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Abstract

Let f(n) be the maximum integer such that for every set F of at most f(n) vertices of
the hypercube Qn, there exists a cycle of length at least 2n − 2|F | in Qn −F . Castañeda
and Gotchev conjectured that f(n) =

(

n

2

)

− 2. We prove this conjecture. We also prove
that for every set F of at most (n2 +n− 4)/4 vertices of Qn, there exists a path of length
at least 2n − 2|F | − 2 in Qn − F between any two vertices such that each of them has
at most 3 neighbors in F . We introduce a new technique of potentials which could be of
independent interest.

1 Introduction

The n-dimensional hypercube Qn is the (bipartite) graph with all binary vectors of length
n as vertices and edges joining every two vertices that differ in exactly one coordinate. The
bipartite classes of Qn consist of vertices with even, respectively odd, weight, where the weight
|u| of a vertex u ∈ V (Qn) = {0, 1}n is defined as the number of 1’s in u. A set F ⊆ V (Qn) in
which all vertices are from the same bipartite class, is called a monopartite set.

Applications of the hypercube in the theory of interconnection networks inspired many
questions related to its robustness. In particular, if some faulty (or busy) vertices F ⊆ V (Qn)
and all incident edges are removed from Qn, is there a cycle in the remaining graph, denoted
by Qn − F , which covers ‘almost’ all vertices? And how many vertices in the worst-case can
be removed?

Clearly, if F is monopartite, the length of any cycle in Qn − F cannot exceed 2n − 2|F |.
This leads to the following definition. A cycle of length at least 2n − 2|F | in Qn −F is called
a long F -free cycle in Qn. Let f(n) be the maximum integer such that Qn − F has a long
F -free cycle for every set F of at most f(n) vertices in Qn.

The study of this parameter has a numerous literature. Firstly, Chan and Lee [2] showed
that f(n) ≥ (n−1)/2. Then, Yang et al. [15] improved it to f(n) ≥ n−2, and Tseng et al. [13]
to f(n) ≥ n − 1. Next, Fu [7] significantly increased it to f(n) ≥ 2n − 4 for n ≥ 3, and
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Castañeda and Gotchev [1] strengthened it further to f(n) ≥ 3n−7 for n ≥ 5. Recently, Fink
and Gregor [6] obtained the first quadratic lower bound f(n) ≥ n2/10 + n/2 + 1 for n ≥ 15.

On the other hand, Koubek [10] and independently Castañeda and Gotchev [1] noticed
that for every n ≥ 4 there is a set F of

(

n
2

)

− 1 vertices such that Qn − F contains no cycle
of length at least 2n − 2|F |, so f(n) ≤

(

n
2

)

− 2. An example of a such set F consists of all
but one vertex of weight 2. Indeed, since all vertices of F have even weight, any long F -free
cycle in Qn must visit all the remaining vertices of even weight. Namely, it has to visit the
vertex 0 = (0, . . . , 0) and some vertex of weight 4, which is clearly impossible as they are in
different 2-connected components of Qn − F .

From the previous results it follows that the above upper bound is sharp for n = 4 [7]
and for n = 5 [1]. It was conjectured [1] that it is sharp for all n ≥ 4, i.e. f(n) =

(

n
2

)

− 2 for
n ≥ 4. In this paper we prove this conjecture.

Theorem 1.1. For every set F of at most
(

n
2

)

−2 vertices in Qn and n ≥ 4, the graph Qn−F
contains a cycle of length at least 2n − 2|F |.

To prove Theorem 1.1, we need to consider a modification of this problem for long paths
with prescribed endvertices. Similarly as above, a path in Qn − F between vertices u and v,
and of length at least 2n − 2|F | − 2 is called a long F -free uv-path in Qn. Note that in case
u and v are from different bipartite classes, the length of any long F -free uv-path is at least
2n − 2|F | − 1. Also note that in the case when F ∪ {u, v} is monopartite, the length of any
uv-path in Qn −F cannot exceed 2n − 2|F | − 2, and hence a long F -free uv-path has optimal
length.

Fu [8] showed that Qn−F contains a long path between any two vertices if |F | ≤ n−2 and
n ≥ 3. To improve this result for larger sets F , one needs to introduce additional conditions
on the neighbors of prescribed endvertices. Kueng et al. [11] strengthened the number of
tolerable faults to |F | ≤ 2n − 5 under the condition that the minimal degree of Qn − F is at
least 2. Recently, Fink and Gregor [6] showed that a much weaker condition is both necessary
and sufficient for sets F with |F | ≤ 2n− 4. Let N(u) be the set of neighbors of a vertex u in
Qn.

Theorem 1.2 (Fink and Gregor [6]). Let F be a set of at most 2n − 4 faulty vertices of Qn

and n ≥ 5. For every two vertices u and v of Qn − F , there exists a long F -free uv-path in
Qn if and only if N(u) 6⊆ F ∪ {v} and N(v) 6⊆ F ∪ {u}.

Note that for |F | ≤ n − 2, the right side of the equivalence in Theorem 1.2 is always
satisfied. Hence, we obtain the following direct corollary.

Corollary 1.3 (Fu [8]). For every set F of at most n − 2 vertices of Qn and n ≥ 2, there is
a long F -free uv-path in Qn between every two vertices u and v of Qn − F .

In this paper, we show that F can be as large as f(n+1)/2 if both prescribed endvertices
have only few neighbors in F .

Theorem 1.4. For every set F of at most (n2 +n−4)/4 vertices in Qn and n ≥ 5, the graph
Qn − F contains a path of length at least 2n − 2|F | − 2 between every two vertices such that
each of them has at most 3 neighbors in F .

The general difficulty with quadratic bounds on |F | in Theorems 1.1 and 1.4 is that the
hypercube cannot be always split into subcubes so that the bounds hold in each subcube.
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Thus, the standard induction technique fails. We introduce up to our knowledge a new
technique of so called potentials which allows us to effectively deal with such situations.

Furthermore, in the proof of Theorem 1.4 we need to consider the following extension of
the studied problem for two paths. Assume that we have two different (but not necessarily
disjoint) sets A = {u, v} and B = {x, y} of vertices of Qn −F . A path P between a vertex of
A and a vertex of B is called an AB-path. Its length |P | is the number of edges in P . A pair
P1, P2 of vertex-disjoint AB-paths in Qn−F is called an F -free AB-routing in Qn. Moreover,
it is said to be long if |P1| + |P2| ≥ 2n − 2|F | − 3. Note that if A and B are not disjoint, say
A ∩ B = {u = x}, then any long F -free AB-routing consists of the uu-path of length 0 and
an vy-path of length at least 2n − 2|F | − 3.

We studied those problems separately in [5] where we obtained the following results.1

Theorem 1.5 ([5]). For every set F of at most n − 3 vertices in Qn and n ≥ 4, there exists
a long F -free AB-routing in Qn between every two different sets A, B ⊆ V (Qn) \F such that
|A| = |B| = 2 and A ∪ B is not monopartite.

As a consequence, if F ∪ {u, v} is not monopartite, we obtain an uv-path in Qn − F of
length at least 2n − 2|F | − 1, which is more than is guaranteed by long paths.

Corollary 1.6 ([5]). For every set F of at most n − 2 vertices of Qn and n ≥ 4, the graph
Qn −F has an uv-path of length at least 2n − 2|F |− 1 for every two vertices u, v ∈ V (Qn) \F
such that F ∪ {u, v} is not monopartite.

From Theorem 1.1 it follows that the decision problem whether the hypercube Qn for the
given set F of faulty vertices contains an F -free cycle has a trivial answer if |F | ≤

(

n
2

)

− 2.
On the other hand, Dvořák and Koubek [4] showed that this problem is NP-hard if |F | is
unbounded. Moreover, they [4] presented a function φ(n) = Θ(n6) such that the problem
remains NP-hard even if |F | ≤ φ(n). Furthermore, Dvořák and Koubek [3] described a
polynomial algorithm for the similar decision problem of long F -free paths between given
vertices in Qn if |F | ≤ n2/10 + n/2 + 1.

For the completeness, let us also mention that there are many related results on similar
problems of bipanconnectivity, bipancyclicity, long cycles, and long paths in various modifi-
cations of faulty hypercubes, see a survey of Xu and Ma [14] for further references.

2 Preliminaries

The n-dimensional hypercube Qn is the (bipartite) graph with all binary vectors of length n
as vertices and edges joining every two vertices that differ in exactly one coordinate. Let 0

denote the vertex of Qn consisting of all 0’s. For every i ∈ [n] = {1, 2, . . . , n} let ei denote
the vertex with 1 exactly in the i-th coordinate. Furthermore, for every distinct i, j ∈ [n] let
ei,j denote the vertex with 1 exactly in the i-th and j-th coordinate.

Let d(u, v) be the (Hamming) distance of vertices u and v in Qn, i.e. the number of
coordinates where u and v differ. Recall that the weight |u| of a vertex u is the number of
1’s in u, i.e. |u| = d(u,0). The vertices of even and odd weight, respectively, form bipartite
classes of Qn. The parity of a vertex u is the parity of its weight |u|. Hence, two vertices
have the same parity if and only if they are in the same bipartite class. The k-th level of Qn

is the set of vertices of weight k for 0 ≤ k ≤ n.

1This paper has not been published yet, so we include the proofs for the purpose of referee in the appendix.
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Clearly, Qn has a regular degree n. Let N(u) be the set of neighbors of a vertex u in
Qn, and let N+(u) and N−(u) be the sets neighbors of u with weight |u| + 1 and |u| − 1,
respectively. It is well-known that every two vertices of Qn have 0 or 2 common neighbors.

In order to apply induction, we need to split the hypercube Qn into two (n−1)-dimensional
subcubes Qi:L and Qi:R. This is obtained by fixing some coordinate i ∈ [n]. Formally, we
define the subcube Qi:L as the subgraph of Qn induced by vertices that have 0 on the i-th
coordinate. Similarly, the subcube Qi:R is the subgraph of Qn induced by vertices that have
1 on the i-th coordinate. For a vertex x of Qi:L, let xR be the (only) neighbor of x in Qi:R.
Similarly for a vertex x of Qi:R, let xL be the (only) neighbor of x in Qi:L.

Assume that F is a given set of faulty vertices of Qn. The vertices of Qn which are not
in F are called F -free. For every i ∈ [n] we define Fi:L and Fi:R to be the sets of faulty
vertices in Qi:L and Qi:R, respectively. Let F k be the set of vertices of F from level k (i.e. of
weight k) for 0 ≤ k ≤ n. Similarly, let F≥k be the set of vertices of F from level at least k.
Furthermore, we define F k

i:L = F k ∩ Fi:L and F k
i:R = F k ∩ Fi:R. For a vertex u of Qn let F (u)

be the set of faulty neighbors of u, i.e. F (u) = F ∩ N(u).
Let AF be the |F | × n matrix whose rows are the binary vectors representing the vertices

of F . Let |AF | be the number of ones in AF . Clearly, |AF | is the sum of |x| over all x ∈ F .
Note that |Fi:L| and |Fi:R| are the numbers of zeros and ones, respectively, in the i-th column
of AF . By symmetry of Qn, we assume that

|Fi:L| ≥ |Fi:R| for every dimension i ∈ [n]. (1)

Indeed, by exchanging zeros and ones in those columns i ∈ [n] where |Fi:L| < |Fi:R| we obtain
an automorphism of Qn that maps the set F to a new set satisfying the condition (1).

To apply Theorem 1.2 we need to bound the number α(F ) of vertices of Qn that have at
least 4 neighbors in F .

Proposition 2.1. For every set F ⊆ V (Qn) it holds that

α(F ) ≤ min

{

n|F |

4
,

(

|F |
2

)

3

}

.

Proof. Every vertex from F has n neighbors in Qn, but every vertex x with |F (x)| ≥ 4 has
at least 4 neighbors in F . Hence, α(F ) ≤ n|F |/4.

In order to prove the second inequality of this proposition we compute the number p of
pairs of incident edges ux and vx of Qn where u, v ∈ F are distinct neighbors of x. Since
every two vertices u and v of Qn have at most 2 neighbors in common, we have p ≤ 2

(

|F |
2

)

.

On the other hand, every vertex x with |F (x)| ≥ 4 has at least
(

4
2

)

= 6 pairs of vertices from

F in its neighborhood, so 6α(F ) ≤ p. Hence, α(F ) ≤
(

|F |
2

)

/3.

Proposition 2.2. For every set F ⊆ V (Qn) with |F | ≤ 6 it holds that α(F ) ≤ 2.

Proof. Suppose for a contradiction that there exist three vertices a, b and c in Qn such that
|F (a)|, |F (b)|, |F (c)| ≥ 4. Without lost of generality we assume that a = 0. Hence, there are
at least 4 faulty vertices in the first level. Since there remain at most two vertices in F \F (a),
the vertices b and c both share exactly 2 faulty neighbors with the vertex a, so they are in the
second level. Furthermore, it follows that the vertices b and c share two neighbors x, y ∈ F 3,
so (b, x, c, y) forms a cycle of length 4. But this contradicts the structure of Qn since every
cycle of length 4 in Qn is contained in exactly 3 consecutive levels.
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3 Overview of the proofs

In this section we give an overview of main proofs and explain the general ideas.
The proofs of Theorems 1.1 and 1.4 have very similar structure. In both theorems we

are given a set of faulty vertices F in Qn, but the maximal cardinality of F differs. For
general purposes, let us denote the maximal cardinality of F by z(n). In Theorem 1.1 we

have z(n) =
(

n
2

)

− 2, and in Theorem 1.4 we have z(n) =
⌊

n2+n−4
4

⌋

.

Both proofs proceed by induction on the dimension n. Fortunately, the base of induction
for n = 5 is already known in both cases. For Theorem 1.1 it directly follows from the
following result.

Theorem 3.1 (Castañeda and Gotchev [1]). For every set F of at most 3n − 7 vertices in
Qn and n ≥ 5, the graph Qn − F contains a cycle of length at least 2n − 2|F |.

For Theorem 1.4, the base of induction follows from Theorem 1.2 since 2n−4 =
⌊

n2+n−4
4

⌋

for n = 5, and the condition that |F (u)|, |F (v)| ≤ 3 implies that N(u) 6⊆ F ∪ {v} and
N(v) 6⊆ F ∪ {u} for n = 5.

Hence, our task remains to prove the induction step for both Theorems 1.1 and 1.4.
Although they are applied in the proofs of each other, note that it is done in a correct way,
since the induction steps proceed together. That is, the statements of Theorem 1.1 and
Theorem 1.4 for n requires only that

the statements of Theorem 1.1 and Theorem 1.4 hold for n − 1. (2)

In the first part of the induction steps we assume that

there exists a dimension i ∈ [n] such that |Fi:L|, |Fi:R| ≤ z(n − 1). (3)

In this case in Theorem 1.4 we proceed directly by applying induction (2) on both Qi:L and
Qi:R. In Theorem 1.1 we obtain from (1) that2

|Fi:R| ≤

⌊

|F |

2

⌋

≤

⌊

(

n
2

)

− 2

2

⌋

=

⌊

(n − 1)2 + (n − 1) − 4

4

⌋

.

Therefore, we may directly apply induction (2): Theorem 1.1 in Qi:L and Theorem 1.4 in
Qi:R.

3.1 Potentials

In the second part of both proofs we assume that (3) does not hold. The assumption (1)
implies that

|Fi:L| > z(n − 1) for every dimension i ∈ [n]. (4)

Now we introduce up to our knowledge a new method of so called potentials which is used
in the both proofs of Theorems 1.1 and 1.4.

Let k(n) = z(n) − z(n − 1) − 1. Note that if (4) holds, then |Fi:R| = |F | − |Fi:L| ≤ k(n)
for every dimension i ∈ [n]. We define the potentials of the set F as follows:

2This explains why we consider at most
j

n
2
+n−4

4

k

faulty vertices in Theorem 1.4.
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• φ0(F ) = 2(1 −
∣

∣F 0
∣

∣) =

{

0 if 0 ∈ F

2 if 0 /∈ F,

• φ1(F ) is the number of F -free vertices in the first level, i.e. φ1(F ) = n −
∣

∣F 1
∣

∣,

• φ≥3(F ) is the sum of |x| − 2 over all faulty vertices x in level at least 3,

• φdim(F ) is the sum of |Fi:L| − z(n − 1) − 1 over all dimensions i ∈ [n],

• φ(F ) = φ0(F ) + φ1(F ) + φ≥3(F ) + φdim(F ).

Clearly, φ0(F ), φ1(F ), φ≥3(F ) are non-negative. Furthermore, it follows from (4) that
φdim(F ) is non-negative. Consequently, φ(F ) is non-negative.

Intuitively, the potential φ0(F ) + φ1(F ) + φ≥3(F ) determines how much the set F differs
from a set F ′ with a minimal number of ones in the matrix AF ′ . If 0 /∈ F , we pay by
φ0(F ) = 2; otherwise, φ0(F ) = 0. For every vertex of weight 1 which is not in F , we pay by 1
in φ1(F ). For every vertex of F which has weight at least 3, we pay its distance to the second
level in φ≥3(F ). Finally, for every dimension i ∈ [n] we know that |Fi:L| > z(n − 1) since we
assume (4), therefore we pay in φdim(F ) the number of vertices which could be moved from
Fi:L to Fi:R so that (4) remains satisfied.

Observe that the definition of φdim(F ) and (4) implies that if φdim(F ) < n, then there
exists a dimension i ∈ [n] such that |Fi:L| = z(n − 1) + 1. Now, we compute the potential
φ(F ) of the set F . Note that the potential φ(F ) depends only on |F |, z(n) and z(n − 1).

Proposition 3.2. If |F | ≤ z(n) and |Fi:L| > z(n − 1) for every dimension i ∈ [n], then

φ(F ) = nk(n) − 2z(n) + n + 2 − (n − 2)(z(n) − |F |).

Proof. We prove the requested equality by double-counting the number of 1’s in the matrix
AF . First, we sum up 1’s by columns. Since

|Fi:R| = |F | − |Fi:L| = k(n) − (z(n) − |F |) − (|Fi:L| − z(n − 1) − 1),

we have

|AF | =
∑

i∈[n]

|Fi:R| = nk(n) − n(z(n) − |F |) − φdim(F ).

Now, we sum up 1’s by rows.

|AF | =
∑

x∈F

|x| = 0
∣

∣F 0
∣

∣ + 1
∣

∣F 1
∣

∣ + 2
∣

∣F 2
∣

∣ + 2
∣

∣F≥3
∣

∣ + φ≥3(F )

= φ0(F ) + φ1(F ) + φ≥3(F ) + 2|F | − n − 2.

The requested equality follows.

Let us explain informally how potentials are useful for us. Below in Proposition 4.2 we

compute the particular value of φ(F ) for paths when z(n) =
⌊

n2+n−4
4

⌋

; and in Proposition

5.2 we compute it for cycles when z(n) =
(

n
2

)

− 2. We will see that φ(F ) is small in both
cases. This allows us to split Qn into Qi:L and Qi:R so that |Fi:L| = z(n − 1) + 1, i.e. there
is one faulty vertex more in Fi:L than is allowed for applying induction. In such situations
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we ignore one properly chosen vertex x ∈ Fi:L and try to proceed directly. If the vertex x
belongs to the obtained path (or cycle), we attempt to detour it.

However, those detours may also fail because of another vertex y ∈ Fi:R. Nevertheless, if
this happens, the vertex y must contribute into φ≥3(F ). By combination of those methods
we either find a long F -free path in Qn or obtain a contradiction with a small potential φ(F ).

4 Long paths

In this section we prove Theorem 1.4. In what follows assume that F is a set of at most

z(n) =
⌊

n2+n−4
4

⌋

vertices of Qn, n ≥ 5, and u, v are distinct vertices of Qn − F with

|F (u)|, |F (v)| ≤ 3. Recall that Theorem 1.4 says that Qn −F contains a path between u and
v of length at least 2n − 2|F | − 2. Such path is called a long F -free uv-path.

The proof proceeds by induction on the dimension n. For n = 5 the statement follows
from Theorem 1.2 since |F | ≤ z(5) = 6. Now, we prove the induction step for n ≥ 6. We
divide the proof into two main parts.

4.1 Induction-friendly split

In the first part, we consider the case when Qn can be split into Qi:L and Qi:R by a dimension
i ∈ [n] such that |Fi:L|, |Fi:R| ≤ z(n − 1); see (3). In this case, we apply induction directly.

Lemma 4.1. Let Qn be split into subcubes Qi:L and Qi:R so that |Fi:L|, |Fi:R| ≤ z(n − 1).
Then there exists a long F -free uv-path P in Qn. Moreover, if |F 1

i:L| ≥ n − 2, then 0 /∈ P .

Proof. Since the dimension i is fixed, in this proof we omit the index i to simplify the notation.
We distinguish two cases regarding the position of vertices u and v in QL and QR.

Case 1 : If u, v are in different subcubes, say u ∈ V (QL) and v ∈ V (QR), then our aim is
to find a vertex x in QL of opposite parity to the parity of u such that x /∈ FL, xR /∈ FR ∪{v}
and |FL(x)|, |FR(xR)| ≤ 3. If there is a such vertex x, then by induction (2), QL has a long
FL-free ux-path PL of length at least 2n−1 −2|FL|−1, QR has a long FR-free xRv-path PR of
length at least 2n−1 − 2|FR| − 2. Hence, their concatenation by the edge xxR is the requested
long F -free uv-path P in Qn since

|P | = |PL| + |PR| + 1 ≥ 2n−1 − 2|FL| − 1 + 2n−1 − 2|FR| − 2 + 1 = 2n − 2|F | − 2.

Let A be the set of 2n−2 vertices x in QL with the opposite parity to the parity of u. We
count for how many vertices x from A at least one of the following conditions fails: x /∈ FL,
xR /∈ FR ∪ {v}, and |FL(x)|, |FR(xR)| ≤ 3. First, we find an upper bound on the number of
vertices from A such that x ∈ FL or |FL(x)| ≥ 4.

Every vertex of FL \A has n− 1 neighbors in A, so there are at most n−1
4 |FL \ A| vertices

x of A such that |FL(x)| ≥ 4. Furthermore, we have |FL ∩ A| vertices in A such that x ∈ FL.
Thus, the number of vertices x of A such that x ∈ FL or |FL(x)| ≥ 4 is at most

n − 1

4
|FL \ A| + |FL ∩ A| ≤

n − 1

4
|FL|

since n ≥ 6.
Similarly, the number of vertices x of A such that xR ∈ FR or |FR(xR)| ≥ 4 is at

most n−1
4 |FR|. Finally, at most one vertex x of A has xR = v. Altogether, we have at
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most n−1
4 |F | + 1 ≤ n−1

4 z(n) + 1 vertices x in A such that x /∈ FL, xR /∈ FR ∪ {v}, and
|FL(x)|, |FR(xR)| ≤ 3, which is less than |A| = 2n−2 for n ≥ 6. Therefore, the desired vertex
x exists.

Case 2 : If u, v are in the same subcube, say u, v ∈ V (QL), then by induction (2),
there exists a long FL-free uv-path PL in QL. Our aim is to find an edge xy of PL such
that xR, yR /∈ FR and |FR(xR)|, |FR(yR)| ≤ 3. If there is such edge xy, then by induction,
QR contains a long FR-free xRyR-path PR. By replacing the edge xy in PL with the path
(x, PR, y), we obtain the requested long F -free uv-path P in Qn since

|P | = |PL| + |PR| + 1 ≥ 2n−1 − 2|FL| − 2 + 2n−1 − 2|FR| − 1 + 1 = 2n − 2|F | − 2.

The path PL has at least 2n−1 − 2|FL| − 2 edges. Every vertex z in QR such that z ∈ FR

or |FR(z)| ≥ 4 can block at most two edges xy of PL. We find an upper bound on the number
of such vertices z.

By Proposition 2.1, there are α(FR) ≤ min
{

n−1
4 |FR|,

(

|FR|
2

)

/3
}

vertices z in QR such

that |FR(z)| ≥ 4. Hence, the number of edges xy of PL such that xR, yR /∈ FR and
|FR(xR)|, |FR(yR)| ≤ 3 is at least

|PL|−2(|FR|+α(FR)) ≥ 2n−1−2|F |−2α(FR)−2 ≥

{

2n−1 − 2z(n) − 2
(

z(n−1)
2

)

/3 − 2, and

2n−1 − 2z(n) − n−1
2 z(n − 1) − 2,

which is positive for n = 6 in the first case, and for n ≥ 7 in the latter one. Therefore, the
desired edge xy exists.

It remains to prove the second part of the statement. Assume that |F 1
L| ≥ n − 2. Since

the vertex 0 has n − 1 neighbors in QL, at most one of them is FL-free. Recall that each
endvertex of the path PL has at most 3 neighbors in FL and n ≥ 6. Hence, the path PL does
not contain the vertex 0, and therefore also 0 /∈ P .

4.2 Potentials

In the second part of the proof of Theorem 1.4 we assume that (3) fails, i.e. (4) holds.

By substituting z(n) =
⌊

n2+n−4
4

⌋

and k(n) = z(n)−z(n−1)−1 into Proposition 3.2 we im-

mediatelly obtain the following table of values of the potential φ(F ) for n = 4m + (n mod 4)
where m = ⌊m/4⌋. Note that k(n) ≤

⌊

n−1
2

⌋

in the all four cases.

n z(n) k(n) φ(F )

4m 4m2 + m − 1 2m − 1 4 − 2m − (n − 2)(z(n) − |F |)

4m + 1 4m2 + 3m − 1 2m − 1 4 − 4m − (n − 2)(z(n) − |F |)

4m + 2 4m2 + 5m 2m 4 − 2m − (n − 2)(z(n) − |F |)

4m + 3 4m2 + 7m + 2 2m + 1 4 − (n − 2)(z(n) − |F |)

Lemma 4.2. If |Fi:L| > z(n − 1) for every dimension i ∈ [n], then |F | = z(n). Moreover,
φ(F ) = 2 for n = 6 and φ(F ) ≤ 4 for n ≥ 7.

Proof. Since φ(F ) ≥ 0 and n ≥ 6, we have (n − 2)(z(n) − |F |) = 0 in the above table, so
|F | = z(n). The above table also implies the second part of this statement.
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In the rest of the proof we proceed by contradiction, so let us suppose that F is a set of
at most z(n) vertices of Qn and u, v are distinct vertices with |F (u)|, |F (v)| ≤ 3 such that

Qn does not contain a long F -free uv-path. (5)

Recall that Lemma 4.1 implies that the assumption (3) fails. In the next lemma we
consider the configurations when faulty vertex 0 has at most two F -free neighbors in Qn.

Lemma 4.3. 0 /∈ F or |F 1| ≤ n − 2.

Proof. For a contradiction, suppose 0 ∈ F and |F 1| ≥ n − 1. Since n ≥ 6 and φdim(F ) ≤ 4
by Lemma 4.2, there exists i ∈ [n] such that |Fi:L| = z(n − 1) + 1. It follows that (3) holds
for the set F ′ = F \ {0} as 0 ∈ Fi:L. Thus, there exists a long F ′-free uv-path P in Qn by
Lemma 4.1. Since |F 1

i:L| ≥ n − 2, Lemma 4.1 implies that the path P does not contain the
vertex 0. Therefore, P is also a long F -free uv-path contrary to (5).

Corollary 4.4. φ≥3(F ) ≤ 2 for n ≥ 7, and φ≥3(F ) = 0 for n = 6.

Proof. Lemma 4.3 implies that φ0(F ) + φ1(F ) ≥ 2. The rest follows from Lemma 4.2.

The following corollary shows that we can use Theorem 1.1 to find a long Fi:L-free cycle
in Qi:L for every dimension i ∈ [n].

Corollary 4.5. |Fi:L| ≤
(

n−1
2

)

− 2 for every i ∈ [n].

Proof. For a contradiction, suppose |Fi:L| >
(

n−1
2

)

− 2 for some i ∈ [n]. Since |Fi:L| ≤ |F | =

z(n) =
⌊

n2+n−4
4

⌋

and n ≥ 6, the only possible values are n = 6 and |Fi:L| = z(6) = 9. Thus

|Fi:R| = 0, and consequently, φdim(F ) ≥ 2. But this contradicts φ(F ) = 2 from Lemma 4.2
and φ0(F ) + φ1(F ) ≥ 2 from Lemma 4.3.

Lemma 4.6. If φ≥3(F ) ≥ 2 or n = 6, then |F 1| = n.

Proof. If φ≥3(F ) ≥ 2 or n = 6, then by Lemma 4.2,

φ0(F ) + φ1(F ) + φdim(F ) ≤ 2. (6)

Thus, if 0 /∈ F , then |F 1| = n by the definition of potentials φ0(F ) and φ1(F ).

Now suppose that 0 ∈ F . Consequently, |F 1| = n − 2 by Lemma 4.3 and (6). Let i ∈ [n]
be such that ei /∈ F 1. Since φdim(F ) = 0 by (6), we have |Fi:L| = z(n − 1) + 1. It follows
that (3) holds for the set F ′ = F \ {0}. Hence, there exists a long F ′-free uv-path P in Qn

by Lemma 4.1. Moreover, since
∣

∣F 1
i:L

∣

∣ = n − 2, the path P does not contain the vertex 0 by
the second part of Lemma 4.1. Therefore, P is also a long F -free uv-path, which is contrary
to (5).

In the next lemma we consider the configurations when u or v is 0 or there exists a
dimension i ∈ [n] such that u, v ∈ V (Qi:R).

Lemma 4.7. u, v 6= 0 and for every i ∈ [n] it holds that ui = 0 or vi = 0.
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Proof. Without lost of generality, suppose for a contradiction that u = 0. Then φ0(F ) +
φ1(F ) ≥ n− 1 by the definition of potentials φ0(F ) and φ1(F ) since |F 1| = |F (u)| ≤ 3, which
contradicts Lemma 4.2. Thus, the first part holds.

For the second part, suppose that ui = vi = 1 for some i ∈ [n], so u, v ∈ V (Qi:R). Since
|Fi:L| ≤

(

n−1
2

)

− 2 by Corollary 4.5, there is a long Fi:L-free cycle CL in Qi:L by induction
(2). Let ab be an edge of CL such that aR, bR /∈ Fi:R and {aR, bR} 6= {u, v}, and put
A = {aR, bR}, B = {u, v}. Note that such edge ab exists since |CL| ≥ 2n−1 − 2|Fi:L|, every
vertex of Fi:R ∪{u, v} blocks at most 2 edges of CL, and 2n−1 − 2|F | − 4 ≥ 1 for n ≥ 6. Since
|Fi:R| ≤ k(n) ≤

⌊

n−1
2

⌋

≤ n − 3, by Theorem 1.5 there is a long Fi:R-free AB-routing P1, P2

in Qi:R. After interconnecting the path CL − {ab} and P1, P2 with the edges aaR, bbR we
obtain an uv-path in Qn − F of length

|CL| + |P1| + |P2| + 1 ≥ 2n−1 − 2|Fi:L| + 2n−1 − 2|Fi:R| − 3 + 1 = 2n − 2|F | − 2,

which contradicts with (5).

Next, we describe a construction based on long Fi:L-free cycles in Qi:L. Without loss of
generality, we assume that

if |u| = 1 or |v| = 1, then |u| = 1; (7.1)

if |u|, |v| ≥ 2 and, |u| ≥ 3 or |v| ≥ 3, then |u| ≥ 3; (7.2)

if |u| = |v| = 2, then |F 1 ∩ N(u)| ≥ |F 1 ∩ N(v)|; (7.3)

otherwise, we switch the roles of u and v. The last condition says that the vertex u has at
least the same number of faulty neighbors in the first level as the vertex v.

By Lemma 4.7, there exists a dimension i ∈ [n] such that ui = 0 and vi = 1, so u ∈ V (Qi:L)
and v ∈ V (Qi:R). Since |Fi:L| ≤

(

n−1
2

)

− 2 by Corollary 4.5, there is an Fi:L-free cycle CL in
Qi:L by induction (2). For the rest of this section, this splitting of Qn into Qi:L and Qi:R, and
the cycle CL are fixed. For ease of notation, we omit the index i in the rest of this section.

For a vertex z ∈ CL let c(z), a(z), z, b(z), d(z) be a subpath of CL, and let M(z) =
{a(z), b(z), c(z), d(z)}. For example, see the set M(u) on Figure 1(a). We say that a vertex x
of QL is blocked if xR ∈ FR ∪ {v}. Furthermore, we say that M(z) is blocked if every vertex
of M(z) is blocked. The following proposition gives a sufficient condition which guarantees
that the vertex x cannot be blocked by the vertex v.

Proposition 4.8. For every vertex x of QL, if |x| ≥ d(x, u), then xR 6= v.

Proof. Recall that i ∈ [n] is the fixed splitting dimension of Qn into QL and QR, so ui = xi = 0
and vi = 1. If |x| ≥ d(x, u), then there exists j ∈ [n] \ {i} such that uj = xj = 1 since u 6= 0

by Lemma 4.7. Furthermore, vj = 0 by Lemma 4.7. Hence d(x, v) ≥ 2.

The next construction gives us many blocked vertices. For a vertex x ∈ V (QL) \ FL and
the cycle CL let S(x) denote the following statement:

S(x) :=

{

M(x) is blocked if x ∈ CL,

x is blocked if x /∈ CL.

Lemma 4.9. Let CL be a long FL-free cycle in QL, u ∈ V (QL), and v ∈ V (QR). Then S(u)
holds. Moreover, if u /∈ CL, then S(z) holds also for every neighbor z of u in QL − FL.
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Figure 1: The construction in Lemma 4.9.

Proof. Case 1: u ∈ CL. First, suppose that a(u) or b(u) is not blocked, say a(u)R /∈ FR∪{v}.
See Figure 1(a) for an illustration. Then QR contains a long FR-free a(u)Rv-path PR by
Corollary 1.3 since |FR| ≤ k(n) ≤

⌊

n−1
2

⌋

. By connecting PR and the path CL −{ua(u)} with
the edge a(u)a(u)R we obtain an uv-path in Qn − F of length

|CL| + |PR| ≥ 2n−1 − 2|FL| + 2n−1 − 2|FR| − 2 = 2n − 2|F | − 2,

which is a contradiction with (5).
Second, suppose that c(u) or d(u) is not blocked, say c(u)R /∈ FR∪{v}. See Figure 1(b) for

an illustration. Since a(u), b(u) are blocked, it follows that FR∪{c(u)R, v} is not monopartite.
Thus, by Corollary 1.6 there is an c(u)Rv-path PR in QR−FR of length at least 2n−1−2|FR|−1.
By connecting PR and the path CL \ {ua(u), a(u)c(u)} with the edge c(u)c(u)R we obtain an
uv-path in Qn − F of length

|CL| + |PR| − 1 ≥ 2n−1 − 2|FL| + 2n−1 − 2|FR| − 2 = 2n − 2|F | − 2,

which is a contradiction with (5).

Case 2: u /∈ CL. Next, suppose that the vertex u is not blocked. Then, we choose an edge
xy on CL such that xR, yR /∈ FR. Note that such edge xy exists since |CL| ≥ 2n−1 − 2|FL|,
every vertex of FR blocks at most 2 edges of CL, and 2n−1−2|F | ≥ 1 for n ≥ 6. See Figure 1(c)
for an illustration. For sets A = {xR, yR}, B = {uR, v} we have that A 6= B and A∪B is not
monopartite. Hence, by Theorem 1.5 there is a long FR-free AB-routing P1, P2 in QR. By
connecting u, the path CL − {xy}, and P1, P2 with the edges xxR, yyR, uuR, we obtain an
uv-path in Qn − F of length

|CL| + |P1| + |P2| + 2 ≥ 2n−1 − 2|FL| + 2n−1 − 2|FR| − 1 = 2n − 2|F | − 1,

which is contradiction with (5). Therefore, the statement S(u) is established.
Finally, suppose that S(z) does not hold for some neighbor z ∈ V (QL) \ FL of u. Then,

by the same constructions as above, there is a long F -free zv-path P in Qn. Note that u /∈ P .
By prolonging P with the edge uz we obtain a long F -free uv-path in Qn, contrary to (5).

In the next two lemmas we consider the configurations when the weight of the vertex u
or v is not 2.
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Lemma 4.10. |u|, |v| ≥ 2.

Proof. Recall that |u|, |v| ≥ 1 by Lemma 4.7. Suppose that |u| = 1 or |v| = 1, so |u| = 1 by
the assumption (7.1). It follows that |F 1| ≤ n− 1, so n ≥ 7 by Lemma 4.6. First, we assume
that u ∈ CL. Then M(u) is blocked by Lemma 4.9. Clearly, at least one of a(u) and b(u)
has weight 2, say a(u), and b(u) has weight 0 or 2. If |b(u)| = 2, then a(u)R, b(u)R ∈ FR by
Proposition 4.8 and consequently, φ≥3(F ) ≥ 2 contrary to Lemma 4.6. Otherwise |b(u)| = 0
and consequently, 0 /∈ F , |F 1| ≤ n− 2, and φ≥3(F ) ≥ 1 since a(u)R ∈ FR by Proposition 4.8.
Hence φ0(F ) + φ1(F ) + φ≥3(F ) ≥ 5, which contradicts Lemma 4.2.

Now, we have u /∈ CL. If u has a neighbor z on CL with |z| = 2, then M(z) is blocked
by Lemma 4.9. Note that a(z) or b(z) belong to the third level, say |a(z)| = 3, since z has
exactly two neighbors in the first level and one of them is u /∈ CL. Hence, we have a(z)R ∈ FR

by Proposition 4.8 and consequently, φ≥3(F ) ≥ 2, which contradicts Lemma 4.6.

Otherwise, no neighbor z of u in QL − FL with |z| = 2 belongs to CL. Since |F (u)| ≤ 3,
the vertex u has at least n − 5 neighbors z in QL − FL with |z| = 2. By Lemma 4.9,
they are all blocked, but by Proposition 4.8, they are not blocked by the vertex v. Hence,
φ≥3(F ) ≥ n − 5 ≥ 2 which contradicts Lemma 4.6.

Lemma 4.11. |u|, |v| ≤ 2.

Proof. Suppose that |u| ≥ 3 or |v| ≥ 3, so |u| ≥ 3 by the assumption (7.2). First, we consider
the case when u ∈ CL. Then M(u) is blocked by Lemma 4.9. Since a(u) and b(u) belong to
level at least 2, we have a(u)R, b(u)R ∈ FR by Proposition 4.8, so we obtain that φ≥3(F ) ≥ 2.
Thus, |F 1| = n by Lemma 4.6. Hence, the vertices c(u) and d(u) have weight at least 2, and
they are not blocked by the vertex v by Proposition 4.8. Consequently φ≥3(F ) ≥ 4, which
contradicts Corollary 4.4.

Now, we have u /∈ CL, so the vertex u is blocked by Lemma 4.9. Since uR ∈ FR by
Proposition 4.8, we have φ≥3(F ) ≥ 2 and consequently, |F 1| = n by Lemma 4.6. Furthermore,
for an arbitrary neighbor z ∈ V (QL) \FL of u we obtain from Lemma 4.9 that z is blocked if
z /∈ CL, or a(z) is blocked if z ∈ CL. In both cases have another blocked vertex at distance
at most 2 from u and in level at least 2, so φ≥3(F ) ≥ 3 by Proposition 4.8, which contradicts
Corollary 4.4.

By the previous two lemmas we have |u| = |v| = 2. Let u1, u2 and v1, v2 be the neighbors
of u and v of weight 1, respectively. Note that from Lemma 4.7 it follows that these four
vertices are distinct.

Lemma 4.12. u1 ∈ F or u2 ∈ F .

Proof. Suppose that u1, u2 /∈ F . From the assumption (7.3) it follows that also v1, v2 /∈ F .
Thus, φ1(F ) ≥ 4. If u ∈ CL, then M(u) is blocked by Lemma 4.9, and c(u) or d(u) is in level
at least 2, say |c(u)| ≥ 2, since they have the same parity as u. By Proposition 4.8 we have
c(u)R ∈ FR and consequently, φ≥3(F ) ≥ 1. Hence, we obtain that φ1(F ) + φ≥3(F ) ≥ 5, a
contradiction with Lemma 4.2.

If u /∈ CL, the vertex u is blocked by Lemma 4.9. By Proposition 4.8 we have uR ∈ FR

and consequently, φ≥3(F ) ≥ 1. Similarly as above, we obtain that φ1(F ) + φ≥3(F ) ≥ 5, a
contradiction with Lemma 4.2.
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The end of the proof of Theorem 1.4. If u ∈ CL, then M(u) is blocked by Lemma 4.9. From
Lemma 4.12 it follows that a(u) or b(u) is in the third level, say |a(u)| = 3. Furthermore,
|c(u)| ≥ 2. Since a(u)R, c(u)R ∈ FR by Proposition 4.8, we have φ≥3(F ) ≥ 3, which contra-
dicts Corollary 4.4.

Finally, if u /∈ CL, then u is blocked by Lemma 4.9. Let z ∈ V (QL) \ FL be an arbitrary
neighbor of u with |z| = 3. Then by Lemma 4.9, z is blocked, or the vertices a(z) and b(z)
of weight at least 2 are blocked. By Proposition 4.8, uR, zR ∈ FR in the first case, and
uR, a(z)R, b(z)R ∈ FR in the latter case. Altogether, we obtain that φ≥3(F ) ≥ 3, which is a
final contradiction with Corollary 4.4.

Therefore, we conclude that the contradicted assumption (5) is false, i.e. the statement
of Theorem 1.4 holds.

5 Long cycles

In this section we prove the main Theorem 1.1 which says that for every set of faulty vertices
F of Qn of size at most

(

n
2

)

− 2 there exists a cycle in Qn − F of length at least 2n − 2|F |,
where n ≥ 4. Such cycle is called a long F -free cycle.

Fu [7] proved that there exists a long F -free cycle if |F | ≤ 2n − 4, where n ≥ 3, which
implies that Theorem 1.1 holds for n = 4. Theorem 3.1 implies the base of induction of
Theorem 1.1 for n = 5.

In the induction step of the proof of Theorem 1.1 for n, we assume that both Theorems
1.1 and 1.4 hold for n − 1; see (2). Let us consider a fixed set F of at most

(

n
2

)

− 2 faulty
vertices in Qn, where n ≥ 6. Furthermore, we assume that |Fi:L| ≥ |Fi:R| for every dimension
i ∈ [n]; see (1).

5.1 Induction-friendly split

In the first part of the proof of Theorem 1.1 we assume that there exists a dimension i ∈ [n]
such that |Fi:L|, |Fi:R| ≤

(

n−1
2

)

− 2; see (3). In this case we apply induction (2) in both Qi:L

and Qi:R to construct a long F -free cycle Qn. Moreover, the following lemma also considers
other conditions in which we can simply find a long F -free cycle in the same way. Those
conditions are useful later.

Lemma 5.1. If there exists a dimension i ∈ [n] such that at least one of the following
conditions holds, then there exists a long F -free cycle in Qn.

(i) There exists a long Fi:L-free cycle CL in Qi:L;

(ii) |Fi:L| ≤
(

n−1
2

)

− 2;

(iii) |Fi:L| =
(

n−1
2

)

− 1 and there exists x ∈ Fi:L having at most one Fi:L-free neighbor in
Qi:L.

Proof. Our first aim is to find a long Fi:L-free cycle CL in Qi:L. If the condition (i) is satisfied,
then the cycle is given. If the condition (ii) is satisfied, then the cycle exists by induction (2).

Let us assume that the condition (iii) is satisfied. Let F ′ = Fi:L \ {x}. By induction (2),
there exists a long F ′-free cycle CL in Qi:L. Since no cycle of Qi:L − F ′ contains x, the cycle
CL is also Fi:L-free.
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Our next aim is to find an edge xy of CL such that

xR, yR 6∈ Fi:R and |Fi:R(xR)|, |Fi:R(yR)| ≤ 3. (8)

If there exists an edge xy satisfying (8), then by induction (2), there is a long Fi:R-free

xRyR-path PR in Qi:R since |Fi:R| ≤
⌊

|F |
2

⌋

≤
⌊

(n−1)2+(n−1)−4
4

⌋

. We replace the edge xy in CL

by a path (x, xR, PR, yR, y) and we obtain an F -free cycle in Qn of length at least

(2n−1 − 2|Fi:L| − 1) + 2 + (2n−1 − 2|Fi:R| − 1) = 2n − 2|F |.

It remains to show that there exists an edge xy satisfying (8). Recall that α(Fi:R) is the
number of vertices z in Qi:R with |Fi:R(z)| ≥ 4. There are at most |Fi:R| + α(Fi:R) vertices
that cannot be used as end-vertices of a long Fi:R-free path in Qi:R. Since the length of CL

is at least 2n−1 − 2|Fi:L|, the number of edges xy satisfying (8) is at least

2n−1 − 2|Fi:L| − 2 (|Fi:R| + α(Fi:R)) ≥ 2n−1 − 2|F | − 2α(Fi:R) ≥ 1.

The last inequality follows from |Fi:R| ≤ |F |/2 and from

• Proposition 2.2 for n = 6;

• the inequality α(Fi:R) ≤
(

|Fi:R|
2

)

/3 by Proposition 2.1 for n = 7;

• the inequality α(Fi:R) ≤ (n−1)|Fi:R|
4 by Proposition 2.1 for n ≥ 8.

5.2 Potentials

In the second part of the proof of Theorem 1.1 we assume that (3) fails, i.e. (4) holds.
Let us recall that we use the following potentials, where now we have z(n) =

(

n
2

)

− 2.

φ(F ) = φ0(F ) + φ1(F ) + φ≥3(F ) + φdim(F ),

φ0(F ) = 2 − 2|F 0|, φ1(F ) = n − |F 1|,

φ≥3(F ) =
∑

x∈F≥3

(|x| − 2), φdim(F ) =
∑

i∈[n]

(|Fi:L| − z(n − 1) − 1).

By substituting z(n) =
(

n
2

)

− 2 and k(n) = z(n) − z(n − 1) − 1 = n − 2 into Proposition
3.2, the next lemma follows immediately.

Lemma 5.2. Let F be a set of faulty vertices of Qn of size at most
(

n
2

)

−2. If |Fi:L| ≥
(

n−1
2

)

−1
for every dimension i ∈ [n], then |F | ≥

(

n
2

)

− 3 and

φ(F ) =

{

6 if |F | =
(

n
2

)

− 2

8 − n if |F | =
(

n
2

)

− 3.

In the rest of this section we proceed by contradiction. Therefore, we consider a set of
vertices F of Qn of size at most

(

n
2

)

− 2 such that

there is no long F -free cycle in Qn. (9)
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From the assumption (ii) of Lemma 5.1 it follows that |Fi:L| ≥
(

n−1
2

)

− 1 and |Fi:R| ≤ n − 2
for every dimension i ∈ [n]; see (4).

It follows from Lemma 5.2 that there cannot be too many vertices in F≥3 and they cannot
be too far from 0. Now, we present a construction which gets a faulty vertex a and gives us
another faulty vertex bR in the level |a| or |a| + 2.

Lemma 5.3. Let i ∈ [n] be a dimenstion and let a be a given vertex of F k
i:L. Let one of the

two following conditions hold.

(i) |Fi:L| =
(

n−1
2

)

− 1,

(ii) |Fi:L| =
(

n−1
2

)

,
∣

∣F 1
i:L \ {a}

∣

∣ ≥ n − 2, 0 ∈ F and a 6= 0.

Then, there exists b ∈ V (Qi:L) ∩ N(a) such that bR ∈ Fi:R. Hence, |bR| ∈ {k, k + 2}.

Moreover, if at least one of the three following conditions holds, then |bR| = k + 2.

(iii) Every vertex x ∈ N−(a) is faulty,

(iv) for every x ∈ N−(a) the vertex xR is Fi:R-free,

(v)
∣

∣F 1
i:L

∣

∣ = n − 1 and k = 1.

Proof. Let

F ′ =

{

Fi:L \ {a} if (i) holds,

Fi:L \ {a,0} if (ii) holds.

By induction (2), there exists a long F ′-free cycle CL in Qi:L. If (ii) holds, then 0 /∈ CL

because 0 has at most one F ′-free neighbor in Qi:L. Since there is no long Fi:L-free cycle in
Qi:L by the assumption (i) of Lemma 5.1 and by the contradicted assumption (9), the vertex
a is contained in CL.

Let b and c be two neighbors of a on CL. If bR, cR /∈ Fi:R, then by Theorem 1.2 there
exists a long Fi:R-free bRcR-path PR in Qi:R since |Fi:R| ≤ n− 2 and bR, cR are not adjacent.
Hence, the length of an F -free cycle obtained from CL by removing edges ba, ac and inserting
a path (b, bR, PR, cR, c) is at least

(2n−1 − 2
∣

∣F ′
∣

∣) − 2 + 2 + (2n−1 − 2|Fi:R| − 2) ≥ 2n − 2|F |.

Therefore, at least one of bR and cR belongs into Fi:R, say bR ∈ Fi:R, which implies the first
part of the statement.

Now, we prove the second part. Note that

|bR| =

{

k if b ∈ N−(a),

k + 2 if b ∈ N+(a).

If b ∈ N−(a), then neither the condition (iii) nor (iv) is satisfied since b /∈ Fi:L and bR ∈ Fi:R.
If (v) holds, then b ∈ N+(a); otherwise, the vertex a is the only F ′-free neighbor of b = 0 in
Qi:L, and there is no cycle in Qi:L − F ′ containing 0, but b ∈ CL.
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This lemma is useful to find a faulty vertex in F≥3 which increases the potential φ≥3(F ).
We often combine this lemma with other observations to show that the potential φ(F ) is
greater than the value given by Lemma 5.2 which provides us with a contradiction. One such
example follows, compare it with Lemma 4.3 in the previous section.

For practical purposes, we say that we use Lemma 5.3 with the assumption (i) on a vertex
x ∈ Fi:L to obtain a vertex y ∈ V (Qi:L). This only means that Qn is split by the dimension i,
and we apply Lemma 5.3 for the given vertex a = x such that the assumption (i) is satisfied.
Then, y is the vertex b obtained by Lemma 5.3. Similarly, we say that we use Lemma 5.3
with the assumption (ii) and (iii) on a vertex x ∈ Fi:L to obtain a vertex z ∈ Fi:R. This only
means that the dimension i and the vertex a = x satisfy both conditions (ii) and (iii) and z
is the vertex bR ∈ Fi:R in level |a| + 2 obtained by Lemma 5.3. Note that d(x, z) = 2.

Lemma 5.4. 0 /∈ F or
∣

∣F 1
∣

∣ ≤ n − 2.

Proof. For a contradiction, let us suppose that 0 ∈ F and
∣

∣F 1
∣

∣ ≥ n − 1.

If there exists a dimension i such that |Fi:L| =
(

n−1
2

)

− 1, then by Lemma 5.1 with the
assumption (iii) for x = 0 ∈ F , which has at most one Fi:L-free neighbor in Qi:L, we obtain
a long F -free cycle in Qn which is a contradiction with (9).

Now, we assume that there is no dimension i ∈ [n] such that |Fi:L| =
(

n−1
2

)

− 1, so
φdim(F ) ≥ n. This is possible, by Lemma 5.2, only if φdim(F ) = n = 6 = φ(F ) and hence
by the definition of φ(F ) we have that

∣

∣F 1
∣

∣ = 6, 0 ∈ F and F≥3 = ∅. Note that in this case

|Fi:L| =
(

n−1
2

)

for every dimension i ∈ [n], so we use Lemma 5.3 with the assumptions (ii)
and (iii) on some vertex a ∈ F 1

i:L to obtain a vertex in F 3
i:R, which is a contradiction with

F≥3 = ∅.

Lemma 5.4 implies that φ0(F ) + φ1(F ) ≥ 2. Hence, φ≥3(F ) + φdim(F ) ≤ 4 by Lemma 5.2
which implies that

there exists a dimension i ∈ [n] such that |Fi:L| =

(

n − 1

2

)

− 1, (10)

since n ≥ 6. Moreover, the definition of φdim(F ) implies for a given vertex x of Qn that

if φdim(F ) + |x| < n, then ∃i ∈ [n] such that |Fi:L| =

(

n − 1

2

)

− 1 and x ∈ V (Qi:L), (11)

because at least n − φdim(F ) dimensions i ∈ [n] satisfy |Fi:L| =
(

n−1
2

)

− 1, and at most |x| of
those dimensions volatile x ∈ V (Qi:L).

Our proof still proceeds by contradiction (9). In the following two lemmas we prove that
φ0(F ) + φ1(F ) ≥ 3. In the first one we consider the case when 0 /∈ F and

∣

∣F 1
∣

∣ = n; and in
the second one, the case when 0 ∈ F and

∣

∣F 1
∣

∣ = n − 2.

Lemma 5.5.
∣

∣F 1
∣

∣ ≤ n − 1.

Proof. For a contradiction we suppose that
∣

∣F 1
∣

∣ = n. Hence, 0 /∈ F by Lemma 5.4. We
proceeds in three steps. First, we prove that

∣

∣F 3
∣

∣ ≥ 1. Next, we prove that
∣

∣F 4
∣

∣ ≥ 1, which
we finally improve to

∣

∣F 4
∣

∣ ≥ 2. This is a contradiction to Lemma 5.2.

By (10) we split Qn by such dimension i ∈ [n] that |Fi:L| =
(

n−1
2

)

− 1. We use Lemma 5.3
with the assumptions (i) and (v) on some vertex of F 1

i:L to obtain
∣

∣F 3
i:R

∣

∣ ≥ 1. By Lemma 5.2
we know that |F | =

(

n
2

)

− 2 since φ0(F ) + φ≥3(F ) ≥ 3 and n ≥ 6.
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We observe that F 2
i:L 6= ∅; otherwise

∣

∣

∣
F≥3

i:L

∣

∣

∣
= |Fi:L| −

∣

∣F 1
i:L

∣

∣ =
(

n−1
2

)

− 1 − (n − 1) ≥ 4

which implies φ≥3(F ) ≥
∣

∣

∣
F≥3

i:L

∣

∣

∣
+

∣

∣F 3
i:R

∣

∣ ≥ 5, contrary to Lemma 5.2. Hence, we use Lemma

5.3 with the assumptions (i) and (iii) on some vertex of F 2
i:L to obtain a vertex x ∈ F 4

i:R.

Now, we know that F 3, F 4 6= ∅ and 0 /∈ F which implies φdim(F ) ≤ 1 by Lemma 5.2.
Therefore, there exists a dimension j such that |Fj:L| =

(

n−1
2

)

− 1 and x ∈ F 4
j:L by (11). We

use Lemma 5.3 with the assumption (i) on the vertex x to obtain a vertex in F≥4
j:R. Hence,

∣

∣F≥4
∣

∣ ≥ 2 and
∣

∣F 3
∣

∣ ≥ 1, so φ≥3(F ) ≥ 5. It implies φ(F ) ≥ φ0(F ) + φ≥3(F ) ≥ 7, which is a
contradiction with Lemma 5.2.

Lemma 5.6. If 0 ∈ F , then
∣

∣F 1
∣

∣ ≤ n − 3.

Proof. For a contradiction we suppose that 0 ∈ F and
∣

∣F 1
∣

∣ = n − 2. First, we prove that
φdim(F ) ≥ 2. Next, we prove that there exist two vertices x and y in F 3

d:R for some d ∈ [n].
Finally, we show that there exist 4 distinct dimensions d1, d2, d3, d4 ∈ [n], satisfying x ∈ F 3

dl:R

for l ∈ [4] which implies that |x| ≥ 4, contrary to x ∈ F 3.

Let ei and ej be the (only) two F -free vertices in the first level. We observe that
|Fi:L|, |Fj:L| ≥

(

n−1
2

)

; otherwise we use Lemma 5.1 with the assumption (iii) on the ver-
tex 0 to obtain a contradiction with (9). Therefore, φ1(F ) + φdim(F ) ≥ 4; and consequently,
φ≥3(F ) ≤ 2 by Lemma 5.2.

We split Qn by a dimension d ∈ [n] so that |Fd:L| =
(

n−1
2

)

− 1 by (10). Let a1, a2, a3

be arbitrary distinct vertices of F 1
d:L. Note that such vertices exist since

∣

∣F 1
d:L

∣

∣ = n − 3 and
n ≥ 6. We use Lemma 5.3 with the assumptions (i) and (iii) for every vertex am to obtain bm ∈
V (Qd:L) such that bm

R ∈ F 3
d:R, where m ∈ [3]. Note that

∣

∣

{

b1
R, b2

R, b3
R

}
∣

∣ ≤ 2 since φ≥3(F ) ≤ 2.
On the other hand, if b1

R = b2
R = b3

R, then b1 = b2 = b3; so b1 ∈ N+(a1)∩N+(a2)∩N+(a3), but
∣

∣N−(b1)
∣

∣ = 2. Hence, b1
R, b2

R and b3
R are two different vertices; say xd and yd. Furthermore,

∣

∣F 3
∣

∣ = φ≥3(F ) = φdim(F ) = 2.

Since φdim(F ) = 2 and n ≥ 6, there are at least 4 distinct dimensions dl ∈ [n], l ∈ [4],
such that |Fdl:L| =

(

n−1
2

)

− 1. For every dimension dl we obtain vertices xdl
, ydl

∈ F 3
dl:R

in the

same way as described in the previous paragraph. Since
∣

∣F 3
∣

∣ = 2, the pairs of vertices xdl

and ydl
are the same for all l ∈ [4]; say xd1

= xd2
= xd3

= xd4
. But xd1

∈ F 3
dl:R

for all l ∈ [4]

implies |xd1
| ≥ 4 which contradicts xd1

∈ F 3.

Note that from Lemmas 5.5 and 5.6 it follows that φ1(F )+φ0(F ) ≥ 3. Therefore, Lemma
5.2 implies the following statement since n ≥ 6.

Corollary 5.7. φ≥3(F ) + φdim(F ) ≤ 3 and |F | =
(

n
2

)

− 2.

Consequently, from (11) we obtain that for every vertex a ∈ F

there exists a dimension i ∈ [n] such that a ∈ Fi:L and |Fi:L| =

(

n − 1

2

)

− 1. (12)

Let u ∨ v denote the vertex w = (w1, w2, . . . , wn) with wi = ui ∨ vi for all i ∈ [n], where
∨ is the logical disjunction. Note that w ∈ Qi:L if and only if u, v ∈ Qi:L for every dimension
i ∈ [n].

Lemma 5.8. F≥3 = ∅.
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Proof. For a contradiction, let us suppose that there exists a vertex a ∈ F≥3. We proceed in
4 steps. First, we prove that F≥4 = ∅. Each of next three steps splits Qn and uses Lemma 5.3
to obtain a new vertex in F 3, which implies that

∣

∣F 3
∣

∣ ≥ 4, contrary to Corollary 5.7. Note
that those three splits use different dimensions.

If |a| ≥ 4, then we split Qn so that a ∈ Fi:L and |Fi:L| =
(

n−1
2

)

− 1 by (12). Then we use
Lemma 5.3 with the assumption (i) on the vertex a to obtain another faulty vertex in level
at least 4, which is a contradiction with Corollary 5.7. Therefore, we assume that F≥4 = ∅
and a ∈ F 3.

We split Qn so that a ∈ V (Qi:L) and |Fi:L| =
(

n−1
2

)

− 1 by (12). By Lemma 5.3 with the
assumption (i), there exists b ∈ Fi:R such that |b| = 3 and d(a, b) = 2. Hence, φ≥3(F ) ≥ 2.

Let x = a ∨ b. Since d(a, b) = 2 and |a| = |b| = 3, we have |x| = 4. Since φdim(F ) ≤ 1
by Corollary 5.7, there exists a dimension j such that x ∈ V (Qj:L) and |Fj:L| =

(

n−1
2

)

− 1 by
(11). Hence a, b ∈ Fj:L. We use Lemma 5.3 with the assumption (i) twice on both a and b
to obtain c, d ∈ F 3

j:R such d(a, c) = d(b, d) = 2. Since φ≥3(F ) ≤ 3 by Corollary 5.7, we have
c = d. Hence, |a| = |b| = |c| = 3 and d(a, b) = d(a, c) = d(b, c) = 2.

Let y = a∨b∨c. Similarly, we have |y| ≤ 5 and φdim(F ) = 0, so there exists a dimension d
such that y ∈ V (Qd:L) and |Fd:L| =

(

n−1
2

)

−1 by (11). Using Lemma 5.3 with the assumption
(i) on the vertex a we obtain a faulty vertex in F 3

d:R; so
∣

∣F 3
∣

∣ ≥ 4, which is a contradiction
with Corollary 5.7.

Lemma 5.9. 0 /∈ F .

Proof. For a contradiction we suppose that 0 ∈ F . Hence,
∣

∣F 1
∣

∣ ≤ n − 3 by Lemma 5.6.
We observe that F 1 = ∅, otherwise we choose x ∈ F 1, we split Qn so that x ∈ Fi:L and

|Fi:L| =
(

n−1
2

)

− 1 by (12), and by Lemma 5.3 with the assumptions (i) and (iii) we obtain
F≥3 6= ∅, contrary to Lemma 5.8. Hence, φ1(F ) = n which is possible only if n = 6,

∣

∣F 1
∣

∣ = 0,
∣

∣F 2
∣

∣ = 12 and φdim(F ) = 0.
Since φdim(F ) = 0, we have |Fi:R| = k(n) = n − 2 = 4 for every dimension i ∈ [n]. Since

∣

∣F 1
∣

∣,
∣

∣F≥3
∣

∣ = ∅, only one vertex of N+(ei) is F -free for every vertex ei of the first level in
Qn. Therefore, for every dimension j there exists exactly one other dimension k such that
ej,k /∈ F , so all dimensions are split into three pairs {j1, k1}, {j2, k2} and {j3, k3} such that
ej1,k1

, ej2,k2
, ej3,k3

/∈ F . This is satisfied up to isomorphism only by one set of faulty vertices
F : the set of all vertices of level 0 or 2 except the vertices e1,2, e3,4 and e5,6. By Lemma 5.1
with the assumption (i), it suffices to find a long F6:L-free cycle in Q6:L which is presented on
Figure 2. Thus, we obtain a contradiction with (9).

Finally, we prove the last simple lemma which leads to a contradiction with (9).

Lemma 5.10. For every dimension i ∈ [n], if ei /∈ F , then |Fi:L| ≥
(

n−1
2

)

.

Proof. Let us consider a vertex ei /∈ F such that |Fi:L| =
(

n−1
2

)

− 1. There exists a vertex
x ∈ F 1

i:L, because φ1(F ) ≤ 4 ≤ n − 2 by Lemmas 5.2 and 5.9. We use Lemma 5.3 with
the assumptions (i) and (iv) on the vertex x to obtain

∣

∣F 3
∣

∣ ≥ 1, which is a contradiction to
Lemma 5.8.

The end of the proof of Theorem 1.1. Recall that φ0(F ) = 2 by Lemma 5.9, which implies
that φdim(F ) + φ1(F ) ≤ 4 by Lemma 5.2. Lemma 5.10 says that φdim(F ) ≥ φ1(F ) which
implies that

∣

∣F 1
∣

∣ ≥ n − 2. On the other hand, we know that
∣

∣F 1
∣

∣ ≤ n − 1 by Lemma 5.5.
Moreover, |F | =

(

n
2

)

− 2 and every faulty vertex is in the level 1 or 2 by Lemmas 5.8 and 5.9.
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e1,2

e3,4

e5

(0, 0, . . . , 0)

Figure 2: Bold points are faulty vertices and bold lines form a long F6:L-free cycle in Q6:L for
Lemma 5.9.

If there exists a vertex a ∈ F 2 such that both vertices in N−(a) are faulty, then we split
Qn so that a ∈ Fi:L and |Fi:L| =

(

n−1
2

)

− 1 by (12). Then, we use Lemma 5.3 with the
assumptions (i) and (iii) to obtain

∣

∣F 4
∣

∣ ≥ 1, which is a contradiction to Lemma 5.8. Hence,
every vertex of F 2 is above some F -free vertex of level 1.

Lemma 5.10 also implies that there are at most n − 3 faulty vertices above every F -free
vertex in level 1. Since there are at most two F -free vertices in level 1, we have

∣

∣F 2
∣

∣ ≤ 2(n−3).
This leads to the final contradiction 3n− 7 ≥

∣

∣F 1
∣

∣ +
∣

∣F 2
∣

∣ = |F | =
(

n
2

)

− 2 since n ≥ 6, which
finishes the proof of the main Theorem 1.1.

Acknowledgement. We would like to Tomáš Dvořák for fruitful discussion and Václav
Koubek also for many comments which improved the presentation of this paper.
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6 Appendix: Long routings with two paths

In this appendix we include the proofs of Theorem 1.5 and Corollary 1.6 from the paper
[5]. The authors would like to study similar problems more intensively and publish them
separately, but Theorem 1.5 and Corollary 1.6 are used in this paper, so their proofs are
included for the purpose of referee.

Recall that for a set F ⊆ V (Qn) and two different sets A, B ⊆ V (Qn)\F with |A| = |B| =
2, a pair P1, P2 of vertex-disjoint AB-paths in Qn − F is called a long F -free AB-routing if
|P1| + |P2| ≥ 2n − 2|F | − 3. Note that if P1 and P2 have moreover both even, or both odd
length, then actually |P1| + |P2| ≥ 2n − 2|F | − 2.

The proof is straightforward and apart from standard induction, it uses the following
results.

Proposition 6.1 (Lewinter and Widulski [12]). Let n ≥ 2 and u, v, w be distinct vertices in
Qn such that u and v have the same parity opposite to the parity of w. Then, Qn − {w} has
a Hamiltonian uv-path.

Proposition 6.2 (Hung et al. [9]). Let n ≥ 4, F ⊆ V (Qn) such that |F | ≤ n − 2 and F is
not monopartite, and let u, v ∈ V (Qn) \ F be distinct vertices. Then, Qn − F has an uv-path
of length at least 2n − 2|F |.

In the following two lemmas we start with dimensions n = 3 and n = 4. Note that
Lemma 6.3 is needed for Lemma 6.4, whereas Lemma 6.4 serves us as a base of induction for
Theorem 1.5.

Lemma 6.3. For every set F of at most 1 vertex of Q3, there exists a long F -free AB-routing
in Q3 between every two disjoint sets A, B ⊆ V (Q3) \ F such that |A| = |B| = 2 and A ∪ B
is not monopartite.

Proof. It is trivial to verify the statement by inspection of all cases. First, consider all possible
sets A, B in case F = ∅ when we search for AB-routing P1, P2 in Q3 such that |P1|+ |P2| ≥ 5.
Then, consider the case |F | = 1 when we need |P1| + |P2| ≥ 3.

Note that the disjointness of the sets A and B is necessary in Lemma 6.3. Indeed, for
A = {001, 110}, B = {111, 110}, and F = {000}, observe that there is no path between 001
and 111 in Q3 −{000, 110} of length at least 3, and consequently, no long F -free AB-routing
in Q3.

Lemma 6.4. For every set F of at most 1 vertex of Q4, there exists a long F -free AB-routing
in Q4 between every two different sets A, B ⊆ V (Q4) \ F such that |A| = |B| = 2 and A ∪ B
is not monopartite.

Proof. Case 1: First, we consider the case when A = {u, v} and B = {x, v} intersect at some
vertex v. Then, we can treat v as a new faulty vertex in the set F ′ = F ∪ {v}, so it suffices
to find an ux-path in Q4 − F ′ of length at least 24 − 2|F ′| − 1. If u, x are of opposite parity,
such path exists by Corollary 1.3. Now u and x are of the same parity.

If F ′ = {v}, then the requested ux-path exists by Proposition 6.1 since A ∪ B = {u, x, v}
is not monopartite. Now we have F ′ = {f, v}. If f and v have opposite parity, then the
requested path exists by Proposition 6.2.
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Since A ∪ B is not monopartite, it remains to consider the case when f and v have the
same parity opposite to the parity of u and x. We split Q4 into QL and QR so that f and v
are in separate subcubes, say F ′

L = {f} and F ′
R = {v}, and we distinguish two subcases.

Subcase (i): If vertices u, x are in the same subcube, say u, x ∈ V (QL), then from Propo-
sition 6.1 we obtain ux-path PL in QL − F ′

L of length 6. Let ab be an edge of PL such that
aR, bR 6= v. From Corollary 1.3 we obtain aRbR-path PR in QR − F ′

R of length 5. After
interconnecting PR and PL − ab by edges aaR, bbR we get the desired ux-path in Q4 − F ′ of
length 12 ≥ 24 − 2|F ′| − 1.

Subcase (ii): Now vertices u, x are in different subcubes, say x ∈ V (QL) and u ∈ V (QR).
We choose a vertex a ∈ V (QL) with the opposite parity than u, a 6= f , and aR 6= u. Note
that a 6= x and aR 6= v. From Corollary 1.3 we obtain ax-path PL in QL−F ′

L of length 5, and
from Proposition 6.1 we obtain uaR-path PR in QR−F ′

R of length 6. By interconnecting these
paths with the edge aaR we obtain the desired ux-path in Q4−F ′ of length 12 ≥ 24−2|F ′|−1.

Case 2: Second, we consider the case when A = {u, v} and B = {x, y} are disjoint.
Then, we split Q4 into QL and QR so that x, y are in different subcubes, say x ∈ V (QL) and
y ∈ V (QR), and we distinguish two subcases depending on the vertices of A.

Subcase (i): If vertices u, v are in the same subcube, say A ⊆ V (QL), we choose a vertex
a ∈ V (QL) \FL with the same parity as y, aR /∈ FR, and a /∈ {u, v, x}. Note that such vertex
exists, since there are 4 candidate vertices in QL with the same parity as y, the set F blocks
at most one of them, and the set {u, v, x} blocks at most two of them, otherwise A∪B would
be monopartite. For a set B′ = {x, a} it follows that A, B′ are disjoint and A ∪ B′ is not
monopartite. Hence by Lemma 6.3, there is an AB′-routing P ′

1, P
′
2 in QL − FL such that

|P ′
1|+ |P ′

2| ≥ 23 − 2|FL|−3. Assume that a is the endvertex of the path P ′
1. By Corollary 1.3,

there is an aRy-path in QR−FR of length at least 23−2|FR|−1 since aR and y have opposite
parity. By interconnecting P ′

1 and PR with the edge aaR, we obtain AB-routing P1, P
′
2 in

Q4 − F such that |P1| + |P ′
2| = |P ′

1| + |PR| + 1 + |P ′
2| ≥ 24 − 2|F | − 3.

Subcase (ii): Now vertices u, v are in different subcubes, say u ∈ V (QL) and v ∈ V (QR).
If u and x, or v and y are of opposite parity, then from Corollary 1.3 we obtain a long FL-free
ux-path PL in QL and a long FR-free vy-path PR in QR such that |PL|+ |PR| ≥ 24−2|F |−3.
Hence PL, PR is a long F -free AB-routing in Q4.

Since A ∪ B is not monopartite, it remains to consider the case when u and x have the
same parity opposite to the parity of v and y. We choose two vertices a, b ∈ V (QL) \FL with
the same parity opposite to the parity of u, and aR, bR /∈ FR. Note that such vertices exist
since there are 4 candidate vertices in QL with the parity opposite to u and the set F blocks
at most one of them. It follows that AL = {u, x}, BL = {a, b} are disjoint and AL ∪ BL is
not monopartite. Hence, by Lemma 6.3 there is a long FL-free ALBL-routing P ′

1, P
′
2 in QL.

Moreover, since both paths P ′
1, P ′

2 have odd length, we have |P ′
1| + |P ′

2| ≥ 23 − 2|FL| − 2.
Assume that the ALBL-routing joins the vertex u with b, otherwise we switch the roles of a and
b in what follows. By the definition of a, b, the sets AR = {bR, v}, BR = {aR, y} are disjoint
and AR∪BR is not monopartite. Hence, by Lemma 6.3 there is a long FR-free ARBR-routing
P ′

3, P
′
4 in QR. By interconnecting P ′

1, P
′
2 and P ′

3, P
′
4 with edges aaR, bbR we obtain AB-routing

P1, P2 in Q4 − F such that |P1| + |P2| = |P ′
1| + |P ′

2| + |P ′
3| + |P ′

4| + 2 ≥ 24 − 2|F | − 2.

Now we are ready to prove Theorem 1.5, which says that for every set F of at most n− 3
vertices in Qn and n ≥ 4, there exists a long F -free AB-routing in Qn between every two
different sets A, B ⊆ V (Qn) \ F such that |A| = |B| = 2 and A ∪ B is not monopartite.
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Proof of Theorem 1.5. We proceed by induction on the dimension n. For n = 4 we apply
Lemma 6.4. Now assume n ≥ 5.

First, we split Qn into QL and QR such that we separate two arbitrarily chosen faulty
vertices from F if |F | ≥ 2, otherwise we split Qn arbitrarily. It follows that |FL|, |FR| ≤ n−4.
Thus, we may apply induction both in QL and QR. We consider the following cases.

Case 1: If both A, B are in one subcube, say A, B ⊆ V (QL), then by induction, there is a
long FL-free AB-routing P ′

1, P ′
2 in QL. Let ab be an edge of P ′

1 or P ′
2, such that aR, bR /∈ FR.

Such edge exists, otherwise 2n−1−2|FL|−3 ≤ |P ′
1|+ |P ′

2| ≤ 2|FR|, which yields a contradiction
2n−1−3 ≤ 2|F | ≤ 2n−6 for n ≥ 5. From Corollary 1.3 we obtain an aRbR-path PR in QR−FR

of length 2n−1 − 2|FR| − 1 since aR and bR have different parity. After interconnecting PR

and P ′
1 or P ′

2 with the edges aaR, bbR we get the AB-routing P1, P2 in Qn − F such that
|P1| + |P2| = |P ′

1| + |P ′
2| + |PR| + 1 ≥ 2n − 2|F | − 3.

Case 2: If A is in one subcube and B in the other subcube, say A = {u, v} ⊆ V (QL) and
B = {x, y} ⊆ V (QR), we distinguish two subcases.

Subcase (i): If u and v have different parity, then from Corollary 1.3 we obtain an uv-path
PL in QL − FL of length at least 2n−1 − 2|FL| − 1. Let ab be an edge of PL such that
A′ = {aR, bR} is disjoint with FR and A′ 6= B. Such edge exists, otherwise |PR| ≤ 2|FR| + 1,
which yields a contradiction 2n−1 − 2 ≤ 2|F | ≤ 2n − 6 for n ≥ 5. Since A′ ∪ B is not
monopartite, there is a long FR-free A′B-routing P ′

1, P ′
2 in QR. By interconnecting PL − ab

and P ′
1, P ′

2 with the edges aaR, bbR, we get an AB-routing P1, P2 in Qn − F such that
|P1| + |P2| = |PL| + |P ′

1| + |P ′
2| + 1 ≥ 2n − 2|F | − 3.

Subcase (ii): Now u and v are of the same parity. We choose vertices B′ = {a, b} ⊆
V (QL) \ FL of the same parity opposite to the parity of u such that A′ = {aR, bR} is disjoint
with FR. Such vertices exists, since there are 2n−2 candidates in QL with parity opposite to
the parity of u, and at most n − 3 of them are blocked by F . Clearly, A 6= B′ and A ∪ B′ is
not monopartite. Thus, there is a long FL-free AB′-routing P ′

1, P ′
2 in QL. Moreover, since

both P ′
1, P ′

2 have odd length, we have |P ′
1| + |P ′

2| ≥ 2n−1 − 2|FL| − 2. In the other subcube
QR, at least one vertex of B = {x, y} has the opposite parity to the parity of aR, bR, u, and
v. It follows that A′ 6= B and A′ ∪ B is not monopartite, and hence, there is a long FR-free
A′B-routing P ′

3, P ′
4 in QR. By interconnecting P ′

1, P ′
2 and P ′

3, P ′
4 with edges aaR, bbR we get

an AB-routing P1, P2 such that |P1| + |P2| = |P ′
1| + |P ′

2| + |P ′
3| + |P ′

4| + 2 ≥ 2n − 2|F | − 3.

Case 3: If A is one subcube, and B in both subcubes, say A = {u, v} ⊆ V (QL), x ∈ V (QL),
y ∈ V (QR), then we proceed similarly as in Case 2, Subcase (i) of Lemma 6.4. We choose a
vertex a ∈ V (QL) \FL with the same parity as y, aR /∈ FR, and a /∈ {u, v, x}. Note that such
vertex exists, since there are 2n−2 candidate vertices in QL with the same parity as y, the
faulty vertices block at most n − 3 of them, the set {u, v, x} blocks at most 3 of them, and
2n−2 − (n − 3) − 3 ≥ 1 for n ≥ 5. For a set B′ = {x, a} it follows that A, B′ are disjoint and
A ∪ B′ is not monopartite. Hence by induction, there is an AB′-routing P ′

1, P
′
2 in QL − FL

such that |P ′
1| + |P ′

2| ≥ 2n−1 − 2|FL| − 3. Assume that a is the endvertex of the path P ′
1.

By Corollary 1.3, there is an aRy-path in QR − FR of length at least 2n−1 − 2|FR| − 1 since
aR and y have opposite parity. By interconnecting P ′

1 and PR with the edge aaR, we obtain
AB-routing P1, P

′
2 in Qn − F such that |P1| + |P ′

2| = |P ′
1| + |PR| + 1 + |P ′

2| ≥ 2n − 2|F | − 3.

Case 4: If A, B are both subcubes, say u, x ∈ V (QL) and v, y ∈ V (QR), then we proceed
similarly as in Case 2, Subcase (ii) of Lemma 6.4. If u and x, or v and y are of opposite
parity, then from Corollary 1.3 we obtain a long FL-free ux-path PL in QL and a long FR-free
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vy-path PR in QR such that |PL| + |PR| ≥ 2n − 2|F | − 3. Hence PL, PR is a long F -free
AB-routing in Qn.

Since A ∪ B is not monopartite, it remains to consider the case when u and x have the
same parity opposite to the parity of v and y. We choose two vertices a, b ∈ V (QL) \FL with
the same parity opposite to the parity of u, and aR, bR /∈ FR. Note that such vertices exist
since there are 2n−2 candidate vertices in QL with the parity opposite to the parity of u, the
faulty vertices block at most n− 3 of them, and 2n−2 − (n− 3) ≥ 2 for n ≥ 5. It follows that
AL = {u, x}, BL = {a, b} are disjoint and AL ∪ BL is not monopartite. Hence, by induction
there is a long FL-free ALBL-routing P ′

1, P
′
2 in QL. Moreover, since both paths P ′

1, P ′
2 have

odd length, we have |P ′
1|+ |P ′

2| ≥ 2n−1 − 2|FL| − 2. Assume that the ALBL-routing joins the
vertex u with b, otherwise we switch the roles of a and b in what follows. By the definition
of a, b, the sets AR = {bR, v}, BR = {aR, y} are disjoint and AR ∪ BR is not monopartite.
Hence, by induction there is a long FR-free ARBR-routing P ′

3, P
′
4 in QR. By interconnecting

P ′
1, P

′
2 and P ′

3, P
′
4 with edges aaR, bbR we obtain AB-routing P1, P2 in Qn − F such that

|P1| + |P2| = |P ′
1| + |P ′

2| + |P ′
3| + |P ′

4| + 2 ≥ 2n − 2|F | − 2.

Finally, we prove Corollary 1.6 that says for every set F of at most n − 2 vertices of Qn

and n ≥ 4, the graph Qn − F has an uv-path of length at least 2n − 2|F | − 1 for every two
vertices u, v ∈ V (Qn) \ F such that F ∪ {u, v} is not monopartite.

Proof of Corollary 1.6. If F = ∅, then u and v have opposite parity, and the statement follows
from a well-known fact that Qn contains a Hamiltonian path between every two vertices
of opposite parity. Otherwise, there exists f ∈ F such that {u, v, f} is not monopartite.
Applying Theorem 1.5 for A = {u, f}, B = {v, f}, F ′ = F \ {f} we obtain vertex-disjoint
paths P1, P2 such that P1 joins u and v, P2 contains only f , and |P1|+ |P2| ≥ 2n − 2|F ′| − 3.
Hence |P1| ≥ 2n − 2|F | − 1, and P1 is the desired path.
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