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On fractionality of the path packing problem

Natalia Vanetik*
Abstract

In an undirected graph G with node set N and a subset T' C N, a fractional multiflow
problem is defined as finding maxy -, ) w(u,v)f[u,v] over all collections f of weighted
paths with ends in 7' (the w-problem). f[u,v] denotes the total weight of paths with the
end-pair (u,v) in f. The paths of f must satisfy the edge capacity constraint: total weight
of the paths traversing a single edge does not exceed 1. We study a fractional multiflow
problem with the reward function w having values (0, 1) (a fractional path packing problem),
and an auxiliary weak problem where w is a metric. A. Karzanov in [K 1989 defined the
fractionality of w with respect to a given class of networks (G,T') as the least natural
D such that for any network (G,T) from the class, the w-problem has a solution which
becomes integer-valued when multiplied by D. He proved that a fractional path packing
problem has infinite fractionality outside a very specific class of networks, and conjectured
that within this class, the fractionality does not exceed 4 (2 for Eulerian networks). In this
paper we prove Karzanov’s conjecture by showing that the fractionality of both fractional

path packing and weak problems is 1 or 2 for every FEulerian network in this class.

ek

Introduction

In this paper we study collections of edge-disjoint paths in a network, also called paths packings
or multiflows, addressing an optimization problem of the following form. Let G = (NN, E) be a
multigraph with node-set N and edge-set F, and let 7' C N be a set of nodes distinguished as
terminals. By a T'-path we mean an unclosed path with the ends in T, and by an integer T'-flow,
or an integer multiflow, we mean a collection of pairwise edge-disjoint T-paths in G. Let us
define a fractional T-flow as a non-negative weight function f(P) on the set of all T-paths in

(G,T), satisfying the edge capacity constraints:

Yop [(P)I(P,(z,y)) < c(x,y) for each adjacent pair (x,y) of nodes in N (1.1)
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Here I(P,(x,y)) denotes the number of (z,y)-edges of G traversed by P, and c(z,y) is the
edge capacity, equal to the number of (z,y)-edges in G. Given non-negative "rewards" w(u, v)

assigned to the unordered pairs of terminals, the problem is to
maximize ), w(u,v)f[u,v] over the fractional T-flows f in (G,T), (1.2)

where f[u,v] denotes the total weight of the (u,v)-paths in f. For short, (I.2)) will be referred
to as the w-problem. This is one of the basic multiflow problems, having numerous applications,
such as communication and VLSI design. Not surprisingly, for most reward functions the w-
problem is known to be NP-hard over integer multiflows, not only when a network (G,T) is
quite arbitrary, but even for such friendly classes as the planar or the Eulerian networks (the

latter class is studied in this paper).

However, the more fragmented is f between various paths, the less is its utility for discrete path
packing. To make this precise, let us, following A. Karzanov [K 1989], define the fractionality of
the reward function w with respect to a given class of networks (G, T'): this is the least natural
D such that for any network (G,T) from the class, the w-problem has a solution f which
becomes integer-valued when multiplied by D (in short, a J -integer solution). For certain
reward functions, fractionality for the general networks was found to be 2 (see [IKL_2000] and
IL_2004]); for some of them, the w-problem was also shown to have an integer solution provided
that the non-terminal (inner) nodes of a network have even degrees; such networks are called

FEulerian.

Two specific classes of the reward function are of principal importance. One comprises the
(0,1) reward functions. It is convenient to represent such a function by a demand graph (or
scheme) (7', S) where S := (u,v) : w(u,v) =1, and to call (I2]) the S-problem. Let a path in
G be called an S-path if its end-pair belongs to S, and a collection of S-paths satisfying (1))
be called an S-flow. Thus, the S-problem may be stated as maximizing of

FIS] = > (uwyes flusv]. A. Karzanov has described the fractionality of the (0,1) reward func-
tions (or the schemes S) in [K 1989]. Namely, the fractionality of S is finite iff any distinct

pairwise intersecting anticliques (i.e., inclusion-maximal stable sets) A, B, C of (T, S) satisfy
ANB=ANC=BnNC, (1.3)
and the finite fractionality can only equal 1, 2, or 4. He conjectured that this

finite fractionality can only be 1 or 2. (1.4)
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Figure 1: The fractionality of S-problem and W-problem can be 2.

Not long ago, H. Ilani and E. Barsky observed that the problem of discrete path packing is
NP-hard, even for Eulerian networks, for each demand graph violating (IL3]). So, investigating
the S-problem has focused on the schemes satisfying (IL3]). In this paper we consider the S-
problem for S satisfying (L3)) together with an auxiliary weak problem, denoted a W -problem:
an w-problem where w is a metric defined by w(u,v) = 1 for (u,v) € S, 3 for (u,v) covered
by exactly one anticlique of (7',.S), and 0 for the others (i. e., those covered by at least two
anticliques). An anticlique clutter of (7, S) satisfying (IL3]) is called a K-clutter, and an Eulerian
network (G, T, ) with an anticlique K-clutter I of (T, 5) is called a K-network. The maxima

of S- and W-problems are denoted by n and 6 respectively.

In this paper, we prove conjecture ([4). Additionally, we show that the W-problem in a K-
network also admits a solution of fractionality at most 2. We use the following crucial fact: every
S-problem and W-problem in a network satisfying (L3)) have a common solution (Theorem 1

of [Va_2007]).

The bound on fractionality is tight in both cases, as an example in Figure [l demonstrates.
There we have IC = {{s;,t;}}, 7,5 € {1,2,3}, and every integer multiflow in this network has
no more than 2 S-paths, for example, paths P and @ in Figure [[(a). The maximum of the
W-problem among integer multiflows is 2%. However, in this network there exists a half-integer
multiflow h = { Py, P», P3, Q1, Q2, Q3} with weight of every path $ being (see Figure[(b)). The
value of 3 w(u,v)hlu,v] for both S-problem and W-problem is 3. Thus, an integer solution
to the S-problem or the WW-problem does not always exist. Table [Il summarizes notation used

in this paper.



Notation Definition

(G, T,K) a network (G, (7T,S)) and the anticlique clutter IC of (T, S)
S-path a path whose end-pair is in S

W -path a path whose end-pair is covered by exactly one member of
zero path a path whose end-pair is covered by two members of IC
dX), X CN the number of (X, X)-edges in G

AMA), ACT min{d(X): XCN, XNT=A}

B(A), ACT (3,4 A(t) — A(A)); is an integer in Eulerian networks
A, ACT T\A

A ACN N\ A

an (A, B)-path (an A-path), A, B C N | a path ends in A and B (in A)

fl4, B| the number of (A, B)-paths in f (f[A] when A = B)

w(P) the weight of path P

zPy an (x,y)-segment of a path P, where x and y are nodes

If] the size of a multiflow f: the total weight of its paths

a maximum multiflow a multiflow of maximum size

the fractionality of a multiflow the largest denominator among its paths’ weights

s~t, s,teT (s,t) is a zero pair

an atom a set of terminals not separated by a member of K

KC is simple every atom in /C has size 1

Table 1: Notation

2 Outline of the proof

We observe K-networks that are counterexamples to the fractionality conjecture for either W-
or S-problem. First, we prove the fractionality conjecture for the WW-problem by showing that
a half-integer simple multiflow of the smallest size solving the W-problem exists. Second, we
observe a minimal K-network that fails to satisfy the S-problem fractionality conjecture and

show that it admits a half-integer solution.

3 Operations on paths and locking

A pair of paths with disjoint end-pairs and a common node forms a cross. A path is compound

if it traverses a terminal different from its ends, and simple otherwise. A multiflow is called



simple if it contains only simple paths.

Let paths P and @ of a multiflow f traverse an inner node z, so that P = P'zP” and QQ = Q'xQ)".
Switching P and @ in x transforms them into K = P'z@Q’ and L = P"x@Q"” and f into the
multiflow f\ {P,Q} U{K, L}. A split of an inner node z is a graph transformation consisting
of removal of z and linking its neighbors by @ edges so as to preserve their degrees. Given a

multiflow A in a network, an h-split of an inner node is a split preserving the paths of h.

A maximum multiflow f locks a set A C T if it contains a maximum (A, A°)-flow, that is, if
f1A, A%l = M(A). Otherwise, f unlocks A. In other words, f locks A if it contains the smallest
possible number of A-paths. A. Karzanov and M. Lomonosov have introduced in [KL_1978§|
the following application of the Ford-Fulkerson augmenting path procedure, assuming that a
multiflow traverses each edge. A maximum multiflow unlocks A € K if and only if it contains an
augmenting sequence Py, xq,...,x; 1Pz, ...., P, of paths Py (an A-path), P, ..., P, ((A, A)-
paths) P, (an A°path) and inner nodes i, ..., 2,1 so that x; € P,, P;;; fori € 1,...n—1
and z; is located on P; between z;_; and the A-end of P;. In the paper, we use the fact that
unlocking a member of I and existence of the alternating sequence are equivalent. When I is
a K-clutter, there exists a series of switches of P, ..., P, in x1, ..., z,,_1 that creates a maximum
multiflow f’ containing a cross and having O(f’') > O(f). If f solves the W-problem and
unlocks A € K, switching Py, ..., P,_; in 21, ..., x,_2 creates a multiflow f’ with A-path Pj and

A¢-path P] having a common node z,_1, so that every switch of B} and P in z,,_; preserves
o(f') = 0.

Let P and @ be an A- and A%paths of a multiflow A with a common inner node so that w(P) =
w(Q) and no switch of P and @) changes O(h). Let us denote the ends of P and @ by p;, p> and

q1, g2 respectively. Let w.lo.g. (p1,p2), (p1,q1), (p1,q2) € W, (P2, q1), (P2, @2)s (@1, q2), € S. A
multiflow transformation that replaces P and @ with three (ps, g2)-, (p2, ¢2)- and (g1, g2)-paths

of weight @ (see Figure ), is called a 3-operation. It preserves ©(h) and increases h[S] by

w(P)
-

4 Fractionality of the W-problem

To prove the fractionality conjecture for the W-problem, we show the following:

Theorem 4.1 In every K-network (G, T, K) there exists a simple W-problem solution of the



Figure 2: The %—operation.

smallest size that is half-integer.

We later use this Theorem to prove the fractionality conjecture for the S-problem. Let us
observe a K-network (G, T, K) which is a minimal counterexample to Theorem [.Jl We assume
that (G,T,K) has inner node degree 4, by the known reduction (see, e.g. [F1990]), is
simple (since atom compression preserves all W-problem solutions) and is minimal first in
fractionality k& of the smallest size W-problem solution, and then in F as a set. Then k = 4, for
otherwise we can duplicate each edge in £ and obtain a network with WW-problem fractionality
f%} In this section, f denotes a quarter-integer simple multiflow of the smallest size solving

the W-problem in (G, T,K). For simplicity, we assume that the paths of f have weight i. Let

us denote
n:=maximum of the S-problem among simple multiflows in (G, T, K). (4.5)

In the Appendix we prove the max-min theorem for the W-problem in Theorem [7.I, which
implies that for every K-network (G, T, K), 20(G,T,K) € N and 277 € N. We use these facts in
the proof.

4.1 General flow properties

Here, we study the behavior of W-problem solutions inside the members of K. The series of
properties below directly follows directly from the results of Lovasz, Cherkassky and Lomonosov

described in Section Bl

Claim 4.2 Let (G,T,K) be a simple K-network, and let h be a simple multiflow of
fractionality k in it such that h[A] < B(A) for some A € K. Then there exists a simple
multiflow B’ of fractionality k having ©(R') > ©(h) + +(B(A) — h[A]).
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Proof. Since h[A, A°] < A(A) by definition, and
L) = 5 (3 Al 1] — WA, A) < S(3TAD) — A(A)) = 5(A),
teA teA

Yosea bt t] < > ,ca A(t). We modify h by adding paths starting in ¢ € A until At, ] =
A(t) for all t € A. Since we use edges not saturated by h, we obtain a simple multiflow of
fractionality k, denoted h'. If W- or S-paths of total weight no less than S(A) — h[A] were
added, A’ is the required multiflow. Otherwise, some of these paths are cycles that traverse
one terminal from A each. Let us modify A’ into a multiflow without cyclic paths traversing
terminals from A using Cherkassky procedure, and denote the resulting multiflow by A”. If
O(R") > O(h) + 5(B(A) — h[A]), we are done. Otherwise, we have >, , h'[t, 9] = >°,. 4 A(t)
and h'[A] < B(A), thus h"[A, A°] > A\(A) - a contradiction. O

Corollary 4.3 Let (G,T,K) be a simple K-network, and let h be a simple multiflow of the
smallest size solving the W-problem in (G,T,K). Then h locks K.

Proof. By Claim L2, h[A] > B(A) for all A € K. If h unlocks some A € K, i.e. has
hlA] > B(A), h contains an augmenting sequence for A. Switching paths of this sequence
creates a simple multiflow A’ that has the same size as h, solves the WW-problem and allows us

to perform a %—operation, which preserves ©(h') but decreases the size of i’ - a contradiction. O

4.2 Proof of the weak fractionality theorem

Let us denote by (G',T7",K’) a network obtained from (G, T, ) by split-offs in one or more
inner nodes. We denote the W-problem maximum in (G’, 7", K’) by ¢’, and let A’ and ¢’ denote
a clutter member and a terminal corresponding to some A € K and t € T. We let g denote

a simple half-integer W-problem solution of the smallest size in (G',T',K’). g exists because

(G,T,K) is minimal in E. Let us denote the value of (A35]) in (G',T',K’) by 7/. Note that
0 <, (4.6)

because by Theorem 1 from [Va 2007] f solves the S-problem in a network obtained from
(G, T,K) by splitting every terminal ¢ into d(¢) equivalent terminals of degree 1.

For this type of networks we prove the following series of claims.
Claim 4.4 Let ' =60 — £ and ) — 7' < 1. Then > ;. B(A') < D" 4ck B(A).

7



Proof. Let us assume that ) ., B(A") > > 4o B(A). Asall 3(A) and $(A’) are integers by

definition, we have

2
Aek AeK!
thus
1
~ Al /
12— =5+ D> BA) =D B(A)>1,
AleKk’! AeK
a contradiction. O

Corollary 4.5 Let ' =60 — 5 and ) — 7f < 1. Then for all A € K, B(A") > B(A).

Proof. Let B(A’) < B(A). Then by Claim [42] g can be completed to a half-integer simple
flow ¢ in (G, T, K) with ©(g") = 0. Since |g| = 7'+ > 4 B(A") < |f| by Claim {4 and (4.6),

we have |¢'| < |f| - a contradiction. O

Corollary 4.6 Let ¢’ =6 — 5 and ) — 7' < 1. Then for all A € K, (A") = B(A) and

n—mn=s3:
Proof. Follows from Claim and Corollary [4.5] O

Claim 4.7 0 # 0.

Proof. Let us assume the contrary. Then for all A € K, B(A") > B(A), for otherwise by Claim
42 in (G,T,K) g can be modified into a multiflow ¢’ with ©(¢’) > 6 - a contradiction. If

dwexr BAY) > 37 4cxc B(A), we have

0—0 =0=n—i+ (> BA)= BA)>1,

Arek A€k
a contradiction because 7 > 7 (otherwise, g is the solution we seek). Then g[W] = f[W] =
Y acx B(A) and ©(g) = O(f), resulting in [g| = | f| - a contradiction.

Let us call two paths traversing the same inner node = opposite in x if they do not traverse the

same edge incident to x.
Claim 4.8 Let x € N\ T. Then there exists a split of = that decreases 6 by no more than %

Proof. Let us assume the contrary. Let the number of paths of f destroyed by a split of x
be n. Then the split decreases O(f) by at least 1 by Corollary [[4] thus 8 > n > 4. Clearly,

8
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n # 7,8 for otherwise z admits an f-split (see Figure Bl(a)). Likewise, if n € {5,6}, then the
switch opposite to the chosen one destroys no more than two paths of f (see Figure (b)) - a
contradiction. Therefore, n = 4, and the paths destroyed by a split contribute no more than
1 to ©(f). By our assumption, the split decreases O(f) by 1, and these paths are S-paths of
f with two common ends. By our assumption, two of these paths cannot be switched so as
to comply with the remaining paths traversing x. If these two paths are opposite, we switch
one pair so as to comply with the other, and there are two options to do so (see Figure Blc)).
The opposite switch affects the other 4 paths of f traversing = and, like above, those paths can
traverse x in two different ways. We then select a common switch and obtain a new multiflow
f’ that is a common solution in (G, T, K) and admits an f’-split in z - a contradiction. If the
paths in question are not opposite (see Figure B[ d)), all the paths of f traversing x end in two

terminals. Then there exists a switch of paths of f in = allowing an f-split - a contradiction. [

We can now finish the proof of the fractionality theorem for the WW-problem.

Theorem [4.7] Let (G,T,K) be a K-network. Then in (G, T, K) there exists a simple

half-integer W -problem solution of the smallest size.

Proof. Let (G',T',K') be the network with ' = 6 — % and 7 — 7’ < 1, obtained from (G, T, K)
by the maximum number of split-offs in inner nodes. At least one such network exists because

of Claim 48 By Claim and Corollary .6l (A’) = B(A) for all A € K. Then n—17n' = %

Let g denote a simple W-problem solution of the smallest size in (G, T, K). Since |g| = |f| — 3,
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g is not maximum and we can add a half-integer zero path P to g with an end in ¢t € A. We
select ¢ so that P is the longest w.r.t. number of edges. Let P traverse edge (¢,z). Then a
path @ € g opposite to P in x has no end in ¢ (otherwise, switching P and @ prolongs P).

Switching of P and @ in x cannot increase g[S] for then the resulting half-integer flow ¢’ has
©(¢') = 0 and |¢'| < |f|. Likewise, switching P and @ so as to allow a g-split in = cannot
increase ©(g), for otherwise we obtain a network (G”,T",K") with ” > 6 — 1 - a contradiction
to Claim 7l Therefore, ) is a t°-path and an S-path. Switching P and ) in z so as to allow
a g-split of x produces two W-paths (see Figure ). We switch P and @ in this way, obtain a
new multifiow ¢” and a network denoted (G”,7”,K"). Then 6" =0 —1 and 7" > 7/ — 5 =7 —1

while (G”,T”,K") contains less inner nodes than (G’,T’,K’), contrary to our choice. O

5 Fractionality of the S-problem

We use Theorem to show that the fractionality conjecture for the S-problem holds. Let us

select a K-network (G, T, KC) which is a counterexample to the conjecture,

minimal in fractionality k and o := w

Like in Section [, we can assume that k = 4.
Claim 5.1 a =1

Proof. Let us assume the contrary and select ¢t € T with |N(t)| > 2. Let g be a quarter-integer
common solution to the W- and S-problems in (G, T, K). Let us suppose first that no path of

g has an end in t. We turn ¢ into an inner node, adding a new terminal ' ~ ¢ and an edge

10



(t,t') if d(t) is odd. In the resulting network (G',7",K'), ¥ := n(G',T',K’) = n because the
reverse operation does not decrease n’. Let us suppose now that g contains paths with an end
in t. Let wy(t) denote the total weight of g’s paths beginning in t. Then wy(t) < 3d(t), for
otherwise there exists an edge (¢, z) traversed by four paths of weight i with an end in £. We
replace (t,z) with a new edge (t',z), where ¢’ ~ ¢ is a new terminal, and turn ¢ into an inner
node. We also add enough (¢,t')-edges to allow the paths of g with an end in ¢ to end in ¢’
instead and the degree of ¢ to be even. In the resulting network (G',T7",K'), o/ < o and ' =17

because the reverse operation does not decrease n'. O

Theorem 5.2 Every K-network (G, T, K) admits a half-integer least-size W -problem solution
f that also solves the S-problem.

Proof. Let (G,T,K) be a K-network (G,T,K). By Claim Bl we can transform (G, T,K)
into a K-network (G',T",K’) with « = 1, ¥ = n and ¢ = 0. Moreover, every S-problem or
W-problem solution in (G’,T’,K’) remains such in (G, T, K) after the reverse transformation.
By Theorem 1] (G’,7",K’) admits a simple half-integer W-problem solution of the smallest
size, denoted f’. By Theorem 1 of [Va_2007|, f solves the S-problem in (G', 7", K’). Then the
multiflow f in (G, T, K), obtained from f’, solves both W- and S-problems. O

Corollary 5.3 In a general, not necessarily Eulerian, network (G,T) where the anticlique

clutter of (T, S) is a K-clutter, both W-problem and S-problem have fractionality 4. O
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7 Appendix: combinatorial max-min for the W -problem

Let £ = {«, ,...} be a partition of T such that for each o € £ any ¢',t" € a are equivalent
(an equi-partition). We call X = (X, : a € &) is an ezpansion if X, NT = a, a € €.

Taking members of X as terminals and an induced clutter, we obtain a new network with a

11



graph Gy, terminals X and a clutter Ly on X (Kx is a K-clutter if I is a K-clutter). For
Xo, Xg € X, we call (X,,X3) strong or weak if for every s € a and t € 3, (s,t) € S or
(s,t) € W respectively. Likewise, X, ~ Xj if for every pair of terminals s € o and ¢t € f,
s ~t. An X-path in G is an (x,y)-path with z, y lying in distinct members of X. An X-flow is
a flow in the network (Gy, X, Ky) consisting of X-paths. The S-problem and the W-problem
in (Gy,X,Ky) are defined in the same way as for (G, T, K), and their maxima are denoted by

nx and Oy respectively.

We define a partial order on expansions as follows. Let £ and F be equi-partitions of 7" and let
X=(Xq:ae&)and Y = (Y, : a € F) be expansions. Then X' < Y if for every X € X there
exists Y € ) so that X C Y. Note that for every X < ), every X-flow is also a Y-flow (but
the converse may be not true). Since for X < ) any X-flow is also a Y-flow, 6y > 0. Since
T-flow is also an X-flow, Oy > 0. X is called critical if 6y > 6y for every YV > X. A critical X

with 6y = 0 is called a dual solution. The triangle theorem (|L_1985]) ensures that:
there exists a maximum X-flow h such that ©x(h) = Ox. (7.7)

We limit ourselves to networks (G, T', K) with simple K. The results of this section that hold for
simple clutters hold for general networks as well, because compressing a non-trivial atom into
one terminal does not change 6 by triangle theorem from [[.1985] and metric properties of a
K-clutter. For a K-network with simple IC, every subset in an expansion X’ contains exactly one
terminal; X; denotes a member of X’ containing ¢t € 7. Then (7.7 implies that for a maximum
X-flow h (even when X =T):

Ox(h) = ] ~ Zh[IV]. (79

We aim to prove the following max-min theorem for the fractional W-problem.

Theorem 7.1 In a K-network (G, T,K):

max;O(f) = minx(% ZteT d(X;) — % ZAEICX B(A)). (7.9)

The maximum is taken over the fractional multiflows in (G,T,K), and the minimum is taken

over all expansions in (G, T, K). Moreover, (L.9) holds as equality for every dual solution X .

To prove this theorem, we state the following inequality for an expansion X and a T-flow f:
1 1
O(f) < 0 < Ox(h) < 5) dX)—5 ), BA) (7.10)
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We aim to show that (ZI0) holds as inequality for every expansion and as equality for every
critical expansion. ([Z.I0)(a) follows directly from the definition of §. ([ZI0)(b) holds because
f is also an X-flow. (Z.I0)(c) holds because there exists a maximum X-flow h that solves the
W-problem in X. For such % the minimum of }_, . h[A] is achieved when all A € Ky are
locked by h,i.e. 3 1o h[A] <374 B(A) and |h] = 5 5°,c0 A(Xy) by the Lovasz-Cherkassky
theorem (|Lo 1976, [Ch 1977]). We need the following two claims to show that (ZI0)(c) is an
equality.

Claim 7.2 Let (G,T,K) be a simple K-network, and let X be a dual solution in it. A
maximum fractional X-flow h that satisfies © x(h) = 0y (that is, solves the W -problem in

(Gx,X,Kx)) locks X, for allt € T.

Proof. First, let us show that h saturates every (X, X;)-edge. Let e be an (z,y)-edge with
r € X, and y € X;. Let Y = X be an expansion where Y; = X, for terminal s # ¢ and
Y, = X, U{y}. Since X is critical, # > 0y and there exists a Y-flow g such that ©y(g) > Ox.
Let us denote the unused capacity of e by € and let 6 = g[y, U;4X,]. Clearly, ¢ < J. We turn g
into an X-flow by prolonging all its paths starting in y to x instead through the edge e. Let ¢
be the functions on X-paths thus obtained; ¢’ does not satisfy the capacity constraint on (x,y).
Then there exists 0 < a < 1 such that 2’ = (1 —a)h+ag’ is an X'-flow. I’ satisfies all capacity
constraints and has ©x(h') > (1 — a)Ox(h) + aOy(g) > O+, contradicting the definition of X'.

Let us assume now that a (p, ¢)-path P of h, p € X, contains two (X;, X;)-edges, e; = (21, 1)
and e = (xq,yo) where z1, 29 € Xy, 11,92 € X, and Y1, X1, T2, Yo appear on P in this order. Then
by replacing P with x9Pq we obtain an X-flow g for which ©x(g) = 0 and the edge (x1, )

is not saturated by g, a contradiction. O

Claim 7.3 Let (G,T,K) be a simple K-network, and let X be a dual solution. A maximum
fractional X-flow h would then satisfy ©x(h) = Oy iff every A € Ky is locked by h.

Proof. The “if” direction is trivial. Let h be a maximum X-flow with ©y(h) = 0 that

locks every member of Ky. Because of Claim and the simplicity of Ky, we get ©(h) =
%erx d(X) — % > ackcy, Ba and thus ©(h) > 0 by (ZI0)(c).

For the “only if” direction, assume that % is a maximum X-flow that has ©x(h) = 0 and
unlocks A € Ky. Let A° in the context of Iy denote the members of X that do not lie in

A. Then h contains an augmenting sequence Py, xq, ..., T;m_1, P, where Py is an A-path, P, is

13



Figure 5: The fractional %—operation.

an A%path, and each one of P, ..., P,,_1 is an (A, A°)-path. We can choose h so that m = 1.
Let Py and P; be (s',t')- and (¢, 7’)-paths with weights o and ( respectively where s’ € X,
t'e Xy, ¢ € X, and " € X,. Since a switch of Py and P; in z( cannot increase ©(h), we can
assume that w.lLo.g. (X,, X,), (X, X,) and (X, X,) are S-pairs while (X;, X,) and (X, X,)
are W-pairs by the simplicity of Ky.

We construct a new flow f from A by replacing P, and P, with (¢',7'), (t',¢'), (¢',r") and

(s',t")-paths of weights £, £, 5 — £ and « — € respectively (this is the

£ 3_
27 20 2

2

B)). It follows that |f| = |h| = § and f[W] = h[W] —¢ since (X, X¢), (X4, X;), (X;, Xy) € S and
Ox(f) = Ox(h).

operation, see Figure

The subpath s'Pyxy does not have common nodes with any other X-path () whose ends do
not lie in X, U X;. If it were so, then the above %—operation could be applied to both B, P,
and P, Q and a flow f with |f'| = |h| — 5 and f'[W] = h[W] — 2¢ could be created, which
contradicts the maximality of ©x(h). Therefore, there exists an edge (s',z) of s'Lv which is

not saturated by f - a contradiction to Claim [T.2] O

Theorem [7.1] follows from Claims and [.3]
Corollary 7.4 20(G,T,K) € N.

Proof. Let X be an expansion that achieves equality in Theorem [1] for (G,T,K). Then
0(G,T,K) = 1> v d(X) — %ZA@CX B(A), while >, d(X) is always even in an Eulerian
network and every (A) is an integer by definition. Thus, a split of an inner node in (G, T, K)
decreases 6 by £, k € NU {0}. O

Corollary 7.5 Let (G,T,K) be a simple K-network and let h be a simple W -problem
solution in (G, T,KC) with )~ , - h[A] =3 s B(A). Then 2h[S] € N.

Proof. 2h[S] is an integer because § = h[S]+sh[W] = h[S]+3 > 4o B(A) and 6 is half-integer

14



by Corollary [7.4l. O
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