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Abstract

The convex ordered median problem is a generalization of the me-
dian, the k-centrum or the center problem. The task of the associated
inverse problem is to change edge lengths at minimum cost such that
a given vertex becomes an optimal solution of the location problem,
i.e., an ordered median. It is shown that the problem is NP-hard even
if the underlying network is a tree and the ordered median problem is
convex and either the vertex weights are all equal to 1 or the under-
lying problem is the k-centrum problem. For the special case of the
inverse unit weight k-centrum problem a polynomial time algorithm is
developed.

Keywords: Location problem, inverse optimization, ordered median, com-
plexity analysis, k-centrum

1 Introduction

This paper deals with an inverse location problem. Classical location prob-
lems are given by a set of n clients whose location is known and whose
importance is modelled by weights. The task is to locate a facility such
that the facility is close to the clients. The quality of the location can be
measured in different ways. The most famous problems are the 1-median
where the quality of a location is measured by the sum of weighted distances
to the clients and the 1-center problem where the objective function is the
maximum among the weighted distances to the clients. Recently, Nickel
and Puerto [11] introduced a unified objective function, the ordered median
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function, which contains most of the classical objective functions as special
cases.

We apply an inverse approach to ordered median problems. Here the
goal is to change values of parameters such that a given location becomes
an optimal one. In case of inverse location problems on graphs there are
two parameter sets that can be changed: the vertex weights and the edge
lengths. Cai et al. [4] considered the problem of changing vertex weights
within certain limits such that a given point becomes 1-center. Although
the 1-center problem is solvable in polynomial time the authors showed that
its inverse in NP-hard. Burkard et al. [1,2] investigated the inverse 1-median
problem with variable vertex weights and proved that the problem is solvable
by a greedy-type algorithm in O(n log n) time if the underlying network is
a tree or the location problem is defined in the plane (where distances are
measured by the Manhattan or Tchebychev metric) and in O(n2) time on
cycles. Recently, Burkard et al. [3] solved the inverse Fermat-Weber problem
with variable vertex weights in linear time.

Instead of changing vertex weights one may also consider the problem
of changing edge lengths. In practice edge length model distances or travel
times. These parameters may be influenced by introducing new technologies
or improving travel connections. However, much less attention was paid
to inverse location problems with variable edge lengths (instead of vertex
weights). Gassner [7] considered the inverse 1-maxian problem (i.e., the
maximization variant of the 1-median problem) and proved NP-hardness
even on series-parallel graphs. However, for trees a linear time algorithm is
suggested. For a survey of inverse optimization the reader is referred to [9].

Let us start with a formal problem formulation: Let G = (V,E,w, ℓ) be
a graph with vertex weights wv ∈ R+ (for v ∈ V ) and edge lengths ℓe ∈ R+

(for e ∈ E) and let λ ∈ R
n
+ be a vector. Then the ordered median objective

value of a point x ∈ G is given by

fℓ(x) =
∑

v∈V

λϕ(v)wvdℓ(v, x)

where dℓ(v, x) is the shortest distance from v to x with respect to ℓ and
ϕ : V → {1, . . . , n} is an ordering of the vertices according to their weighted
distances to x, i.e., if wv′dℓ(v

′, x) < wv′′dℓ(v
′′, x) then ϕ(v′) < ϕ(v′′). Such

an ordering is called a feasible permutation. Consider the 1-center problem:
Here the objective function is equal to the maximum among the weighted dis-
tances, i.e., the weighted distances are sorted and then the maximum among
them is multiplied with 1 while all other weighted distanced are multiplied
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with 0. The ordered median objective function allows to multiply the or-
dered weighted distances with arbitrary multipliers. However, it sometimes
makes sense that larger weighted distances have more influence to the objec-
tive value than smaller ones. This requirement can be modelled by choosing
a vector λ that is monotonically increasing in its components. If this is the
case, i.e., λi ≤ λi+1 (i = 1, . . . , n − 1) then the model is called convex. Ob-
serve that the 1-median (λ = (1, . . . , 1)), k-centrum (λ = (0, . . . , 0, 1, . . . , 1)
with k 1’s) and 1-center (λ = (0, . . . , 0, 1)) are special convex ordered me-
dians. Ordered median Problems have been treated in [5, 10–12]. Kalcsics
et al. [10] investigated the ordered median problem from an algorithmic
point of view and showed that the ordered median problem can be solved
in O(mn2 log n) time on general graphs. If the underlying network is a tree,
then this algorithm runs in O(n3 log n) time. Moreover, algorithms for the
convex ordered median problem (O(n log2 n) time) and k-centrum problem
(O(n log n) time) on trees are suggested.

Let G = (V,E,w, ℓ) together with λ ∈ R
n
+ be an instance of the ordered

median problem. In addition we are given a vertex x ∈ V , a bound u+
e ∈ R+

for increasing and a bound u−
e ∈ R+ for decreasing the length of edge e ∈ E.

Then the task of the inverse ordered median problem (InvP for short) is to
find edge length modifications (p, q) such that

• (p, q) ∈ ∆ with ∆ = {(p, q) ∈ R
2n | 0 ≤ pe ≤ u+

e , 0 ≤ qe ≤ u−
e ∀e ∈ E},

• x is ordered median with respect to edge lengths ℓ̃e = ℓe + pe − qe (for
e ∈ E), and

• the difference between ℓ and ℓ̃ measured by the ℓ1-norm is minimized.

Obviously, every optimal solution (p, q) satisfies the orthogonality condition
peqe = 0 for all e ∈ E. Therefore, ‖ℓ − ℓ̃‖1 =

∑

v∈V (pe + qe) holds for an
optimal solution.

Organization of this paper. It turns out that InvP is in general NP-
hard even for several restricted cases. Both NP-hardness result concern InvP
where the underlying ordered median problem is convex and the network is
a tree. We show that InvP is hard even if the vertex weights are all equal
to 1 or if the convex ordered median problem is the k-centrum problem.

These negative results motivated us to investigate the inverse unit-weight
k-centrum problem which is still a generalization of the 1-median and 1-
center problem. In Section 2 we give a short survey about convex ordered
median problems on trees. Section 3 provides the already mentioned NP-
hardness results and in Section 4 we suggest a polynomial time algorithm
for the inverse unit-weight k-centrum problem on trees.
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Notation. Throughout this paper we will use the following notation:
T = (V,E) is a tree. We write x ∈ T if x coincides with a vertex or lies on
an edge of T . Let x, v ∈ V then P (x, v) denotes the unique path from x to
v. Let x ∈ V then the set of subtrees that result from deleting vertex x is
denoted by T (x). If x ∈ T lies in the interior of edge e ∈ E then T (x) is
the set of subtrees that result from deleting the edge e.

Let T ′ be a subtree of T then T −T ′ denotes the graph that is induced by
all vertices not in T ′. If T ′ ∈ T (x) then T ′ and T − T ′ can be considered as
directed trees with root x. For a vertex v in a rooted tree, Γ(v) denotes the
set of children, outdeg(v) = |Γ(v)| is the outdegree and Tv is the subgraph
spanned by all successors including vertex v.

2 Convex ordered median problems on trees

From now on we assume that G = T is a tree and λ is monotonically
increasing in its components. Kalcsics et al. [10] showed that fℓ(x) is then
convex along a path. Hence, a point x ∈ G is ordered median if and only
if the derivatives of fℓ(x) in the direction of its neighbours are nonnegative.
We will use the following formulation of the optimality criterion:

Theorem 2.1 (Optimality criterion, Reformulation of [10]). Given an in-

stance of the convex ordered median problem with tree T = (V,E,w, ℓ) and

vector λ ∈ R
n. Then x ∈ T is ordered median if and only if for each

T ′ ∈ T (x) there exists a feasible permutation ϕ′ such that

∑

v∈T ′

λϕ′(v)wv ≤
1

2

∑

v∈V

λϕ′(v)wv. (1)

For the special case of the 1-median problem, the above optimality cri-
terion (1) is independent of the edge lengths because λi = 1 holds for
i = 1, . . . , n (cf. Goldman [8]). In case of the unweighted 1-center prob-
lem, it is easy to see that the above optimality criterion is equivalent to
the so-called midpoint property, i.e., the 1-center lies on the midpoint of a
longest path. The following lemma is straightforward:

Lemma 2.2. Let x ∈ T , then there exists at most one subtree T ′ ∈ T (x)
that does satisfy the optimality criterion (1).

Let us turn our attention to the unit-weight k-centrum problem. Observe
that the k-centrum problem is a generalization of the 1-median as well as of
the 1-center problem.
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Definition 2.3. Let T = (V,E, ℓ) be a tree with edge lengths ℓ. Further-
more, let x ∈ T , L ∈ R and T̃ a subtree of T . Then we define the number of
vertices in T̃ whose weighted distance to x is more than L and the number
of vertices in T̃ whose weighted distance to x is equal to L, i.e.,

αℓ(T̃ , L, x) = |{v ∈ T̃ | dℓ(x, v) > L}|,

βℓ(T̃ , L, x) = |{v ∈ T̃ | dℓ(x, v) = L}|.

A real number L is called critical for x ∈ T and edge length vector ℓ if

αℓ(T,L, x) < k and αℓ(T,L, x) + βℓ(T,L, x) ≥ k.

Observe that the critical length L is equal to the distance from x to the
k-farthest vertex.

In a next step we investigate the optimality criterion for the unit weight
k-centrum problem:

∑

v∈V

λϕ(v) = k

holds for every feasible permutation ϕ. Now let x ∈ V and let L be the
critical length for x and edge length ℓ. If dℓ(x, v) > L (dℓ(x, v) < L) then
λϕ(v) = 1 (λϕ(v) = 0) and exactly k − αℓ(T,L, x) vertices with dℓ(x, v) = L
satisfy λϕ(v) = 1 for every feasible ϕ. Consider a subtree T ′ ∈ T (x). We
are interested in the smallest number b of vertices v ∈ T ′ with dℓ(v, x) = L
and λϕ(v) = 1 such that ϕ is a feasible permutation. If αℓ(T,L, x) + βℓ(T −
T ′, L, x) ≥ k then b = 0 and otherwise b = k − αℓ(T,L, x)− βℓ(T − T ′, L, x)
holds. Hence, b = max{0, k−αℓ(T,L, x)−βℓ(T −T ′, L, x)} and consequently

min
ϕ is

feasible

∑

v∈T ′

λϕ(v) = αℓ(T
′, L, x) + b

= max{αℓ(T
′, L, x), k − (αℓ(T − T ′, L, x) + βℓ(T − T ′, L, x))}

holds. These observations imply the following optimality criterion for the
k-centrum problem:

Theorem 2.4. Let T = (V,E, ℓ) be a tree with edge lengths ℓ and unit

weights. Then x ∈ T is k-centrum if and only if

αℓ(T
′, L, x) ≤

k

2
, and (2)

αℓ(T − T ′, L, x) + βℓ(T − T ′, L, x) ≥
k

2
(3)

hold for the critical length L.
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The above optimality criterion has the following meaning: Let x ∈ T and
let L be the critical length (k-farthest distance to x). Then x is k-centrum
if and only if in every subtree T ′ ∈ T (x) there are at most k

2 vertices whose

distance to x is more than L while there are at least k
2 vertices not in T ′ whose

distance to x is at least L. Consider the 1-center problem, which is equal to
the 1-centrum problem. Then the above optimality criterion is equivalent to
the following conditions: αℓ(T

′, L, x) ≤ 1
2 and hence αℓ(T

′, L, x) = 0 means
that there are at least two vertices with maximum distance to x. The second
condition means that there are two vertices with maximum distance to x
that lie in different subtrees of x. But then these two vertices are endpoints
of a longest path. Therefore, we get that x is 1-center if and only if x lies
on the midpoint of a longest path.

3 NP-hardness results

In this section, we show that InvP is NP-hard even if all vertex weights are
equal to 1 (Subsection 3.1) or if the underlying ordered median problem is
the k-centrum problem (Subsection 3.2).

3.1 The special case of unit weights

Theorem 3.1. The inverse ordered median problem is NP-hard even for the

convex case on trees and for unit weights.

Proof. Consider the pairwise different Partition Problem which is defined as
follows: Given a set of n pairwise different integers {ai | i = 1, . . . , n} and
let 2B =

∑n
i=1 ai. The Partition Problem asks whether there exists a subset

X ⊂ {1, . . . , n} of indices with
∑

i∈X ai = B =
∑

i/∈X ai. The Partition
Problem is known to be NP-hard [6] and it can easily be shown that the
problem remains NP-hard even if we require that the integers are pairwise
different. Moreover, we may assume without loss of generality that ai ≤ B
holds for i = 1, . . . , n because otherwise the Partition Problem is trivial.

Given an instance I(Partition) of the pairwise different Partition Problem
with 1 ≤ a1 < a2 < · · · < an, we construct an instance of InvP as follows:
The tree T = (V,E) consists of 2n + 2 vertices and 2n + 1 edges:

V = {x, y0} ∪ {xi, yi | i = 1, . . . , n},

E = {(x, y0)} ∪ {(x, xi), (y0, yi) | i = 1, . . . , n}.
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The edge lengths and bounds for decreasing are given by

ℓe =











1 if e = (x, y0)

(B − 1)ai if e = (x, xi)

Bai − 1 if e = (y0, yi)

and u−
e =

{

ai if e = (y0, yi)

0 otherwise

Finally, u+
e = 0 for all e ∈ E, λ is given by

λ = (0, 0, α1, β1, α2, β2, . . . , αn, βn)

with αi = (B − 1)ai and βi = Bai for i = 1, . . . , n. Vertex x should become
an ordered median.

Let us start with some observations concerning the constructed instance
I(InvP): Since ai ≤ ai+1 − 1 the vector λ is monotonically increasing in its
components and therefore the instance is convex.

Consider any length vector ℓ̃ = ℓ+p−q with (p, q) ∈ ∆. Then dℓ(x, xi) =
dℓ̃(x, xi) = (B−1)ai for i = 1, . . . , n and dℓ(x, y0) = dℓ̃(x, y0) = 1. Moreover,

dℓ̃(x, xi) = dℓ(x, yi) − u−
(y0,yi)

≤ dℓ̃(x, yi) ≤ Bai < (B − 1)ai+1 = dℓ̃(x, xi+1)

holds for all i = 1, . . . , n. Therefore, dℓ̃(x, y0) < dℓ̃(x, x1) and dℓ̃(x, xi) ≤
dℓ̃(x, yi) < dℓ̃(x, xi+1) ≤ dℓ̃d(x, yi+1) hold for i = 1, . . . , n − 1. Let ϕ be any

feasible permutation for ℓ̃ then ϕ(x) = 1, ϕ(y0) = 2, ϕ(xi) ∈ {2i + 1, 2i + 2}
and ϕ(yi) ∈ {2i + 1, 2i + 2}. Especially ϕ∗ with ϕ∗(x) = 1, ϕ∗(y0) = 2,
ϕ∗(xi) = 2i + 1 and ϕ∗(yi) = 2i + 2 is feasible for ℓ̃. The permutation ϕ∗

makes sure that every subtree T̃ ∈ T (x) with y0 /∈ T̃ satisfies the optimality
criterion. Let T ′ ∈ T (x) with y0 ∈ T ′. Then the above observation implies
that x is ordered median with respect to ℓ̃ if and only if the optimality
criterion for T ′ ∈ T (x) is satisfied. The optimality criterion is satisfied for
T ′ if and only if the criterion is satisfied for the following feasible permutation
ϕ′ (because this permutation minimizes the left-hand side of (1)): ϕ′(x) = 1,
ϕ′(y0) = 2 and

ϕ′(xi) =

{

2i + 1 dℓ̃(x, xi) < dℓ̃(x, yi),

2i + 2 d(x, xi) = d(x, yi);

and

ϕ′(yi) =

{

2i + 1 dℓ̃(x, xi) = dℓ̃(x, yi),

2i + 2 d(x, xi) < d(x, yi).
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We will show that there exists a partition of I(Partition) if and only if
I(InvP) has a feasible solution with objective value at most B.

=⇒ : Assume that there exists a partition X with
∑

i∈X ai = B. Set

qe =

{

u−
e = ai if e = (y0, yi) and i ∈ X

0 otherwise

Then we have dℓ̃(x, xi) = dℓ̃(x, yi) if and only if i ∈ X and

∑

v∈T ′

λϕ′(v) =
∑

i∈X

αi +
∑

i/∈X

βi = 2B2 − B =
∑

i/∈X

αi +
∑

i∈X

βi =
∑

v/∈T ′

λϕ′(v).

Hence, x is ordered median with respect to ℓ̃. The objective value of the
modification is equal to

∑

e∈E qe =
∑

i∈X ai = B.
⇐=: Assume that (p, q) is a feasible solution of I(InvP) with objective

value at most B such that there exists an edge e′ = (y0, yi) with 0 < qe′ <
ue′− = ai. Then ϕ′ fulfills ϕ′(xi) = 2i + 1 and ϕ′(yi) = 2i + 2. Since x
is ordered median, the permutation ϕ′ satisfies the optimality condition for
T ′. However, if we set q̃e′ = 0 and q̃e = qe for all e 6= e′ then ϕ′ is still a
feasible permutation for the new length vector and hence x is also ordered
median with respect to the new length modification but the objective value
of (p, q̃) is smaller than the objective value of (p, q). Therefore, we conclude
that there exists a feasible solution (p, q) of I(InvP) with cost at most B and
qe ∈ {0, u−

e } for every e ∈ E.
Consider the set X = {i | q(y0,yi) = u−

(y0,yi)
}. Then dℓ̃(x, xi) = dℓ̃(x, yi)

holds if and only if q(y0,yi) = u−
(y0,yi)

and hence i ∈ X. Simple calculation

yield
∑

i∈X ai ≥ B because x is 1-median. On the other hand, the objective
value of the modification

∑

e∈E qe =
∑

i∈X ai ≤ B. Hence,
∑

i∈X ai = B
and X is a partition.

3.2 The special case of the k-centrum problem

Theorem 3.2. The inverse ordered median problem is NP-hard even if the

underlying location problem is the k-centrum problem.

Proof. Consider the cardinality constrained Partition Problem where a set
of n integers {ai | i = 1, . . . , n} is given with 2B =

∑n
i=1 ai. Moreover, an

integer 1 ≤ k′ ≤ n is given. The cardinality constrained Partition Problem
asks whether there exists a subset X ⊂ {1, . . . , n} of indices of cardinality
k′ with

∑

i∈X ai = B. The cardinality constrained Partition Problem is
NP-hard unless P = NP because otherwise one could solve O(n) cardinality
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constrained Partition Problems in order to get a solution of the Partition
Problem.

Given an instance I(CardPart) of the cardinality constrained Partition
Problem, we construct an instance of InvP as follows: The tree T = (V,E)
consists of n + 3 vertices V = {x, x1} ∪ {yi | i = 0, . . . , n} and edge set
E = {(x, x1), (x, y0)} ∪ {(y0, yi) | i = 1, . . . , n}.

The vertex weights are equal to wyi
= ai for i = 1, . . . , n, wx1

= B and
wv = 0 otherwise. The edge lengths and bounds for decreasing are given by

ℓe =

{

ai + B
ai

− 1 if e = (y0, yi), i = 1, . . . , n

1 otherwise

and

u−
e =

{

ai if e = (y0, yi)

0 otherwise

Finally, u+
e = 0 for all e ∈ E and x should become k-centrum for k =

n+1−k′. It will be shown that there exists a solution of I(CardPart) if and
only if there exists a feasible solution for the constructed instance I(InvP)
with objective value at most B.

Observe that wyi
dℓ̃(yi, x) ≥ B = wx1

dℓ̃(x1, x) holds for all i = 1, . . . , n
and wyi

dℓ̃(yi, x) = wx1
dℓ̃(x1, x) if and only if q(y0,yi) = ai. Hence, for every

(p, q) ∈ ∆ and ℓ̃ = ℓ + p − q there exists a feasible permutation ϕ such
that λϕ(x1) = 0 and hence the optimality condition for T ′ ∈ T (x) with
x1 ∈ T ′ is satisfied. Therefore, x is k-centrum if and only if the optimality
condition for T ′′ ∈ T (x) with y0 ∈ T ′′ is satisfied. However, this optimality
condition is satisfied if and only if there are n − (k − 1) vertices in T ′′ with
λϕ(yi) = 0 whose weights sum up to at least B. Hence, x is k-centrum if
and only if there exists a subset Y ⊂ {1, . . . , n} of k′ = n − (k − 1) indices
such that q(y0,yi) = u−

(y0,yi)
= ai and

∑

i∈Y wyi
=

∑

i∈Y ai ≥ B. If (p, q) is
feasible then there also exists a feasible solution where only those edges in
T ′′ are modified that are incident to a vertex in Y . Therefore, if there exists
a feasible solution of I(InvP) with

∑

e∈E qe ≤ B then there exists a subset
Y ⊂ {1, . . . , n} of k′ = n−(k−1) indices such that

∑

i∈Y wyi
=

∑

i∈Y ai ≥ B
and

∑

e∈E pe =
∑

i∈Y ai ≤ B, i.e., there exists a partition Y or cardinality
k′. On the other hand, if there exists a partition X then set qe = u−

e for all
e = (y0, yi) and i ∈ X which yields a feasible solution with total cost of at
most B.
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4 Inverse unit-weight k-centrum problem on trees

In the previous section, we have seen that InvP is NP-hard even if all weights
are equal to 1 or the underlying location problem is the k-centrum problem.
In this section a polynomial time algorithm for the inverse unit-weight k-
centrum (InvKC for short) is developed.

Recall that the task of InvP is to minimally change the edge lengths such
that a given vertex x ∈ V becomes 1-median. If the underlying ordered
median problem is the unit-weight k-centrum problem, then x ∈ V is 1-
median with respect to edge lengths ℓ̃ if and only if (2) and (3) hold for the
critical length L. In order to make notation simple, we will write αℓ̃(T̃ , L)

(βℓ̃(T̃ , L), resp.) instead of αℓ̃(T̃ , L, x) (βℓ̃(T̃ , L, x), resp.) because we always
refer to the vertex x which should become k-centrum. Then InvKC is to
solve

min
p,q,L

∑

e∈E

(pe + qe)

s.t. αℓ̃(T̃ , L) ≤
k

2
for all T̃ ∈ T (x)

αℓ̃(T − T̃ , L) + βℓ̃(T − T̃ , L) ≥
k

2
for all T̃ ∈ T (x)

αℓ̃(T,L) < k and αℓ̃(T,L) + βℓ̃(T,L) ≥ k

ℓ̃ = ℓ + p − q, (p, q) ∈ ∆

Recall that due to Lemma 2.2 there exists at most one subtree T ′ ∈ T (x)
that does not satisfy (2) and (3) for length vector ℓ. Assume that T ′ ∈ T (x)
is this unique subtree, then we define the problem Relax(T ′) as follows:

min
p,q,L

∑

e∈E

(pe + qe)

s.t. αℓ̃(T
′, L) ≤

k

2
and αℓ̃(T − T ′, L) + βℓ̃(T − T ′, L) ≥

k

2

ℓ̃ = ℓ + p − q, (p, q) ∈ ∆

Relax(T ′) is indeed a relaxation of InvKC. Moreover, Relax(T ′) has an op-
timal solution (p∗, q∗, L∗) such that p∗e = 0 for all e ∈ T ′ and q∗e = 0 for all
e ∈ T − T ′.

Theorem 4.1. Assume that T ′ ∈ T (x) contradicts the optimality criterion

for length vector ℓ and let (p∗, q∗, L∗) be an optimal solution of Relax(T ′).
Then (p∗, q∗) is an optimal solution of InvKC.
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Proof. Since Relax(T ′) is a relaxation of InvKC, we have to show that
(p∗, q∗) is feasible for InvKC, i.e., x is k-centrum with respect to ℓ̃ =
ℓ + p∗ − q∗.

The proof splits into three parts: In the first part it is shown that there
exists at least one edge whose length is changed in (p∗, q∗, L∗). In the second
part we define a real number L′ and prove two inequalities and in the third
part it is shown that L′ is the critical length for ℓ̃ = ℓ + p∗ − q∗ and the
optimality criteria (2) and (3) are satisfied with respect to ℓ̃ and L′ for every
subtree of T (x). This implies that x is k-centrum with respect to ℓ̃.

1. First we prove that p∗e = q∗e = 0 (for all e ∈ E) cannot be an optimal
solution of Relax(T ′): Assume the contrary, then ℓ̃ = ℓ holds. Let L′

be the critical length with respect to ℓ = ℓ̃. Since T ′ contradicts the
optimality criterion either (2) or (3) is not satisfied for ℓ and the critical
length L′. If αℓ(T

′, L′) > k
2 then L′ < L∗ because αℓ(T

′, L∗) ≤ k
2 which

implies αℓ(T − T ′, L∗) + βℓ(T − T ′, L∗) ≤ αℓ(T − T ′, L′). Moreover,
the fact that L′ is the critical length implies that αℓ(T − T ′, L′) < k

2
because αℓ(T

′, L′) + αℓ(T − T ′, L′) = αℓ(T,L′) < k. Hence, we get

αℓ(T − T ′, L∗) + βℓ(T − T ′, L∗) ≤ αℓ(T − T ′, L′) <
k

2

which contradicts the feasibility of (p∗, q∗, L∗) for Relax(T ′).

For the second case where αℓ(T −T ′, L′)+βℓ(T −T ′, L′) < k
2 holds an

analogous chain of arguments holds: L′ > L∗, αℓ(T
′, L′)+βℓ(T

′, L′) ≤
αℓ(T

′, L∗) and αℓ(T
′, L∗) < k

2 . Hence, we get αℓ(T
′, L′) + βℓ(T

′, L′) ≤

αℓ(T
′, L∗) < k

2 which is a contradiction. Therefore, there exists at least
one edge whose length is modified in an optimal solution of Relax(T ′).

2. Consider an optimal solution (p∗, q∗, L∗) of Relax(T ′) where the length
of at least one edge is changed. Then L′ is defined in the following way:
If there are modifications in T ′ and T −T ′ then L′ = L∗, if there is no
modification in T−T ′ then L′ = max{L | αℓ̃(T−T ′, L)+βℓ̃(T−T ′, L) ≥
k
2} and if there is no modification in T ′ then L′ = min{L | αℓ̃(T

′, L) ≤
k
2}. It will turn out that L′ is the critical length for ℓ̃.

Assume that there is no modification in T−T ′ and consider (p∗, q∗, L′).
Then the maximality of L′ implies L′ ≥ L∗ and hence αℓ̃(T

′, L′) ≤
αℓ̃(T

′, L∗) ≤ k
2 holds. On the other hand αℓ̃(T − T ′, L′) + βℓ̃(T −

T ′, L′) ≥ k
2 holds by construction. Hence, (p∗, q∗, L′) is again an opti-
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mal solution of Relax(T ′). Moreover, the maximality of L′ implies

αℓ̃(T − T ′, L′) <
k

2
(4)

because otherwise one could increase L′.

If there is no modification in T ′ then the minimality of L′ implies
αℓ̃(T

′, L′) + βℓ̃(T
′, L′) > k

2 and (p∗, q∗, L′) is again feasible. Hence, in
all three cases (p∗, q∗, L′) is an optimal solution of Relax(T ′).

In this second part, we finally prove two inequalities:

• αℓ̃(T − T ′, L′) < k
2 :

Assume that αℓ̃(T −T ′, L′) ≥ k
2 . Inequality (4) implies that there

exists at least one edge edge e2 ∈ T − T ′ with p∗e2
> 0. Consider

the new solution (p̂, q∗) which is obtained from (p∗, q∗) where p∗e2

is decreased by some small amount ǫ > 0. Let ℓ̂ be the new
length vector. Obviously, the constraint for subtree T ′ is still
satisfied because we did not change the modifications of edges in
T ′. In order to guarantee that the constraint for T − T ′ is also
satisfied, ǫ > 0 is chosen in such a way that if dℓ̃(x, v) > L′ then
dℓ̂(x, v) > L′ for all v ∈ T − T ′.

k

2
≤ αℓ̃(T−T ′, L′) ≤ αℓ̂(T−T ′, L′) ≤ αℓ̂(T−T ′, L′)+βℓ̂(T−T ′, L′).

Hence, (p̂, q∗, L′) is a feasible solution of Relax(T ′) with less cost
than (p∗, q∗, L′) which contradicts its optimality.

• αℓ̃(T
′, L′) + βℓ̃(T

′, L′) ≥ k
2 : This case is proved in an analogous

way as the previous one.

3. • L′ is the critical length of x for ℓ̃, because αℓ̃(T,L′) = αℓ̃(T
′, L′)+

αℓ̃(T−T ′, L′) < k and αℓ̃(T,L′)+βℓ̃(T,L′) = αℓ̃(T
′, L′)+βℓ̃(T

′, L′)+
αℓ̃(T − T ′, L′) + βℓ̃(T − T ′, L′) ≥ k.

• The optimality condition for every subtree T̃ ∈ T (x) is satisfied:
If T̃ = T ′ then the conditions are satisfied by construction and
if T̃ 6= T ′ then αℓ(T̃ , L′) ≤ αℓ(T − T ′, L′) < k

2 holds because

T̃ ⊆ T − T ′ and αℓ̃(T − T̃ , L′) + βℓ̃(T − T̃ , L′) ≥ αℓ̃(T
′, L′) +

βℓ̃(T
′, L′) ≥ k

2 because T ′ ⊆ T − T̃ .

Therefore, x is k-centrum for ℓ̃ and hence (p∗, q∗) is an optimal solution of
InvKC.
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Theorem 4.1 implies that an optimal solution of Relax(T ′) is also optimal
for InvKC. In the next step an optimal solution of Relax(P ′) is investigated
in more detail. Obviously there exists an optimal solution (p∗, q∗, L∗) such
that if the length of edge e = (a, b) is changed then the length of each
edge on P (x, a) is modified by the maximal allowable value because every
modification can be shifted in direction of vertex x. This means that the
lengths of edges near to x are modified before those of edges that are farther
away. A solution with this property is called nice. Moreover, the following
lemma states that there exists an optimal solution such that there is a vertex
v ∈ V whose modified distance to x is equal to L∗ and the modification on
the path P (x, v) has the following special form: There exists a vertex v′ on
path P (x, v) and the lengths of all edges from x to v′ are maximally changed
(i.e., modified until the bound is reached) while the lengths of all other edges
on path P (x, v) are not changed at all.

Lemma 4.2. Assume that T ′ violates the optimality criterion for ℓ. Then

there exists an optimal solution (p∗, q∗, L∗) of Relax(T ′) and vertices v ∈ V
and v′ ∈ P (x, v) such that dℓ̃(x, v) = L∗ = dℓ−u−(x, v′) + dℓ(v

′, v) if v ∈ T ′

and dℓ̃(x, v) = L∗ = dℓ+u+(x, v′)+dℓ(v
′, v) if v ∈ T−T ′ where ℓ̃ = ℓ+p∗−q∗.

Proof. Consider a nice optimal solution (p∗, q∗, L∗) and assume that the
property stated in the lemma is not true. Then for every vertex v ∈ V with
dℓ̃(x, v) = L∗ there exists exactly one edge e(v) that lies on the path P (x, v)
which is only partially modified, i.e., 0 < p∗e(v) < u+

e(v) or 0 < q∗e(v) < u−
e(v).

Let
X1 = {e(v) ∈ T ′ | v ∈ T ′ with dℓ̃(x, v) = L∗}

and X2 is defined for T − T ′ in an analogous way.
Assume that |X1| > |X2|. If the modification of every edge in X1 is

reduced by ǫ and the modification of every edge in X2 is increased by ǫ then
the resulting solution is still nice and feasible for L∗ + ǫ and has less cost
than the original solution which leads to a contradiction. For |X1| < |X2|
an analogous argument holds. Hence, it remains to consider the case |X1| =
|X2|. Then the same shift operation as mentioned above is used until at least
one weight modification reaches 0 or its upper bound. This procedure yields
a nice and optimal solution with the property mentioned in the lemma.

Lemma 4.2 immediately implies that we may restrict the set of potential
optimal values for L such that L ∈ L with

L = {dℓ−u−(x, v1)+dℓ(v1, v) | v, v1 ∈ T ′}∪{dℓ+u+(x, v1)+dℓ(v1, v) | v, v1 ∈ T−T ′}.
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Hence, we have to solve minL∈L ξ(L) + η(L) where ξ(L) denotes the
minimum cost of an edge length modification such that there are at most k

2
vertices in T ′ having a distance to x of more than L and η(L) denotes the
minimum cost of an edge length modification such that there are at least
k
2 vertices in T − T ′ having a distance to x of at least L. Hence, for each
L ∈ L we have to solve two independent subproblems, one in T ′ and the
other one in T − T ′. Each subproblem can be solved in O(nk2) time by
using a bottom-up dynamic programming approach. Hence, we get

Theorem 4.3. The inverse unit-weight k-centrum problem can be solved in

O(n3k2) time.

Shortening the length of edges in T ′. A vertex whose distance to x
is more than L is called remote. Assume that L ∈ L is fixed and we have to
shorten the lengths in T ′ such that there are at most k

2 remote vertices.
The main idea is to use the special structure of nice solutions. For each

vertex v ∈ V compute the minimum cost κ(Tv , r) such that there are at most
r remote vertices in Tv (for r = 0, . . . , k

2 ). Then ξ(L) is equal to κ(Tx, k
2 ).

Let us start with a leaf v ∈ V . Then κ(Tv , r) = 0 for all r ≥ 1. If
r = 0 then we have to distinguish whether v is a remote vertex before
any modification or not. If dℓ(v, x) ≤ L then κ(Tv , 0) = 0. However, if
dℓ(v, x) > L then κ(Tv , 0) = dℓ(v, x) − L if dℓ−u−(v, x) ≤ L and otherwise
κ(Tv , 0) = ∞ because the bound constraints do not allow to remove the
remoteness of v.

In the next step consider two children v1 and v2 of a vertex v ∈ V .
Observe that there are at most r remote vertices in Tv1

∪ Tv2
if and only

if there are at most r1 remote vertices in Tv1
and at most r − r1 remote

vertices in Tv2
for some 0 ≤ r1 ≤ r. Since we may restrict ourselves to nice

solutions there exists a 0 ≤ r1 ≤ r such that solutions that are associated
with κ(Tv1

, r1) and κ(Tv2
, r − r1) yield an optimal solution with at most r

remote vertices in Tv1
∪ Tv2

. Hence, we can compute κ(Tv1
∪ Tv2

, r) in O(r)
time.

Now assume that we already know κ(
⋃

vi∈Γ(v) Tvi
, r) for r = 0, . . . , k

2
where Γ(v) denotes the set of all children of v. Then κ(Tv , r) = 0 for all
r ≥ |Tv|. If r = |Tv| − 1 then vertex v is the only one that is not allowed
to be remote. Hence, this case is equivalent to the case for v is a leaf and
r = 0. Finally, κ(Tv , r) = κ(

⋃

vi∈Γ(v) Tvi
, r − 1) for all r ≤ |Tv| − 2.

We have constructed a dynamic programming algorithm. Each κ(Tv , r)
can be computed in O(deg(v)r) time. Hence, the total running time is
O(nk2).
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Increasing the lengths of edges in T − T ′. The task of increasing
the lengths such that there are at least k

2 vertices whose distance to x is
at most L ∈ L can also be solved in O(nk2) time by using an analogous
dynamic programming approach.

Conclusion

This paper deals with changing edge length within certain bounds such that
a prespecified vertex becomes ordered median. We prove NP-hardness even if
the ordered median problem is convex and the graph is a tree. The problem
remains NP-hard if all vertex weights are equal to 1 or if the k-centrum
problem, a special ordered median problem, is considered. On the other
hand, a polynomial time algorithm for the inverse unit-weight k-centrum
problem on trees is developed.

It would be interesting to consider further special cases of convex in-
verse ordered median problems. Another direction of future research is the
investigation of non-convex ordered median problems.
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