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Abstract— The theory of multirate switching networks, started
in the late 80s, has been very practically useful. In particular, it
has served as the theoretical foundation for the development of
most Asynchronous Transfer Mode (ATM) switching systems.

Rearrangeable multirate multicast switching networks are
customarily called rearrangeable multirate distributors. It has
been known for more than 18 years that rearrangeable multirate
distributors with cross-point complexity O(n log2 n) can be
constructed, where n is the number of inputs (and outputs)
of the switching network. The problem of constructing optimal
distributors remains open thus far.

In this paper, we give a general construction of rearrangeable
multirate distributors with given depths. One of the rewards
of our construction is a rearrangeable multicast distributor
with cross-point complexity O(n log n). We shall also show
that this cross-point complexity is optimal, thus settling the
aforementioned open problem.

One of the key ingredients of our new construction is the notion
of multirate concentrators. The second ingredient is a multirate
version of the Pippenger network, which is a rearrangeable
multirate distributor recursively constructed based on multirate
concentrators. We shall show how to construct given-depth
multirate concentrators and given-depth multirate Pippenger
networks with small sizes. When the depth is chosen to optimize
the size, we obtain the aforementioned O(n log n) cross-point
complexity.

I. INTRODUCTION

Multirate switching networks are switching networks that
support varying bandwidth connections. The theory of mul-
tirate switching networks, perhaps started with the papers by
Niestegge [28] and Melen and Turner [20], has proved to be
very useful in practice. For example, this theory has served
as the theoretical foundation for the development of most
Asynchronous Transfer Mode (ATM) switching systems from
major ATM equipment manufacturer [5], [34], [35]. Roughly
speaking, as opposed to space switching where each internal or
external link of a switch can only carry one connection request
at a time, the multirate switches allow for many connections
with varying rates (or bandwidths) to be carried on a single
link, as long as the total connection rate does not exceed the
link’s capacity.

In the unicast case, one particularly fruitful line of research
on multirate switching networks has been on the multirate re-
arrangeability of the Clos network [4], represented by the (still
open) conjecture by Chung and Ross in 1991 [3] which states

that the Clos network C(n, m, r) is multirate rearrangeably
nonblocking when the number m of middle-stage switches is
at least 2n−1. This conjecture is interesting because it points
towards a possible generalization of the Konig’s theorem for
edge coloring bipartite graphs. Later developments on this
conjecture and related problems were reported in [6], [8], [11],
[19], [23], [26]. See also [9], [18] for several related lines of
research.

In the multicast and broadcast cases, there have been notably
few known results, though. The works presented in [15], [16],
[18], [39] concern conditions for the Clos network to be
multicast capable. The study presented in [21] (the journal
version is [22]) was the only one that deals directly with more
general constructions and complexities of multicast multirate
switching networks. In their paper, using the Pippenger’s
network [30], the authors constructed a rearrangeable multirate
distributor with cross-point complexity O(n log2 n), where n
is the number of inputs (and outputs) of the switching network.
(Distributor, also called distribution network or generalized
connector, is a standard name referring to multicast switching
networks in the switching network literature [12], [13].)

The problem of constructing optimal-size rearrangeable
multirate distributors remains open thus far. In this paper,
we give a general construction of rearrangeable multirate
distributors with given depths. (The notions of depths and
rearrangeability shall be defined rigorously in a later section.)
One of the rewards of our construction is a rearrangeable
multicast distributor with cross-point complexity O(n log n).
We shall also show that this size is optimal, thus settling the
aforementioned open problem.

One of the key ingredients of our new construction is
the notion of multirate concentrators. The second ingredient
is a multirate version of the Pippenger network, which is
a rearrangeable multirate distributor recursively constructed
based on multirate concentrators. We shall show how to
construct given-depth multirate concentrators and given-depth
multirate Pippenger networks with small sizes. When the depth
is chosen to optimize the size, we obtain the aforementioned
O(n log n) cross-point complexity.

The rest of the paper is organized as follows. Section
II presents basic definitions and several fundamental com-
positions of networks. Section III defines a particular type
of multirate concentrators, which is crucial in constructing
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multirate distributors. Section IV contains the main results,
including a general given-depth construction. The construction
gives rise to a rearrangeable multirate distributor of size
O(n lg n) which is then shown to be optimal. Lastly, Section
V concludes the paper with a few remarks and discussions on
future works.

II. PRELIMINARIES

A. Multirate networks

In the rest of the paper, let [m] = {1, . . . ,m} and Zm =
{0, . . . ,m− 1} for any positive integer m. For any finite set
X , let 2X denote the power set of X . For any positive integer
k, we use

(
X
k

)
to denote the set of all k-subsets of X . Graph

theoretic terminologies we use here are fairly standard (see
[38], for instance).

An (n1, n2)-network is a directed acyclic graph (DAG) N =
(V,E;X, Y ), where V is the set of vertices, E is the set of
edges, X is a set of n1 nodes called inputs, and Y – disjoint
from X – is a set of n2 nodes called outputs. The vertices
in V − X ∪ Y are internal vertices. The in-degrees of the
inputs and the out-degrees of the outputs are zero. The size
of a network is its number of edges. The size of a network
is the equivalence of the cross-point complexity of a switch.
The DAG model is standard for studying the complexity of
switching networks [24], [25]. The depth of a network is the
maximum length of a path from an input to an output. For
short, we call an (n, n)-network an n-network.

In the multirate environment, a constant β ≤ 1 is often
used to represent the capacity of the inputs and outputs of N .
All internal nodes have capacity (normalized to) 1. The ratio
1/β is often referred to as the speed advantage of the system.
This internal speedup is a common technique for designing
broadband switches [12], [13], [20].

Given an n-network N = (V,E;X, Y ), a distribution
request (or multicast request) is a triple

D = (x, S, w) ∈ X × 2Y × [b, B].

The request is from input x to a subset S of outputs. The
weight or rate w of the request satisfies b ≤ w ≤ B for some
given lower- and upper-bounds 0 ≤ b < B ≤ β ≤ 1.

A distribution assignment is a set D of requests satisfying
the following conditions: (a) total weight of requests coming
from any particular input does not exceed β, and (b) total
request weight to any output does not exceed β; to put it
rigorously, ∑

(x,S,w)∈D

w ≤ β, ∀x ∈ X

∑
(x,S,w)∈D

y∈S

w ≤ β, ∀y ∈ Y.

A request D is compatible with a distribution assignment D
if and only if D ∪ {D} is also a distribution assignment.

A distribution route R for a request D = (x, S, w) is a
(directed) tree rooted at x whose leaves are precisely the nodes
in S. We also say that R realizes D, and call w the weight of
R. A state of the n-network N is a set R of distribution routes,

where the total weight of routes containing any node does not
exceed the capacity of that node. Each state of N realizes
a unique distribution assignment, one route per request. A
distribution assignment D is realizable if and only if there is a
network state realizing it. A request is compatible with a state
if it is compatible with the distribution assignment realized by
the state.

We are now ready to define the fundamental notions of
nonblockingness in the multirate environment. In defining
different notions of distributors, we drop the “multirate”
qualification to avoid being wordy. Distribution networks in
this papers are implicitly understood as multirate distribution
networks, unless specified otherwise.

A rearrangeable (RNB) n-distributor (or just n-distributor
for short) is an n-network in which any distribution assignment
is realizable.

A strictly nonblocking (SNB) n-distributor is an n-network
N in which, given any network state R realizing a distribution
assignment D and a new request D compatible with D, there
exists a route R such that R∪{R} is a network state realizing
D ∪ {D}.

As requests come and go, a strategy to pick new routes
for new requests is called a routing algorithm. An n-network
is called a widesense nonblocking (WSNB) n-distributor with
respect to a routing algorithm A if A can always pick a new
route for a new request compatible with the current network
state. We can also replace A by a class of algorithms A. In
general, an n-network N is WSNB if and only if it is WSNB
with respect to some algorithm.

We will consider two classes of functions on each network
type: (a) the minimum size of a network, and (b) the minimum
size of a network with a given depth. One of the key problems
addressed in this paper is the tradeoff between networks’
depths and their sizes.

Given the parameters β, b, and B as described above,
let mrdβ[b,B](n), mwdβ[b,B](n), and msdβ[b,B](n) denote
the minimum size of a multirate RNB, WSNB, and
SNB n-distributor, respectively. In the given-depth case, let
mrdβ[b,B](n, k), mwdβ[b,B](n, k), and msdβ[b,B](n, k) denote
the minimum size of an RNB, WSNB, and SNB n-distributor
with depth k, respectively.

In the special case when b = 0, B = β = 1, i.e.
the case when there is no internal speedup and no request
rate restriction, we will drop the subscripts β[0, B] and use
mrd(·),mwd(·),msd(·) to denote the corresponding func-
tions.

B. Classical networks

In constructing multirate distributors, we will also need the
notions of (classical) concentrators and super-concentrators
(see [12], [13], [25] for more details on these networks).

For positive integers n ≥ m, recall that an (n, m)-
concentrator is an (n, m)-network such that for any subset
S of m inputs there exists a set of m vertex disjoint paths
connecting S to the outputs. (It does not matter which partic-
ular outputs these disjoint paths connect the inputs in S to.)
Let c(n, m) and c(n, m, k) denote the minimum sizes of an
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TABLE I
KNOWN RESULTS ON s(n, k)

Depth k Size s(n, k)

2 Θ
“

n log2 n
log log n

”
[33]

3 Θ (n log log n) [1]
2d, 2d + 1, d ≥ 2 Θ (nλ(d, n)) [7], [32]
In particular, for k = 4, 5 Θ (n log∗ n) [7], [32]
Θ(α(n)) Θ(n) [7]

(n, m)-concentrator and an (n, m)-concentrator of depth k,
respectively.

An (n, m)-superconcentrator is an (n, m)-network with
inputs X and outputs Y such that for any S ⊆ X and
T ⊆ Y with |S| = |T |, there are |S| paths which are vertex
disjoint and which connect vertices in S to vertices in T .
Thus, each vertex in S and T is an end point of exactly
one of these paths. An n-superconcentrator is an (n, n)-
superconcentrator. Let s(n) and s(n, k) denote the minimum
sizes of an n-superconcentrator and an n-superconcentrator of
depth k, respectively.

When n ≥ m, an (n, m)-superconcentrator can be obtained
from an n-superconcentrator by simply removing arbitrarily
(n −m) outputs from the n-superconcentrator. Moreover, an
(n, m)-superconcentrator is obviously an (n, m)-concentrator.
(The converse does not necessarily hold.) Hence,

c(n, m) ≤ s(n),
c(n, m, k) ≤ s(n, k).

Note that the concentrators and superconcentrators described
above operate in the space domain, namely no two paths can
share a vertex. Thus, the concentrators and superconcentrators
defined above will also be referred to as space-domain con-
centrators and superconcentrators, in cases where we want to
emphasize the domain they operate in.

When the network depth is not limited, it has been known
for more than three decades that there are concentrators and
superconcentrators of linear size [36], [37]. The constructions
were based on expanders, whose applications in mathematics
and computer science are numerous [10].

For the given-depth case, the asymptotic behaviors of all
the s(n, k) were only completely devised recently. Table I
summarizes the results. The function λ(d, n) is the inverse
of functions in the Ackerman hierarchy: they are increasing
extremely slowly. They can be defined as follows. Let

log∗ n := min{l ≥ 0 | log . . . log n︸ ︷︷ ︸
l

≤ 1}

where the logarithms are to base 2. By induction on k, define

λ(d, n) := log

d−1︷ ︸︸ ︷
∗ · · · ∗ n :=

min{l ≥ 0 | log

d−2︷ ︸︸ ︷
∗ · · · ∗ . . . log

d−2︷ ︸︸ ︷
∗ · · · ∗ n︸ ︷︷ ︸

l

≤ 1}

The reader is referred to [7] for the definition of α(n) (which
is actually called β(n) in their paper, but we change its name
to avoid confusion with our speedup parameter β).

C. Basic compositions of networks

Let N1 and N2 be any two (n, m)-networks. We use
N1�N2 to denote an (n, m)-network N obtained by iden-
tifying the inputs of N1 and N2 in any one-to-one manner,
and identifying the outputs of N1 and N2 in any one-to-one
manner. See Figure 1(a) for an illustration. We refer to N1�N2

as the stacking of N1 and N2. When stacking k copies of a
network N , denote the result by �kN .

Given any k (n, m)-networks N1, . . . ,Nk, let
` (N1, . . . ,Nk), called a folding of N1, . . . ,Nk, denote
the (n, mk)-network obtained by identifying the inputs of
N1, . . . ,Nk in any one-to-one fashion. In effect, we “paste”
together the inputs of N1, . . . ,Nk. See Figure 1(b) for an
illustration. When the Ni are identical copies of the same
(n, m)-network N , we use `k N to denote the result instead
of writing ` (N , . . . ,N ).

Given an (n, m)-network M and a (m, l)-network N , a
concatenation of M and N , denoted by M◦N , is the (n, l)-
network obtained by identifying the outputs of M and the
inputs of N in any one-to-one fashion. (See Figure 1(c).)

III. MULTIRATE CONCENTRATORS

There are several obvious ways to generalize the notion
of space-domain concentrators to multirate concentrators. To
avoid cumbersome notations, we will define here only a
particular type of multirate concentrators which is used in the
next section to construct multirate distributors.

Given positive integers n ≥ m > 0. Consider an (n, m)-
network C = (V,E;X, Y ) A multirate concentration request
is a pair (x,w), where x is an input and 0 < w ≤ 1 is the
weight of the request. A path from x to some output is called
a route realizing this request. A set of routes are compatible if
the total weight of routes through any vertex is at most 1. (In
other words, in the context of multirate concentrators we are
defining, all nodes – including the inputs and outputs – have
capacity 1.)

A multirate concentration assignment is a set of multirate
concentration requests such that each input generates requests
with total weight at most 1, and that the total weight of all
requests is at most m/2. (The total weight limit of m/2 is
technically needed for the proof of Lemma III.1 to work. Thus,
the limitation is due to technicality and it may seem a little
unnatural at first.)

The network C is called a multirate (n, m)-concentrator if
and only if, given any multirate concentration assignment D
there exists a set of compatible routes realizing requests in the
assignment.

Lemma III.1. Let C be any space-domain (n, m)-
concentrator and S be any space-domain (n, m)-
superconcentrator. Then, the stacking C(n, m) = C�S
is a multirate (n, m)-concentrator.
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N2

N1 N3

N2

(c) A concatenation N2 ◦ N3(b) A folding ` (N1,N2)(a) A stacking N1�N2

Fig. 1. Illustrations of basic network compositions

space domain (n, m)-concentrator

space domain (n, m)-superconcentrator

Fig. 2. Construction of an (n, m)-multirate concentrator C(n, m).

Proof. The reader is referred to Figure 2 for an illustration of
C(n, m). To prove this lemma, we will use a routing algorithm
adapted from the CAP algorithm proposed in [20].

Let D be any multirate concentration assignment. Note
that the inputs of the multirate concentration requests in D
are not necessarily distinct. As long as there are still two
requests (x,w1) and (x,w2) coming from the same input x,
replace them by a new request (x,w1 + w2). The new set of
multirate concentration requests is still a (valid) concentration
assignment. Moreover, a route realizing (x,w1 + w2) can be
“decomposed” back into two routes with weights w1 and w2 to

satisfy the original requests (x,w1) and (x,w2). Consequently,
without loss of generality we can assume that the inputs of
these multirate concentration requests are distinct.

Partition D into two subsets Dl (large requests) and Ds

(small requests), where Dl consists of all requests with weights
strictly greater than 1/2, and Ds consists of the rest of the
requests. Let x = |Dl| be the number of large requests and
y = |Ds| be the number of small requests. Respectively, let
Wl and Ws be the total weights of requests in Dl and Ds.

Because D is a multirate concentration assignment, we have

m/2 ≥ Wl + Ws ≥ x/2 + Ws. (1)

The set Dl of large requests can be routed through the space-
domain (n, m)-concentrator C so that no two routes share a
vertex. Thus, the vertex capacity constraint is satisfied. Every
output which is not involved in these x paths are said to be
free. There are m− x free outputs.

Next, we route the small requests in Ds through the space-
domain superconcentrator S. The small requests will be routed
to the m− x free outputs.

First, divide the y small requests in Ds into t = dy/se
groups of size s = m − x each, with possibly the last group
having size < s. The division is done as follows. Without
loss of generality, suppose the weights for these requests are
w1 ≥ w2 ≥ · · · ≥ wy . Then, the first group consists of s
largest weights w1, . . . , ws; the second group consists of the
next s largest weights ws+1, . . . , w2s; and so forth.

Because s ≤ m, for every group of requests there
are s vertex disjoint paths in the space-domain (n, m)-
superconcentrator S which join the inputs of the requests in
the group to the s free outputs. These paths are routes realizing
the corresponding requests in the group. Consequently, no two
routes for requests in the same group share any vertex.

To this end, we need to show that no vertex of S carries
routes with total weight exceeding 1. In the worst case, a vertex
carries one request from each group. Thus, the maximum
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weight a vertex is forced to carry is at most

w1 + ws+1 + · · ·+ w(t−1)s+1

≤ 1
2

+
w1 + · · ·+ ws

s
+ · · ·+

w(t−2)s+1 + · · ·+ w(t−1)s

s

≤ 1
2

+
Ws

s

≤ 1
2

+
m/2− x/2

m− x
= 1.

The last inequality follows from (1).

Corollary III.2. A (n, m)-multirate concentrator of depth k
can be constructed with the same asymptotic complexity as
s(n, k) shown in Table I.

Proof. This follows directly from the fact that, removing
any n−m outputs from a space-domain n-superconcentrator
yields an (n, m)-superconcentrator, which is also an (n, m)-
concentrator.

IV. REARRANGEABLE MULTIRATE DISTRIBUTORS

We will recursively make use of the multirate concentra-
tor C(n, m) constructed in the previous section to construct
rearrangeable multirate distributors.

A. Distributors for the case B ≤ β ≤ 1/2

In this subsection, we show how to construct multirate
distributors under the condition B ≤ β ≤ 1/2. In fact, we will
construct a slightly stronger distributor, where the capacity of
input nodes are allowed to be 1. Obviously, any distributor
with capacity-1 inputs is also a distributor with capacity-β
inputs. The outputs’ capacities remain equal to β, which is at
most 1/2.

C(n, m)

C(n, m)

m-distributor M

m-distributor M

Fig. 3. Recursive construction of multirate distributors with capacity-1 inputs.

In the following lemma, we ignore the issue of divisibility
for the sake of clarity. It is simple but tedious to deal directly
with divisibility. Basically, if n is not divisible by m, we can
always find l ∈ N such that lm < n < (l + 1)m. Then we
construct an n′-distributor where n′ = (l + 1)m. Removing

arbitrarily n′ − n inputs and n′ − n outputs from an n′-
distributor yields an n-distributor of the same asymptotic size,
because n = Θ(n′).

The following construction is the multirate version of Pip-
penger network [30].

Lemma IV.1. Let m be a factor of n. Let C(n, m) be the
multirate concentrator constructed in the previous section.
Let M be any multirate m-distributor with capacity-1 inputs.
Then, the network

N = `n/m (C(n, m) ◦M)

is a multirate n-distributor with capacity-1 inputs. Note that,
we only consider the case when b ≤ B ≤ β ≤ 1/2.

Proof. The reader is referred to Figure 3 for an illustration of
N . For 1 ≤ i ≤ n/m, let Yi denote the set of outputs of the
ith copy of the multirate m-distributor M.

Consider a distribution assignment D. Partition D into n/m
subsets D = D1∪D2∪· · ·∪Dn/m as follows. For each request
D = (x, T,w) ∈ D and i ∈ {1, . . . , n/m}, let

Ti = T ∩ Yi.

Then, if Ti 6= ∅ we add the multirate distribution request
(x, Ti, w) into Di. Note that, if we can find routes realizing
all of the requests in D1, . . . ,Dn/m, then the natural union
of those routes will realize D. For example, to realize the
request D above, simply take the union of the routes realizing
(x, T1, w), . . . , (x, Tn/m, w).

The idea is to use the first concentrator and distributor to
realize D1, the second concentrator and distributor for D2, and
so on. Since the construction is symmetric, we only need to
show how to construct routes realizing D1.

Firstly, note that the total weight of requests from D1 is at
most m/2, because there are at most m outputs involved in
these requests, each with capacity β ≤ 1/2. Thus, there are
compatible routes in C(n, m) joining each input x of a request
(x, T1, w) in D1 to an output f(x) of C(n, m). Note also that,
for two different inputs x and x′, f(x) and f(x′) might be
the same.

Secondly, construct a distribution assignment D′
1 for the

corresponding (i.e. first) multirate m-distributor as follows. For
each output c of C(n, m), define

w(c) =
∑

(x,T,w)∈D1
f(x)=c

w

T (c) =
⋃

(x,T,w)∈D1
f(x)=c

T.

Then, define

D′
1 = {(c, T (c), w(c)) | w(c) > 0}.

By definition of compatibility, the total weight of compatible
routes to any output c of C(n, m) is at most 1. Consequently,
D′

1 is a valid distribution assignment, which can be realized
by some network state R′

1 of D′
1.
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Finally, each request (x, T1, w) in D1 can be realized by
concatenating the route in C(n, m) from x to f(x) with the
corresponding branch of the route in R′

1 from f(x) to T1.

The following theorem can be made slightly better with
more careful calculus. We state a somewhat weaker version
for the sake of clarity.

Theorem IV.2. For β ≤ 1/2, we can construct n-distributors
of

(a) depth k = 3 and size O
(
n3/2 log n√

log log n

)
.

(b) depth k = 4 and size O
(
n3/2

√
log log n

)
.

(c) depth k = 5 and size O
(
n4/3 log4/3 n

(log log n)2/3

)
.

(d) depth k = 6 and size O
(
n4/3(log n)2/3

)
.

(e) any depth k ≥ 3 and size O
(
n1+1/j (log n)1+1/j

(log log n)1−1/j

)
,

where j = dk/2e.
(f) size O(n log n).

Proof. The reader is referred to Table I and Corollary III.2
when examining the following reasoning.
(a) Let m =

√
n log n√

log log n
. Choose C(n, m) of depth 2 and

size O
(
n log2 n

log log n

)
. Choose M to be the complete m×m

bipartite graph.
(b) Let m =

√
n log log n. Choose C(n, m) of depth 3 and

size O (n log log n). Choose M to be the complete m×m
bipartite graph.

(c) Let m = n2/3 (log n)2/3

(log log n)1/3 . Choose C(n, m) of depth 2,
and M the depth-3 m-distributor constructed in part (a).

(d) Let m = n2/3 log log n
(log n)2/3 . Choose C(n, m) of depth 3, and

M the depth-3 m-distributor constructed in part (a).
(e) We induct on k. For 2 ≤ k ≤ 6, the previous cases serve

as the bases for our induction hypothesis. When, k =
2j with j ≥ 4, choose m = n1−1/j (log log n)(2j−1)/(j+1)

log n ,
C(n, m) of depth 3 and size O (n log log n), and M to be
the depth-(k − 3) m-distributor inductively constructed.
The case when k = 2j − 1 is similar.

(f) In this case, we choose m = n/2, C(n, m) to be the linear
size multirate concentrator (with depth α(n) as in Table
I). The network M is recursively constructed this way.
Suppose the C(n, m) are of size cn for some constant c.
The total size is then

2 · cn + 4 · cn

2
+ · · ·+ 2log nc

n

2log n−1
= O(n log n).

B. Distributors for the general case

Lemma IV.3. Let S be a set of k positive real numbers
{w1, . . . , wk}, where wi ≤ 1/2, ∀i ∈ [k], and

∑k
i=1 wi ≤ 1.

Then, S can be partitioned into at most 4 subsets, each of
whose sums is at most 1/2.

Proof. Let Si = {wi} for each i ∈ [k]. We will gradually
merge these Si until there are only at most four sets left with
the desired property. For each set X , let w(X) denote the sum
of elements in X . Call X a type-j set if 1/2j+1 < w(X) ≤
1/2j .

Now, consider the sets Si, i ∈ [k]. For any j > 1, as long
as there are two sets Si, Si′ of type j, merge Si and Si′ . The
merge yields a type-(j− 1) set. When it is no longer possible
to merge, we have at most 3 sets of type-1, and at most 1 set
of type-j for each j > 1. To this end, merge all sets of type-j
for all j > 1. Because 1/4 + 1/8 + · · · = 1/2, the result of
this last merge has sum at most 1/2.

Lemma IV.4. Let M be any classical n-distributor. Let N be
the distributor constructed in Lemma IV.1. Then, the stacking
M�(�4N ) of M and 4 copies of N is a multirate n-
distributor for any 0 ≤ b < B ≤ β ≤ 1.

Proof. Consider any distribution assignment D. For each out-
put vertex y, consider the set of weights of requests involving
this vertex. Partition this weight set into at most 5 classes.
Class 0 consists of (at most) one weight which is > 1/2.
Partition all the weights ≤ 1/2 into 4 sets using Lemma IV.3,
then label the sets classes 1 to 4.

For each request (x, T,w) ∈ D, partition T into at most 5
classes T0, T1, . . . , T4, where y ∈ Ti iff the weight w belongs
to class i of output vertex y. In effect, we decompose the
request (x, T,w) into 5 separate requests (x, Ti, w).

The idea is to route the set of all (x, T0, w) using the
classical n-distributor. The routes in the classical distributor
are vertex disjoint, hence they will certainly satisfy the vertex
capacity constraint. Moreover, each output has at most one
request with weight > 1/2, implying that the set of requests
(x, T0, w) is valid for the distributor.

Then, route all requests (x, Ti, w) using the ith copy of N .
Note that the requests that a copy of N is responsible for were
chosen so that each output has total requested weight at most
1/2. Hence, N can handle them easily by Lemma IV.1.

Figure 4 illustrates the construction used in IV.4. Note that
our construction works regardless of the values of β, B, and b.
If β ≤ 1/2 then we do not need the classical distributor in the
stacking. However, asymptotically this fact does not reduce
the size of the multirate distributor.

four distributors

classical distributor

identical

connection

identical

connection

Fig. 4. Construction of multirate distributor

Theorem IV.2 and Lemma IV.4 give the key result of this
paper.
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Theorem IV.5. For any b ≤ B ≤ β, and for any k ≥ 3,
we can construct a depth-k multirate n-distributor of size
O

(
n1+1/j (log n)1+1/j

(log log n)1−1/j

)
, where j = dk/2e. This means

mrdβ[b,B](n, k) = O

(
n1+1/j (log n)1+1/j

(log log n)1−1/j

)
, j = dk/2e.

(2)
Furthermore, we can also construct a multirate n-distributor
of size O(n log n). Thus,

mrdβ[b,B](n) = O(n log n). (3)

Proof. Consider first the fixed-depth case. For the 4 copies
of N in Lemma IV.4, we use part (e) of Theorem IV.4. For
classical n-distributor of depth k, we can use the constructions
in [17] (see also [14]) with size O(n1+ 1

j (log n)
j−1
2 ), which

is asymptotically slightly smaller than our depth-k distributors
from part (e) of Theorem IV.4.

If there is no restriction in the network depth, we use part
(f) of Theorem IV.4 for N . The classical n-distributor of size
O(n log n) has been constructed in [29].

C. On the optimality of our distributor

For classical distributors, it has been known for a long time
that every n-distributor must have size Ω(n log n) [31]. Is it
possible that, due to the internal speedup factor of 1/β, one
can construct multirate n-distributors with size asymptotically
better than O(n log n)? For example, when 1/β is extremely
large (compared to n) it is easy to see that one internal node is
sufficient because this node’s capacity can handle all requests.

In the following theorem, we show that, when B is a
constant, we cannot do better than O(n log n), implying that
our result in Theorem IV.5 is optimal!

Theorem IV.6. Suppose 0 = b < B = β ≤ 1, where B is a
constant. Given any multirate n-distributor of size g(n), we
can construct a classical n-distributor of size O(g(n)) with
the same depth. Thus, any asymptotic lowerbound for classical
distributors is also an asymptotic lowerbound for multirate
distributors, whether or not the depth is specified.

In particular, a multirate n-distributor must have size
Ω(n log n); that is,

mrdβ[b,B] = Ω(n log n).

Proof. Let c = b1/Bc, which is a constant. Let N be any
multirate n-distributor of size g(n). We will construct a clas-
sical n-distributor M of size c2g(n) = O(g(n)) and the same
depth. By the aforementioned result, c2g(n) = Ω(n log n);
thus, g(n) = Ω(n log n), completing the proof.

The network M is constructed as follows. Replace each
internal vertex v of N by c copies v1, . . . , vc. For each edge
(u, v) of N , do the following:

• if u is an input and v is an output of N , add the edge
(u, v) to M;

• if u is an input and v is an internal vertex of N , create
c new edges (u, v1), . . . , (u, vc) in M;

• if u is an internal vertex and v is an output of N , create
c new edges (u1, v), . . . , (uc, v) in M;

• and lastly, if both u and v are internal vertices, then create
c2 new edges (ui, vj) in M, for all i, j ∈ [c].

We need to show that M is indeed a classical n-distributor.
Consider any distribution assignment D in the space domain.
This assignment consists of requests of the form (x, T ), where
T is a subset of the outputs. Each output can only be requested
at most once. Now, create a distribution assignment D′ for N
as follows. For each request (x, T ) in D, create a request
(x, T,B) and add to D′. Let R′ be a network state of N
realizing D′. Obviously each internal node of N belongs to
at most c routes in R′. Thus, from the routes in R′ we can
construct a set of routes realizing D for M easily because
each vertex v of N has c copies in M.

We show an example of the transformation from a multirate
distributor to a classical distributor for c = 2 in Figure 5.

multirate distributor

classical distributor

Fig. 5. An example of the transformation

V. DISCUSSIONS

Just like in the classical case, there are still small gaps
between the upper and lower bounds of depth-k distributors.
These are still open problems. The reader is referred to [25]
for more details. With more careful computation, the results
of Theorem IV.5 for given depths can be made better. Another
open problem is the asymptotic sizes of multirate distributors
when β is not a constant.

On a more practical side, it is not difficult to recursively
construct good concentrators and superconcentrators from 2×
2-switching elements. However, these constructions are based
on expanders [10]. Even though several explicitly constructed
expanders are known, converting them to an arrangement
of switching elements is very tedious and unlikely to yield
a design suitable for physical layout. Some steps toward
realizing concentrators using sparse crossbars have been made
(e.g., [40]). However, the problem of constructing concen-
trators and superconcentrators which not only have linear
crosspoint complexity but also are suitable for physical layout
an important open problem in switching network theory.
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Perhaps the most important contribution in this paper is
the particular notion of multirate concentrators defined and
constructed in Section III. Without this new idea, the proofs
would not “go through.”

Our result is yet again an illustration of the power of
Pippenger’s network in constructing multicast switching net-
works. The basic structure of Pippenger’s network is shown in
Figure 3. This topological structure was used in [21] for the
O(n log2 n)-cross-point complexity construction of multirate
distributors (the best result prior to our work), in [31] for
constructing optimal space-domain distributors, and in [27]
for constructing optimal wavelength-domain distributors. If we
ignore the new notion of multirate concentrators, structurally
the route selection algorithm on a Pippenger network for a
distribution assignment is similar in the space-domain [31],
wavelength-domain [27], and multirate domain (this paper).
This is a by-product of the fact that all three constructions are
based on the same topological idea. Some technical details are
different from one domain to the next though.

The topological structure of Pippenger’s network also has
manifestations in contexts other than multicast switching
network, where the concentrator/distributor pairs might be
replaced with some other pairs. For example, the (inverse)
Banyan network and its topological equivalences (Delta, but-
terfly, etc.) have this basic structure [13]. The multi-butterfly
network defined and constructed in [2] is a very close cousin
of the Pippenger’s network.
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