
Online Tree Node Assignment with Resource

Augmentation

Joseph Wun-Tat Chan1, Francis Y.L. Chin2,�, Hing-Fung Ting2,��,
and Yong Zhang2

1 Department of Computer Science, King’s College London, London, UK
joseph.chan@kcl.ac.uk

2 Department of Computer Science, The University of Hong Kong, Hong Kong
{chin,hfting,yzhang}@cs.hku.hk

Abstract. Given a complete binary tree of height h, the online tree node
assignment problem is to serve a sequence of assignment/release requests,
where an assignment request, with an integer parameter 0 ≤ i ≤ h, is
served by assigning a (tree) node at level (or height) i and a release
request is served by releasing a specified assigned node. The node assign-
ments have to guarantee that no node is assigned to two assignment re-
quests unreleased, and every leaf-to-root path of the tree contains at most
one assigned node. With assigned node reassignments allowed, the target
of the problem is to minimize the number of assignments/reassigments,
i.e., the cost, to serve the whole sequence of requests. This online tree
node assignment problem is fundamental to many applications, including
OVSF code assignment in WCDMA networks, buddy memory allocation
and hypercube subcube allocation.

Most of the previous results focus on how to achieve good perfor-
mance when the same amount of resource is given to both the online
and the optimal offline algorithms, i.e., one tree. In this paper, we fo-
cus on resource augmentation, where the online algorithm is allowed to
use more trees than the optimal offline algorithm. By using different
approaches, we give (1) a 1-competitive online algorithm, which uses
(h + 1)/2 trees, and is optimal because (h + 1)/2 trees are required by
any online algorithm to match the cost of the optimal offline algorithm
with one tree; (2) a 2-competitive algorithm with 3h/8 + 2 trees; (3) an
amortized (4/3 + α)-competitive algorithm with (11/4 + 4/(3α)) trees,
for any α where 0 < α ≤ 4/3.

1 Introduction

The tree node assignment problem is defined as follows. Given a complete binary
tree of height h, the target is to serve a sequence of requests. Every request
is classified as either an assignment request or a release request. To serve an
assignment request, which is associated with an integer parameter 0 ≤ i ≤ h, we

� Supported by HK RGC grant HKU-7113/07E.
�� Supported by HK RGC grant HKU-7171/08E.

H.Q. Ngo (Ed.): COCOON 2009, LNCS 5609, pp. 358–367, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Online Tree Node Assignment with Resource Augmentation 359

have to assign it a (tree) node at level (or height) i. To serve a release request,
we just need to mark a specified assigned node free. There are two constraints
for the node assignments, which are (1) any node can be assigned to at most
one unreleased assignment request, (without ambiguity, all assigned requests
are assumed unreleased), and (2) there is at most one assigned node in every
leaf-to-root path. Fig. 1 gives a valid tree node assignment.

level 0

level 1

level 2

level 3

level 4

a

b

c

d

e f

g h

ij

Fig. 1. Example of a valid nodes assignment. Filled circles represent assigned nodes.

The tree node assignment problem can be considered as a general resource al-
location problem, which can model the specific problems, such as the Orthogonal
Variable Spreading Factor (OVSF) code assignment problem [2, 3, 7, 12, 13, 14,
15,16,17], the buddy memory allocation problem [1,5,10,11], and the hypercube
subcube allocation problem [6]. The main difference between these problems
is how the resource, the nodes at level i, for 0 ≤ i ≤ h, are interpreted. In
the OVSF code assignment problem, the resource consists of codes of frequency
bandwidth 2i; in the buddy memory allocation problem, the resource consists
of memory blocks of size 2i; in the hypercube subcube allocation problem, the
resource consists of subcubes of 2i processors.

Similar to the memory allocation problem, algorithms for the tree node assign-
ment problem also face the fragmentation problem. For example, in Fig. 1, there
is no node of level 2 that can be assigned (without violating constraint (2) of node
assignments). In fact, we can “defragment” the tree by reassigning the assigned
node c to free node f . Then, node a is free to assign to assignment request of
level 2. In this paper, we consider the tree node assignment problem where re-
assignment of nodes is allowed. In addition, we design algorithms that serve all
requests in the request sequence, and we assume that all requests in the request
sequence can be served by some algorithm using only one tree of height h.

The performance of an algorithm for the tree node assignment problem is mea-
sured by the number assignments/reassignments, which is called the cost, carried
out by the algorithm. The release operations take no cost, as in the applications,
the operation to release a resource is usually negligible when compared with the
overhead of assigning/reassigning a resource.

Both the offline and online version of the tree node assignment problem are
well studied, especially in the context of OVSF code assignment. In the offline
version, the sequence of requests is known in advance, whereas in the online
version, the algorithm must process each request without any information about
future requests. The offline version of this problem is proved to be NP-hard [16].

360 J.W.-T. Chan et al.

Most of the previous work studied the online version of the problem, where
performance is given in terms of competitive ratios, i.e., the worst case ratio
of the costs between the online algorithm and the optimal offline algorithm.
Erlebach et al [7] gave an O(h)-competitive algorithm, where h is the height of
the tree, and proved a general lower bound on the competitive ratio of at least
1.5. Forisek et al [8] gave a constant-competitive algorithm, but without deriving
the exact value of the constant. Chin, Ting and Zhang [2] gave a 10-competitive
algorithm and, in addition, their algorithm guarantees that each request is served
with at most 5 assignments/reassignments. They then improved the upper bound
by proposing a 6-competitive algorithm [3]. They improved the lower bound of
the competitive ratio to 5/3 ≈ 1.67 [2]. Very recently, Miyazaki and Okamoto [14]
gave a 7-competitive algorithm and improved the lower bound of the competitive
ratio to 2.

In this paper, we focus on the online version of the problem with resource
augmentation [9], which means that the online algorithm is allowed to use more
trees than the optimal offline algorithm. We assume that the optimal offline
algorithm uses one tree, while the online algorithm can use k trees, where k ≥ 1.
The competitive ratio is defined to be the worst case ratio of the cost between
the online algorithm with k trees and the optimal offline algorithm with one tree.
This problem has been studied before. Erlebach et al [7] gave a 4-competitive
algorithm with two trees, and Chin, Zhang and Zhu [4] gave a 5-competitive
algorithm with 9/8 trees.

The main contribution of this paper is to show how the competitive ratio can
be further reduced by making use of more trees. In other words, how the future
information (offline) can be compensated by extra resources (trees). First, we
give an online algorithm with (h+1)/2 trees that matches the cost of the optimal
offline algorithm with one tree. In fact, this algorithm even matches the cost of
each request with that of the optimal offline algorithm with one tree, as it does
not require any reassignments. We further show that for any online algorithm
to match the cost of the optimal offline algorithm with one tree, (h + 1)/2 trees
are necessary. That implies that our 1-competitive algorithm is optimal in terms
of the number of trees used. Then, by using one extra reassignment for each
release request to reduce the fragmentation of the assigned nodes in the tree,
we can use fewer trees to serve the sequence of requests. In particular, we give a
2-competitive online algorithm with 3h/8 + 2 trees. This algorithm bounds the
cost of each request to one, i.e., each assignment request takes one assignment
and each release request takes at most one reassignment. These two algorithms
with bounded costs for each request are presented in Section 2.

When it is not necessary to bound the cost of individual requests to a constant,
we can achieve an amortized (4/3+α)-competitive algorithm with (11/4+4/(3α))
trees, for any α where 0 < α ≤ 4/3. This algorithm is presented in Section 3.

Remark: Because of page limit, some detailed proofs are removed. For full version
of this paper, please refer to http://www.cs.hku.hk/\simyzhang/tree.pdf

http://www.cs.hku.hk/$\sim $yzhang/tree.pdf

Online Tree Node Assignment with Resource Augmentation 361

2 Algorithms with Bounded Cost per Request

We present two algorithms in this section. For any request sequence σ where the
optimal algorithm can satisfy the requests with one tree,

– the first algorithm uses at most (h + 1)/2 trees and incurs a cost of one for
each assignment request and a cost of zero for each release request;

– the second algorithm uses at most 3h/8+2 trees and incurs a cost of at most
one for each assignment and release request.

Since any algorithm needs to assign a node for each assignment request, the
first algorithm is optimal in terms of the cost, i.e., 1-competitive. We further
show that it is necessary for any online algorithm to use (h + 1)/2 trees in order
to match the cost of the optimal algorithm with one tree. Since the number of
release requests is at most the number of assignment requests, the total cost
incurred by the second algorithm is at most twice that of the optimal algorithm
with one tree, i.e., 2-competitive.

2.1 Preliminary

We introduce some definitions in this part, which are used in subsequent sections.
A node v is called a free node if there is no assigned node in any leaf-to-root path
going through the node v. A node v is blocked if there is a path from the root to
a leaf through the node v that contains an assigned node. Node v is also called
a blocked node, moreover, we say node v is blocked by an assigned node at some
level. A node at level i or an assignment request that asks for a node at level i
is said to have a bandwidth of 2i. It is clear that to serve a set of assignment
requests or to accommodate a set of assigned nodes in a tree of height h, the
total bandwidth of the requests or nodes has to be no more than 2h.

2.2 Optimal 1-Competitive Algorithm

The idea to achieve the optimal cost is to dedicate some subtrees to serve as-
signment requests of some particular levels. To describe this assignment scheme,
we define a half-tree to be the subtree rooted at either the left or right child of
a root. This online algorithm uses h + 1 half-trees. We label the h + 1 half-trees
from 0 to h. When there is a level-i assignment request with i < h, we pick
from half-trees 0 to i + 1 any free node at level i and assign it to the request. If
i = h, we assign the root of any tree to the request, as there should be no other
assigned nodes. For any release request, we just release the assigned node and
mark it free.

The correctness of the algorithm depends on whether, for each level-i assign-
ment request, we can always find a level-i free node from the half-trees 0 to i+1.
The following lemma makes sure that it can be done.

Lemma 1. If the total bandwidth of the assigned nodes and the new-coming
assignment request of level i is less than 2h, there is always a free node at level
i in the half-trees 0 to i + 1 for i < h.

362 J.W.-T. Chan et al.

Theorem 2. For the online tree node assignment problem, we have an 1-compe-
titive algorithm using (h + 1)/2 trees, where the cost of serving each assignment
request is one and the cost of serving each release request is zero.

Lower bound of number of trees to achieve 1-competitiveness. We
give an adversary such that the optimal algorithm with one tree serves each
assignment request with only one assignment and each release request with no
reassignment. At the same time, for any online algorithm that wants to limit the
cost as the optimal algorithm, the adversary forces it to use at least (h + 1)/2
trees.

The main idea of the adversary is to send assignment requests in ascending
order of their levels. The adversary then releases some requests but makes sure
that the remaining assigned nodes of low level block a significant part of the
trees. Thus, the assignment requests of high level need to be served with extra
trees. The adversary is divided into h steps, where in Step i, assignment requests
of level i are sent, and then some release requests of level j ≤ i follow, except
for Step h − 1. Over all time, the total bandwidth of the assigned nodes is kept
at most 2h. The details of the adversary is given as follows.

Step 0: The adversary sends 2h level-0 assignment requests. Any online algo-
rithm must assign 2h level-0 free nodes. The adversary then releases 2h−1

of the level-0 assigned nodes such that 2h−1 = 2 · 2h−2 level-1 nodes are
blocked.

Step 1: The adversary sends 2h−2 level-1 assignment requests. After the online
algorithm has assigned 2h−2 level-1 free nodes, the adversary releases 2h−2

level-0 and 2h−3 level-1 assigned nodes, i.e., half of the assigned nodes at each
level with assigned nodes. The release requests make sure that it results in
3 · 2h−3 nodes blocked at level-2.
...

Step i, for 2 ≤ i ≤ h − 2: The adversary sends 2h−i−1 level-i assignment re-
quests. After the online algorithm has assigned 2h−i−1 level-i free nodes, the
adversary releases 2h−i−1 level-0 assigned nodes and 2h−i−2 level-j assigned
nodes for 1 ≤ j ≤ i, i.e., half of the assigned nodes at each level with assigned
nodes. The release requests make sure that it results in (i+2) ·2h−i−2 nodes
blocked at level-(i + 1).
...

Step h − 1: The adversary sends one level-(h − 1) assignment requests. (Now,
there are h + 1 nodes blocked at level h − 1.)

Lemma 3. For any online algorithm, at the end of Step i, the number of level-
(i + 1) nodes blocked is (i + 2) · 2h−i−2, for 0 ≤ i ≤ h − 2.

It is easy to construct an offline algorithm with one tree so that it serves for the
adversary each assignment request with one assignment and each release request
with no reassignment. Thus, we have the following theorem.

Theorem 4. No online algorithm can match the cost of the optimal offline al-
gorithm with one tree by using less than (h + 1)/2 trees.

Online Tree Node Assignment with Resource Augmentation 363

2.3 2-Competitive Algorithm with Bound Cost per Request

This section gives an online algorithm that uses fewer trees, i.e., 3h/8 + 2, but
comes with a slightly higher competitive ratio, i.e., 2. The main idea of the
algorithm is to apply an extra reassignment for any release request to reduce
fragmentation of the tree (to reduce blocking bandwidth) by pairing two assigned
nodes with unassigned siblings. Precisely, the algorithm serves each assignment
and release request with at most one assignment or reassignment. As the number
of release requests is at most the number of assignment requests, the total cost
of the algorithm is at most twice that of the optimal algorithm.

We design an assignment scheme for the 3h/8+2 trees available to the online
algorithm. First, we define an eighth-tree to be a subtree rooted at a level-(h−3)
node. All the 3h eighth-trees in the 3h/8 trees are labeled. Six of them are labeled
0 and three of them are labeled i, for 1 ≤ i ≤ h−2. Denote the other two trees as
T and T ∗. In general, the 3h eighth-trees are to handle the assignment requests
at level-i for 0 ≤ i ≤ h − 3, T for level-(h − 2) and -(h − 1), and T ∗ for all
levels. In particular, at any time, we allow at most one assigned node in each
level 0 ≤ i ≤ h of T ∗. It enables us to find a free node at level-i of T ∗, whenever
there is no assigned node at level-i.

The details of the assignment scheme are given as follows.

Assignment request R of level i:
If there is no level-i assigned node in T ∗, assign R a level-i free node in T ∗.
Otherwise,
– If i = h − 2 or i = h − 1, assign R any level-i free node in T .
– If 0 ≤ i ≤ h − 3, assign R any level-i free node from any eighth-tree

labeled k for 0 ≤ k ≤ i. If no free node is available, consider the eighth-
trees labeled i + 1. If there is a level-i free node v where v’s sibling is
an assigned (level-i) node, assign R the free node v. Otherwise, assign R
any level-i free node in any eighth-tree labeled i + 1. (Lemma 4 shows
that an level-i free node always exists in one of the eight-tree with label
from 0 to i + 1).

Release request R of level i:
Release the node assigned to R and mark it free.
If 0 ≤ i ≤ h − 3, consider the following situations for reassignment.
– If there is no assigned node at level i of T ∗ and there is a level-i assigned

node v in an eighth-tree labeled i + 1 where v’s sibling is a free (level-i)
node, reassign v to a level-i free node of T ∗.

– If there are two level-i assigned node u and v in an eighth-trees labeled
i + 1 where both u’s and v’s siblings are a free (level-i) node, reassign u
to v’s sibling.

To ensure the correctness of the algorithm, we show that the followings are
true.

1. When T ∗ contains an assigned node at level i, for i = h − 1 or i = h − 2,
there is always a level-i free node in T . For this case, it is clear as otherwise,
the total bandwidth of the assigned nodes is at least 2h.

364 J.W.-T. Chan et al.

2. When T ∗ contains an assigned node at some level i (0 ≤ i ≤ h− 3), there is
always a level-i free node in some eighth-tree labeled k, for 0 ≤ k ≤ i + 1.

In order to ensure that the Property (2) is true (by Lemma 6), we may spend
an extra reassignment after a release request to tidy up the configuration of the
assigned nodes in the eighth-trees. We want to maintain a configuration of the
assigned nodes in the eighth-trees as in the following lemma.

Lemma 5. Let 0 ≤ i ≤ h−3. (1) When T ∗ contains no assigned node at level i,
there is no assigned node v at level i of any eight-tree labeled i+1 where v’s sibling
is a free node. (2) If there exist one assigned node v, among all assigned nodes,
at level i of some eight-tree labeled i+1 where v’s sibling is a free node, T ∗ must
contains an assigned node at level i.

Lemma 6. Assume that the total bandwidth of the assigned nodes is less than
2h. For any i, 0 ≤ i ≤ h−3, when T ∗ contains an assigned node at level i , there
is always a level-i free node in some eighth-tree labeled k, for 0 ≤ k ≤ i + 1.

Theorem 7. For the online tree node assignment problem, we have a 2-
competitive algorithm using 3h/8 + 2 trees and the cost of serving each request
is at most one.

3 Algorithm with Amortized Constant Cost per Request

In this section, we give a (4/3 + α)-competitive algorithm using 11/4 + (4/(3α)
trees, for any α where 0 < α ≤ 4/3. This algorithm is based on an extended
concept of compact configuration of assigned nodes in trees [7], which is described
below.

Assume that the available trees to the online algorithm are arranged on a
line. For any two nodes u and v, where u is not an ancestor of v and vice versa,
we say that u is on the left of v if u is in a tree which is on the left of the tree
containing v, or there is a leaf in the subtree rooted at u which is on the left
of a leaf in the subtree rooted at v; otherwise, u is on the right of v. Level i of
the trees is defined to be compact if all nodes of level i to the left of a blocked
node of level i, which is blocked by an assigned node at level no more than i,
are also blocked. We say that a configuration is compact if all levels of the trees
are compact.

It is very costly to maintain a compact configuration after serving each re-
quest. By using a “relaxed compact” configuration with a constant number of
trees, the amortized competitive ratio can be reduced to a constant. The idea
of the relaxation is as follows: for each level i, there may exist more free nodes
than the compact configuration. Such kind of free nodes can accommodate the
following assignment request immediately without reassigning nodes at higher
levels. Thus, there may be no extra cost (reassignment) after serving some re-
quest and the amortization of each request can be reduced to a constant by using
some extra resources (the free node to the right of some assigned nodes may be
wasted).

Online Tree Node Assignment with Resource Augmentation 365

To improve the competitive ratio, we could be lazy in tidying up the con-
figuration when serving assignment or release requests. In this part, we define
a less “tidy” configuration called the semi-compact configuration, which stores
odd-level and even-level assigned nodes separately. However, the way to store
the two sets of assigned nodes is the same. For simplicity, we would show how
even-level assigned nodes are stored only.

To describe the algorithm, we define a notation called the level-i region, which
consists of all level-i assigned nodes and maybe some level-i free nodes. There is
a level-i region for each level i. If there is no assigned nodes at level i, the level-i
region may consist of only free level-i nodes or an empty region.

The semi-compact configuration (as shown in Figure 2) divides the level-i
region into two contiguous parts, the main region on the left and the gap region
on the right.

– The main region consists of assigned nodes and maybe some free nodes, but
the number of free nodes is at most β times the number of assigned nodes,
where β ≥ 1 is a fixed parameter.

– The gap region consists of only free nodes and the number of free nodes is
at most 7.

level i

level i + 2

level i + 4

level-(i + 2) region
level-i region

main region gap region

Fig. 2. An example of an semi-compact configuration

The details of the algorithm is given as follows.

Assignment request R of level i:
Case A1. If there is a level-i free node in the level-i main region, assign R

the free node.
Case A2. If there is a level-i free node in the level-i gap region, assign R

the leftmost free node, say u, and u is moved from the gap to the main
region.

Case A3. If there is no level-i free node in the level-i region, find the non-
empty level-j region Gj for the smallest j > i
(1) If Gj has no assigned node, i.e., the leftmost node is a free node, the

free node is “divided” into four level-i free nodes, three level-k nodes
for even-level k between i + 2 to j − 2. These free nodes are inserted
to the corresponding level-i and level-k gap regions. The leftmost
level-i free node is assigned to R. Similar to the case A2, the newly
assigned node is moved from the gap to the main region.

366 J.W.-T. Chan et al.

(2) Otherwise, release the leftmost assigned node, say u, of Gj , which is
reassigned later. The released node is divided and assigned as in step
(1). An assignment request of level j is issued to find a free node for
u.

Release request R of level i:
Release the assigned node for R.
Case R1. If the number of free nodes in the level-i main region is at most

β times the number of assigned nodes, do nothing.
Case R2. If the number of free nodes in the level-i main region is more

than β times the number of assigned nodes, compact the main region
into contiguous assigned nodes on the left by reassignments. The free
nodes are moved to the gap regions.
(3) If the number of free nodes in the gap region is at most 7, do nothing.
(4) If the number of free nodes in the gap region is more than 7, let the

number be in the form 4x + y where x and y are integers and x > 1
and 4 ≤ y ≤ 7. Group the rightmost 4x free nodes into x level-(i+2)
free nodes. The x level-(i+2) free nodes are moved to the level-(i+2)
main region in a way that are considered as x release requests.

We use an amortized analysis to bound the average number of assignments
and reassignments needed for serving each assignment or release request. The
credits paid for an assignment request is 4/3 and a release request is α where
α = 4/(3β) ≤ 4/3 as β ≥ 1. The potential of a level-i main region is α times the
number of free nodes in the main region. The potential of the level-i gap region
is defined as follows.

Number of free nodes in the gap region 0 1 2 3 4 5 6 7
Potential 1 2/3 1/3 0 0 α/4 α/2 3α/4

The potential of a semi-compact configuration is the sum of all potential of the
level-i main and gap regions for all level i. The initial semi-compact configuration
has four level-0 free nodes in the level-0 gap region, and three level-i free nodes
in the level-i gap region for all other i > 0. All main regions are empty. The
initial potential is 0.

The following lemma shows that the saved credit is able to pay the actual
cost of the algorithm for serving each request.

Lemma 8. Let Sb and Sa be the potential of the semi-compact configuration
before and after serving a request. The actual cost to serve an assignment request
is at most 4/3 − (Sa − Sb) and a release request is at most α − (Sa − Sb).

Summing up all node trees used, we can prove the following theorem.

Theorem 9. For the online tree node assignment problem, our algorithm in this
section is (4/3+ α)-competitive and it uses at most 11/4+ 4/(3α) trees, for any
α where 0 < α ≤ 4/3.

Online Tree Node Assignment with Resource Augmentation 367

References

1. Brodal, G.S., Demaine, E.D., Munro, J.I.: Fast allocation and deallocation with an
improved buddy system. Acta Inf. 41(4-5), 273–291 (2005)

2. Chin, F.Y.L., Ting, H.F., Zhang, Y.: A constant-competitive algorithm for online
OVSF code assignment. In: Tokuyama, T. (ed.) ISAAC 2007. LNCS, vol. 4835,
pp. 452–463. Springer, Heidelberg (2007)

3. Chin, F.Y.L., Ting, H.F., Zhang, Y.: Constant-Competitive Tree Node Assignment
(manuscript)

4. Chin, F.Y.L., Zhang, Y., Zhu, H.: Online OVSF code assignment with resource
augmentation. In: Kao, M.-Y., Li, X.-Y. (eds.) AAIM 2007. LNCS, vol. 4508,
pp. 191–200. Springer, Heidelberg (2007)

5. Defoe, D.C., Cholleti, S.R., Cytron, R.: Upper bound for defragmenting buddy
heaps. In: Proceedings of the 2005 ACM SIGPLAN/SIGBED Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, pp. 222–229 (2005)

6. Dutt, S., Hayes, J.P.: Subcube allocation in hypercube computers. IEEE Trans.
Computers 40(3), 341–352 (1991)

7. Erlebach, T., Jacob, R., Mihalák, M., Nunkesser, M., Szabó, G., Widmayer, P.: An
algorithmic view on OVSF code assignment. Algorithmica 47(3), 269–298 (2007)

8. Forǐsek, M., Katreniak, B., Katreniaková, J., Královič, R., Královič, R., Koutný,
V., Pardubská, D., Plachetka, T., Rovan, B.: Online bandwidth allocation. In:
Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 546–557.
Springer, Heidelberg (2007)

9. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J.
ACM 47(4), 617–643 (2000)

10. Knowlton, K.C.: A fast storage allocator. Commun. ACM 8(10), 623–624 (1965)
11. Knuth, D.E.: The Art of Computer Programming. Fundamental Algorithms, vol. 1.

Addison-Wesley, Reading (1975)
12. Li, X.-Y., Wan, P.-J.: Theoretically good distributed CDMA/OVSF code assign-

ment for wireless ad hoc networks. In: Wang, L. (ed.) COCOON 2005. LNCS,
vol. 3595, pp. 126–135. Springer, Heidelberg (2005)

13. Minn, T., Siu, K.-Y.: Dynamic assignment of orthogonal variable-spreading-factor
codes in W-CDMA. IEEE Journal on Selected Areas in Communications 18(8),
1429–1440 (2000)

14. Miyazaki, S., Okamoto, K.: Improving the competitive ratio of the online OVSF
code assignment problem. In: Proceedings of the 19th International Symposium on
Algorithms and Computation (ISAAC), pp. 64–76 (2008)

15. Rouskas, A.N., Skoutas, D.N.: OVSF codes assignment and reassignment at the
forward link of W-CDMA 3G systems. In: Proceedings of the 13th IEEE Interna-
tional Symposium on Peronal, Indoor and Mobile Radio Communications, vol. 5,
pp. 2404–2408 (2002)

16. Erlebach, T., Jacob, R., Tomamichel, M.: Algorithmische Aspekte von OVSF Code
Assignment mit Schwerpunkt auf Offline Code Assignment. Student thesis at ETH
Zürich

17. Wan, P.-J., Li, X.-Y., Frieder, O.: OVSF-CDMA code assignment in wireless ad
hoc networks. Algorithmica 49(4), 264–285 (2007)

	Online Tree Node Assignment with Resource Augmentation
	Introduction
	Algorithms with Bounded Cost per Request
	Preliminary
	Optimal 1-Competitive Algorithm
	2-Competitive Algorithm with Bound Cost per Request

	Algorithm with Amortized Constant Cost per Request

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

