each edge (u(i), v(i)) in Hf, we only have three options and two of them need the vertex t(u,
v, i). Therefore, if (u(i), v(i)) is in a cycle cover of Hf, we can only pick the second cycle to
cover the two vertices and this cycle will disable the inclusion of other edges in T(v, i) in the
cycle cover. This thus guarantees the satisfaction of the constraint that each vertex for
request only has in-degree one. Since H is a subgraph of Hf, the same argument of Lemma
4.2 applies and we eventually obtain a SCC cover as claimed.

Now, by putting all these together, we obtain the following theorem.

Theorem 4.1
The general version of the request-service problem can be solved in time O(n12) if the
number of requests and services provided by each user is bounded by a constant.

Proof—The directed graph G = (V, E) has O(n) vertices since each user has a constant
number of requests and services. Graph H may have up to O(n|E|) vertices and graph Hf may
have up to O(n2|E|) since the in-degree of every vertex in G is bounded by O(n). Based on
lemmas 4.2 and 4.3, we can apply the Hungarian method on Hf to compute the minimum
weighted cycle cover problem and it needs up to O ((n2|E|)3) time. Since E = O(n2), we get
the time complexity as claimed.

5 To satisfy as many users as possible
In this section, we consider the problem that a solution that can satisfy all users' requests
does not exist. In this case, we want to satisfy the requests of as many users as possible, i.e.,
to maximize the number of satisfied users. We construct a reduction from the MAX2SAT
problem to show the NP-hardness of this problem. In particular, given a set of boolean
variables and a set of clauses of these variables, and each clause contains two literals, the
objective of MAX2SAT problem is to find an assignment of variables to maximize the
number of satisfied clauses. This problem is a well known NP-hard problem.

Theorem 5.1
Minimizing the total weight while maximizing the number of satisfied users is NP-hard.

Proof. Given an instance of MAX2SAT, we assume the boolean formula contains n
variables x1, x2, ⋯, xn and m clauses c1, c2, ⋯, cm in total. Each clause contains two literals.
As the first step of the reduction, we construct a directed graph G from the instance of
MAX2SAT and each vertex in G is associated with a weight value. We show that a set of
vertex disjoint cycles that cover a set of vertices with maximum total weight in G
corresponds to an assignment that maximizes the number of satisfied clauses. We then
further show that the weighted instance can be reduced to an unweighted instance, where
each vertex has the same weight.

G contains two types of graph gadgets: variable gadgets and clause gadgets. In particular,
each variable is represented with a variable gadget. Figure 5(a) shows a variable gadget for
variable xi. The gadget contains an input vertex a(i) and an output vertex b(i) and four
additional vertices c(i, 1, 0), c(i, 2, 0), c(i, 1, m), c(i, 2, m). Each of the four vertices is
associated with a weight value of m2. In addition, we create m − 1 intermediate vertices c(i,
1, t) where 0 < t < m on the directed path from c(i, 1, 0) to c(i, 1, m) and m − 1 intermediate
vertices c(i, 2, t) where 0 < t < m on the directed path from c(i, 2, 0) to c(i, 2, m). These
intermediate vertices create m partitions and each occurrence of variable xi will need one of
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them to construct a clause gadget. For each 0 < t < m, we connect c(i, 1, t) with c(i, 2, t) with
a bidirectional gadget and this bidirectional gadget is shown in Figure 5(b). There are m2

vertices in a directed path and each of these vertices is of weight 1. We add two additional
vertices e(i, 1, t − 1) and e(i, 2, t − 1) on the directed edges (c(i, 1, t − 1), c(i, 1, t)) and (c(i,
2, t − 1), c(i, 2, t)), respectively. The weight of the two additional vertices is m2 and they are
used to further “restrict” the vertex disjoint cycles that can cover all vertices with weight m2

in a variable gadget. It is not difficult to see from Figure 5(a)(b) that there are two directed
paths from a(i) to b(i) that can cover all vertices in the gadget. They are a(i), c(i, 1, 0), ⋯,
c(i, 2, 0), c(i, 2, 1), ⋯, c(i, 1, 1), c(i, 1, 2), ⋯, b(i) and a(i), c(i, 2, 0), ⋯, c(i, 1, 0), c(i, 1, 1),
⋯, c(i, 2, 1), c(i, 2, 2), ⋯, b(i). Therefore, each of the two paths “encodes” a truth value for
variable xi. In particular, xi is assigned to be true if the first directed path is used and false
otherwise. The first directed path is thus the true path for xi and the second one is the false
path for xi. Now, we connect b(i) to a(i) with a directed edge. Such an edge is called an
intermediate edge. We create m2 additional vertices on the intermediate edge and each
additional vertex is assigned a weight of 1.

Figure 6 (a) shows the gadget for a clause. Each clause is represented by a clause gadget.
Without loss of generality, we assume that a clause ck contains two literals li and lj. If li is xi
we create two additional vertices l(i, k, 1) and l(i, k, 2) in the kth partition on its false path
(c(i, 2, 0), c(i, 1, 0), ⋯, c(i, 2, t), ⋯). Otherwise, l(i, k, 1) and l(i, k, 2) are created on the kth
partition on its true path (c(i, 1, 0), c(i, 2, 0), ⋯, c(i, 1, t), ⋯). Now, we add two additional
directed edges to form a directed cycle that connects vertices l(i, k, 1), l(i, k, 2), l(j, k, 1), l(j,
k, 2). Without loss of generality we assume the cycle is l(i, k, 1), l(i, k, 2), l(j, k, 1), l(j, k, 2),
l(i, k, 1). We then create two additional vertices on each edge in this cycle. In particular, d(i,
k, 1), d(i, k, 2) are on the edge (l(i, k, 1), l(i, k, 2)), e(i, k, 2), e(j, k, 1) on the edge (l(i, k, 2),
l(j, k, 1)), d(j, k, 1), d(j, k, 2) on the edge (l(j, k, 1), l(j, k, 2)) and e(j, k, 2), e(i, k, 1) on the
edge (l(j, k, 2), l(i, k, 1)).

As the last step to create a clause gadget, we create two vertices m(i, j, 1) and m(i, j, 2). For
vertex m(i, j, 1), we create edges (m(i, j, 1), e(i, k, 1)), (m(i, j, 1), d(j, k, 2)), (d(i, k, 1), m(i, k,
1)), (e(j, k, 2), m(i, j, 1)). For vertex m(i, j, 2), we create edges (m(i, j, 2), e(j, k, 1)), (m(i, j,
2), d(i, k, 2)), (e(i, k, 2), m(i, j, 2)), and (d(j, k, 1), m(i, j, 2)). We then add an additional
vertex on each of the edges (e(j, k, 2), m(i, j, 1)), (m(i, j, 1), e(i, k, 1)), (e(i, k, 2), m(i, j, 2))
and (m(i, j, 2), e(j, k, 1)). These vertices are called crucial vertices. All vertices in a clause
gadget are of weight 1.

Now, we show that if k of the m clauses can be satisfied by an assignment, |W| − 10m + 6k
of G can be covered by a cycle cover in G, where |W| is the total weight of vertices of G. In
particular, given the assignment that can satisfy k clauses, we choose the path in each
variable gadget based on the truth value of that variable in the assignment and its
intermediate edges. All intermediate vertices are thus covered. For clause gadgets, it is not
difficult to see that, as shown in Figure 6(b), for each satisfied clause, we can create a cycle
such that 4 vertices are left uncovered in a clause gadget. However, for a clause that is not
satisfied, 10 vertices are not covered in total in its clause gadget. Therefore, in total, we have
4k + 10(m − k) = 10m − 6k vertices uncovered by this cycle cover. Therefore the total
weight of covered vertices are |W| − 10m + 6k.

Now we prove the reverse direction: if G has a set of disjoint cycles that covers a total
number of |W| − 10m + 6k vertices in G, there exists an assignment that satisfies k clauses.
First, we notice that each variable gadget should choose a truth value for the corresponding
variable since otherwise at least one vertex of weight m2 or m2 additional vertices on an
intermediate edge or an edge that connects two intermediate vertices in a variable gadget
will not be covered by these cycles. However m2 > 10m − 6k for sufficiently large m, which
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is a contradiction. Therefore, this cycle cover chooses a truth value for each variable. Now
we show that this assignment satisfies at least k clauses. We assume that k' clauses are
satisfied by this cycle cover. Then each of the gadgets of these clauses contain at least 4
uncovered vertices. In the gadget of an unsatisfied clause, the number of uncovered vertices
is at least 10. Therefore, we have at least 4k' + 10(m − k') = 10m − 6k' vertices uncovered in
G by this cycle cover. Therefore, we have |V| − 10m + 6k ≤ |V| − 10m + 6k'. This is
equivalent to k' ≥ k. The case where vertices are weighted has been proved.

Now, we show that the weighted case with a directed graph G of weighted vertices can be
easily reduced to an unweighted case with a directed graph of unweighted vertices. In fact,
each weighted vertex in a weighted case can be replaced by a directed path with a few
vertices on it. The number of such vertices is equal to its weight. We then replace the head
of all incoming edges with the left end of the path and the tail of all outgoing edges with the
right end of the path. It's not difficult to see that the resulting graph H is an unweighted
instance and an unweighted solution in H corresponds to a solution in G and vice versa. This
simple reduction thus shows the NP-hardness of the unweighted case of the problem.

Eventually, since we have shown that it is NP-hard to minimize the number of uncovered
vertices by a cycle cover in a directed graph and there is only a special case for the
minimization problem in the request-service problem, where each user has only one request
and can provide only one service, the general version of the problem is thus NP-hard as
claimed.

6 Conclusions and Future Work
In this paper, we investigated the request-service problem. Based on an algorithm that can
find the minimum weighted cycle cover in a directed graph in time O(n3), where n is the
number of vertices in the graph, we show that both the simple and general versions of the
problem can be reduced to finding the minimum weighted cycle cover in a directed graph,
thus both of them can be solved in polynomial time, in particular, in O(N3) and O(N12),
respectively. If a feasible solution (i.e. all requests of each user can be satisfied) does not
exist, we want to satisfy as many users as possible. For the simple version of the problem,
because the number of requests of each user is only one, the same algorithm for the problem
can be used. However, for the general version of the problem, if a feasible solution does not
exist, we show that finding a minimum weighted solution that maximizes the number of
satisfied users is NP-hard.

Our future work consists of two important directions. For the case that a feasible solution
does not exist for the general version of the request-service problem, we will work on
developing an approximation algorithm for the problem. The other is to explore the
possibility of developing a more efficient exact algorithm for the general version of the
request-service problem and will apply the algorithm to the kidney exchange problem.
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Figure 1.
A graph constructed for three users. Each user has two requests and two services. For
clarity, we omit the weights of the edges and the additional vertices for each user.
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Figure 2.
(a) An example of a simple request-service graph G, where the filled vertices are for
services and unfilled vertices are for requests. (b) Graph H constructed from G. It can be
seen from the graph that the two overlapped cycles in (a) become two disjoint cycles in H.
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Figure 3.
An example of the gadgets created for each set of parallel edges. For simplicity, we assume
there are four parallel edges (u(1), v(1)), (u(2), v(2)), (u(3), v(3)), and (u(4), v(4)) in the set,
and the vertices connected with dashed lines form a bi-directional clique.
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Figure 4.
(a) Vertex v represents a request and could be served by two different services u and u'
respectively. (b) To guarantee the constraint that v is of in-degree one in the cycle cover, we
create a pair of vertices x(u, v, 1) and y(u, v, 1) and create three cycles as described. The
dashed lines represent the third cycle, where some vertices could be bypassed.
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Figure 5.
(a) The graph gadget for variable xi. (b) All variable gadgets are connected into a “loop”.
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Figure 6.
(a) The graph gadget for a clause that contains literals li and lj. (b) Disjoint cycles that can
cover the maximum number of vertices in a clause gadget: (I) when literal li is true but lj is
false; (II) when literal li is false but lj is true; (III) when both literals are true.
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