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Abstract

It is well known that if G is a multigraph then χ′(G) ≥ χ′∗(G) := max{∆(G), Γ(G)},
where χ′(G) is the chromatic index of G, χ′∗(G) is the fractional chromatic index of
G, ∆(G) is the maximum degree of G, and Γ(G) = max{2|E(G[U ])|/(|U | − 1) : U ⊆
V (G), |U | ≥ 3, |U | is odd}. The conjecture that χ′(G) ≤ max{∆(G) + 1, dΓ(G)e} was
made independently by Goldberg (1973), Anderson (1977), and Seymour (1979). Us-
ing a probabilistic argument Kahn showed that for any c > 0 there exists D > 0 such
that χ′(G) ≤ χ′∗(G) + cχ′∗(G) when χ′∗(G) > D. Nishizeki and Kashiwagi proved
this conjecture for multigraphs G with χ′(G) > b(11∆(G) + 8)/10c; and Scheide re-
cently improved this bound to χ′(G) > b(15∆(G) + 12)/14c. We prove this conjec-
ture for multigraphs G with χ′(G) > b∆(G) +

√

∆(G)/2c, improving the above men-
tioned results. Our proof yields an algorithm for edge-coloring any multigraph G us-
ing at most max{∆(G) +

√

∆(G)/2, dΓ(G)e} colors, which runs in polynomial time pro-
vided that ∆(G) is not part of the input. As a consequence, for multigraphs G with
χ′(G) > ∆(G) +

√

∆(G)/2 the answer to a 1964 problem of Vizing is affirmative.
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1 Introduction

Let G be a multigraph. A k-edge-coloring of G is an assignment of k colors to the edges of G
so that no two adjacent edges receive the same color. The chromatic index of G, denoted by
χ′(G), is the smallest k for which G admits a k-edge-coloring. Since it is NP -hard to determine
χ′(G) (see Holyer [9]), a good estimate of χ′(G) has been the focus of extensive research.

Let ∆(G) denote the maximum degree of G. Clearly χ′(G) ≥ ∆(G). A classical theorem
of Shannon [22] asserts that χ′(G) ≤ 3∆(G)/2. Vizing [26] and Gupta [7] proved that χ′(G) ≤
∆(G) + µ(G), where µ(G) is the maximum multiplicity of an edge of G; and Kierstead [12]
studied the graphs G for which χ′(G) = ∆(G) + µ(G). This Vizing-Gupta result implies that
if G is a simple graph then χ′(G) ∈ {∆(G),∆(G) + 1}.

Another lower bound for χ′(G) is the fractional chromatic index defined below. Let

Γ(G) = max{2|E(G[U ])|
|U | − 1

: U ⊆ V (G), |U | ≥ 3, and |U | is odd},

where G[U ] is the subgraph of G induced by U . Observe that if U ⊆ V (G) and |U | is odd,
then every matching in G[U ] has size at most (|U | − 1)/2. Consequently χ′(G) ≥ Γ(G); and
hence χ′(G) ≥ max{∆(G),Γ(G)}. The number χ′∗(G) := max{∆(G),Γ(G)} is the fractional
chromatic index of G (see [3,21] and [23]), which is the solution to a linear program. The frac-
tional chromatic index can be determined in polynomial time by using the ellipsoid algorithm;
since the corresponding separation problem is equivalent to the weighted matching problem,
see Theorem 28.6 in [21].

In the 1970s, Goldberg [5], Anderson [1], and Seymour [23] independently (and in different
forms) made the following conjecture.

Conjecture 1.1 For any multigraph G, χ′(G) ≤ max{∆(G) + 1, dΓ(G)e}.

Note that Conjecture 1.1 if true implies that χ′(G) ≤ 1 + χ′∗(G) for all multigraphs
G. When studying conjectures of Tutte and Fulkerson about factorizations of cubic graphs,
Seymour [23] also made the following conjecture which is slightly weaker than Conjecture 1.1,
but still achieves what Vizing’s theorem does for simple graphs.

Conjecture 1.2 For any multigraph G, χ′(G) ≤ 1 + max{∆(G), dΓ(G)e}.

Conjecture 1.2 has an equivalent formulation in terms of r-graphs. Let r be a positive
integer. A multigraph G = (V,E) is called an r-graph if G is r-regular and, for every X ⊆ V
with |X| odd, the number of edges between X and V − X is at least r (in particular, |V | is
even). Seymour [23] proved that Conjecture 1.2 is equivalent to the conjecture that if G is an
r-graph then χ′(G) ≤ r + 1.

In the past three decades, there has been extensive research on Conjecture 1.1, see for
example [2, 4, 6, 8, 11, 13–20, 24]. (For more related work and references, we refer the reader
to Kahn [11], Jenson and Toft [10], Schrijver [21], and Favrholdt, Stiebitz and Toft [4].) A
number of results related to Conjecture 1.1 have been obtained. For example, Goldberg [5, 6]
showed χ′(G) ≤ max{b(9∆(G)+6)/8c, dΓ(G)e}. Nishizeki and Kashiwagi [16] proved χ′(G) ≤
max{b11∆(G)+8

10 c, dΓ(G)e}; a shorter proof of this theorem can be found in Tashkinov [25]. This

2



bound has recently been improved to max{b(13∆(G)+10)/12c, dΓ(G)e} by Favrholdt, Stiebitz
and Toft [4], and further to max{b(15∆(G) + 12)/14c, dΓ(G)e} by Scheide [20]. Conjecture
1.1 was proved by Seymour [24] for K4-free graphs, by Marcotte [14, 15] for multigraphs
with no K−

5 -minors, and by Plantholt and Tipnis [17] for multigraphs with sufficiently high
maximum degree (relative to |V (G)| and µ(G)). Sanders and Steurer [19] showed that for any
ε > 0 there is a polynomial time algorithm (dependent on ε) for edge-coloring any multigraph
G using at most (1 + ε)χ′(G) + O(1/ε) colors. Also, Plantholt [18] proved that χ′(G) ≤
χ′∗(G) + 1 +

√

|V (G)| log |V (G)|/10 when |V (G)| is sufficiently large, and pointed out that
his proof does not give a polynomial time coloring algorithm. On the other hand, using a
sophisticated probabilistic argument, Kahn [11] proved that for any c > 0 there exists D > 0
such that χ′(G) ≤ χ′∗(G) + cχ′∗(G) when χ′∗(G) > D.

The purpose of this paper is to establish the following result.

Theorem 1.3 For any multigraph G, χ′(G) ≤ max{∆(G) +
√

∆(G)/2, dΓ(G)e}. Moreover,

there is an O(V O(
√

∆)+3∆E) algorithm for edge-coloring any multigraph G using at most
max{∆(G) +

√

∆(G)/2, dΓ(G)e} colors.

When ∆ is not part of the input, such an algorithm runs in polynomial time.
Note that Theorem 1.3 holds trivially when ∆(G) ≤ 2. So throughout the rest of this

paper, we may assume ∆(G) ≥ 3 when needed.
As an immediate consequence of Theorem 1.3, Conjecture 1.1 holds for multigraphs G

with χ′(G) > b∆(G) +
√

∆(G)/2c. When ∆(G) is large, Theorem 1.3 improves the above
mentioned result of Scheide. Since χ′∗(G) ≥ ∆(G), χ′(G) ≤ χ′∗(G) +

√

χ′∗(G)/2. Hence,
our result also implies the above mentioned results of Kahn and of Plantholdt (when ∆(G) ≤
|V (G)| log |V (G)|)

Let G be a graph whose edges are properly colored. Following [10], an interchange with
respect to (distinct) colors α and β consists in swapping the colors on the edges in a component
of the subgraph of G induced by all edges with color α or β. In 1964, Vizing [26] (also see [10])
asked the following “interchange” problem.

Problem 1.4 Is it true that if χ′(G) ≥ ∆(G)+2 then given any edge-coloring of a multigraph
G one can obtain an optimal edge-coloring through a sequence of interchanges?

Our proof of Theorem 1.3 implies that the answer to Problem 1.4 is affirmative for graphs
G with χ′(G) ≥ ∆(G) +

√

∆(G)/2.

Corollary 1.5 Let G be a multigraph with χ′(G) ≥ ∆(G) +
√

∆(G)/2. Then given any edge-
coloring of G one can obtain an optimal edge-coloring through a sequence of interchanges.

The proof technique we use is a generalization of Vizing’s recoloring technique via in-
terchanges. Recall Vizing’s “fan sequence” (or “star”) argument for proving that χ ′(G) ∈
{∆(G),∆(G)+1} when G is a simple graph. Take a partial edge-coloring of G using ∆(G)+1
colors (partial means that there may be uncolored edges), and pick an uncolored edge, say
ab1. From the edge ab1, grow a fan (also known as star). Each time, we add a colored edge
abi (i ≥ 2) whose color is missing at bi−1 (i.e., not used by any edge incident with bi−1). Since
the graph is simple, this process must stop and give some “augmenting set” {a, b1, . . . , bk}
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(namely, two of its vertices have a common missing color). By applying an appropriate recol-
oring argument (a sequence of interchanges), we may produce a partial edge-coloring in which
there is a color, say α, missing at both a and b1, and we may then augment the set of colored
edges by coloring ab1 with α. Continuing this process until all edges are colored, we obtain a
(∆(G) + 1)-edge-coloring of G. This recoloring scheme works because the graph is simple and
because there are colors missing at every vertex.

When studying extremal graphs for the above mentioned Vizing-Gupta bound, Kierstead
[12] used a similar process by growing a path instead of a star.

Tashkinov’s approach in [25] for edge-coloring multigraphs generalizes the recoloring tech-
niques of Vizing and Kierstead. Instead of growing a star or a path, a tree is grown from
an uncolored edge ab; each time an edge is added to the tree, the color of that edge must be
missing at some previous vertex in the tree. If the vertex set of the tree is “augmenting” then
the edge-coloring can be modified through a complex recoloring procedure so that the edge ab
may be colored (without introducing a new color). If the growing process stops and the tree
is not augmenting, then Tashkinov shows that the tree is small enough so that a case analysis
can be carried out (but for this to work one needs at least (11∆(G) + 8)/10 colors).

To prove Theorem 1.3, we need to grow a tree that is more complex than Tashkinov’s,
called VKT-trees (VKT stands for Vizing-Kierstead-Tashkinov). We start with Tashkinov’s
process. The key is to grow the tree when Tashkinov’s process stops. In other words, when
there is no choice we add to our tree an edge whose color is not missing at previous vertices
of the tree. (Similar idea was also discussed in [4].) However, we need to pick such an edge
carefully (called “connecting” edge). As we shall see, when we have at least ∆(G)+

√

∆(G)/2
colors, the number of connecting edges is less than

√

∆(G)/2, and we can grow the tree in a
way so that a recoloring argument can be used either to color more edges (without introducing
a new color) or to show that the number of colors used so far is less than dΓ(G)e (and hence
we are free to introduce a new color).

The VKT-trees will be defined in section 2, where we also prove several simple properties
about these trees. In particular, we show that if a VKT-tree cannot be grown further, then
the number of colors used so far is less than dΓ(G)e. We also introduce two partial orderings
on VKT-trees, to be used as measurements of VKT-trees after interchanges. In Section 3,
we prove several recoloring lemmas using VKT-trees. We also show that when the number
of colors is sufficiently large, one can choose colors satisfying certain properties (to be used
to avoid certain colors during a recoloring process). In section 4, we prove recoloring lemmas
that transfer “bad” augmenting pairs to “good” ones, and use them to deal with VKT-trees
containing augmenting pairs. In section 5, we show how to deal with VKT-trees with no
augmenting pairs, and complete the proofs of Theorem 1.3 and Corollary 1.5.

2 VKT-trees

We begin with a few concepts and notation. Let G be a graph. For S ⊆ V (G), we use G − S
to denote the graph obtained from G by deleting S and the edges of G incident with S, and
we use [S,G − S] to denote the set of edges of G with exactly one end in S. For S ⊆ E(G),
G − S is the graph obtained from G by deleting S. If S = {s}, then we simply write G − s
instead of G − {s}. For S ⊆ V (G) ∪ E(G), we use G[S] to denote the subgraph of G with
V (G[S]) = (S∩V (G))∪{u : u is incident with an edge in S} and E(G[S]) = (S∩E(G))∪{uv ∈
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E(G) : {u, v} ⊆ S ∩ V (G)}. When S ⊆ V (G) or S ⊆ E(G), G[S] is just the subgraph of G
induced by S in the usual sense. If S = {x1, . . . , xp} then we also write G[x1, . . . , xp] instead of
G[S]. For any subgraph T of G, we write G[T ] instead of G[V (T )], G−T instead of G−V (T ),
and [T,G−T ] instead of [V (T ), G−V (T )]. For H ⊆ G and S ⊆ E(G), we use H +S to denote
the subgraph of G obtained from H by adding S and all incident vertices. When S = {s}, we
simply write H + s.

Let G be a graph and C a set of colors. A partial edge-coloring of G using colors from C is
a function c : S → C, where S ⊆ E(G), such that for any e, f ∈ S, c(e) 6= c(f) whenever e and
f are adjacent in G. The set S is usually denoted by EG(c), or E(c) when G is understood.
If |C| = k, then c is called a partial k-edge-coloring of G. When E(c) = E(G), then c is just
an edge-coloring of G in the usual sense. Throughout this paper, the letter c (with or without
subscripts or superscripts) will be used to name partial edge-colorings; and lowercase Greek
letters (with or without subscripts) will be used to denote colors.

Let G be a graph and let c be a partial edge-coloring of G, using colors from the collection
of colors C. For any distinct α, β ∈ C, we define Gc(α, β) := G[{e ∈ E(c) : c(e) ∈ {α, β}}];
and write G(α, β) := Gc(α, β) when c is understood. The components of G(α, β) are paths
or cycles. For any component D of Gc(α, β), we say that the partial edge-coloring c′ of
G is obtained from c by an interchange on D (or interchanging D) if c′(e) = c(e) for all
e ∈ E(c) − E(D), c′(e) = α for all e ∈ E(D) with c(e) = β, and c′(e) = β for all e ∈ E(D)
with c(e) = α. For any x ∈ V (G), we use MC,c(x) to denote the set of colors in C that are not
used by any edge incident with x. Usually, C will be fixed; so we often write Mc(x) instead
of MC,c(x), which stands for the set of colors missing at x. For a subgraph H of G, we write
Mc(H) :=

⋃

x∈V (H) Mc(x) and c(H) = {c(e) : e ∈ E(H)}.

Definition 2.1 Let G be a graph, and let c be a partial edge-coloring of G. The nonempty
set S ⊆ V (G) is said to be nonaugmenting with respect to c if, for any distinct x, y ∈ S,
Mc(x) ∩ Mc(y) = ∅; and augmenting with respect to c otherwise. (This concept was
implicit in Vizing [26] and Goldberg [6].) We say that the set S ⊆ V (G) is critical with

respect to c if

(i) for any color α ∈ Mc(S), no edge in [S,G − S] uses the color α, and

(ii) for any color α /∈ Mc(S), at most one edge in [S,G − S] uses the color α.

Proposition 2.2 Let G be a graph, let c be a partial k-edge-coloring of G, and let S ⊆ V (G).
Suppose Mc(S) 6= ∅ and S is both nonaugmenting and critical (with respect to c). Then
Γ(G[S]) ≥ k.

Proof. Let α be an arbitrary color used by c. Suppose α ∈ Mc(S). Then, because S is critical
with respect to c, no edge in [S,G − S] uses color α. Since S is nonaugmenting with respect
to c, α ∈ Mc(x) for a unique x ∈ S. Therefore, G[S] − x has a perfect matching whose edges
are all colored with α. In particular, |S| is odd.

Now assume α /∈ Mc(S). Then because S is critical with respect to c and |S| is odd, exactly
one edge in [S,G − S] uses color α. Let uv be the unique edge in [S,G − S] such that u ∈ S
and c(uv) = α. Then G[S] − u has a perfect matching whose edges are colored α.

Therefore, we see that E(G[S]) contains a union of k edge-disjoint matchings of size (|S|−
1)/2. So Γ(G[S]) ≥ k.

5



We say that (G, ab, c) is a triple if G is a connected graph, c is a partial edge-coloring of
G, and ab ∈ E(G) − E(c). If, in addition, c is a partial k-edge-coloring, then (G, ab, c) is said
to be a k-triple. We now define the VKT-trees to be used to prove Theorem 1.3. Note that
condition (ii) in this definition describes which edge can be added in order to grow our tree
when Tashkinov’s process stops. By a path from a vertex u to an edge e, we mean a path from
u to an end of e but not containing the other end of e.

Definition 2.3 Let (G, ab, c) be a triple, and let T be a tree in G with edges e1, . . . , em. We
say that (T, c) is a VKT-tree in (G, ab, c) with edge ordering e1, . . . , em if

(i) e1 = ab, {e2, . . . , em} ⊆ E(c), and, for each 1 ≤ i ≤ m, Ti := T [e1, . . . , ei] is a tree, and

(ii) if c(ei) /∈ Mc(Ti−1) (for each 2 ≤ i ≤ m), then

(a) c(e) /∈ Mc(Ti−1) for all e ∈ E(c) ∩ [Ti−1, G − Ti−1],

(b) at least two edges in [Ti−1, G − Ti−1] use the color c(ei), and

(c) if S0(T, c) denotes the maximal sequence (e1, . . . , ek) such that c(ej) ∈ Mc(Tj−1) for
2 ≤ j ≤ k, and if V0(T, c) denotes the set of vertices incident with edges in S0(T, c),
then there exist xi ∈ V0(T, c) and αi ∈ Mc(xi)− c(Ti) such that G[Ti]∩Gc(αi, c(ei))
contains a path from xi to ei.

If, in addition, c(e) /∈ Mc(T ) for each e ∈ E(c)∩ [T,G−T ], then (T, c) is said to be complete.
Any edge ei with c(ei) /∈ Mc(Ti−1) is said to be connecting in (T, c). Note that whenever
c(ei) /∈ Mc(Ti−1), V0(T, c) ⊆ V (Ti−1). A pair of distinct vertices, say {x, y}, in (T, c) is said
to be divided if there is a connecting edge ei such that x, y belong to different components
of T − ei; and is undivided otherwise. For notational simplicity, we also write T0 := ∅ and
c(e1) ∈ Mc(T0).

Note that because of (a) the path in G[Ti] ∩ Gc(αi, c(ei)) is contained in G[Ti−1]. Before
introducing further concepts related to VKT-trees, we make two simple observations, which
should help the reader digest the concept of VKT-trees. The first observation says that any
“rooted” subtree of a VKT-tree is also a VKT-tree.

Lemma 2.4 Let (G, ab, c) be a triple, and let (T, c) be a VKT-tree in (G, ab, c) with edge
ordering e1, . . . , em. Then, for each 1 ≤ s ≤ m, (Ts, c) is also a VKT-tree in (G, ab, c), and
any edge of Ts is connecting in (Ts, c) iff it is connecting in (T, c).

Proof. Clearly, T1 (with only one edge e1) satisfies Definition 2.3(i), and Definition 2.3(ii) does
not apply to T1. So (T1, c) is a VKT-tree in (G, ab, c). Now assume s ≥ 2. Note that for
each 1 ≤ i ≤ s, Ti is a subtree of T . Since e1 /∈ E(c) and {e2, . . . , es} ⊆ E(c), (Ts, c) satisfies
Definition 2.3(i).

To show that Definition 2.3(ii) holds for (Ts, c), we pick an arbitrary edge ei, 2 ≤ i ≤ s, and
assume c(ei) /∈ Mc(Ti−1). Then S0(Ts, c) = S0(T, c) and V0(Ts, c) = V0(T, c). Since (T, c) is a
VKT-tree in (G, ab, c), it follows from Definition 2.3(ii) that (a) for any e ∈ E(c) ∩ [Ti−1, G −
Ti−1], we have c(e) /∈ Mc(Ti−1), (b) at least two edges in [Ti−1, G−Ti−1] use the color c(ei), and
(c) there exist xi ∈ V0(T, c) = V0(Ts, c) and αi ∈ Mc(xi)− c(Ti) such that G[Ti]∩Gc(αi, c(ei))
contains a path from xi to ei.
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So (Ts, c) is also a VKT-tree in (G, ab, c). Clearly, any edge of Ts is connecting in (Ts, c)
iff it is connecting in (T, c).

The next observation shows when a VKT-tree may be extended by adding an edge.

Lemma 2.5 Let (G, ab, c) be a triple, let (T, c) be a VKT-tree in (G, ab, c) with edge ordering
e1, . . . , em, and let e ∈ E(c) ∩ [T,G − T ]. Suppose either

(a) c(e) ∈ Mc(T ), or

(b) c(e) /∈ Mc(T ), (T, c) is complete, at least two edges in [T,G − T ] use the color c(e), and
there exist x ∈ V0(T, c) and α ∈ Mc(x)−c(T +e) such that G[T +e]∩Gc(α, c(e)) contains
a path from x to e.

Then (T + e, c) is a VKT-tree in (G, ab, c) with edge ordering e1, . . . , em, e, and any edge of T
is connecting in (T, c) iff it is connecting in (T + e, c).

Proof. Because e ∈ E(c) ∩ [T,G − T ], T + e with edge ordering e1, . . . , em, e satisfies Defini-
tion 2.3(i). To prove that (T + e, c) also satisfies Definition 2.3(ii), choose an arbitrary edge
ei with 1 ≤ i ≤ m + 1 where em+1 = e, and assume c(ei) /∈ Mc(Ti−1).

Since (T, c) is a VKT-tree in (G, ab, c), the following holds when i ≤ m: For any f ∈
E(c) ∩ [Ti−1, G− Ti−1] we have c(f) /∈ Mc(Ti−1); at least two edges in [Ti−1, G− Ti−1] use the
color c(ei); and there exist xi ∈ V0(T, c) and αi ∈ Mc(xi)− c(Ti) such that G[Ti]∩Gc(αi, c(ei))
contains a path from xi to ei. So Definition 2.3(ii) holds when i ≤ m.

If (a) occurs then Definition 2.3(ii) does not apply to em+1; and in this case, (T + e, c)
is a VKT-tree in which e is not connecting. If (b) occurs then S0(T + e, c) = S0(T, c) and
V0(T +e, c) = V0(T, c), and Definition 2.3(ii) holds for em+1. Therefore, (T +e, c) is a VKT-tree
in (G, ab, c) with edge ordering e1, . . . , em, e. Clearly, any edge of T is connecting in (T, c) iff
it is connecting in (T + e, c).

Note that if (a) occurs then e is not connecting in (T + e, c); and if (b) occurs then e is
connecting in (T + e, c). We now extend the concept of nonaugmenting set to VKT-trees.

Definition 2.6 Let (G, ab, c) be a triple, and let (T, c) be a VKT-tree in (G, ab, c). We say
that (T, c) is augmenting if there exist two distinct vertices x, y of T forming an augmenting

pair in (T, c), i.e., Mc(x)∩Mc(y) 6= ∅. The augmenting pair {x, y} is said to be good if there
exists α ∈ Mc(x) ∩ Mc(y) such that α is not used by any connecting edge in (T, c). We say
that (T, c) is nonaugmenting if (T, c) is not augmenting.

The following observation is a direct consequence of Definition 2.6 and Lemma 2.4.

Lemma 2.7 Let (G, ab, c) be a triple and let (T, c) be a nonaugmenting VKT-tree in (G, ab, c)
with edge ordering e1, . . . , em. Then for any 1 ≤ s ≤ m, (Ts, c) is a nonaugmenting VKT-tree
in (G, ab, c).

We shall see in section 5 that the existence of an augmenting pair in (T, c) will enable us
to augment the set of colored edges (without introducing a new color) through a sequence of
interchanges, or to augment (T, c) in a certain way.

Next we extend the concept of critical set to VKT-trees.
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Definition 2.8 Let (G, ab, c) be a triple and let (T, c) be a VKT-tree in (G, ab, c). We say
that (T, c) is critical if

(i) (T, c) is complete, and

(ii) for any α /∈ Mc(T ), precisely one edge in E(c) ∩ [T,G − T ] uses the color α.

The next lemma describes a situation where a new color should be introduced.

Lemma 2.9 Let (G, ab, c) be a k-triple and let (T, c) be a VKT-tree in (G, ab, c). Suppose
(T, c) is both nonaugmenting and critical. Then k < Γ(G[T ]) ≤ χ′(G).

Proof. By definition, Γ(G[T ]) ≤ Γ(G) ≤ χ′(G). Note that V (T ) is both nonaugmenting
and critical. So by Proposition 2.2 and since ab is not colored, Γ(G[T ] − ab) ≥ k. Hence,
Γ(G[T ]) > k.

We now introduce further concepts about VKT-trees, which are needed to define two partial
orderings of VKT-trees.

Definition 2.10 Let (G, ab, c) be a triple and let (T, c) be a VKT-tree in G with edge ordering
e1, . . . , em. The vertex incident with em but not in Tm−1 is called the top of (T, c). Let
0 ≤ r ≤ m with r minimum such that T [er+1, . . . , em] is a path. Define C(T, c) := Tr (the
center of (T, c)), and B(T, c) := T [er+1, . . . , em] (the branch of (T, c)). The VKT-tree (T, c)
can be divided into segments according to its connecting edges:

• If there is no connecting edge in (T, c) then S0(T, c) = (e1, . . . , em) and let S(T, c) = ∅;

• otherwise let ei1 , . . . , ein be the connecting edges in (T, c) (2 ≤ i1 < . . . < in ≤ m), then
S0(T, c) = (e1, . . . , ei1−1); and we define

– S(T, c) := (e1, e2, . . . , ein),

– Sj(T, c) := (eij , . . . , eij+1−1) for 1 ≤ j ≤ n − 1, and

– Sn(T, c) := (ein , . . . , em).

For 0 ≤ j ≤ n, Sj(T, c) is called the jth segment of (T, c). Sn(T, c) is also called the last

segment of (T, c), and ein is called the last connecting edge in (T, c).

We conclude this section by defining two partial orders <1 and <2 on VKT-trees in triples.
These partial orders will be used to measure whether we have “reduced” or “augmented” a
given VKT-tree (T, c) to a new VKT-tree (T ′, c′). The sequence (a1, . . . , am) is a truncation of
the sequence (b1, . . . , bn) if m ≤ n and ai = bi for all 1 ≤ i ≤ m; and if m < n then (a1, . . . , am)
is said to be a proper truncation of (b1, . . . , bn).

Definition 2.11 Let (G, ab, c) and (G, ab, c′) be two triples such that E(c) = E(c′), and c and
c′ use the same set of colors. Let (T, c) and (T ′, c′) be VKT-trees in (G, ab, c) and (G, ab, c′),
respectively.

• We write (T ′, c′) <1 (T, c) if either
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(i) C(T ′, c′) is a proper subgraph of C(T, c), or

(ii) C(T, c) = C(T ′, c′) and B(T ′, c′) is a proper subgraph of B(T, c).

• We write (T, c) <2 (T ′, c′) if there exists an integer p ≥ 0 such that

(i) Sp(T, c) is not the last segment of (T, c),

(ii) Sj(T, c) = Sj(T
′, c′) for 0 ≤ j ≤ p − 1, and

(iii) Sp(T, c) is a proper truncation of Sp(T
′, c′).

Note that when (T, c) <2 (T ′, c′), (T, c) must have a connecting edge (since Sp(T, c) is not
the last segment of (T, c)); and for any edge in

⋃p
j=0 Sj(T

′, c′), it is connecting in (T ′, c′) iff it is
connecting in (T, c). It is easy to verify that <1 and <2 induce partial orderings on VKT-trees
in triples. The partial order <1 is implicitly used in [25]. Note that when (T ′, c′) <1 (T, c), T ′

need not be a subtree of T , but C(T ′, c′) is always a truncation of (T, c).

3 Interchange lemmas

In this section we prove several lemmas concerning the effect on VKT-trees when interchanges
are performed. Our first interchange lemma is a simple observation, which describes a situation
where an interchange preserves connecting edges.

Lemma 3.1 Let (G, ab, c) be a triple, and let (T, c) be a VKT-tree in (G, ab, c) with edge
ordering e1, . . . , em. Let α, β be distinct colors used by c, let A be a component of Gc(α, β)
such that A ⊆ G − Tm−1, and let c′ be the partial edge-coloring of G obtained from c by
interchanging A. Then

(1) (T, c′) is a VKT-tree in (G, ab, c′) with edge ordering e1, . . . , em, and

(2) any edge of T is connecting in (T, c′) iff it is connecting in (T, c).

Proof. Clearly, (T, c′) = (T, c), with edge ordering e1, . . . , em, satisfies Definition 2.3(i). Since
A ⊆ G−Tm−1, Mc′(x) = Mc(x) for all x ∈ V (Tm−1) and c′(e) = c(e) for all e /∈ G−Tm−1. Thus,
Definition 2.3(ii)(a) and Definition 2.3(ii)(b) hold whenever c′(ei) /∈ Mc′(Ti−1). Moreover, for
1 ≤ i ≤ m, c′(ei) ∈ Mc′(Ti−1) iff c(ei) ∈ Mc(Ti−1). So (2) holds, S0(T, c) = S0(T, c′), and
V0(T, c) = V0(T, c′).

To show that (T, c′) also satisfies Definition 2.3(ii)(c), assume c′(ei) /∈ Mc′(Ti−1). Then
c(ei) /∈ Mc(Ti−1). Since (T, c) is a VKT-tree, there exist xi ∈ V0(T, c′) = V0(T, c) and αi ∈
Mc′(xi)−c′(Ti) = Mc(xi)−c(Ti) such that G[Ti]∩Gc′(αi, c

′(ei)) = G[Ti]∩Gc(αi, c(ei)) contains
a path from xi to ei. So Definition 2.3(ii)(c) holds for (T, c′). Hence (T, c′) is a VKT-tree in
(G, ab, c′), and (1) holds.

It is clear that it takes O(V ) time to get c′ from c (when A is given). The following lemma
will enable us to avoid certain parts of a VKT-tree when performing interchanges.

Lemma 3.2 Let (G, ab, c) be a triple, and let (T, c) be a VKT-tree in (G, ab, c) with edge
ordering e1, . . . , em. Suppose x ∈ V0(T, c) and α ∈ Mc(x) − c(T ). Then one of the following
holds.
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(1) For each connecting edge es in (T, c) and for each color β /∈ Mc(Ts−1), the component of
Gc(α, β) containing x contains all edges in [Ts−1, G − Ts−1] with color β.

(2) There exists a partial k-edge-coloring c′ of G obtained from c by an interchange and there
is a VKT-tree (T ′, c′) in (G, ab, c′) such that (T, c) <2 (T ′, c′).

Proof. Suppose (1) fails. Then there exist some connecting edge es in (T, c), a color β /∈
Mc(Ts−1), and an edge e ∈ [Ts−1, G − Ts−1] such that c(e) = β, and e is not contained in the
component of Gc(α, β) containing x. We choose such es that s is minimum. Thus, if 1 ≤ i < s
and ei is a connecting edge in (T, c), then for any γ /∈ Mc(Ti−1) and for any f ∈ [Ti−1, G−Ti−1]
with c(f) = γ, f is contained in the component of Gc(α, γ) containing x.

Let D denote the component of Gc(α, β) containing e, and let c′ denote the partial k-edge-
coloring of G obtained from c by interchanging D.

Suppose es is the first connecting edge in (T, c). Then since β /∈ Mc(Ts−1), β /∈ c(Ts−1).
So {α, β} ∩ c(Ts−1) = ∅. Hence for 1 ≤ i ≤ s − 1, c′(ei) = c(ei) ∈ Mc(Ti−1) − {α, β} =
Mc′(Ti−1) − {α, β}. So by repeatedly applying Lemma 2.5(a), (Ts−1, c

′) is a VKT-tree in
(G, ab, c′) (with no connecting edge). Since c′(e) = α ∈ Mc(x) = Mc′(x) ⊆ Mc′(Ts−1), it
follows from Lemma 2.5(a) that (Ts−1 + e, c′) is a VKT-tree in (G, ab, c′) (with no connecting
edge), and (2) holds with T ′ := Ts−1 + e.

Thus we may assume that et is the connecting edge in (T, c) immediately preceding es. Then
by the minimality of s and since α ∈ Mc(V0(T, c)), D ⊆ G − Tt−1. So by Lemma 3.1, (Tt, c

′)
is a VKT-tree in (G, ab, c′), and any edge of Tt−1 is connecting in (Tt−1, c

′) iff it is connecting
in (T, c). Since et and es are consecutive connecting edges in (T, c), c(ej) ∈ Mc(Tj−1) for
t + 1 ≤ j ≤ s − 1. Since β /∈ Mc(Ts−1) and α /∈ c(T ), {α, β} ∩ {c(ej) : t + 1 ≤ j ≤ s − 1} = ∅.
Then c′(ej) = c(ej) ∈ Mc(Tj−1) − {α, β} = Mc′(Tj−1) − {α, β} for t + 1 ≤ j ≤ s − 1. So by
repeatedly applying Lemma 2.5(a), we see that (Ts−1 + e, c′) is a VKT-tree in (G, ab, c′); and
(2) holds with T ′ := Ts−1 + e.

From the above proof and since k ≤ O(∆(G)) (by definition, Γ(G) = O(∆(G))), we see that
it takes O(V ∆) time to certify that Lemma 3.2(1) holds or find the (T ′, c′) in Lemma 3.2(2).

The next lemma says that if the last edge of an augmenting VKT-tree is connecting, then
this VKT-tree can be augmented through <2.

Lemma 3.3 Let (G, ab, c) be a k-triple with k ≥ ∆(G) +
√

∆(G)/2, let (T, c) be a VKT-
tree in (G, ab, c) with edge ordering e1, . . . , em, let y be the top of (T, c), and assume that
m ≥ 2, (Tm−1, c) is nonaugmenting, and y is in an augmenting pair in (T, c). Then one of
the following holds.

(1) em is not a connecting edge in (T, c).

(2) There is a partial k-edge-coloring c′ of G obtained from c by a sequence of at most two
interchanges and there is a VKT-tree (T ′, c′) in (G, ab, c′) such that (T, c) <2 (T ′, c′).

Proof. Suppose em is a connecting edge in (T, c). Let x ∈ V0(T, c) and αm ∈ Mc(x) − c(T )
such that G[T ] ∩ Gc(αm, c(em)) contains a path, say Pm, from x to em.

We may assume αm ∈ Mc(y). For otherwise, let α ∈ Mc(y) ∩ Mc(Tm−1) − {αm} (since
(Tm−1, c) is nonaugmenting and y is contained in an augmenting pair in (T, c)). Since em is
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connecting in (T, c), no edge in [Tm−1, G−Tm−1] uses the colors α or αm. Thus the component
A of Gc(α, αm) containing y is contained in G− Tm−1. Let c′ denote the partial edge-coloring
of G obtained from c by interchanging A. By Lemma 3.1, (T, c′) is a VKT-tree in (G, ab, c′)
with edge ordering e1, . . . , em, and αm ∈ Mc′(y) ∩ Mc′(x). Since A ⊆ G − Tm−1, Pm is a path
in G[T ] ∩ Gc′(αm, c′(em)) from x to em, and we may simply use c′ instead of c.

Therefore, since αm ∈ Mc(y), Pm is a component of Gc(αm, c(em)). So there is a component
of Gc(αm, c(em)), say D, intersecting [Tm−1, G−Tm−1] and disjoint from Pm. We may assume
that whenever ei is a connecting edge in (T, c) and i < m, Pm contains all edges in [Ti−1, G −
Ti−1] with the color c(em); for, otherwise, by Lemma 3.2, (2) holds. Thus E(D ∩ T ) = ∅.

Let c′ denote the partial edge-coloring obtained from c by interchanging D. Since E(D ∩
T ) = ∅ and either D is a cycle or both ends of D are contained in G− Tm−1, c′(ei) = c(ei) for
1 ≤ i ≤ m, and Mc′(v) = Mc(v) for all v ∈ V (Tm−1).

If no ei, i < m, is connecting in (T, c), then clearly (Tm−1, c
′) is a VKT-tree without

connecting edges. Now suppose that there exists a maximum s such that s < m and es is a
connecting edge in (T, c). Then c′(ej) ∈ Mc′(Tj−1) for s + 1 ≤ j ≤ m. Since Pm contains all
edges in [Ts−1, G − Ts−1] with the color c(em), D ⊆ G − Ts−1. Hence, by Lemma 3.1, (Ts, c

′)
is a VKT-tree in (G, ab, c′), and any edge of Ts is connecting in (Ts, c

′) iff it is connecting in
(T, c). By Lemma 2.5(a), we see that (Tm−1, c

′) is a VKT-tree in (G, ab, c′).
Let e ∈ E(D) ∩ [Tm−1, G − Tm−1]. Then c′(e) = αm ∈ Mc′(xm). So by Lemma 2.5(a),

(Tm−1 + e, c′) is a VKT-tree in (G, ab, c′). Clearly, (T, c) <2 (Tm−1 + e, c′); and so (2) holds
with T ′ := Tm−1 + e.

The proof of Lemma 3.3 shows that it takes O(V ∆) time to certify that Lemma 3.3(1)
holds or find the (T ′, c′) in Lemma 3.3(2).

The next result is a key lemma, which shows the effect that certain interchanges have on the
location of augmenting pairs. This will be used to augment the set of colored edges (through
<1) or to “augment” a VKT-tree (through <2). The conditions {α, β} ∩ Mc′(x) ∩ Mc′(z) 6= ∅
and {α, β} ∩ Mc′(y) ∩ Mc′(z) 6= ∅ in (1) and (3) in the lemma will ensure that when χ′(G) ≥
∆(G) +

√

∆(G)/2 we can avoid certain colors in our recoloring process. Also note that the
VKT-tree (Tq, c

′) in (1) satisfies (Tq, c
′) <1 (T, c); but it is stated in this explicit form for the

convenience of applications (this comment applies to several other lemmas as well).

Lemma 3.4 Let (G, ab, c) be a triple, let (T, c) be a VKT-tree in (G, ab, c) with edge ordering
e1, . . . , em, and let y be the top of (T, c). Let x ∈ V (Tt − Tt−1) and z ∈ V (Ts − Ts−1), where
s 6= t and 1 ≤ s, t ≤ m−1, and let q := max{s, t}. Suppose α ∈ Mc(x)∩Mc(y) and β ∈ Mc(z)
such that β 6= α and {α, β} ∩ c(Tq) = ∅. Then one of the following holds.

(1) There exists a component A of Gc(α, β) such that |V (A) ∩ {x, z}| = 1, and if c′ denotes
the partial edge-coloring of G obtained from c by interchanging A, then {α, β}∩Mc′(x)∩
Mc′(z) 6= ∅, (Tq, c

′) is a VKT-tree in (G, ab, c′), and any edge of Tq is connecting in
(Tq, c

′) iff it is connecting in (T, c).

(2) There exists a partial edge-coloring c′ of G obtained from c by an interchange and there
is a VKT-tree (T ′, c′) in (G, ab, c′) such that (T, c) <2 (T ′, c′).

(3) There exists a component A of Gc(α, β) such that V (A) ∩ {x, y, z} 6= ∅ and |V (A) ∩
{x, z}| 6= 1, and if c′ denotes the partial edge-coloring of G obtained from c by inter-
changing A, then {α, β} ∩ Mc′(y) ∩ Mc′(z) 6= ∅, (T, c′) is a VKT-tree in (G, ab, c′) with
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edge ordering e1, . . . , em, and any edge of T is connecting in (T, c′) iff it is connecting in
(T, c).

Proof. Let A be a component of Gc(α, β) intersecting {x, y, z}, and let c′ denote the partial
edge-coloring of G obtained from c by interchanging A. Note that Mc′(v)− {α, β} = Mc(v)−
{α, β} for all v ∈ V (G). Hence for any 1 ≤ i ≤ m, Mc′(Ti) − {α, β} = Mc(Ti) − {α, β}. Since
V (A) ∩ {x, y, z} 6= ∅, A is a path, possibly trivial. We claim that

(a) for 1 ≤ i ≤ q, c(ei) ∈ Mc(Ti−1) iff c′(ei) ∈ Mc′(Ti−1), and

(b) if |A ∩ {x, z}| 6= 1 then, for 1 ≤ i ≤ m, c(ei) ∈ Mc(Ti−1) iff c′(ei) ∈ Mc′(Ti−1).

To prove this claim, we choose an arbitrary edge ei, 1 ≤ i ≤ m. First, assume c(ei) /∈ {α, β}.
Then c′(ei) = c(ei), c(ei) ∈ Mc(Ti−1) iff c(ei) ∈ Mc(Ti−1) − {α, β}, and c′(ei) ∈ Mc′(Ti−1)
iff c′(ei) ∈ Mc′(Ti−1) − {α, β}. Therefore, since Mc(Ti−1) − {α, β} = Mc′(Ti−1) − {α, β},
c(ei) ∈ Mc(Ti−1) iff c′(ei) ∈ Mc′(Ti−1). Now assume c(ei) ∈ {α, β}. Then i ≥ q + 1 (by
assumption). In particular, (a) holds. To see that (b) holds, let us assume |A ∩ {x, z}| 6= 1.
Then {α, β} ⊆ Mc′({x, z}) ⊆ Mc′(Tq). Since i ≥ q + 1, c′(ei) ∈ {α, β} ⊆ Mc′(Tq) ⊆ Mc′(Ti−1).
So c(ei) ∈ Mc(Ti−1) iff c′(ei) ∈ Mc′(Ti−1), completing the proof of this claim.

Since {α, β} ∩ c(Tq) = ∅ and {α, β} ⊆ Mc(Tq), no connecting edge in (T, c) uses the color
α or β. Hence, if ei is a connecting edge in (T, c), then for any e ∈ E(c) ∩ [Ti−1, G − Ti−1],
c(e) = c(ei) implies c′(e) = c(e). Thus

(c) (T, c′) with edge ordering e1, . . . , em satisfies Definition 2.3(ii)(b).

Next, we show that we may assume that A may be chosen so that

(d) (T, c′) with edge ordering e1, . . . , em satisfies Definition 2.3(ii)(c).

Since (T, c) is a VKT-tree in (G, ab, c), for each connecting edge ei there exist xi ∈ V0(T, c)
and αi ∈ Mc(xi) − c(Ti) such that G[Ti] ∩ Gc(αi, c(ei)) contains a path from xi to ei.

Clearly, if α, β /∈ Mc(V0(T, c)) then, since no connecting edge in (T, c) uses α or β, for each
connecting edge ei, G[Ti]∩Gc′(αi, c

′(ei)) = G[Ti]∩Gc(αi, c(ei)) contains a path from xi to ei;
and in this case, we may choose A to be any component of Gc(α, β) with V (A)∩{x, y, z} 6= ∅.

If {α, β} ⊆ Mc(V0(T, c)), then for any connecting edge ei, no edge in [Ti−1, G − Ti−1]
uses α or β; and hence, we may choose A to be the component of Gc(α, β) containing y (so
A ⊆ G − Ti−1 whenever ei is a connecting edge, and (d) holds).

Now suppose α ∈ Mc(v) (with v ∈ V0(T, c)) and β /∈ Mc(V0(T, c)). By Lemma 3.2, either
(2) holds, or for each connecting edge ei in (T, c), the component of Gc(α, β) containing v
contains all edges in [Ti−1, G − Ti−1] with color β. We thus may assume the latter. Then we
may choose A to be the component not containing v but containing one of {x, y} such that
A ⊆ G − Ti−1 for all connecting edges ei; and (d) holds.

The case when β ∈ Mc(V0(T, c)) and α /∈ Mc(V0(T, c)) is similar. So we may assume (d).

Having taken care of Definition 2.3(ii)(b) and Definition 2.3(ii)(c) for (T, c ′), we now divide
the remainder of this proof into two cases.

Case 1. |A ∩ {x, z}| = 1.
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Then either Mc′(x) = Mc(x) and (Mc(z) − {β}) ∪ {α} ⊆ Mc′(z), or Mc′(z) = Mc(z) and
(Mc(x) − {α}) ∪ {β} ⊆ Mc′(x). Hence, {α, β} ∩ Mc′(x) ∩ Mc′(z) 6= ∅.

Clearly, (Tq, c
′) satisfies Definition 2.3(i). Suppose for all 1 ≤ i ≤ q with c′(ei) /∈ Mc′(Ti−1)

and for all e ∈ E(c′) ∩ [Ti−1, G − Ti−1], we have c′(e) /∈ Mc′(Ti−1). (In fact, we need only to
check for those e with c′(e) ∈ {α, β}.) Then (Tq, c

′) satisfies Definition 2.3(ii)(a). Hence by
(c) and (d), (Tq, c

′) is a VKT-tree in (G, ab, c′). By (a), any edge of Tq is connecting in (Tq, c
′)

iff it connecting in (T, c). So (1) holds.
We may therefore assume that there exist some i (1 ≤ i ≤ q) and e ∈ E(c′)∩[Ti−1, G−Ti−1]

such that c′(ei) /∈ Mc′(Ti−1) and c′(e) ∈ Mc′(Ti−1). Choose minimum such i. Then by (c) and
(d), (Ti−1, c

′) is a VKT-tree in (G, ab, c′). So by Lemma 2.5(a), (Ti−1 + e, c′) is a VKT-tree
in (G, ab, c′), with edge ordering e1, . . . , ei−1, e. By (a), any edge of Ti−1 + e is connecting in
(Ti−1 + e, c′) iff it is connecting in (T, c). Thus (T, c) <2 (Ti−1 + e, c′). Hence, (2) holds with
T ′ := Ti−1 + e.

Case 2. |A ∩ {x, z}| 6= 1.
When |A∩ {x, z}| = 2, we have (Mc(z)−{β})∪ {α} = Mc′(z) and (Mc(x)−{α}) ∪ {β} =

Mc′(x), which implies α ∈ Mc′(y) ∩ Mc′(z). When |A ∩ {x, z}| = 0, we have y ∈ A. In this
case, (Mc(y) − {α}) ∪ {β} ⊆ Mc′(y), Mc′(z) = Mc(z), and Mc′(x) = Mc(x), which implies
β ∈ Mc′(y) ∩ Mc′(z). In either case, we have {α, β} ∩ Mc′(y) ∩ Mc′(z) 6= ∅.

Clearly, (T, c′) with edge ordering e1, . . . , em satisfies Definition 2.3(i). Suppose for all 1 ≤
i ≤ m with c′(ei) /∈ Mc′(Ti−1) and for all e ∈ E(c′)∩ [Ti−1, G−Ti−1] we have c′(e) /∈ Mc′(Ti−1).
Then (T, c′) satisfies Definition 2.3(ii)(a). So by (c) and (d), (T, c′) is a VKT-tree in (G, ab, c′).
By (b), any edge of T is connecting in (T, c′) iff it is connecting in (T, c). Hence, (3) holds.

So we may assume that there exist some i (1 ≤ i ≤ m) and e ∈ E(c′) ∩ [Ti−1, G − Ti−1]
such that c′(ei) /∈ Mc′(Ti−1) and c′(e) ∈ Mc′(Ti−1). (Again, we need only to check for those e
with c′(e) ∈ {α, β}.) Choose minimum such i. Then by (c) and (d), (Ti−1, c

′) is a VKT-tree in
(G, ab, c′). So by Lemma 2.5(a), (Ti−1 + e, c′) is a VKT-tree in (G, ab, c′), with edge ordering
e1, . . . , ei−1, e. By (b), any edge of Ti−1 + e is connecting in (Ti−1 + e, c′) iff it is connecting in
(T, c). Clearly, (T, c) <2 (Ti−1 + e, c′). Hence, (2) holds with T ′ := Ti−1 + e.

From the proof of Lemma 3.4, we see that it takes O(V ∆) time to find the (Tq, c
′) in

Lemma 3.4(1), or the (T ′, c′) in Lemma 3.4(2), or the (T, c′) in Lemma 3.4(3).
When we apply Lemmas 3.4, we often want to avoid a certain color, say γ, by choosing α

and β such that γ /∈ {α, β}. This will be possible when we have at least ∆(G) +
√

∆(G)/2
colors; and the next two lemmas will help us achieve this goal.

Lemma 3.5 Let (G, ab, c) be a k-triple with k ≥ ∆(G) +
√

∆(G)/2, let (T, c) be a VKT-tree
in (G, ab, c) with edge ordering e1, . . . , em, and assume that (Tm−1, c) is nonaugmenting. Then

(1) (T, c) has less than
√

∆(G)/2 connecting edges, and

(2) if 2 ≤ t ≤ m − 1 then |Mc(Tt) − c(T )| ≥ b
√

∆(G)/2c + 1.

Proof. To prove (1), let s denote the number of connecting edges in (T, c). If s = 0 then
(1) holds (note that we assume ∆(G) ≥ 3). So we may assume s ≥ 1. Since (Tm−1, c) is
nonaugmenting, each segment of (T, c) must be incident with at least three vertices, except
possibly the last segment which is incident with at least two vertices. So |V (Tm−1)| ≥ 2s + 1.
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Therefore, k ≥ |Mc(Tm−1)| > (2s + 1)(k − ∆(G)) (since ab is not colored and (Tm−1, c) is
nonaugmenting). This implies that k < ∆(G) + ∆(G)/(2s). If s ≥

√

∆(G)/2 then k <
∆(G) +

√

∆(G)/2, a contradiction. So s <
√

∆(G)/2, and (1) holds.
Suppose (2) fails. Then all but at most

√

∆(G)/2 colors in Mc(Tt) are used by some edge
in (T, c). Hence, since (Tm−1, c) (and thus (Tt, c)) is nonaugmenting and ab is not colored,

m − 1 ≥ (t + 1) (k − ∆(G)) + 2 −
√

∆(G)/2 ≥ 3 (k − ∆(G)) + 2 −
√

∆(G)/2

and
|Mc(Tm−1)| ≥ m (k − ∆(G)) + 2.

So
k ≥ |Mc(Tm−1)| ≥

(

3(k − ∆(G)) + 3 −
√

∆(G)/2
)

(k − ∆(G)) + 2.

Therefore, 3(k−∆(G))2 − (
√

∆(G)/2−2)(k−∆(G))− (∆(G)−2) ≤ 0. Solving for k−∆(G),
we deduce k − ∆(G) <

√

∆(G)/2, a contradiction.

Note that it takes O(V ∆) time to find a vertex y of Tt and a color β ∈ Mc(y) − c(T ).

Lemma 3.6 Let (G, ab, c) be a k-triple, let (T, c) be a VKT-tree in (G, ab, c) with edge ordering
e1, . . . , em, and assume that (Tm−1, c) is nonaugmenting. Let x ∈ V (Tt+1 − Tt) where 1 ≤ t ≤
m − 2. Then

(1) if α ∈ Mc(x) and α is not used by any connecting edge in (T, c), then α /∈ c(Tt+1), and

(2) if k ≥ ∆(G) +
√

∆(G)/2 then Mc(x) − c(Tt+1) 6= ∅.

Proof. To prove (1), let us assume for a contradiction that there exists some s, 1 ≤ s ≤ t + 1,
such that c(es) = α. Clearly, s 6= 1 and s 6= t + 1. Hence 2 ≤ s ≤ t. Since α is not used by
any connecting edge in (T, c), α = c(es) ∈ Mc(Ts−1). Let z ∈ V (Ts−1) such that α ∈ Mc(z).
Then {x, z} is an augmenting pair in (Tm−1, c), a contradiction.

Now suppose Mc(x) ⊆ c(Tt+1). Then by (1), each edge of Tt+1 with color α ∈ Mc(x) must
be a connecting edge in (T, c). Therefore, there are at least k −∆(G) ≥

√

∆(G)/2 connecting
edges in (T, c), contradicting Lemma 3.5(1).

Note that for Lemma 3.6(2), it takes O(V ∆) time to find a color in Mc(x) − c(Tt+1).

4 Working with augmenting pairs

In this section, we prove lemmas concerning VKT-trees with augmenting pairs. First, we show
how to produce a good augmenting pair from any given augmenting pair.

Lemma 4.1 Let (G, ab, c) be a k-triple with k ≥ ∆(G) +
√

∆(G)/2, let (T, c) be a VKT-tree
in (G, ab, c) with edge ordering e1, . . . , em, and let y be the top of (T, c). Assume m ≥ 2,
(Tm−1, c) is nonaugmenting, and y is in an augmenting pair in (T, c). Then there exists a
partial k-edge-coloring c′ of G obtained from c by an interchange such that one of the following
holds.
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(1) There exists an integer t, 1 ≤ t ≤ m, such that (Tt, c
′) is a VKT-tree in (G, ab, c′),

(Tt−1, c
′) is nonaugmenting, the top of Tt is contained in a good augmenting pair in

(Tt, c
′), and any edge of Tt is connecting in (Tt, c

′) iff it is connecting in (T, c).

(2) There is a VKT-tree (T ′, c′) in (G, ab, c′) such that (T, c) <2 (T ′, c′).

Proof. Let x ∈ V (Tt − Tt−1) (1 ≤ t ≤ m − 1) such that {x, y} is an augmenting pair in
(T, c). Let α ∈ Mc(y) ∩ Mc(x). We may assume that α is used by some connecting edge
in (T, c), as otherwise (1) holds with t := m and c′ := c. In particular, α ∈ c(T ). Note
that |V0(T, c)| ≥ 3, because (Tm−1, c) is nonaugmenting. So by Lemma 3.5(2), there exist
z ∈ V0(T, c) and β ∈ Mc(z) − (c(T ) ∪ {α}). Let X,Y,Z denote the components of Gc(α, β)
containing x, y, z, respectively.

We may assume that whenever ei is a connecting edge, Z contains those edges in [Ti−1, G−
Ti−1] that use color α. Otherwise, by Lemma 3.2, (2) holds.

Suppose z /∈ V (X). In this case, X ⊆ G − Ti−1 whenever i ≤ t and ei is a connecting
edge in (T, c). (Such ei exists, since α ∈ Mc(x) and α is used by a connecting edge in
(T, c).) In particular, let p ≤ t with p maximum such that ep is a connecting edge in (T, c);
then X ⊆ G − Tp−1. Let c′ denote the partial k-edge coloring of G obtained from c by
interchanging X. By Lemma 3.1, (Tp, c

′) is a VKT-tree in G with edge ordering e1, . . . , ep,
and any edge of Tp is connecting in (Tp, c

′) iff it is connecting in (T, c). For p < j ≤ t, we
have c(ej) ∈ Mc(Tj−1). Since β /∈ c(T ) and α ∈ Mc(x)−Mc(Tt−1), we see that c(ej) /∈ {α, β};
and hence, c′(ej) ∈ Mc′(Tj−1). Therefore, by repeatedly applying Lemma 2.5(a), (Tt, c

′) is a
VKT-tree in G with edge ordering e1, . . . , et, and any edge of Tt is connecting in (Tt, c

′) iff it
is connecting in (T, c). Moreover, (Tt−1, c

′) is nonaugmenting, and β ∈ Mc′(x) ∩ Mc′(z). So
(1) holds, since β is not used by any connecting edge in (Tt, c

′).
We thus may assume z ∈ V (X). Then z /∈ V (Y ). Hence, Y ⊆ G − Ti−1 whenever ei is a

connecting edge in (T, c). So let ep be the last connecting edge in (T, c); then Y ⊆ G−Tp−1. Let
c′ denote the partial k-edge coloring of G obtained from c by interchanging Y . By Lemma 3.1,
(Tp, c

′) is a VKT-tree in (G, ab, c′), and any edge of Tp is connecting in (Tp, c
′) iff it is connecting

in (T, c). Note that α ∈ Mc′(x) and β ∈ Mc′(z). So for p < j ≤ t, c′(ej) ∈ Mc′(Tj−1). It
then follows from Lemma 2.5(a) that (T, c′) is a VKT-tree in (G, ab, c′). Since (Tm−1, c) is
nonaugmenting, the end of Y other than y is not in T ; so (Tm−1, c

′) is also nonaugmenting.
Now β ∈ Mc′(y) ∩ Mc′(z) and β is not used by any connecting edge in (T, c′). Hence, y is
contained in a good augmenting pair, and (1) holds.

From the proof, we see that given the augmenting pair {x, y}, it takes O(V ∆) time to find
the (Tt, c

′) in Lemma 4.1(1) or the (T ′, c′) in Lemma 4.1(2).
The next lemma roughly says that if {x, y} is a divided augmenting pair in (T, c), then

(T, c) can be augmented with respect to the partial order <2, or c can be modified to c′ so
that (T, c′) has an undivided augmenting pair.

Lemma 4.2 Let (G, ab, c) be a k-triple with k ≥ ∆(G) +
√

∆(G)/2, let (T, c) be a VKT-tree
in (G, ab, c) with edge ordering e1, . . . , em, let y be the top of (T, c), and assume that m ≥ 2
and (Tm−1, c) is nonaugmenting. Let es be the last connecting edge in (T, c), let ys be the end
of es with ys /∈ Ts−1, and assume that y and a vertex of Ts−1 form a good augmenting pair in
(T, c). Then there exists a partial k-edge-coloring c′ of G obtained from c by a sequence of at
most two interchanges such that one of the following holds.
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(1) (T, c′) is a VKT-tree in (G, ab, c′) with edge ordering e1, . . . , em, (Tm−1, c
′) is nonaug-

menting, {ys, y} is an undivided, good, augmenting pair in (T, c′), and any edge of T is
connecting in (T, c′) iff it is connecting in (T, c).

(2) There is a VKT-tree (T ′, c′) in (G, ab, c′) such that (T, c) <2 (T ′, c′).

Proof. Let x ∈ V (Ts−1) and α ∈ Mc(x) ∩ Mc(y) such that α is not used by any connecting
edge in (T, c). Note that s ≥ 3, since V0(T, c) is nonaugmenting. We may assume s < m, as
otherwise (2) holds by Lemma 3.3.

Claim. We may assume that x ∈ V0(T, c) and α /∈ c(Ts).
By Lemma 3.5(2), there exist w ∈ V0(T, c) and γ ∈ Mc(w) − c(T ). If γ ∈ Mc(y), then this

claim holds by taking x := w and α := γ. So we may assume γ /∈ Mc(y); in particular, α 6= γ.
Let Y denote the component of Gc(α, γ) containing y; then Y ⊆ G − Ts−1 (because no

edge in [Ts−1, G − Ts−1] uses the color α or γ). Since (Tm−1, c) is nonaugmenting, the end of
Y other than y is not in T . Let c∗ denote the partial k-edge-coloring of G obtained from c by
interchanging Y . Then by Lemma 3.1, (Ts, c

∗) is a VKT-tree in (G, ab, c∗), and any edge of
Ts is connecting in (Ts, c

∗) iff it is connecting in (T, c).
Note that Mc∗(v) = Mc(v) for all v ∈ V (T − y), γ ∈ Mc∗(y) ∩ Mc∗(w), and γ /∈ c∗(Ts).
For any s + 1 ≤ j ≤ m, if c(ej) /∈ {α, γ} then c∗(ej) = c(ej) ∈ Mc(Tj−1) = Mc∗(Tj−1)

(because es is the last connecting edge in (T, c)), and if c(ej) ∈ {α, γ} then c∗(ej) ∈ {α, γ} ⊆
Mc∗({x,w}) ⊆ Mc∗(Tj−1). Hence, by repeatedly applying Lemma 2.5(a), (T, c∗) is a VKT-
tree in G with edge ordering e1, . . . , em, and es is also the last connecting edge in (T, c∗).
Since (Tm−1, c) is nonaugmenting and Mc∗(v) = Mc(v) for all v ∈ V (T − y), (Tm−1, c

∗) is
nonaugmenting. So this claim holds by taking c := c∗ and α := γ.

By Lemma 3.6(2), there exists β ∈ Mc(ys) − c(Ts). Since (Tm−1, c) is nonaugmenting and
s < m, β 6= α. Let X,Ys, Y denote the components of Gc(α, β) containing x, ys, y, respectively.
We may assume that there exists A ∈ {Ys, Y } such that A ⊆ G − Ts−1; otherwise, (2) holds
by Lemma 3.2 and the above claim.

Let c′ denote the partial edge-coloring of G obtained from c by interchanging A. Then by
Lemma 3.1, (Ts, c

′) = (Ts, c) is a VKT-tree in (G, ab, c′), and any edge of Ts is connecting in
(Ts, c

′) iff it is connecting in (T, c).
If A = Ys then α ∈ Mc′(ys) ∩ Mc′(x) and (Ts−1, c

′) is nonaugmenting, and (2) holds by
Lemma 3.3. So we may assume ys /∈ A. Then y ∈ A. Note that β ∈ Mc′(y) ∩ Mc′(ys) and
{α, β} ⊆ Mc′({x, ys}). Let s + 1 ≤ i ≤ m. Since es is the last connecting edge in (T, c), if
c(ei) /∈ {α, β} then c′(ei) = c(ei) ∈ Mc(Ti−1) − {α, β} = Mc′(Ti−1) − {α, β}. On the other
hand, if c(ei) ∈ {α, β} then c′(ei) ∈ Mc′({x, ys}) ⊆ Mc′(Ti−1). Hence by repeatedly applying
Lemma 2.5(a) (starting from (Ts, c

′)), we see that (T, c′) is a VKT-tree in (G, ab, c′) with edge
ordering e1, . . . , em. Moreover, any edge of T is connecting in (T, c′) iff it is connecting in
(T, c). Since (Tm−1, c) is nonaugmenting and Y 6= Ys, the end of A other than y is not in T .
So (Tm−1, c

′) is also nonaugmenting, and (1) holds.

From the proof of Lemma 4.2, we see that given the good augmenting pair {x, y} it takes
O(V ∆) time to find the (T, c′) in Lemma 4.2(1), or the (T ′, c′) in Lemma 4.2(2).

The following lemma considers VKT-trees (T, c) in which B(T, c)−C(T, c) contains a good
augmenting pair.
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Lemma 4.3 Let (G, ab, c) be a k-triple with k ≥ ∆(G) +
√

∆(G)/2, let (T, c) be a VKT-
tree in (G, ab, c) with edge ordering e1, . . . , em, let y be the top of (T, c), and let et+1 = xz
(1 ≤ t ≤ m− 1) be an edge of B(T, c)−C(T, c) with x ∈ Tt and z /∈ Tt. Assume that (Tm−1, c)
is nonaugmenting, and {x, y} is a good augmenting pair in (T, c). Then there exists a partial
k-edge-coloring c′ of G obtained from c by an interchange such that one of the following holds.

(1) There exists a VKT-tree (T ′, c′) in (G, ab, c′) with top y′ such that (T ′, c′) <1 (T, c),
(T ′ − y′, c′) is nonaugmenting, y′ is contained in a good augmenting pair in (T ′, c′),
S(T ′, c′) is a truncation of S(T, c), and any edge of T ′ is connecting in (T ′, c′) iff it is
connecting in (T, c).

(2) There is a VKT-tree (T ′, c′) in (G, ab, c′) such that (T, c) <2 (T ′, c′).

(3) (T, c′) is a VKT-tree in (G, ab, c′) with edge ordering e1, . . . , em, (Tm−1, c
′) is nonaug-

menting, {y, z} is a good augmenting pair in (T, c′), and any edge of T is connecting in
(T, c′) iff it is connecting in (T, c).

Proof. Let C(T, c) = Tr, where 0 ≤ r ≤ m − 1 and T0 = ∅. Then B(T, c) = T [er+1, . . . , em].
Since et+1 ∈ B(T, c)−C(T, c), t ≥ r+1. Since {x, y} is a good augmenting pair in (T, c), there
exists α ∈ Mc(x) ∩ Mc(y) such that α is not used by any connecting edge in (T, c). Because
(Tm−1, c) is nonaugmenting, it follows from Lemma 3.6(1) that α /∈ c(Tt).

We may assume em is not a connecting edge in (T, c). Otherwise, (2) holds by Lemma 3.3.
Suppose em = xy. Let β := c(em). Since em is not a connecting edge and {x, y} ∩

V (C(T, c)) = ∅, β ∈ Mc(Tm−2). Let A be the component of Gc(α, β) that is induced by
em, and let c′ be the partial k-edge-coloring of G obtained from c by interchanging A. Note
that β ∈ Mc′(x) ∩ Mc′(Tm−2) and Mc′(v) = Mc(v) for all v ∈ V (Tm−2). Also note that
A ⊆ G−Tm−2. So by Lemma 3.1, (Tm−1, c

′) is a VKT-tree in (G, ab, c′), and any edge of Tm−1

is connecting in (Tm−1, c
′) iff it is connecting in (T, c). Clearly, (Tm−1, c

′) <1 (T, c). Note that
(Tm−2, c

′) is nonaugmenting, and S(Tm−1, c
′) is a truncation of S(T, c). Hence (1) holds with

T ′ := Tm−1 and y′ := x.
Now suppose em 6= xy. Then m ≥ t + 2 and z 6= y. By Lemma 3.6(2), we may choose

β ∈ Mc(z) − c(Tt+1). Since (Tm−1, c) is nonaugmenting, β 6= α. Note that c(et+1) /∈ {α, β}.
So {α, β} ∩ c(Tt+1) = ∅. Therefore, we may apply Lemma 3.4 with q := t + 1.

If Lemma 3.4(2) or Lemma 3.4(3) holds, we have (2) or (3), respectively. So we may
assume Lemma 3.4(1) holds. Then (Tt+1, c

′) is a VKT-tree in (G, ab, c′), {x, z} is a good
augmenting pair in (Tt+1, c

′), and any edge of Tt+1 is connecting in (Tt+1, c
′) iff it is connecting

in (Tt+1, c). Clearly, (Tt+1, c
′) <1 (T, c). Since Mc′(v) = Mc(v) for all v ∈ V (Tt−1) and

{α, β} ∩ Mc(Tt−1) = ∅, (Tt, c
′) is nonaugmenting. So (1) holds with T ′ := Tt+1.

The proof of Lemma 4.3 shows that it takes O(V ∆) time to find the (T ′, c′) in Lemma 4.3(1),
the (T ′, c′) in Lemma 4.3(2), or the (T, c′) in Lemma 4.3(3).

The final case we need to consider is when there is a good augmenting pair in (T, c) that
consists of the top of (T, c) and a vertex of C(T, c).

Lemma 4.4 Let (G, ab, c) be a k-triple with k ≥ ∆(G) +
√

∆(G)/2, let (T, c) be a VKT-tree
in (G, ab, c) with edge ordering e1, . . . , em, let y be the top of (T, c), and let x ∈ V (C(T, c)).
Assume that (Tm−1, c) is nonaugmenting, and {x, y} is a good augmenting pair in (T, c).
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Then there is a partial k-edge-coloring c′ of G obtained from c by a sequence of at most seven
interchanges such that one of the following holds.

(1) There exists a VKT-tree (T ′, c′) in (G, ab, c′) with top y′ such that (T ′, c′) <1 (T, c),
(T ′ − y′, c′) is nonaugmenting, y′ is contained in a good augmenting pair in (T ′, c′),
S(T ′, c′) is a truncation of S(T, c), and any edge of T ′ is connecting in (T ′, c′) iff it is
connecting in (T, c).

(2) There is a VKT-tree (T ′, c′) in (G, ab, c′) such that (T, c) <2 (T ′, c′).

(3) (T, c′) is a VKT-tree in G with edge ordering e1, . . . , em, (T − y, c′) is nonaugmenting, y
and a vertex of B(T, c′) −C(T, c′) form a good augmenting pair in (T, c′), and any edge
of T is connecting in (T, c′) iff it is connecting in (T, c).

Proof. Let x ∈ V (Tt − Tt−1) and C(T, c) = Tr, where t ≤ r ≤ m − 1. Then B(T, c) =
T [er+1, . . . , em]. Note that r ≥ 2, since C(T, c) 6= ∅. Let w be the end of er with w /∈ Tr−1.
Since {x, y} is a good augmenting pair, there exists α ∈ Mc(x) ∩ Mc(y) such that α is not
used by any connecting edge in (T, c). Then since (Tm−1, c) is nonaugmenting, it follows from
Lemma 3.6(1) that α /∈ c(Tt).

Claim 1. We may assume x ∈ Tr−1, i.e., x 6= w.
It suffices to show that (1) or (2) or Claim 1 holds. (This may require one interchange.)
If x 6= w then Claim 1 holds. So we may assume x = w; hence r = t. By Lemma 3.5(2)

(when r ≥ 3), there exist z ∈ V (Tr−1) ∩ V0(T, c) and β ∈ Mc(z) − (c(Tr+1) ∪ {α}). This
also holds when r = 2, since ∆(G) ≥ 3 (which we assume) and k ≥ ∆(G) + 2. Hence
{α, β} ∩ c(Tr) = ∅, and we may apply Lemma 3.4 (with q := r).

If Lemma 3.4(2) holds, then (2) holds.
Suppose Lemma 3.4(1) holds. Then there is a component A of Gc(α, β) such that |V (A)∩

{w, z}| = 1, and if c′ denotes the partial k-edge-coloring of G obtained from c by interchanging
A, then (Tr, c

′) is a VKT-tree in G, {w, z} is a good augmenting pair in (Tr, c
′), S(Tr, c

′) is a
truncation of S(T, c), and any edge of Tr is connecting in (Tr, c

′) iff it is connecting in (T, c).
Moreover, c′(ei) = c(ei) for all 1 ≤ i ≤ r, and Mc′(v) = Mc(v) for all v ∈ V (Tr−1) except
possibly Mc′(z) = (Mc(z) −{β}) ∪ {α}. Hence, since (Tm−1, c) is nonaugmenting, (Tr−1, c

′) is
nonaugmenting. So (1) holds with T ′ := Tr.

We thus may assume that Lemma 3.4(3) holds. Then there is a component A of Gc(α, β)
intersecting {w, y, z} such that |V (A) ∩ {w, z}| 6= 1, and if c′ denotes the partial k-edge-
coloring of G obtained from c by interchanging A, then {α, β} ∩ Mc′(y) ∩ Mc′(z) 6= ∅, (T, c′)
is a VKT-tree in (G, ab, c′), and any edge of T is connecting in (T, c′) iff it is connecting in
(T, c). In particular, since |V (A) ∩ {w, z}| 6= 1 and (Tm−1, c) is nonaugmenting, (Tm−1, c

′) is
nonaugmenting. If |V (A) ∩ {w, z}| = 2 then α ∈ Mc′(y) ∩ Mc′(z) and α is not used by any
connecting edge in (T, c′); and if |V (A) ∩ {w, z}| = 0 then β ∈ Mc′(y) ∩ Mc′(z) and β is not
used by any connecting edge in (T, c′). So {y, z} is a good augmenting pair in (T, c′); and we
have Claim 1 by taking c′, z as c, x, respectively.

Claim 2. We may assume that for any r +1 ≤ j ≤ m, ej is not a connecting edge in (T, c).
For, otherwise, let es denote the last connecting edge in (T, c) where r + 1 ≤ s ≤ m, and

let ys ∈ V (Ts − Ts−1). We may assume that em is not a connecting edge, as otherwise (2)
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holds by Lemma 3.3. So s < m. Since x ∈ Ts−1, we may apply Lemma 4.2. If Lemma 4.2(1)
holds then (3) holds; and if Lemma 4.2(2) holds then (2) holds. (Note that Lemma 4.2 may
require two interchanges.)

Claim 3. We may further assume x ∈ V0(T, c) ∩ V (Tr−1) and α /∈ c(Tr+1).
It suffices to show that (1) or Claim 3 holds. (This may require one interchange.)
As in the proof of Claim 1, there exist z ∈ V (Tr−1) ∩ V0(T, c) and β ∈ Mc(z) − (c(Tr+1) ∪

{α}). By Claim 2, β is not used by any connecting edge in (T, c). So if β ∈ Mc(y), then Claim
3 holds by choosing z, β as x, α, respectively. So we may assume β /∈ Mc(y).

Let Y denote the component of Gc(α, β) containing y. If Y ∩Tr = ∅, let Y ′ := Y and let y∗

be the end of Y other than y; otherwise, let Y ′ denote the subpath of Y from y to y∗ ∈ V (Tr)
such that V (Y ′ ∩ Tr) = {y∗}.

Suppose Y ∩ Tr 6= ∅ and y∗ = w (respectively, y∗ ∈ Tr−1). Note that {α, β} ⊆ Mc(Tr−1)
(by Claim 1) and each edge of Y ′ uses the color α or β. Since (Tr, c) (respectively, (Tr−1, c))
is a VKT-tree in (G, ab, c), it follows from repeated applications of Lemma 2.5(a) that (Tr ∪
Y ′, c) (respectively, (Tr−1 ∪ Y ′, c)) is a VKT-tree in (G, ab, c) with edge ordering e1, . . . , er

(respectively, e1, . . . , er−1) followed by the edges of Y ′ in order from y∗ to y. Clearly, C(Tr ∪
Y ′, c) ⊆ Tr−1 (respectively, C(Tr−1 ∪ Y ′, c) ⊆ Tr−1), which is properly contained in C(T, c) =
Tr. So (Tr ∪ Y ′, c) <1 (T, c) (respectively, (Tr−1 ∪ Y ′, c) <1 (T, c)). Moreover, no edge of Y ′

is connecting in (Tr ∪ Y ′, c) (respectively, (Tr−1 ∪ Y ′, c)). Hence, S(Tr ∪ Y ′, c) (respectively,
S(Tr−1 ∪ Y ′, c)) is a truncation of S(T, c), and any edge of Tr ∪ Y ′ (respectively, Tr−1 ∪ Y ′)
is connecting in (Tr ∪ Y ′, c) (respectively, (Tr−1 ∪ Y ′, c)) iff it is connecting in (T, c). Since
α ∈ Mc(x) ∩ Mc(y) and α is not used by any connecting edge in (T, c), α is not used by any
connecting edge in (Tr ∪ Y ′, c) (respectively, (Tr−1 ∪ Y ′, c)). So {x, y} is a good augmenting
pair in (Tr ∪ Y ′, c) (respectively, Tr−1 ∪ Y ′). Now there exists some truncation of (Tr ∪ Y ′, c)
(respectively, (Tr−1 ∪ Y ′, c)) which induces a VKT-tree (T ′, c) in (G, ab, c) with top y′ such
that (T ′ − y′, c) is nonaugmenting, but y′ is contained in an augmenting pair in (T ′, c). We
may assume y′ is contained in a good augmenting pair in (T ′, c); for otherwise it follows from
Lemma 4.1 that (1) or (2) holds. Hence (1) holds with (T ′, c).

So we may assume Y ∩ Tr = ∅. Then Y ′ = Y and Y ⊆ G − Tr. Moreover, y∗ /∈ T ; as
otherwise, we have y∗ ∈ (T − y) − Tr and {α, β} ∩ Mc(y

∗) 6= ∅, which implies that {y∗, x} or
{y∗, z} is an augmenting pair in (Tm−1, c), a contradiction. Let c′ denote the partial k-edge-
coloring of G obtained from c by interchanging Y . Note that V (Tm−1) is nonaugmenting with
respect to c′.

Since Y ⊆ G− Tr, it follows from Lemma 3.1 that (Tr, c
′) is a VKT-tree in (G, ab, c′), and

any edge of Tr is connecting in (Tr, c
′) iff it is also connecting in (T, c).

We claim that for any r + 1 ≤ i ≤ m, c′(ei) ∈ Mc′(Ti−1). If c(ei) /∈ {α, β}, then by Claim
2, c′(ei) = c(ei) ∈ Mc(Ti−1) = Mc′(Ti−1) (since y∗ /∈ T ). Now assume c(ei) ∈ {α, β}. Then,
since Y ⊆ G − Tr, c′(ei) ∈ {α, β} ⊆ Mc′({x, z}) ⊆ Mc′(Ti−1).

Therefore by repeatedly applying Lemma 2.5(a), we deduce that (T, c′) is a VKT-tree in
(G, ab, c′). Again since Y ⊆ G − Tr, we must have β ∈ Mc′(y) ∩ Mc′(z). Moreover, any edge
of T is connecting in (T, c′) iff it is connecting in (T, c). Hence, Claim 3 holds with c′, z, β as
c, x, α, respectively.

Claim 4. We may assume m = r + 1. (This may require one interchange.)
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Suppose m ≥ r + 2. Let z be the end of er+1 with z /∈ Tr. Since k ≥ ∆(G) +
√

∆(G)/2
and by Lemma 3.6(2), we may choose β ∈ Mc(z)− c(Tr+2). If β ∈ Mc(y), then (3) holds, with
good augmenting pair {y, z} in (T, c) (by Claim 2). So we may assume β /∈ Mc(y).

By Claim 3 and by the choice of β, {α, β} ∩ c(Tr+1) = ∅. So we may apply Lemma 3.4
(with q := r + 1).

If Lemma 3.4(2) holds then (2) holds. If Lemma 3.4(3) holds then (3) holds since z /∈
C(T, c).

So we may assume that Lemma 3.4(1) holds. Then there is a component A of Gc(α, β)
such that |V (A) ∩ {x, z}| = 1, and if c′ denotes the partial k-edge-coloring of G obtained
from c by interchanging A, then {α, β} ∩ Mc′(x) ∩ Mc′(z) 6= ∅, (Tr+1, c

′) is a VKT-tree in
(G, ab, c′), and any edge of Tr+1 is connecting in (Tr+1, c

′) iff it is connecting in (T, c). Moreover,
Mc′(v) = Mc(v) for all v ∈ V (Tr) except possibly Mc′(x) = (Mc(x) − {α}) ∪ {β}. Therefore,
since (Tm−1, c) is nonaugmenting, (Tr, c

′) is nonaugmenting. Because {α, β} ∩ c(Tr+1) = ∅,
{z, x} is a good augmenting pair in (Tr+1, c

′). So (1) holds, completing the proof of Claim 4.

By Claim 3 and Claim 4, α /∈ c(T ). Let β := c(em). Then β 6= α, since α ∈ Mc(y). We
may assume that em is not a connecting edge in (T, c); as otherwise (2) holds by Lemma 3.3.
So β ∈ Mc(Tr).

Claim 5. We may assume β ∈ Mc(w).
Otherwise, β ∈ Mc(Tm−2). Then by Lemma 2.5(a), (Tm−2 + em, c) is a VKT-tree in

(G, ab, c) with edge-ordering e1, . . . , em−2, em. Clearly, C(Tm−2 + em, c) ⊆ Tr−1, which is
properly contained in C(T, c) = Tr. So (Tm−2 +em, c) <1 (T, c). It is also clear that S(Tm−2 +
em, c) is a truncation of S(T, c), and any edge of Tm−2 + em is connecting in (Tm−2 + em, c) iff
it is connecting in (T, c). So (1) holds with T ′ := Tm−2 + em and c′ := c. Therefore we may
assume β ∈ Mc(w).

We now distinguish two cases according to whether or not β is used by a connecting edge
in (T, c). Note that in each case we may need to apply two interchanges.

Case 1. β is not used by any connecting edge in (T, c).
Then, since (Tm−1, c) is nonaugmenting, it follows from Lemma 3.6(1) that β /∈ c(Tr). By

Claim 3, α /∈ c(Tr+1). Hence we can apply Lemma 3.4 with q := r and z := w. If Lemma 3.4(2)
holds, then (2) holds.

Now suppose Lemma 3.4(1) holds. Then there is a component A of Gc(α, β) such that
|V (A) ∩ {w, x}| = 1, and if c′ denotes the partial k-edge-coloring of G obtained from c by
interchanging A, then {α, β}∩Mc′(w)∩Mc′(x) 6= ∅, (Tr, c

′) is a VKT-tree in (G, ab, c′), S(Tr, c
′)

is a truncation of S(T, c), and any edge of Tr is connecting in (Tr, c
′) iff it is connecting in (T, c).

Moreover, Mc′(v) = Mc(v) for all v ∈ V (Tr−1) except possibly Mc′(x) = (Mc(x)−{α})∪ {β}.
Hence, since (Tm−1, c) is nonaugmenting, (Tr−1, c

′) is nonaugmenting. Since α, β /∈ c(Tr),
{w, x} is a good augmenting pair in (Tr, c

′). So (1) holds with T ′ := Tr.
We thus may assume that Lemma 3.4(3) holds. Then there is a component A of Gc(α, β)

intersecting {w, x, y} such that |V (A) ∩ {x,w}| 6= 1, and if c∗ denotes the partial k-edge-
coloring of G obtained from c by interchanging A, then {α, β} ∩Mc∗(w) ∩Mc∗(y) 6= ∅, (T, c∗)
is a VKT-tree in (G, ab, c∗) with edge ordering e1, . . . , em, and any edge of T is connecting in
(T, c∗) iff it is connecting in (T, c). Since |V (A)∩{x,w}| 6= 1, c∗(em) ∈ Mc∗(Tm−2). Note that
(Tm−1, c

∗) is nonaugmenting. Since {α, β} ⊆ Mc∗(Tr) − c∗(Tr), no connecting edge in (T, c∗)
uses α or β. So {y, w} is a good augmenting pair in (T, c∗).
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We only treat the case when α ∈ Mc∗(y) ∩ Mc∗(w); the case when β ∈ Mc∗(y) ∩ Mc∗(w)
can be treated in the same way.

By Lemma 3.5(2) (when m ≥ 4), there exist z ∈ V (Tm−2) ∩ V0(T, c∗) and γ ∈ Mc∗(z) −
(c(T ) ∪ {α}), which also holds when m = 3 (since we assume ∆(G) ≥ 3). Therefore, we may
apply Lemma 3.4 (with q := m− 1, and with c∗, w, γ as c, x, β, respectively). If Lemma 3.4(2)
holds then (2) holds.

Now suppose that Lemma 3.4(1) holds. Then there is a component A of Gc∗(α, γ) such
that |V (A) ∩ {w, z}| = 1, and if c′ denotes the partial k-edge-coloring of G obtained from c∗

by interchanging A, then {α, γ} ∩Mc′(w)∩Mc′(z) 6= ∅, (Tm−1, c
′) is a VKT-tree in (G, ab, c′),

S(Tm−1, c
′) is a truncation of S(T, c), and any edge of Tm−1 is connecting in (Tm−1, c

′) iff it is
connecting in (T, c∗). Note that Mc′(v) = Mc∗(v) for all v ∈ V (Tm−2−z), and Mc′(z) = Mc∗(z)
or Mc′(z) = (Mc∗(z) − {γ}) ∪ {α}. Then because (Tm−1, c

∗) is nonaugmenting, (Tm−2, c
′) is

nonaugmenting. Since α, γ /∈ c(Tr), {w, z} is a good augmenting pair in (Tm−1, c
′). Hence (1)

holds.
So assume that Lemma 3.4(3) holds. Then there is a component A of Gc∗(α, γ) intersecting

{w, y, z} such that |V (A) ∩ {z, w}| 6= 1, and if c′ denotes the partial k-edge-coloring of G
obtained from c∗ by interchanging A, then {α, γ}∩Mc∗(y)∩Mc∗(z) 6= ∅, (T, c′) is a VKT-tree
in (G, ab, c′) with edge ordering e1, . . . , em, and any edge of T is connecting in (T, c′) iff it
is connecting in (T, c∗). In particular, (Tm−2, c

′) is a VKT-tree in (G, ab, c′). However, since
c∗(em) ∈ Mc∗(Tm−2)−{α, γ}, c′(em) ∈ Mc′(Tm−2). By Lemma 2.5(a), (Tm−2+em, c′) is a VKT-
tree in (G, ab, c′) with edge ordering e1, . . . , em−2, em. Note that S(Tm−2+em, c′) is a truncation
of S(T, c). Since |V (A) ∩ {z, w}| 6= 1, we must have {z, w} ⊆ V (A) or V (A)∩ {w, y, z} = {y}.
So Mc′(v) = Mc∗(v) for all v ∈ V (T ) − {w, y, z}, and either Mc′(z) = Mc∗(z) and Mc′(w) =
Mc∗(w) or Mc′(z) = (Mc∗(z) − {γ}) ∪ {α} and Mc′(w) = (Mc∗(w) − {α}) ∪ {γ}. Then, since
(Tm−1, c

∗) is nonaugmenting, (Tm−1, c
′) is nonaugmenting. Since α, γ /∈ c(Tm−2 + em), {y, z}

is a good augmenting pair in (Tm−2 + em, c′). Therefore, since (Tm−2 + em, c′) <1 (T, c∗),
(Tm−2 + em, c′) <1 (T, c); and (1) holds.

Case 2. β is used by some connecting edge in (T, c)
In particular, (T, c) has a connecting edge. So let es denote the last connecting edge

in (T, c). Then by Claims 2 and 5 and since (Tm−1, c) is nonaugmenting, β 6= c(ej) for
s + 1 ≤ j ≤ m − 1. Let A′ denote the component of Gc(α, β) containing x.

We may assume that A′ contains all edges in [Ti−1, G − Ti−1] that use color β, whenever
ei is a connecting edge in (T, c); for, otherwise, since x ∈ V0(T, c) and α /∈ c(T ) (by Claim 3),
it follows from Lemma 3.2 that (2) holds.

Since x ∈ A′, {w, y} 6⊆ V (A′). So there is a component of Gc(α, β), say A, intersecting
{w, y} such that A is disjoint from A′. This implies A ⊆ G − Ts−1, since A′ uses all edges in
[Ts−1, G − Ts−1] with color β and α is not used by any edge in [Ts−1, G − Ts−1].

Let c∗ denote the partial k-edge-coloring of G obtained from c by interchanging A. Then
by Lemma 3.1, (Ts, c

∗) is a VKT-tree in (G, ab, c∗), and any edge of Ts is connecting in (Ts, c
∗)

iff it is connecting in (T, c). Recall that α /∈ c(T ), β 6= c(ej) for s + 1 ≤ j ≤ m − 1, and
A ⊆ G − Ts−1. Also note that both ends of A are disjoint from Tm−2. So c∗(ej) ∈ Mc∗(Tj−1)
for s + 1 ≤ j ≤ m− 1. Hence by repeatedly applying Lemma 2.5(a), (Tm−1, c

∗) is a VKT-tree
in (G, ab, c∗).

Suppose w /∈ A′. Then we may choose A so that w ∈ A. So (Tm−1, c
∗) is a VKT-tree in

(G, ab, c∗), (Tm−2, c
∗) is nonaugmenting, and α ∈ Mc∗(x)∩Mc∗(w). Since α /∈ c(T ), β 6= c(ej)
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for s + 1 ≤ j ≤ m − 1, and A ⊆ G − Ts−1, we have α /∈ c∗(Tm−1). So {x,w} is a good
augmenting pair in (Tm−1, c

∗). Hence, (1) holds with T ′ := Tm−1 and c′ := c∗.
Therefore, we may assume w ∈ A′. Then y ∈ A, c∗(em) = α ∈ Mc∗(Tm−2), and β 6= c∗(ej)

for s + 1 ≤ j ≤ m. Hence by Lemma 2.5(a), (Tm, c∗) = (T, c∗) is a VKT-tree in (G, ab, c∗).
Moreover, β ∈ Mc∗(y)∩Mc∗(w), (Tm−1, c

∗) is nonaugmenting, and any edge of T is connecting
in (T, c∗) iff it is connecting in (T, c).

By Lemma 3.5(2) (and since we assume ∆(G) ≥ 3), there exist z ∈ V0(T, c∗) and γ ∈
Mc∗(z) − (c∗(T ) ∪ {α}). We may assume that the component of Gc∗(γ, β) containing z, say
B′, contains all edges in [Ts−1, G − Ts−1] that use color β; for, otherwise, since z ∈ V0(T, c∗),
it follows from Lemma 3.2 that (2) holds. Therefore, there is a component of Gc∗(γ, β), say
B, intersecting {w, y} such that B ∩ B ′ = ∅. Hence B ⊆ G − Ts−1. Let c′ denote the partial
k-edge-coloring of G obtained from c∗ by interchanging B. Then by Lemma 3.1, (Ts, c

′) is a
VKT-tree in (G, ab, c′), and any edge of Ts is connecting in (Ts, c

′) iff it is connecting in (T, c∗)
(iff it is connecting in (T, c)). Recall that γ /∈ c∗(T ) and β 6= c∗(ej) for s + 1 ≤ j ≤ m, and
note that both ends of B are disjoint from Tm−2. Hence, since es is the last connecting edge in
(T, c∗) and because B ⊆ G−Ts−1, c′(ej) ∈ Mc′(Tj−1) for s+1 ≤ j ≤ m. So by Lemma 2.5(a),
(Tm, c′) is a VKT-tree in (G, ab, c′). Clearly, any edge of T is connecting in (T, c′) iff it is
connecting in (T, c∗) (iff it is connecting in (T, c)).

Suppose w /∈ B ′. Then we may choose B so that w ∈ B. In this case, (Tm−1, c
′) is a

VKT-tree, (Tm−2, c
′) is nonaugmenting, and γ ∈ Mc′(z) ∩ Mc′(w). Since B ⊆ G − Ts−1 and

β 6= c∗(ej) for s + 1 ≤ j ≤ m, we have γ /∈ c′(Tm−1), and so {z, w} is a good augmenting pair
in (Tm−1, c

′). Hence, (1) holds with T ′ := Tm−1.
So we may assume w ∈ B ′. Then y ∈ B. So (Tm−1, c

′) is nonaugmenting, γ ∈ Mc′(y) ∩
Mc′(z), and c′(em) = α ∈ Mc′(Tm−2). By Lemma 2.5(a), (Tm−2 + em, c′) is a VKT-tree in
(G, ab, c′). Since γ /∈ c∗(T ), B ⊆ G − Ts−1, and β 6= c∗(ej) for s + 1 ≤ j ≤ m, we see
that γ is not used by any connecting edge in (T, c′). So {y, z} is a good augmenting pair in
(Tm−2 + em, c′), and (1) holds with T ′ := Tm−2 + em.

The proof of Lemma 4.4 shows that it takes O(V ∆) time to find the (T ′, c′) in Lemma 4.4(1),
or the (T ′, c′) in Lemma 4.4(2), or the (T, c′) in Lemma 4.4(3).

5 Edge-coloring

We now apply the recoloring lemmas in the previous section to prove Theorem 1.3. First, we
prove that if a VKT-tree is augmenting then we can improve it according to <1 or <2. For
a tree T and two vertices x, y of T , we use T [x, y] to denote the unique path in T between x
and y.

Lemma 5.1 Let (G, ab, c) be a k-triple with k ≥ ∆(G) +
√

∆(G)/2, let (T, c) be a VKT-tree
in (G, ab, c) with edge ordering e1, . . . , em, let y be the top of (T, c), and assume that m ≥ 2,
(Tm−1, c) is nonaugmenting, and y is in an augmenting pair in (T, c). Then there is a partial
k-edge-coloring c′ of G obtained from c by a sequence of O(V ) interchanges such that one of
the following holds.

(1) There exists a VKT-tree (T ′, c′) in (G, ab, c′) with top y′ such that (T ′, c′) <1 (T, c),
(T ′ − y′, c′) is nonaugmenting, y′ is in a good augmenting pair in (T ′, c′), S(T ′, c′) is a
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truncation of S(T, c), and any edge of T ′ is connecting in (T ′, c′) iff it is connecting in
(T, c).

(2) There is a VKT-tree (T ′, c′) in (G, ab, c′) such that (T, c) <2 (T ′, c′).

Proof. Let x ∈ V (Tm−1) such that {y, x} is an augmenting pair in (T, c). If {x, y} is a good
augmenting pair and x /∈ C(T, c), apply Lemma 4.3 to (T, c); and if {x, y} is a good augmenting
pair and x ∈ C(T, c), apply Lemma 4.4 to (T, c). If {x, y} is not a good augmenting pair, apply
Lemma 4.1 to (T, c), and then apply Lemma 4.3 or Lemma 4.4 to the resulting VKT-tree.

Then there is a partial k-edge-coloring c1 of G obtained from c by a sequence of (at most
seven) interchanges such that one of the following holds.

(a) There exists a VKT-tree (T 1, c1) in (G, ab, c1) with top y1 such that (T 1, c1) <1 (T, c),
(T 1 − y1, c1) is nonaugmenting, y1 is in a good augmenting pair in (T 1, c1), S(T 1, c1) is
a truncation of S(T, c), and any edge of T 1 is connecting in (T 1, c1) iff it is connecting
in (T, c).

(b) There is a VKT-tree (T 1, c1) in (G, ab, c1) such that (T, c) <2 (T 1, c1).

(c) (T, c1) is a VKT-tree in (G, ab, c1) with edge ordering e1, . . . , em, (Tm−1, c
1) is nonaug-

menting, y and a vertex x1 of B(T, c1)−C(T, c1) form a good augmenting pair in (T, c1),
and any edge of T is connecting in (T, c1) iff it is connecting in (T, c).

If (a) or (b) holds, we see that (1) or (2) holds, with T ′ := T 1 and c′ := c1. So we may
assume that (c) holds. By repeatedly applying Lemma 4.3 (starting with (T 1, c1) and x1),
we obtain a maximal sequence ((T, ct), xt : 1 ≤ t ≤ n) such that for each 1 ≤ t ≤ n, ct is
a partial k-edge-coloring of G obtained from ct−1 by an interchange, (T, ct) is a VKT-tree
in (G, ab, ct) with edge ordering e1, . . . , em, (Tm−1, c

t) is nonaugmenting, y and a vertex xt of
B(T, ct)−C(T, ct) form a good augmenting pair in (T, ct), any edge of T is connecting in (T, ct)
iff it is connecting in (T, c), and T [xt, y] is a proper subpath of T [xt−1, y] (for 2 ≤ t ≤ n).

Note that {xn, y} ⊆ B(T, cn) − C(T, cn). By the maximality of the sequence ((T t, ct), xt :
1 ≤ t ≤ n), it follows from Lemma 4.3 (with (T, cn), xn as (T, c), x, respectively) that there
exists a partial k-edge-coloring c′ of G obtained from cn by an interchange such that one of
the following holds.

(a′) There exists a VKT-tree (T ′, c′) in (G, ab, c′) with top y′ such that (T ′, c′) <1 (T, cn),
(T ′ − y′, c′) is nonaugmenting, y′ is contained in a good augmenting pair in (T ′, c′),
S(T ′, c′) is a truncation of S(T, cn), and any edge of T ′ is connecting in (T ′, c′) iff it is
connecting in (T, cn),

(b′) There is a VKT-tree (T ′, c′) in (G, ab, c′) such that (T, cn) <2 (T ′, c′).

Note that S(T ′, c′) is a truncation of S(T, cn) = . . . = S(T, c1), and C(T, cn) = . . . =
C(T, c1) = C(T, c). Hence, (T, cn) <2 (T ′, c′) implies (T, c) <2 (T ′, c′), and (T ′, c′) <1 (T, cn)
implies (T ′, c′) <1 (T, c). So we see that (a′) or (b′) implies (1) or (2), respectively.

In the proof of Lemma 5.1, Lemma 4.3 is applied O(V ) times. So it takes O(V 2∆) time
to find the (T ′, c′) in Lemma 5.1(1), or the (T ′, c′) in Lemma 5.1(2).

We now prove that given any augmenting VKT-tree, we can either produce a better partial
edge-coloring or augment the tree in terms of <2.
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Lemma 5.2 Let (G, ab, c) be a k-triple with k ≥ ∆(G) +
√

∆(G)/2, let (T, c) be a VKT-tree
in (G, ab, c) with edge ordering e1, . . . , em, let y be the top of (T, c), and assume that m ≥ 2,
(Tm−1, c) is nonaugmenting, and y is in an augmenting pair in (T, c). Then there is a partial
k-edge-coloring c′ of G obtained from c by a sequence of O(V 2) interchanges such that one of
the following holds.

(1) Mc′(a) ∩ Mc′(b) 6= ∅.

(2) There is a VKT-tree (T ′, c′) in (G, ab, c′) such that (T, c) <2 (T ′, c′).

Proof. By Lemma 5.1, there is a partial k-edge-coloring c′ of G obtained from c by a sequence
of O(V ) interchanges such that one of the following holds.

(a) There exists a VKT-tree (T 1, c1) in (G, ab, c1) with top y1 such that (T 1, c1) <1 (T, c),
(T 1 − y1, c

1) is nonaugmenting, y1 is contained in a good augmenting pair in (T 1, c1),
S(T 1, c1) is a truncation of S(T, c), and any edge of T 1 is connecting in (T 1, c1) iff it is
connecting in (T, c).

(b) There is a VKT-tree (T 1, c1) in G such that (T, c) <2 (T 1, c1).

If (b) holds, then (2) holds with T ′ := T 1 and c′ := c1. Therefore, we may assume that (a)
holds. By repeatedly applying Lemma 5.1 (at most O(V ) times and starting with (T 1, c1) and
y1), we obtain a maximal sequence ((T t, ct), yt : 1 ≤ t ≤ n) such that for each 1 ≤ t ≤ n, ct is
a partial k-edge-coloring of G obtained from ct−1 by a sequence of O(V ) interchanges (where
c0 = c), (T t, ct) is a VKT-tree in (G, ab, ct) with top yt, (T t − yt, c

t) is nonaugmenting, yt is
contained in a good augmenting pair in (T t, ct), (T t, ct) <1 (T t−1, ct−1) where (T 0, c0) = (T, c),
S(T t, ct) is a truncation of S(T t−1, ct−1), and any edge of T t is connecting in (T t, ct) iff it is
connecting in (T t−1, ct−1).

If V (T n) = {a, b}, then Mcn(a) ∩ Mcn(b) 6= ∅; and (1) holds with c′ := cn.
So we may assume |V (T n)| ≥ 3. Then by the maximality of the sequence ((T t, ct), yt :

1 ≤ t ≤ n) and by Lemma 5.1, there exists a partial k-edge-coloring c′ of G obtained from cn

by a sequence of O(V ) interchanges and there is a VKT-tree (T ′, c′) in (G, ab, c′) such that
(T n, cn) <2 (T ′, c′). Hence (2) holds.

In the proof of Lemma 5.2, Lemma 5.1 is applied O(V ) times. So it takes O(V 3∆) time
to find the c′ in Lemma 5.2(1) or the (T ′, c′) in Lemma 5.2(2).

So far, we have shown how to deal with an augmenting VKT-tree. In order to prove
Theorem 1.3, we need to deal with nonaugmenting VKT-trees. For this, we introduce another
partial ordering on VKT-trees, which refines <2.

Definition 5.3 Let (G, ab, c) and (G, ab, c′) be two triples such that E(c) = E(c′), and c and
c′ use the same set of colors. Let (T, c) and (T ′, c′) be VKT-trees in (G, ab, c) and (G, ab, c′),
respectively. We write (T, c) <3 (T ′, c′) if there exists an integer p ≥ 0 such that

• Sj(T, c) = Sj(T
′, c′) for 0 ≤ j ≤ p − 1, and

• Sp(T, c) is a proper truncation of S(T ′, c′).
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Note the difference between <3 and <2; here Sp(T, c) may be the last segment of (T, c).

Also note that any edge of
⋃p−1

j=0 Sj(T
′, c′) is connecting in (T ′, c′) iff it is connecting in (T, c).

Clearly, (T, c) <2 (T ′, c′) implies (T, c) <3 (T ′, c′); and <3 induces a partial order on the
VKT-trees.

The next lemmas says that, given a nonaugmenting VKT-tree, we can either augment it
(through <3) or decide that an additional color is needed.

Lemma 5.4 Let (G, ab, c) be a k-triple with k ≥ ∆(G)+
√

∆(G)/2, and let (T, c) be a nonaug-
menting VKT-tree in (G, ab, c). Then one of the following holds.

(1) There is a VKT-tree (T ′, c) in (G, ab, c) with top y′ such that (T, c) <3 (T ′, c), (T ′−y′, c)
is nonaugmenting, and y′ is contained in an augmenting pair.

(2) k < Γ(G).

Proof. If (T, c) is critical, then (2) follows from Lemma 2.9. So we may assume that (T, c) is
not critical.

If (T, c) is not complete, then let e ∈ [T,G−T ] such that c(e) ∈ Mc(T ). By Lemma 2.5(a),
(T + e, c) is a VKT-tree in (G, ab, c), with edge ordering as in (T, c) followed by e. Clearly,
(T, c) <3 (T + e, c); and let T 1 := T + e. If (T, c) is complete, then let β denote a color
that is used by at least two edges in [T,G − T ]. By Lemma 3.5(2) and since we may assume
∆(G) ≥ 3, there exist x ∈ V0(T, c) and α ∈ Mc(x) − (c(T ) ∪ {β}). Let P denote the path in
G[T ]∩Gc(α, β) containing x, and let e denote the edge in [T,G−T ] with color β and incident
with P . Now by Lemma 2.5(b), (T + e, c) is a VKT-tree in (G, ab, c), with edge ordering as in
(T, c) followed by e; and let T 1 := T + e.

If (T 1, c) is augmenting, then (1) holds; otherwise, we apply the above argument to (T 1, c1)
(in place of (T, c)). Now let ((T t, c) : 1 ≤ t ≤ n) denote the maximal sequence of VKT-trees
(with top yt) constructed recursively using the above process, such that (T t, c) <3 (T t+1, c)
for 1 ≤ t ≤ n− 1, and (T n − yn, c) is nonaugmenting. If (T n, c) is augmenting, then (1) holds.
If (T n, c) is nonaugmenting, then by the maximality of this sequence, (T n, c) is critical. Hence
by Lemma 2.9, (2) holds.

It is easy to see that it takes O(E) time to find the (T ′, c′) in Lemma 5.4(1) or to certify
that Lemma 5.4(2) holds.

We now prove that given a k-triple (G, ab, c) with k ≥ ∆(G) +
√

∆(G)/2, we can modify
c to a “better” partial edge-coloring or show that a new color must be introduced.

Lemma 5.5 Let (G, ab, c) be a k-triple with k ≥ ∆(G)+
√

∆(G)/2. Then one of the following
holds.

(1) There is a partial edge-coloring c′ obtained from c by a sequence of O(V 3) interchanges
such that Mc′(a) ∩ Mc′(b) 6= ∅.

(2) k < Γ(G).

Proof. Start with the VKT-tree (T 1, c1) induced by the edge ab, with c1 = c. If Mc1(a) ∩
Mc1(b) 6= ∅, then (1) holds with c′ := c1. So we may assume (T 1, c1) is nonaugmenting. By
Lemma 5.4, either (2) holds, or there is a VKT-tree (T 2, c2) in (G, ab, c2) with top y2 (and with
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c2 = c1) such that (T 1, c1) <3 (T 2, c2), (T 2 − y2, c
2) is nonaugmenting, and y2 is contained in

an augmenting pair.
By Lemma 5.2, either (1) holds, or there is a partial edge-coloring c3 obtained from c2 by

a sequence of O(V 2) interchanges and there exists a VKT-tree (T 3, c3) in (G, ab, c3) such that
(T 2, c2) <2 (T 3, c3). Hence (T 2, c2) <3 (T 3, c3).

So let ((T t, ct) : 1 ≤ t ≤ n) denote the maximal sequence of VKT-trees obtained as above,
such that (T t, ct) <3 (T t+1, ct+1) for 1 ≤ t ≤ n − 1.

If (T n, cn) is nonaugmenting, then we apply Lemma 5.4 and see that (2) holds (by the
maximality of the sequence). If (T n, cn) is augmenting, then we may apply Lemma 5.2 and
see that (1) holds.

By Lemma 3.5(1), each VKT-tree contains at most d
√

∆e segments. So the n in the

sequence ((T t, ct) : 1 ≤ t ≤ n) could be as large as O(V O(
√

∆)). Note that E = O(V ∆).

Hence, it takes O(V O(
√

∆)+3∆) time to find the c′ in Lemma 5.5(1) or certify Lemma 5.5(2).

Proof of Theorem 1.3. Let G be a multigraph. We may assume ∆(G) ≥ 3 since
otherwise the assertion of Theorem 1.3 holds.

First, greedily color as many edges of G as possible using ∆(G) colors. Let c denote the
resulting partial edge-coloring of G.

If E(c) = E(G), then c gives the desired edge-coloring. So we may assume E(c) 6= E(G).
Choose an arbitrary edge ab from E(G) − E(c), and apply Lemma 5.5 to the triple (G, ab, c).

If Lemma 5.5(1) holds, we obtain a partial edge-coloring c′ of G from c through a sequence
of interchanges such that Mc′(a) ∩ Mc′(b) 6= ∅. Let c1 denote the partial edge-coloring of G
obtained from c by coloring ab with a color from Mc′(a)∩Mc′(b). If Lemma 5.5(2) holds, then
k < Γ(G), and let c1 denote the partial edge-coloring of G obtained from c by assigning to the
edge ab a color not used by c.

Repeat this argument for G and c1, we obtain the desired edge-coloring of G. (This takes
at most O(E) steps.)

Clearly, the above argument gives an algorithm for edge-coloring any multigraph G us-
ing at most max{∆(G) +

√

∆(G)/2, dΓ(G)e} colors. The complexity of this algorithm is

O(V O(
√

∆)+3∆E). So if ∆ is not part of the input, our proof yields a polynomial time coloring
algorithm.

Proof of Corollary 1.5. Let G be a multigraph, and let c be any given edge-coloring of
G, using colors from the collection C. Let k := |C|.

Pick a color α ∈ C, and let Ec(α) := {e ∈ E(G) : c(e) = α}. Let c1 denote the partial edge-
coloring of G with E(c1) = E(G) − E(α), and c1(e) = c(e) for each e ∈ E(G) − E(α). (This
is for notational purpose only; we may simply view c1 as c with α ignored.) Our objective is
to show that either k = χ′(G) (in which case, c is an optimal edge-coloring) or use a sequence
of interchanges to turn c to an edge-coloring of G using colors from C −{α}; and by repeating
this process we will produce an optimal edge-coloring of G.

Pick an edge ab from E(α). Apply Lemma 5.5 to the (k − 1)-triple (G, ab, c1).
If Lemma 5.5(2) holds, then k − 1 < Γ(G); thus k = dΓ(G)e, and so, c is an optimal

edge-coloring of G.
So we may assume that Lemma 5.5(1) holds. Then there is a partial edge-coloring c ′1

obtained from c1 by a sequence of interchanges such that Mc′
1
(a) ∩ Mc′

1
(b) 6= ∅. Let β ∈
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Mc′
1
(a) ∩ Mc′

1
(b). Note that β ∈ C − {α}. Let c∗1 denote the edge-coloring of G obtained from

c′1 by coloring the edges in E(α) with color α again. Clearly, c∗1 can be obtained from c by a
sequence of interchanges. Let D denote the component of Gc∗

1
(α, β) containing the edge ab.

Then D is induced by the edge ab. Let c2 denote the edge-coloring of G obtained from c∗1 by
interchanging D. Then Ec2(α) = Ec(α) − {ab}.

We repeat the above argument for c2 by picking an edge from Ec2(α). We either show that
c2 is an optimal edge-coloring, or obtain an edge-coloring of G using colors from C − {α}. If
the latter occurs, we pick a color from C − {α} and repeat the whole process again. (We omit
the details.) Eventually, we obtain an optimal edge-coloring of G.
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