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On fra
tionality of the path pa
king problem

Natalia Vanetik

∗

Abstra
t

In an undire
ted graph G with node set N and a subset T ⊆ N , a fra
tional multi�ow

problem is de�ned as �nding maxf
∑

(u,v) ω(u, v)f [u, v] over all 
olle
tions f of weighted

paths with ends in T (the ω-problem). f [u, v] denotes the total weight of paths with the

end-pair (u, v) in f . The paths of f must satisfy the edge 
apa
ity 
onstraint: total weight

of the paths traversing a single edge does not ex
eed 1. We study a fra
tional multi�ow

problem with the reward fun
tion ω having values (0, 1) (a fra
tional path pa
king problem),

and an auxiliary weak problem where ω is a metri
. A. Karzanov in [K 1989℄ de�ned the

fra
tionality of ω with respe
t to a given 
lass of networks (G,T ) as the least natural

D su
h that for any network (G,T ) from the 
lass, the ω-problem has a solution whi
h

be
omes integer-valued when multiplied by D. He proved that a fra
tional path pa
king

problem has in�nite fra
tionality outside a very spe
i�
 
lass of networks, and 
onje
tured

that within this 
lass, the fra
tionality does not ex
eed 4 (2 for Eulerian networks). In this

paper we prove Karzanov's 
onje
ture by showing that the fra
tionality of both fra
tional

path pa
king and weak problems is 1 or 2 for every Eulerian network in this 
lass.

1 Introdu
tion

In this paper we study 
olle
tions of edge-disjoint paths in a network, also 
alled paths pa
kings

or multi�ows, addressing an optimization problem of the following form. Let G = (N,E) be a

multigraph with node-set N and edge-set E, and let T ⊆ N be a set of nodes distinguished as

terminals. By a T -path we mean an un
losed path with the ends in T, and by an integer T -�ow,

or an integer multi�ow, we mean a 
olle
tion of pairwise edge-disjoint T -paths in G. Let us

de�ne a fra
tional T -�ow as a non-negative weight fun
tion f(P ) on the set of all T -paths in

(G, T ), satisfying the edge 
apa
ity 
onstraints:

∑
P f(P )I(P, (x, y)) ≤ c(x, y) for ea
h adja
ent pair (x, y) of nodes in N (1.1)
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Here I(P, (x, y)) denotes the number of (x, y)-edges of G traversed by P , and c(x, y) is the

edge 
apa
ity, equal to the number of (x, y)-edges in G. Given non-negative "rewards" ω(u, v)

assigned to the unordered pairs of terminals, the problem is to

maximize

∑
u,v ω(u, v)f [u, v] over the fra
tional T -�ows f in (G, T ), (1.2)

where f [u, v] denotes the total weight of the (u, v)-paths in f . For short, (1.2) will be referred

to as the ω-problem. This is one of the basi
 multi�ow problems, having numerous appli
ations,

su
h as 
ommuni
ation and VLSI design. Not surprisingly, for most reward fun
tions the w-

problem is known to be NP-hard over integer multi�ows, not only when a network (G, T ) is

quite arbitrary, but even for su
h friendly 
lasses as the planar or the Eulerian networks (the

latter 
lass is studied in this paper).

However, the more fragmented is f between various paths, the less is its utility for dis
rete path

pa
king. To make this pre
ise, let us, following A. Karzanov [K 1989℄, de�ne the fra
tionality of

the reward fun
tion ω with respe
t to a given 
lass of networks (G, T ): this is the least natural

D su
h that for any network (G, T ) from the 
lass, the ω-problem has a solution f whi
h

be
omes integer-valued when multiplied by D (in short, a

1
D

-integer solution). For 
ertain

reward fun
tions, fra
tionality for the general networks was found to be 2 (see [IKL 2000℄ and

[L 2004℄); for some of them, the ω-problem was also shown to have an integer solution provided

that the non-terminal (inner) nodes of a network have even degrees; su
h networks are 
alled

Eulerian.

Two spe
i�
 
lasses of the reward fun
tion are of prin
ipal importan
e. One 
omprises the

(0, 1) reward fun
tions. It is 
onvenient to represent su
h a fun
tion by a demand graph (or

s
heme) (T, S) where S := (u, v) : ω(u, v) = 1, and to 
all (1.2) the S-problem. Let a path in

G be 
alled an S-path if its end-pair belongs to S, and a 
olle
tion of S-paths satisfying (1.1)

be 
alled an S-�ow. Thus, the S-problem may be stated as maximizing of

f [S] :=
∑

(u,v)∈S f [u, v]. A. Karzanov has des
ribed the fra
tionality of the (0, 1) reward fun
-

tions (or the s
hemes S) in [K 1989℄. Namely, the fra
tionality of S is �nite i� any distin
t

pairwise interse
ting anti
liques (i.e., in
lusion-maximal stable sets) A,B,C of (T, S) satisfy

A ∩ B = A ∩ C = B ∩ C, (1.3)

and the �nite fra
tionality 
an only equal 1, 2, or 4. He 
onje
tured that this

�nite fra
tionality 
an only be 1 or 2. (1.4)
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Figure 1: The fra
tionality of S-problem and W -problem 
an be 2.

Not long ago, H. Ilani and E. Barsky observed that the problem of dis
rete path pa
king is

NP-hard, even for Eulerian networks, for ea
h demand graph violating (1.3). So, investigating

the S-problem has fo
used on the s
hemes satisfying (1.3). In this paper we 
onsider the S-

problem for S satisfying (1.3) together with an auxiliary weak problem, denoted a W -problem:

an ω-problem where ω is a metri
 de�ned by ω(u, v) = 1 for (u, v) ∈ S, 1
2
for (u, v) 
overed

by exa
tly one anti
lique of (T, S), and 0 for the others (i. e., those 
overed by at least two

anti
liques). An anti
lique 
lutter of (T, S) satisfying (1.3) is 
alled a K-
lutter, and an Eulerian

network (G, T,K) with an anti
lique K-
lutter K of (T, S) is 
alled a K-network. The maxima

of S- and W -problems are denoted by η and θ respe
tively.

In this paper, we prove 
onje
ture (1.4). Additionally, we show that the W -problem in a K-

network also admits a solution of fra
tionality at most 2. We use the following 
ru
ial fa
t: every

S-problem and W -problem in a network satisfying (1.3) have a 
ommon solution (Theorem 1

of [Va 2007℄).

The bound on fra
tionality is tight in both 
ases, as an example in Figure 1 demonstrates.

There we have K = {{si, tj}}, i, j ∈ {1, 2, 3}, and every integer multi�ow in this network has

no more than 2 S-paths, for example, paths P and Q in Figure 1(a). The maximum of the

W -problem among integer multi�ows is 21
2
. However, in this network there exists a half-integer

multi�ow h = {P1, P2, P3, Q1, Q2, Q3} with weight of every path

1
2
being (see Figure 1(b)). The

value of

∑
u,v ω(u, v)h[u, v] for both S-problem and W -problem is 3. Thus, an integer solution

to the S-problem or the W -problem does not always exist. Table 1 summarizes notation used

in this paper.
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Notation De�nition

(G,T,K) a network (G, (T, S)) and the anti
lique 
lutter K of (T, S)

S-path a path whose end-pair is in S

W -path a path whose end-pair is 
overed by exa
tly one member of K

zero path a path whose end-pair is 
overed by two members of K

d(X), X ⊂ N the number of (X,X)-edges in G

λ(A), A ⊆ T min{d(X) : X ⊂ N, X ∩ T = A}

β(A), A ⊆ T 1
2(
∑

t∈A λ(t)− λ(A)); is an integer in Eulerian networks

Ac
, A ⊆ T T \A

A, A ⊆ N N \ A

an (A,B)-path (an A-path), A,B ⊆ N a path ends in A and B (in A)

f [A,B] the number of (A,B)-paths in f (f [A] when A = B)

w(P ) the weight of path P

xPy an (x, y)-segment of a path P , where x and y are nodes

|f | the size of a multi�ow f : the total weight of its paths

a maximum multi�ow a multi�ow of maximum size

the fra
tionality of a multi�ow the largest denominator among its paths' weights

s ∼ t, s, t ∈ T (s, t) is a zero pair

an atom a set of terminals not separated by a member of K

K is simple every atom in K has size 1

Table 1: Notation

2 Outline of the proof

We observe K-networks that are 
ounterexamples to the fra
tionality 
onje
ture for either W -

or S-problem. First, we prove the fra
tionality 
onje
ture for the W -problem by showing that

a half-integer simple multi�ow of the smallest size solving the W -problem exists. Se
ond, we

observe a minimal K-network that fails to satisfy the S-problem fra
tionality 
onje
ture and

show that it admits a half-integer solution.

3 Operations on paths and lo
king

A pair of paths with disjoint end-pairs and a 
ommon node forms a 
ross. A path is 
ompound

if it traverses a terminal di�erent from its ends, and simple otherwise. A multi�ow is 
alled

4



simple if it 
ontains only simple paths.

Let paths P andQ of a multi�ow f traverse an inner node x, so that P = P ′xP ′′
andQ = Q′xQ′′

.

Swit
hing P and Q in x transforms them into K = P ′xQ′
and L = P ′′xQ′′

and f into the

multi�ow f \ {P,Q} ∪ {K,L}. A split of an inner node x is a graph transformation 
onsisting

of removal of x and linking its neighbors by

d(x)
2

edges so as to preserve their degrees. Given a

multi�ow h in a network, an h-split of an inner node is a split preserving the paths of h.

A maximum multi�ow f lo
ks a set A ⊆ T if it 
ontains a maximum (A,Ac)-�ow, that is, if

f [A,Ac] = λ(A). Otherwise, f unlo
ks A. In other words, f lo
ks A if it 
ontains the smallest

possible number of A-paths. A. Karzanov and M. Lomonosov have introdu
ed in [KL 1978℄

the following appli
ation of the Ford-Fulkerson augmenting path pro
edure, assuming that a

multi�ow traverses ea
h edge. A maximum multi�ow unlo
ks A ∈ K if and only if it 
ontains an

augmenting sequen
e P1, x1, ..., xi−1Pixi, ...., Pn of paths P1 (an A-path), P2, ..., Pn−1 ((A,Ac)-

paths) Pn (an Ac
-path) and inner nodes x1, ..., xn−1 so that xi ∈ Pi, Pi+1 for i ∈ 1, ..., n− 1

and xi is lo
ated on Pi between xi−1 and the A-end of Pi. In the paper, we use the fa
t that

unlo
king a member of K and existen
e of the alternating sequen
e are equivalent. When K is

a K-
lutter, there exists a series of swit
hes of P1, ..., Pn in x1, ..., xn−1 that 
reates a maximum

multi�ow f ′

ontaining a 
ross and having Θ(f ′) ≥ Θ(f). If f solves the W -problem and

unlo
ks A ∈ K, swit
hing P1, ..., Pn−1 in x1, ..., xn−2 
reates a multi�ow f ′
with A-path P ′

0 and

Ac
-path P ′

1 having a 
ommon node xn−1, so that every swit
h of P ′
0 and P ′

1 in xn−1 preserves

Θ(f ′) = θ.

Let P and Q be an A- and Ac
-paths of a multi�ow h with a 
ommon inner node so that w(P ) =

w(Q) and no swit
h of P and Q 
hanges Θ(h). Let us denote the ends of P and Q by p1, p2 and

q1, q2 respe
tively. Let w.l.o.g. (p1, p2), (p1, q1), (p1, q2) ∈ W , (p2, q1), (p2, q2), (q1, q2),∈ S. A

multi�ow transformation that repla
es P and Q with three (p2, q2)-, (p2, q2)- and (q1, q2)-paths

of weight

w(P )
2

(see Figure 2), is 
alled a

3
2
-operation. It preserves Θ(h) and in
reases h[S] by

w(P )
2

.

4 Fra
tionality of the W -problem

To prove the fra
tionality 
onje
ture for the W -problem, we show the following:

Theorem 4.1 In every K-network (G, T,K) there exists a simple W -problem solution of the

5
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smallest size that is half-integer.

We later use this Theorem to prove the fra
tionality 
onje
ture for the S-problem. Let us

observe a K-network (G, T,K) whi
h is a minimal 
ounterexample to Theorem 4.1. We assume

that (G, T,K) has inner node degree 4, by the known redu
tion (see, e.g. [F 1990℄), is

simple (sin
e atom 
ompression preserves all W -problem solutions) and is minimal �rst in

fra
tionality k of the smallest size W -problem solution, and then in E as a set. Then k = 4, for

otherwise we 
an dupli
ate ea
h edge in E and obtain a network with W -problem fra
tionality

⌈k
2
⌉. In this se
tion, f denotes a quarter-integer simple multi�ow of the smallest size solving

the W -problem in (G, T,K). For simpli
ity, we assume that the paths of f have weight

1
4
. Let

us denote

η̂:=maximum of the S-problem among simple multi�ows in (G, T,K). (4.5)

In the Appendix we prove the max-min theorem for the W -problem in Theorem 7.1, whi
h

implies that for every K-network (G, T,K), 2θ(G, T,K) ∈ N and 2η̂ ∈ N. We use these fa
ts in

the proof.

4.1 General �ow properties

Here, we study the behavior of W -problem solutions inside the members of K. The series of

properties below dire
tly follows dire
tly from the results of Lovãsz, Cherkassky and Lomonosov

des
ribed in Se
tion 3.

Claim 4.2 Let (G, T,K) be a simple K-network, and let h be a simple multi�ow of

fra
tionality k in it su
h that h[A] < β(A) for some A ∈ K. Then there exists a simple

multi�ow h′
of fra
tionality k having Θ(h′) ≥ Θ(h) + 1

2
(β(A)− h[A]).

6



Proof. Sin
e h[A,Ac] ≤ λ(A) by de�nition, and

h[A] =
1

2
(
∑

t∈A

h[t, tc]− h[A,Ac]) <
1

2
(
∑

t∈A

λ(t)− λ(A)) = β(A),

∑
t∈A h[t, tc] <

∑
t∈A λ(t). We modify h by adding paths starting in t ∈ A until h[t, tc] =

λ(t) for all t ∈ A. Sin
e we use edges not saturated by h, we obtain a simple multi�ow of

fra
tionality k, denoted h′
. If W - or S-paths of total weight no less than β(A) − h[A] were

added, h′
is the required multi�ow. Otherwise, some of these paths are 
y
les that traverse

one terminal from A ea
h. Let us modify h′
into a multi�ow without 
y
li
 paths traversing

terminals from A using Cherkassky pro
edure, and denote the resulting multi�ow by h′′
. If

Θ(h′′) ≥ Θ(h) + 1
2
(β(A) − h[A]), we are done. Otherwise, we have

∑
t∈A h′′[t, tc] =

∑
t∈A λ(t)

and h′′[A] < β(A), thus h′′[A,Ac] > λ(A) - a 
ontradi
tion.

Corollary 4.3 Let (G, T,K) be a simple K-network, and let h be a simple multi�ow of the

smallest size solving the W -problem in (G, T,K). Then h lo
ks K.

Proof. By Claim 4.2, h[A] ≥ β(A) for all A ∈ K. If h unlo
ks some A ∈ K, i.e. has

h[A] > β(A), h 
ontains an augmenting sequen
e for A. Swit
hing paths of this sequen
e


reates a simple multi�ow h′
that has the same size as h, solves the W -problem and allows us

to perform a

3
2
-operation, whi
h preserves Θ(h′) but de
reases the size of h′

- a 
ontradi
tion.

4.2 Proof of the weak fra
tionality theorem

Let us denote by (G′, T ′,K′) a network obtained from (G, T,K) by split-o�s in one or more

inner nodes. We denote the W -problem maximum in (G′, T ′,K′) by θ′, and let A′
and t′ denote

a 
lutter member and a terminal 
orresponding to some A ∈ K and t ∈ T . We let g denote

a simple half-integer W -problem solution of the smallest size in (G′, T ′,K′). g exists be
ause

(G, T,K) is minimal in E. Let us denote the value of (4.5) in (G′, T ′,K′) by η̂′. Note that

η̂′ ≤ η̂, (4.6)

be
ause by Theorem 1 from [Va 2007℄ f solves the S-problem in a network obtained from

(G, T,K) by splitting every terminal t into d(t) equivalent terminals of degree 1.

For this type of networks we prove the following series of 
laims.

Claim 4.4 Let θ′ = θ − 1
2
and η̂ − η̂′ ≤ 1. Then

∑
A′∈K′ β(A′) ≤

∑
A∈K β(A).

7



Proof. Let us assume that

∑
A′∈K′ β(A′) >

∑
A∈K β(A). As all β(A) and β(A′) are integers by

de�nition, we have

θ − θ′ =
1

2
= η̂ − η̂′ + (

∑

A∈K

β(A)−
∑

A′∈K′

β(A′)),

thus

1 ≥ η̂ − η̂′ =
1

2
+

∑

A′∈K′

β(A′)−
∑

A∈K

β(A) > 1,

a 
ontradi
tion.

Corollary 4.5 Let θ′ = θ − 1
2
and η̂ − η̂′ ≤ 1. Then for all A ∈ K, β(A′) ≥ β(A).

Proof. Let β(A′) < β(A). Then by Claim 4.2, g 
an be 
ompleted to a half-integer simple

�ow g′ in (G, T,K) with Θ(g′) = θ. Sin
e |g| = η̂′ +
∑

A′∈K′ β(A′) < |f | by Claim 4.4 and (4.6),

we have |g′| ≤ |f | - a 
ontradi
tion.

Corollary 4.6 Let θ′ = θ − 1
2
and η̂ − η̂′ ≤ 1. Then for all A ∈ K, β(A′) = β(A) and

η̂ − η̂′ = 1
2
.

Proof. Follows from Claim 4.4 and Corollary 4.5.

Claim 4.7 θ′ 6= θ.

Proof. Let us assume the 
ontrary. Then for all A ∈ K, β(A′) ≥ β(A), for otherwise by Claim

4.2, in (G, T,K) g 
an be modi�ed into a multi�ow g′ with Θ(g′) > θ - a 
ontradi
tion. If

∑
A′∈K′ β(A′) >

∑
A∈K β(A), we have

θ − θ′ = 0 = η̂ − η̂′ + (
∑

A′∈K′

β(A′)−
∑

A∈K

β(A)) > 1,

a 
ontradi
tion be
ause η̂ > η̂′ (otherwise, g is the solution we seek). Then g[W ] = f [W ] =
∑

A∈K β(A) and Θ(g) = Θ(f), resulting in |g| = |f | - a 
ontradi
tion.

Let us 
all two paths traversing the same inner node x opposite in x if they do not traverse the

same edge in
ident to x.

Claim 4.8 Let x ∈ N \ T . Then there exists a split of x that de
reases θ by no more than

1
2
.

Proof. Let us assume the 
ontrary. Let the number of paths of f destroyed by a split of x

be n. Then the split de
reases Θ(f) by at least 1 by Corollary 7.4, thus 8 ≥ n ≥ 4. Clearly,

8
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Legend:

a split
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an existing path

Figure 3: Possible swit
hes of f in an inner node.

n 6= 7, 8 for otherwise x admits an f -split (see Figure 3(a)). Likewise, if n ∈ {5, 6}, then the

swit
h opposite to the 
hosen one destroys no more than two paths of f (see Figure 3(b)) - a


ontradi
tion. Therefore, n = 4, and the paths destroyed by a split 
ontribute no more than

1 to Θ(f). By our assumption, the split de
reases Θ(f) by 1, and these paths are S-paths of

f with two 
ommon ends. By our assumption, two of these paths 
annot be swit
hed so as

to 
omply with the remaining paths traversing x. If these two paths are opposite, we swit
h

one pair so as to 
omply with the other, and there are two options to do so (see Figure 3(
)).

The opposite swit
h a�e
ts the other 4 paths of f traversing x and, like above, those paths 
an

traverse x in two di�erent ways. We then sele
t a 
ommon swit
h and obtain a new multi�ow

f ′
that is a 
ommon solution in (G, T,K) and admits an f ′

-split in x - a 
ontradi
tion. If the

paths in question are not opposite (see Figure 3(d)), all the paths of f traversing x end in two

terminals. Then there exists a swit
h of paths of f in x allowing an f -split - a 
ontradi
tion.

We 
an now �nish the proof of the fra
tionality theorem for the W -problem.

Theorem 4.1 Let (G, T,K) be a K-network. Then in (G, T,K) there exists a simple

half-integer W -problem solution of the smallest size.

Proof. Let (G′, T ′,K′) be the network with θ′ = θ− 1
2
and η̂− η̂′ ≤ 1, obtained from (G, T,K)

by the maximum number of split-o�s in inner nodes. At least one su
h network exists be
ause

of Claim 4.8. By Claim 4.7 and Corollary 4.6, β(A′) = β(A) for all A ∈ K. Then η̂ − η̂′ = 1
2
.

Let g denote a simple W -problem solution of the smallest size in (G, T,K). Sin
e |g| = |f | − 1
2
,

9
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Legend

an inner node

a terminal

a path

a split

Figure 4: θ-preserving split of an inner node.

g is not maximum and we 
an add a half-integer zero path P to g with an end in t ∈ A. We

sele
t g so that P is the longest w.r.t. number of edges. Let P traverse edge (t, x). Then a

path Q ∈ g opposite to P in x has no end in t (otherwise, swit
hing P and Q prolongs P ).

Swit
hing of P and Q in x 
annot in
rease g[S] for then the resulting half-integer �ow g′ has

Θ(g′) = θ and |g′| ≤ |f |. Likewise, swit
hing P and Q so as to allow a g-split in x 
annot

in
rease Θ(g), for otherwise we obtain a network (G′′, T ′′,K′′) with θ′′ ≥ θ− 1
4
- a 
ontradi
tion

to Claim 4.7. Therefore, Q is a tc-path and an S-path. Swit
hing P and Q in x so as to allow

a g-split of x produ
es two W -paths (see Figure 4). We swit
h P and Q in this way, obtain a

new multi�ow g′′ and a network denoted (G′′, T ′′,K′′). Then θ′′ = θ− 1
2
and η̂′′ ≥ η̂′− 1

2
= η̂−1

while (G′′, T ′′,K′′) 
ontains less inner nodes than (G′, T ′,K′), 
ontrary to our 
hoi
e.

5 Fra
tionality of the S-problem

We use Theorem 4.1 to show that the fra
tionality 
onje
ture for the S-problem holds. Let us

sele
t a K-network (G, T,K) whi
h is a 
ounterexample to the 
onje
ture,

minimal in fra
tionality k and α :=
P

t∈T
|N(t)|

|T |
.

Like in Se
tion 4, we 
an assume that k = 4.

Claim 5.1 α = 1

Proof. Let us assume the 
ontrary and sele
t t ∈ T with |N(t)| ≥ 2. Let g be a quarter-integer


ommon solution to the W - and S-problems in (G, T,K). Let us suppose �rst that no path of

g has an end in t. We turn t into an inner node, adding a new terminal t′ ∼ t and an edge

10



(t, t′) if d(t) is odd. In the resulting network (G′, T ′,K′), η′ := η(G′, T ′,K′) = η be
ause the

reverse operation does not de
rease η′. Let us suppose now that g 
ontains paths with an end

in t. Let wg(t) denote the total weight of g's paths beginning in t. Then wg(t) ≤ 3
4
d(t), for

otherwise there exists an edge (t, x) traversed by four paths of weight

1
4
with an end in t. We

repla
e (t, x) with a new edge (t′, x), where t′ ∼ t is a new terminal, and turn t into an inner

node. We also add enough (t, t′)-edges to allow the paths of g with an end in t to end in t′

instead and the degree of t to be even. In the resulting network (G′, T ′,K′), α′ < α and η′ = η

be
ause the reverse operation does not de
rease η′.

Theorem 5.2 Every K-network (G, T,K) admits a half-integer least-size W -problem solution

f that also solves the S-problem.

Proof. Let (G, T,K) be a K-network (G, T,K). By Claim 5.1, we 
an transform (G, T,K)

into a K-network (G′, T ′,K′) with α = 1, η′ = η and θ′ = θ. Moreover, every S-problem or

W -problem solution in (G′, T ′,K′) remains su
h in (G, T,K) after the reverse transformation.

By Theorem 4.1, (G′, T ′,K′) admits a simple half-integer W -problem solution of the smallest

size, denoted f ′
. By Theorem 1 of [Va 2007℄, f ′

solves the S-problem in (G′, T ′,K′). Then the

multi�ow f in (G, T,K), obtained from f ′
, solves both W - and S-problems.

Corollary 5.3 In a general, not ne
essarily Eulerian, network (G, T ) where the anti
lique


lutter of (T, S) is a K-
lutter, both W -problem and S-problem have fra
tionality 4.
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7 Appendix: 
ombinatorial max-min for the W -problem

Let E = {α, β, ...} be a partition of T su
h that for ea
h α ∈ E any t′, t′′ ∈ α are equivalent

(an equi-partition). We 
all X = (Xα : α ∈ E) is an expansion if Xα ∩ T = α, α ∈ E .

Taking members of X as terminals and an indu
ed 
lutter, we obtain a new network with a

11



graph GX , terminals X and a 
lutter KX on X (KX is a K-
lutter if K is a K-
lutter). For

Xα, Xβ ∈ X , we 
all (Xα, Xβ) strong or weak if for every s ∈ α and t ∈ β, (s, t) ∈ S or

(s, t) ∈ W respe
tively. Likewise, Xα ∼ Xβ if for every pair of terminals s ∈ α and t ∈ β,

s ∼ t. An X -path in G is an (x, y)-path with x, y lying in distin
t members of X . An X -�ow is

a �ow in the network (GX ,X ,KX ) 
onsisting of X -paths. The S-problem and the W -problem

in (GX ,X ,KX ) are de�ned in the same way as for (G, T,K), and their maxima are denoted by

ηX and θX respe
tively.

We de�ne a partial order on expansions as follows. Let E and F be equi-partitions of T and let

X = (Xα : α ∈ E) and Y = (Yα : α ∈ F) be expansions. Then X � Y if for every X ∈ X there

exists Y ∈ Y so that X ⊂ Y . Note that for every X � Y , every X -�ow is also a Y-�ow (but

the 
onverse may be not true). Sin
e for X � Y any X -�ow is also a Y-�ow, θY ≥ θX . Sin
e

T -�ow is also an X -�ow, θX ≥ θ. X is 
alled 
riti
al if θY > θX for every Y ≻ X . A 
riti
al X

with θX = θ is 
alled a dual solution. The triangle theorem ([L 1985℄) ensures that:

there exists a maximum X -�ow h su
h that ΘX (h) = θX . (7.7)

We limit ourselves to networks (G, T,K) with simple K. The results of this se
tion that hold for

simple 
lutters hold for general networks as well, be
ause 
ompressing a non-trivial atom into

one terminal does not 
hange θ by triangle theorem from [L 1985℄ and metri
 properties of a

K-
lutter. For a K-network with simple K, every subset in an expansion X 
ontains exa
tly one

terminal; Xt denotes a member of X 
ontaining t ∈ T . Then (7.7) implies that for a maximum

X-�ow h (even when X = T ):

ΘX (h) = |h| −
1

2
h[W ]. (7.8)

We aim to prove the following max-min theorem for the fra
tional W -problem.

Theorem 7.1 In a K-network (G, T,K):

maxfΘ(f) = minX (
1
2

∑
t∈T d(Xt)−

1
2

∑
A∈KX

β(A)). (7.9)

The maximum is taken over the fra
tional multi�ows in (G, T,K), and the minimum is taken

over all expansions in (G, T,K). Moreover, (7.9) holds as equality for every dual solution X .

To prove this theorem, we state the following inequality for an expansion X and a T -�ow f :

Θ(f)

(a)

≤ θ

(b)

≤ ΘX (h)

(c)

≤
1

2

∑

t∈T

d(Xt)−
1

2

∑

A∈KX

β(A) (7.10)

12



We aim to show that (7.10) holds as inequality for every expansion and as equality for every


riti
al expansion. (7.10)(a) follows dire
tly from the de�nition of θ. (7.10)(b) holds be
ause

f is also an X -�ow. (7.10)(
) holds be
ause there exists a maximum X -�ow h that solves the

W -problem in X . For su
h h the minimum of

∑
A∈KX

h[A] is a
hieved when all A ∈ KX are

lo
ked by h, i.e.
∑

A∈KX
h[A] ≤

∑
A∈KX

β(A) and |h| = 1
2

∑
t∈T λ(Xt) by the Lovãsz-Cherkassky

theorem ([Lo 1976, Ch 1977℄). We need the following two 
laims to show that (7.10)(
) is an

equality.

Claim 7.2 Let (G, T,K) be a simple K-network, and let X be a dual solution in it. A

maximum fra
tional X -�ow h that satis�es ΘX (h) = θX (that is, solves the W -problem in

(GX ,X ,KX )) lo
ks Xt for all t ∈ T .

Proof. First, let us show that h saturates every (Xt, Xt)-edge. Let e be an (x, y)-edge with

x ∈ Xt and y ∈ Xt. Let Y ≻ X be an expansion where Ys = Xs for terminal s 6= t and

Yt = Xt ∪ {y}. Sin
e X is 
riti
al, θY > θX and there exists a Y-�ow g su
h that ΘY(g) > θX .

Let us denote the unused 
apa
ity of e by ε and let δ = g[y,∪s 6=tXs]. Clearly, ε < δ. We turn g

into an X -�ow by prolonging all its paths starting in y to x instead through the edge e. Let g′

be the fun
tions on X -paths thus obtained; g′ does not satisfy the 
apa
ity 
onstraint on (x, y).

Then there exists 0 < α < 1 su
h that h′ = (1−α)h+αg′ is an X -�ow. h′
satis�es all 
apa
ity


onstraints and has ΘX (h
′) ≥ (1− α)ΘX (h) + αΘY(g) > θX , 
ontradi
ting the de�nition of X .

Let us assume now that a (p, q)-path P of h, p ∈ Xt, 
ontains two (Xt, Xt)-edges, e1 = (x1, y1)

and e = (x2, y2) where x1, x2 ∈ Xt, y1, y2 ∈ Xt and y1, x1, x2, y2 appear on P in this order. Then

by repla
ing P with x2Pq we obtain an X -�ow g for whi
h ΘX (g) = θX and the edge (x1, y1)

is not saturated by g, a 
ontradi
tion.

Claim 7.3 Let (G, T,K) be a simple K-network, and let X be a dual solution. A maximum

fra
tional X -�ow h would then satisfy ΘX (h) = θX i� every A ∈ KX is lo
ked by h.

Proof. The �if� dire
tion is trivial. Let h be a maximum X -�ow with ΘX (h) = θX that

lo
ks every member of KX . Be
ause of Claim 7.2 and the simpli
ity of KX , we get Θ(h) =

1
2

∑
X∈X d(X)− 1

2

∑
A∈KX

βA and thus Θ(h) ≥ θX by (7.10)(
).

For the �only if� dire
tion, assume that h is a maximum X -�ow that has ΘX (h) = θX and

unlo
ks A ∈ KX . Let Ac
in the 
ontext of KX denote the members of X that do not lie in

A. Then h 
ontains an augmenting sequen
e P0, x0, ..., xm−1, Pm, where P0 is an A-path, Pm is

13
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β−ε/2
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ε/2

Figure 5: The fra
tional

3
2
-operation.

an Ac
-path, and ea
h one of P1, ..., Pm−1 is an (A,Ac)-path. We 
an 
hoose h so that m = 1.

Let P0 and P1 be (s′, t′)- and (q′, r′)-paths with weights α and β respe
tively where s′ ∈ Xs,

t′ ∈ Xt, q
′ ∈ Xq and r′ ∈ Xr. Sin
e a swit
h of P0 and P1 in x0 
annot in
rease Θ(h), we 
an

assume that w.l.o.g. (Xq, Xr), (Xt, Xr) and (Xt, Xq) are S-pairs while (Xs, Xq) and (Xs, Xr)

are W -pairs by the simpli
ity of KX .

We 
onstru
t a new �ow f from h by repla
ing P0 and P1 with (t′, r′), (t′, q′), (q′, r′) and

(s′, t′)-paths of weights ε
2
,

ε
2
, β − ε

2
and α − ε respe
tively (this is the

3
2
-operation, see Figure

5). It follows that |f | = |h|− ε
2
and f [W ] = h[W ]− ε sin
e (Xq, Xt), (Xq, Xr), (Xr, Xt) ∈ S and

ΘX (f) = ΘX (h).

The subpath s′P0x0 does not have 
ommon nodes with any other X -path Q whose ends do

not lie in Xs ∪ Xt. If it were so, then the above

3
2
-operation 
ould be applied to both P0, P1

and P0, Q and a �ow f ′
with |f ′| = |h| − ε

2
and f ′[W ] = h[W ] − 2ε 
ould be 
reated, whi
h


ontradi
ts the maximality of ΘX (h). Therefore, there exists an edge (s′, x) of s′Lv whi
h is

not saturated by f - a 
ontradi
tion to Claim 7.2.

Theorem 7.1 follows from Claims 7.2 and 7.3.

Corollary 7.4 2θ(G, T,K) ∈ N.

Proof. Let X be an expansion that a
hieves equality in Theorem 7.1 for (G, T,K). Then

θ(G, T,K) = 1
2

∑
X∈X d(X) − 1

2

∑
A∈KX

β(A), while
∑

X∈X d(X) is always even in an Eulerian

network and every β(A) is an integer by de�nition. Thus, a split of an inner node in (G, T,K)

de
reases θ by

k
2
, k ∈ N ∪ {0}.

Corollary 7.5 Let (G, T,K) be a simple K-network and let h be a simple W -problem

solution in (G, T,K) with
∑

A∈K h[A] =
∑

A∈K β(A). Then 2h[S] ∈ N.

Proof. 2h[S] is an integer be
ause θ = h[S]+ 1
2
h[W ] = h[S]+ 1

2

∑
A∈K β(A) and θ is half-integer

14



by Corollary 7.4.
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