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Algorithms for the minimum non-separating path and the

balanced connected bipartition problems on grid graphs

(With errata)

Bang Ye Wu∗
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National Chung Cheng University, Taiwan

Abstract

For given a pair of nodes in a graph, the minimum non-separating path problem looks
for a minimum weight path between the two nodes such that the remaining graph after
removing the path is still connected. The balanced connected bipartition (BCP2) problem
looks for a way to bipartition a graph into two connected subgraphs with their weights as
equal as possible. In this paper we present an algorithm in time O(N logN) for finding a
minimum weight non-separating path between two given nodes in a grid graph of N nodes
with positive weight. This result leads to a 5/4-approximation algorithm for the BCP2

problem on grid graphs, which is the currently best ratio achieved in polynomial time.
We also developed an exact algorithm for the BCP2 problem on grid graphs. Based on
the exact algorithm and a rounding technique, we show an approximation scheme, which
is a fully polynomial time approximation scheme for fixed number of rows.

Key words. algorithm, approximation algorithm, non-separating path, balanced con-
nected partition, grid graphs.

About this version

This article was published as [16]. In this version we report a mistake about the min-
imum non-separating path on grid graphs and fix the 5/4-approximation algorithm for
Balanced Connected 2-Partition problem on grid graphs (GBCP2). The correction is at
the appendix.

1 Introduction

Let G = (V,E,w) be a connected undirected graph, in which w is a nonnegative node
weight function. For two given nodes s and t, if we want to allocate some of the nodes for
the communication between s and t, choosing a minimum st-path (a minimum weight
path with endpoints s and t) may be the best way. However, if the chosen nodes cannot
be used for other services, the remaining network may be separated into species. To
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keep the remaining network connected, one may hope to find a minimum non-separating
st-path, i.e., a st-path P such that the remaining graph G − P is connected. However,
in general, non-separating path does not always exist. A natural relaxation allows any
connected subgraph containing both s and t. That is, we look for a minimum weight
connected subgraph B containing both s and t such that G − B is connected. We
name such a subgraph by “non-separating st-connector” (st-NSC or simply “NSC” if no
confusion), and the one with minimum weight is a minimum non-separating connector
(min-NSC).

A node bipartition (U, V −U) is a connected bipartition if both the subgraphs induced
by U and V − U are connected. Immediately if B is an NSC, then (V (B), V − V (B)) is
a connected bipartition. The maximum balance connected bipartition (BCP2) prob-
lem looks for a connected bipartition (U, V − U) such that the balance, defined by
min{w(U), w(V − U)}, is maximized, in which w(U) denotes the total weight of nodes
in U . The applications of BCP may appear in image processing, data bases, oper-
ating systems, cluster analysis, etc. [5]. An m × n grid graph M is an undirected
graph and can be thought of as a 2-dimensional matrix, in which m and n are the
numbers of rows and columns, respectively. The node set of M can be represented by
V = {Mij |1 ≤ i ≤ m, 1 ≤ j ≤ n} and there exists an edge between two consecutive
nodes in the same row or the same column. In this paper we study the min-NSC and
the BCP2 problems on node-weighted grid graphs.

The non-separating path problem has been studied from the perspective of graph
theory. Most of the works are devoted to its relationship to graph connectivity [4, 6, 9,
10, 13], but we haven’t found any optimization problem about it. The min-NSC problem
on general graphs is NP-hard in the strong sense and cannot be approximated with ratio
|V |1−ε for any ε > 0 in polynomial time unless P=NP [15] (named “minimum border
problem”). In this paper we show that a minimum st-NSC on a grid graph is a minimum
non-separating st-path and can be found in O(N logN) time, in which N is the number
of nodes. The efficient algorithm is based on two key points. First, the min-NSC on a
grid graph is a minimum weight path with at most one boundary subpath; and secondly,
such a path can be found by reducing to a range minimum query (RMQ) problem.

The second result of this paper is about the BCP2 problem on grid graphs (GBCP2

for short). Based on NSC and st-numbering, we propose a 5/4-approximation algorithm
with time complexity O(N logN) for the GBCP2 problem, which is the currently best
result achieved in polynomial time. We also developed an exact algorithm for GBCP2.
For an m × n grid graph of total weight W , m ≤ n, the algorithm takes O(mNW8m)
time, which is more efficient than the naive brute force method of O(N2N ) time. The
exact algorithm uses a typical dynamic programming strategy and computes the best
bipartition for any possible weight and any connection topology of the first i columns
for i from 1 to n. The analysis itself is of its own interest. An obvious upper bound
of the number of connection topologies is mm. With a more precise analysis and using
the method of generating function, we show a sharper bound of O(2m). Based on the
exact algorithm and a rounding technique, we developed an approximation scheme. For
any ε > 0, the GBCP2 problem can be (1+ ε)-approximated in O((1 + 1

ε )mN28m) time,
which is a fully polynomial-time approximation scheme (FPTAS) for fixed m.

The BCPq problem is a generalization of BCP2, for which the input graph is parti-
tioned into q connected subgraphs for any given q ≥ 2. Previous results about BCP2 are
as follows. The BCP2 on grid graphs of more than two rows was shown to be NP-hard
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[1] while for grid graphs of two rows (also known as “ladders”), the problem can be
solved in polynomial time [2]. Approximation algorithms for BCPq on grid graphs were
also presented by [1] but the general approximation ratios were not given, except for the
case q = 2, for which a 3/2-approximation can be guaranteed. Besides the ladders, it
is known that the BCPq problem is polynomially solvable for trees [12] and unweighted
q-connected graphs [11]. [7] showed that BCP2 on general graphs is NP-hard in the
strong sense and cannot be approximated with an absolute error guarantee of |V |1−ε for
any ε > 0 unless NP=P. A 4/3-approximation algorithm was also given in that paper,
which is currently the best approximation ratio of the problem, even on grid graphs. For
BCP3 and BCP4, on 3- and 4-connected graphs respectively, there are 2-approximation
algorithms proposed by [5].

The rest of the paper is organized as follows: In Section 2, we give some notations and
show that the min-NSC is a minimum non-separating path in a grid graph. In Section
3, we show the algorithm for the minimum non-separating path. The 5/4-approximation
algorithm for GBCP2 is given in Section 4. The exact algorithm and the approximation
scheme of GBCP2 are in Sections 5 and 6, respectively. Finally, some concluding remarks
are given in Section 7.

2 Preliminaries

Let G = (V,E) be a graph, S ⊂ V and H an induced subgraph of G. The subgraph
induced by S is denoted by G[S]. By G−S we denote G[V −S], and similarly G−H =
G[V − V (H)], in which V (H) is the node set of H. Let w : V → Z+ be a node weight
function. By w(S), we denote the total weight of S, i.e., w(S) =

∑

v∈S w(v). For
convenience w(H) = w(V (H)). Let [i, j] denote the interval of integers {i, i + 1, . . . , j}
for i ≤ j. An m × n grid graph M will be thought of as an m × n matrix such that
V (M) = {Mij |i ∈ [1,m], j ∈ [1, n]} and there exists an edge between two consecutive
nodes in the same row or the same column. The set of nodes in the first or the last row
and the first or the last column is called as the boundary of the grid graph. The four
nodes M1,1, M1,n, Mm,1 and Mmn are called as corner nodes. W.l.o.g. we assume n ≥ m.
Let N = mn = |V (M)| and wij the weight of node Mij.

Let C1, C2 and C3 be the sets of all non-separating induced st-paths, non-separating
st-paths and st-NSCs, respectively. By definition, C1 ⊂ C2 ⊂ C3. For general graphs, they
are different and there may be even no any non-separating st-path. Figure 1 illustrates
a case that the minimum NSC and the non-separating (induced) st-path are different.
In the remaining of this section we show that C1 = C2 = C3 on a grid graph except that
{s, t} is a 2-cut.

A node subset is a cut if the graph becomes disconnected after its removal. A 2-cut is
a cut consisting of two nodes. For a grid graph of at least three rows, the only 2-cuts are
the pairs of the two neighbors of corner nodes. Suppose that {s, t} is a 2-cut of an m×n
grid graph G, in which n ≥ m ≥ 3. Let x be the corner node adjacent to both s and
t. Apparently the minimum st-NSC is either the path (s, x, t) or G − x, depending on
which weight is smaller. The minimum non-separating path is similar but a little tricky.
It is not hard to observe that the minimum non-separating st-path is either (s, x, t) or
a Hamiltonian st-path of G − x if the Hamiltonian path exists. If both m and n are
odd integers, we can show that there does not exist a Hamiltonian st-path in G − x as
follows. First we color s white, and then all other nodes are colored according to the
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Figure 1: The minimum NSC and the minimum non-separating (induced) st-path. The
nodes are labeled by their weights. The minimum st-NSC consists of the four nodes of
weight 1 (in addition to s and t); the minimum non-separating st-path passes through
the three nodes of weight 2; and the minimum non-separating induced st-path passes
through the two nodes of weight 5.
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Figure 2: The Hamiltonian st-paths in G− x for even number of rows and even number
of columns are shown in the left and the right, respectively

rule: “the neighbors of a white node should be color black and vice versa”. It can be
easily checked that t is colored white and that the numbers of white and black nodes are
the same. Since a path with both endpoints colored white cannot have equal number of
white and black nodes, no Hamiltonian st-path exists on G − x. On the contrary, if m
or n is even, we can show that a Hamiltonian st-path always exists. W.l.o.g we assume
that x is the corner node M1,1. The Hamiltonian paths for even number of rows, and
columns respectively, are illustrated in Fig. 2.

Anyway, if {s, t} is a 2-cut, both the min-NSC and the minimum non-separating path
can be easily computed, and we shall assume it is not the case in the remaining of the
paper. For an NSC B or a connected partition (V (B), V −V (B)), a node v is movable if
it is still a connected bipartition after moving v to the other part. A trivial observation
is that v ∈ V (B) is movable iff v is not an articulation node in B and v has a neighbor in
V −V (B), assuming V −V (B) is not empty. For a connected bipartition of a biconnected
graph, there are at least two movable nodes in each part unless the part contains less
than two nodes [7]. The following result comes from the minimality of the NSC.

Lemma 1: If B is a minimum st-NSC of a biconnected graph, both s and t are movable
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and there is no other movable node in B.

Theorem 2: If {s, t} is not a 2-cut, a minimum st-NSC B on a grid graph M of at least
three rows is a non-separating induced st-path.

Proof: By definition M − B is connected, and it is sufficient to show that B is an
induced st-path. A block is either a maximally biconnected subgraph or a bridge (an
edge whose removal disconnects the graph). Let K and A be the sets of the blocks and
the cut vertices of B, respectively. The block-cutpoint tree T of B is defined as follows
[14, Chap. 4]. V (T ) = K ∪ A, and for any a ∈ A and K ∈ K, (a,K) ∈ E(T ) iff, in the
original graph B, a is a vertex in block K. By definition T is a tree and each leaf of T
corresponds to a block of B.

Since M is biconnected, for any leaf K of T , there is a node in the block K of B
which is adjacent to M − B and therefore movable. By Lemma 1, s and t are the only
movable vertices in B. So T has at most two leaves, and is therefore a path. We shall
show that each block is an edge, and the proof is completed. Suppose by contradiction
that K is a block of B and |V (K)| > 2. Since M is a grid graph of at least three rows,
there are at least three nodes in K adjacent to M −K unless K contains all nodes but
a corner (in this case K = B). If K contained all nodes but a corner node, then s and
t would be the two neighbors of the corner node and therefore a 2-cut, violating the
assumption. A node in K and adjacent to M −K is either

• a cut of B and therefore adjacent to a component of B −K; or

• adjacent to M −B and therefore a movable node of B because no node of a block
of more than two nodes is a cut of the block.

Since M is biconnected, there is a movable node of B in each component of B − K.
Therefore there are at least three movable nodes in B, and by Lemma 1, B is not a
minimum st-NSC.

Corollary 3 : For a grid graph of at least three rows, the minimum NSC, the minimum
non-separating path and the minimum non-separating induced path are all equivalent
except that s and t are the two neighbors of a corner node.

3 Minimum non-separating path

In this section we show how to find a minimum non-separating path efficiently. A bound-
ary path is a path along the boundary, i.e., all the nodes are on the boundary. A interior
path is a path whose internal nodes are not on the boundary. In the following we shall
denote by B the boundary of M . For a path P , a boundary subpath of P is a maximal
subpath of P with all nodes on the boundary, i.e. a boundary subpath of P is not a
subpath of another boundary subpath of P . A subpath may contain only a single node.

Lemma 4: A non-separating induced st-path has at most one boundary subpath.

Proof: If P is an induced path and has more than one boundary subpaths, there are
at least two boundary segments divided by P , and each of these segments is in one com-
ponent of M − P , which implies P is not non-separating.

5



Lemma 5: If P is a minimum st-path with at most one boundary subpath, then P is a
non-separating induced path.

Proof: Let P = (s = v1, v2, . . . , vl = t). First we show that P is an induced path by
contradiction. If not, there exist vi and vj such that (vi, vj) ∈ E and i < j − 2. Since
removing a subpath from a path will not increase the number of boundary subpaths,
we can replace the subpath from vi to vj with the edge (vi, vj) to obtain a path of less
weight and with at most one boundary subpath, a contradiction to the minimality of P .

For any induced path, the subgraph induced by any of its node subset is not a cycle.
Therefore P cannot include the whole boundary. Since P has at most one boundary
subpath, the remaining boundary nodes B − V (P ) are connected and not empty. If P
was not non-separating, there would be an interior node separated from the remaining
boundary by P . Since there is no induced cycle in V (P ) and P only has at most one
boundary subpath, it only happens at the case that the remaining boundary contains
only a corner node, which implies that P is a boundary path including the whole bound-
ary but the corner node, i.e., s and t are the two neighbors of the corner node. But this
contradicts the assumption that {s, t} is not a 2-cut.

By the above results, a minimum NSC is a minimum non-separating path, and is
also a minimum st-path with at most one boundary subpath. This property is helpful
for designing our algorithm. The next corollary is immediate.

Corollary 6 : If both s and t are on the boundary, a minimum non-separating st-path
is a boundary path and can be found in linear time to |B|.

For two nodes u and v, let dB(u, v), and dI(u, v), denote the minimum weight of any
boundary path, and interior path respectively, between u and v. For dB(u, v), both u and
v must be on the boundary. Let d(u, v) denote the minimum weight of any non-separating
induced uv-path. We can have the next lemma.

Lemma 7: If s is on the boundary and t is not, d(s, t) = mini∈B{dB(s, i)+dI(i, t)−w(i)}.

Proof: By Lemma 5, it is sufficient to compute the minimum weight of any st-path
with at most one boundary subpath. Since s is on the boundary, the optimal path must
be a concatenation of a boundary subpath and an interior subpath, including the degen-
erating case that the boundary subpath is only one node, i.e., s in this case.

For each u of the four corner nodes, the value dI(v, u) = ∞ for any v. It is trivial
that the total time complexity to compute dB(s, i) for every i ∈ B is linear to |B|. To
compute d(s, t), it is sufficient to find dI(t, i) for every i ∈ B, and then the minimum
can be found in O(|B|) time. Since any boundary node i other than a corner node has
only one interior neighbor, dI(t, i) is the minimum weight of any path between t and
the interior neighbor of i on M − B. Since a minimum weight path can be found by
an algorithm similar to Dijkstra’s algorithm and the number of edges in a grid graph is
linear to the number of nodes, the time complexity is dominated by calling to Dijkstra
algorithm, which takes time O(N logN) [8].

Corollary 8 : If s is on the boundary and t is not, then d(s, t) can be found in time
O(N logN).
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The proof of the next result is similar to Lemma 7 and is omitted.

Lemma 9: If neither s nor t is on the boundary, then d(s, t) is the minimum between
dI(s, t) and

min
i,j∈B
{dI(s, i) + dB(i, j) + dI(j, t)− w({i, j})} (1)

Note that if the optimal path contains a boundary node, it must contain at least
two boundary nodes since a boundary node has at most one interior neighbor. The time
for computing dI(s, t) is O(N logN) by Dijkstra algorithm. To compute (1), a naive
algorithm of checking all possible i and j takes quadric time. We shall give an algorithm
with time complexity O(|B|) in the following.

Starting at an arbitrary boundary node, we number the boundary nodes clockwise
from 1 to |B|. Let w(i) be the weight of i ∈ B and WB denote the total weight of
boundary nodes. Our algorithm has two rounds. In the first round, we find for every i
the best j such that the minimum boundary path from i to j is clockwise. The other
case that the path is counterclockwise is checked in the second round. Since the two
rounds are similar, we shall only show the first round. For convenience, we double the
whole sequence, i.e., the (|B| + i)-th node is the same as the i-th node for 1 ≤ i ≤ |B|.
The minimum boundary ij-path is clockwise if

∑

i<k<j

w(k) ≤
1

2
(WB − w(i) − w(j)).

Therefore we define right(i) as the maximum index j in [i+ 1, i+ |B| − 1] such that the
path is clockwise.

Since right(i) is a increasing function, it is not hard to show that computing right(i)
for every i can be done in total time O(|B|). For every i from 1 to |B|, we find j∗ ∈
(i, right(i)] minimizing dI(s, i) +

∑

i<k<j∗ w(k) + dI(t, j
∗). For a fixed i, equivalently we

only need to find j∗ minimizing σ(j∗) =
∑

1≤k<j∗ w(k)+dI (t, j
∗). By this way we reduce

our problem to a range minimum query (RMQ) problem. For a one dimensional array,
there is an algorithm which reports the minimum in any index range in constant time
after a linear-time preprocessing [3]. For our problem, the array σ has 2|B| elements and
we need to perform |B| queries. Therefore the time complexity for finding indices i and
j minimizing (1) is O(|B|). Clearly σ(j) for every j can be found in O(N logN) time.
Combining this result with Corollaries 6 and 7, we summarize this section in the next
theorem.

Theorem 10: A minimum non-separating path on an N -nodes grid graph can be found
in O(N logN) time.

4 A 5/4-approximation algorithm for GBCP2

In this section we show a 5/4-approximation algorithm with time complexity O(N logN)
for the GBCP2 problem by using minimum non-separating paths. For the GBCP2 prob-
lem, the optimal solution is trivial if there exists a node of weight at least W/2. Therefore
we shall exclude this case in the following. We shall first introduce an algorithm for find-
ing a bipartition of any biconnected graph but not necessarily of a grid graph. This
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algorithm is based on st-numbering and finds a 4/3-approximation of BCP2. Then we
show how to improve the ratio to 5/4 for grid graphs by using minimum non-separating
paths.

4.1 An algorithm based on st-numbering

For a biconnected undirected graph G = (V,E) and s, t ∈ V , an st-numbering is a 1-to-1
labeling λ : V → [1, |V |] satisfying λ(s) = 1, λ(t) = |V |; and, for each node v ∈ V −{s, t},
v has a neighbor with label smaller than λ(v) and also a neighbor with label larger than
λ(v). For a biconnected graph, an st-numbering always exists and can be found in linear
time [Even and Tarjan(1976)]. The original algorithm for st-numbering requires that s
and t must be adjacent. But, if (s, t) /∈ E, we can simply add edge (s, t) to obtain an
st-numbering.

Algorithm STN

Input: A biconnected graph G = (V,E).
Output: A connected bipartition G.

1: find two nodes s and t of the largest and the second largest weights, respectively;
2: compute an st-numbering λ;
3: let V = {vi|1 ≤ i ≤ n} such that λ(vi) = i, ∀i;
4: find k such that w(Vk) ≤W/2 and w(Vk+1) > W/2, in which Vk = {vi|1 ≤ i ≤ k};
5: if w(Vk) ≥W − w(Vk+1) then
6: k∗ ← k;
7: else

8: k∗ ← k + 1;
9: end if

10: output (Vk∗ , V − Vk∗).

Claim 11: For any 1 ≤ k < n, the bipartition (Vk, V − Vk) is a connected bipartition.

Proof: For any node v ∈ Vk, since each node has a neighbor with smaller st-number,
there exists a path from v to s in G[Vk]. Consequently G[Vk] is connected. It can be
shown similarly that G[V − Vk] is also connected.

Lemma 12: The algorithm STN takes linear time. If Vk∗ is the solution produced by
the algorithm, then min{w(Vk∗),W − w(Vk∗)} ≥ (W − w3)/2, where w3 is the third
largest node weight in G.

Proof: Due to [Even and Tarjan(1976)], the st-numbering can be computed in linear
time. It is trivial that all the other steps can also be done in linear time.

When k∗ = k, i.e., w(Vk) ≥ W − w(Vk+1), we have min{w(Vk∗),W − w(Vk∗)} =
w(Vk) ≥W −w(Vk+1). Similarly, when k∗ = k + 1, i.e., w(Vk) < W −w(Vk+1), we have
min{w(Vk∗),W − w(Vk∗)} = W − w(Vk+1) > w(Vk). That is, in either case, we have
min{w(Vk∗),W −w(Vk∗)} ≥ max{w(Vk),W −w(Vk+1)} ≥ (w(Vk)+(W −w(Vk+1)))/2 =
(W−w(vk+1))/2. Since no node has weight larger than W/2, we have that vk+1 is neither
s nor t. Therefore w(vk+1) ≤ w3.

8



4.2 A 5/4-approximation algorithm

By Lemma 12 and the analysis in [7], it can be shown that the algorithm STN is a linear-
time 4/3-approximation algorithm for the BCP2 problem on any biconnected graph.
Of course it works for grid graphs since a grid graph is biconnected. The remaining
paragraphs of this section aims at improving the approximation ratio to 5/4. In the
remaining we assume G is an m × n grid graph and N = m × n, in which n ≥ m ≥ 3.
Let H = {hi|w(hi) > W/5} be the set of heavy nodes. Clearly |H| ≤ 4. We shall show
how to find a 5/4-approximation solution for each possible value of |H|. The minimum
non-separating path will play an important role in the case of |H| = 3.

Claim 13: When |H| ≤ 2, the algorithm STN finds a 5/4-approximation.

Proof: In this case the third largest node weight w3 is at most W/5. By Lemma 12,
the returned bipartition satisfies min{w(Vk∗),W − w(Vk∗)} ≥ (W −W/5)/2 = (2/5)W .
Comparing with the trivial upper bound W/2, the ratio is 5/4.

Claim 14: When |H| = 4, the algorithm STN finds a 5/4-approximation.

Proof: Since the nodes are arranged in a linear order by their st-numbers, there always
exists a bipartition, said P, whose both parts contain exactly two heavy nodes and are
of weight larger than (2/5)W . By the optimality of k∗, the output is no worse than P.

Finally we consider the case that |H| = 3.

Definition 1: Let G be a graph and U a subset of nodes of G. The contracted graph
G/U is the graph obtained by combining all the nodes in U by a new node u and, for any
v /∈ U , the edge (u, v) exists iff v has a neighbor in U . For convenience, G/S = G/V (S)
for a subgraph S.

Lemma 15: If G is biconnected and (U, V (G)−U) is a connected bipartition, then G/U
is biconnected.

Proof: Since (U, V (G)−U) is a connected bipartition, the new node u is not a cut node
in G/U . Since G is originally biconnected, no node in V (G) − U will be a cut node in
the contracted graph.

Our 5/4-approximation algorithm for the case of three heavy nodes is as follows.

Algorithm Three Heavy

1: let H = {h1, h2, h3} be the set of nodes of weight larger than W/5;
2: find a minimum hihj-NSC Bij for each 1 ≤ i < j ≤ 3;
3: let B be the NSC of smallest weight among those found in Step 2;
4: if w(B) < W/2 then

5: call algorithm STN on the contracted graph G/B;
6: else

7: output (V (B), V − V (B)).
8: end if

9



Claim 16: In the case of |H| = 3, the algorithm Three Heavy finds a 5/4-approximation
in O(N logN) time.

Proof: By Lemma 15, the contracted graph G/B is biconnected and has exactly two
nodes of weight larger than W/5. If w(B) < W/2, the result is the same as the case
of |H| = 2. For otherwise we claim that (V (B), V − V (B)) is an optimal connected
bipartition. Let (U, V − U) be an optimal connected bipartition. Since there are three
heavy nodes, at least two heavy nodes must be in the same part. W.l.o.g. we assume
that heavy nodes h1 and h2 are in U . By the definitions of NSC and B, we have that
w(U) ≥ w(B12) ≥ w(B) ≥ W/2, and this implies (V (B), V − V (B)) is an optimal
connected bipartition.

By the result of previous section, B must be an induced path or the whole grid
graph lacking a corner node. And in either case the contracted graph G/B can be easily
constructed in linear time. Since the algorithm STN takes also linear time, the total time
complexity is dominated by the step of finding the minimum NSC’s, which is O(N logN)
according to Theorem 10.

We conclude this section as follows.

Theorem 17: The GBCP2 can be approximated with ratio 5/4 in O(N logN) time.

5 An exact algorithm for GBCP2

In this section we develop an exact algorithm for GBCP2. We shall assume that the grid
graph has at least three rows. For 1 ≤ j ≤ n and a bipartition (V0, V1), we use a vector
zj ∈ {0, 1}

m to represent a bipartition of the j-th column such that zij = 0 if Mij ∈ V0

and is one otherwise, in which zij denotes the i-th component of zj for 1 ≤ i ≤ m.
We shall represent by configuration (z, θ, τ) a possible bipartition (V0, V1) of the first

j columns such that the partition of the j-th column is z, the weight of V1 is θ, and τ
represents how the nodes of column j are connected in the first j columns. That is, for
the first j columns, if we delete the nodes of V1, τ represents the connected components
of the nodes of V0; and similarly the components of V1 if we delete the nodes of V0.
We say τ is a connection topology. We shall develop a dynamic programming algorithm
computing all possible configurations for j from 1 to n. We first discuss the connection
topology.

5.1 Connection topology

To represent a connection topology, it is sufficient to use a data structure for disjoint
sets. Each set contains the row indices of the nodes in the same connected component.
Precisely speaking, at column j, we use an array τ such that τ [i] stores the representer
of the set Mij belongs to, in which the representer of a set is the smallest row index of
its members. For example, if, at the first j columns, the nodes M2,j , M3,j and M9,j are
in the same component, we record the set {2, 3, 9} by τ [2] = τ [3] = τ [9] = 2. Since the
nodes in a component are all in V0 or V1, we divide a connection topology into a 0’s
connection topology, or 0-topology for short, and a 1-topology. That is, a q-topology is a
partition of {i|zij = q} for column j. A trivial upper bound of the number of connection
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topologies is mm, and we aim at finding a much sharper bound. We shall first consider
the 0-topology.

First of all, if two adjacent nodes are in V0, they must be in the same subset. We
transform a column vector into a set of disjoint segments of 0’s (0-segments for short).
Labeling the segments by consecutive integers from 1, we have an interval [1, p]. Clearly
p ≤ ⌈m/2⌉. For the above example of {2, 3, 9}, 2 and 3 are the first segment and 9 is
the second segment. We shall represent the bound by a function of p. In the remaining
a 0-topology shall be thought of as a partition of [1, p].

Consider the points {(i, 0)|1 ≤ i ≤ p} in the Euclidean plane. The number of 0-
topologies is the number of ways of adding some lines on one half-plane to joint some
of these points. If two lines are cross, the corresponding segments are in the same
component.

Definition 2: For two subsets S1 and S2 in a 0-topology T , S1 is covered by S2 if
max(S2) > max(S1) and min(S2) < min(S1), in which max(S1) and min(S1) denote the
maximum and the minimum elements in S1, respectively. A subset is covered if it is
covered by some other subset and is uncovered otherwise.

A crucial observation is as follows:

If T is a 0-topology of [1, i] and i ∈ S ∈ T , then S − {i} cannot be covered
by any S′ ∈ T .

Let α(i, j) denote the number of 0-topologies of i segments with j uncovered subsets
for 1 ≤ j ≤ i ≤ p. In any 0-topology of i segments, i must be in one of the uncovered
subsets of a 0-topology of i − 1 segments. For a 0-topology of i − 1 segments with k
uncovered subsets, joining i to the j-th uncovered subsets will form a 0-topology of i
segments with j uncovered subsets, for j ≤ k ≤ i − 1. Besides, leaving i itself as an
uncovered subset along with a j − 1 uncovered subsets also forms a 0-topology of j
uncovered subsets, seeing Fig. 3.(a). Therefore we can have the following recurrence
relation.

α(i, j) =

i−1
∑

k=j−1

α(i− 1, k) for 1 ≤ j < i (2)

The boundary conditions are α(i, 0) = 0 and α(i, i) = 1 for any i.

Lemma 18: For a fixed 0-topology with j uncovered subsets, there are at most 2j

1-topologies.

Proof: Clearly the 0-segments interleave the 1-segments, and vice versa. Let T be a
0-topology. For S ∈ T , we say that a 1-segment i is minimally covered by S iff i is cov-
ered by S but not covered by any S′ ∈ T covered by S. As shown in Fig. 3.(b), for any
S ∈ T , all the 1-segments minimally covered by S is in the same component. So, for the
1-segments covered by at least one subsets in T , their components are fixed. Therefore
the number of 1-topologies only depends on the uncovered 1-segments. If there are j
uncovered subsets in S, there are at most j + 1 uncovered 1-segments. Let f(k) denote
the maximum number of 1-topologies with k uncovered 1-segments. Clearly f(1) = 1.
For k > 1, the k-th 1-segment either forms a component by itself or joins to the (k−1)-th
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Figure 3: Connection topologies (the columns are transposed).

1-segment. Note that since they are uncovered, it cannot join to other segment but skip
from the (k − 1)-th one. Consequently we have f(k) = 2f(k − 1) for k > 1, and it turns
out to be f(k) = 2k−1 ≤ 2j .

Corollary 19 : For p 0-segments, the number of connection topologies is upper bounded
by t(p) =

∑

1≤j≤p 2
jα(p, j).

Lemma 20: For any h ≥ 0 and positive i,
∑h

k=0

(i−1+k
i−1

)

≤
(i+h

i

)

.

Proof: By induction on h. First when h = 0,
∑h

k=0

(

i−1+k
i−1

)

=
(

i−1
i−1

)

=
(

i+h
i

)

. Suppose

that the inequality holds for h− 1, i.e.,
∑h−1

k=0

(i−1+k
i−1

)

≤
(i+h−1

i

)

. We have

h
∑

k=0

(

i− 1 + k

i− 1

)

=
h−1
∑

k=0

(

i− 1 + k

i− 1

)

+

(

i− 1 + h

i− 1

)

≤

(

i+ h− 1

i

)

+

(

i+ h− 1

i− 1

)

=

(

i+ h

i

)

Lemma 21: α(i, j) ≤
(2i−j

i

)

for 1 ≤ j ≤ i.

Proof: By induction on i. When i = 1, the only feasible value of j is 1, and α(1, 1) =
1 =

(2i−j
i

)

. Suppose that it holds for i− 1 and any 1 ≤ j ≤ i− 1. By (2),

α(i, j) =

i−1
∑

k=j−1

α(i− 1, k) ≤

i−1
∑

k=j−1

(

2(i− 1)− k

i− 1

)

=

i−j
∑

k=0

(

i− 1 + k

i− 1

)

The last equality is obtained by substituting k by i − 1 − k. Then, by Lemma 20,
α(i, j) ≤

(2i−j
i

)

.

Lemma 22: t(p) ≤ 22p −
(

2p
p

)

for p ≥ 1.
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Proof: By Corollary 19 and Lemma 21,

t(p) =
∑

1≤j≤p

2jα(p, j) ≤
∑

1≤j≤p

2j
(

2p− j

p

)

=

p−1
∑

j=0

2p−j

(

p+ j

j

)

≡ t̂(p)

The last equality is obtained by substituting j with p − j. We derive a closed form of
t̂(p) by the method of generating function. First, 2p−j

(

p+j
j

)

is the coefficient of xj in

2−j(2 + x)p+j, and is the coefficient of xp in 2−jxp−j(2 + x)p+j. Then t̂(p) is the the
coefficient of xp in the following generating function:

T (x) =

p−1
∑

j=0

2−jxp−j(2 + x)p+j (3)

Since

2x

2 + x
T (x) =

p−1
∑

j=0

2−j+1xp−j+1(2 + x)p+j−1

=

p−2
∑

j=−1

2−jxp−j(2 + x)p+j (4)

subtracting (4) from (3) and solving T (x), we obtain

T (x) =

(

1

2− x

)

(

21−px(2 + x)2p − 2xp+1(2 + x)p
)

=

(

∞
∑

i=0

(x

2

)i
)

(

2−px(2 + x)2p − xp+1(2 + x)p
)

Since t̂(p) is the coefficient of xp in T (x), the second term is useless, and

t̂(p) = 2−p
p−1
∑

i=0

(

1

2

)i( 2p

p− i− 1

)

2p+i+1 = 2

p−1
∑

i=0

(

2p

p− i− 1

)

= 2

p−1
∑

i=0

(

2p

i

)

=

2p
∑

i=0

(

2p

i

)

−

(

2p

p

)

= 22p −

(

2p

p

)

Since p is the number of 0-segments and bounded by ⌈m/2⌉, we obtain the following
result.

Theorem 23: The number of connection topologies is O(2m).

5.2 An exact algorithm for GBCP2

Let Lj be the list of all configurations for column j. Initially, for each binary m-vector
z, there is only one connection topology τ and only one possible total weight θ of V1.
So L1 contains 2m configurations. For j from 2 to n, our algorithm computes Lj from
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Lj−1 in each iteration, as well as checks if a better feasible solution is obtained. We say
a component is “closed” at column j − 1 if the component contains at least one node of
column j − 1 but none of column j. For any (z, θ, τ) ∈ Lj−1 and any bipartition z′ of
column j, we check the following conditions:

• If Vq, q ∈ {0, 1}, has exactly one component in (z, θ, τ):

– all nodes of column ≥ j assigned to V1−q is a feasible solution. We need only
check if it is the currently best solution but not insert it into Lj .

– any other z′ closing the component is illegal and should be discarded.

• Otherwise any z′ closing any component at column j − 1 is illegal.

• If it is not illegal, compute θ′ and τ ′, and insert (z′, θ′, τ ′) into Lj.

Finally for each configuration of column n, we check if it is feasible and update the best
one if necessary. We next analyze the time complexity.

To store the configurations, we use a 2m×W table T and each entry of the table is a
list of connection topologies. For a configuration (z, θ, τ), we store τ in the list of T [z, θ].
By using a balanced binary search tree (such as AVL tree) with array τ as the key, we
can check the existence and insert a configuration in O(m2) time. Note that we need to
check and avoid the duplicates to ensure the number of configurations is bounded. The
number of configurations is O(2m×W × 2m) = O(W × 4m). Since there are n iterations
and in each iteration it takes O(m2) time for every configuration and every z′, the total
time complexity is O(m2nW8m) = O(mNW8m). It is much better than O(N2N ) of the
brute force algorithm.

Theorem 24: The GBCP2 can be solved in O(mNW8m), in which N is the number of
nodes, m is the number of rows, and W is the total weight.

6 Approximating GBCP2

Based on the exact algorithm for GBCP2 and a scaling technique, we shall show an
approximation algorithm for GBCP2, which is a FPTAS for fixed number of rows.

For some ρ < 1, we scale down the weights by a factor r = ρW/(3N), i.e., we set
w′
ij = ⌊wij/r⌋ for each i and j. Then we run the exact algorithm on the modified weight

w′ to obtain a bipartition (V0, V1) as the approximation solution. Let (V ∗
0 , V

∗
1 ) be the

optimal bipartition w.r.t. w. The following result can be derived from Lemma 12.

Lemma 25: If no node has weight larger than W/2, then min{w(V ∗
0 ), w(V

∗
1 )} ≥W/3.

Lemma 26:
min{w(V ∗

0
),w(V ∗

1
)}

min{w(V0),w(V1)}
≤ 1

(1−ρ) .

Proof: W.l.o.g. let w(V0) ≤ w(V1). By definition, w(V0) ≥ rw′(V0). Since (V0, V1) is
the optimal bipartition w.r.t. w′, minq w

′(Vq) ≥ minq w
′(V ∗

q ) and therefore

w(V0) ≥ rw′(V0) ≥ rmin
q

w′(V ∗
q )
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By the definition of w′, for q = 0 or 1, w(V ∗
q ) < rw′(V ∗

q ) + rN . Hence,
rminq w

′(V ∗
q ) > minq w(V

∗
q )− rN , and we obtain

w(V0) > min
q

w(V ∗
q )− rN

Then, since r = ρW/(3N) and minq w(V
∗
q ) ≥W/3 by Lemma 25, the approximation

ratio can be calculated by

min
q

w(V ∗
q )/w(V0) ≤

minq w(V
∗
q )

minq w(V ∗
q )− rN

≤
W/3

W/3− ρW/3
=

1

1− ρ
,

which completes the proof.

Theorem 27: For any ε > 0, a (1 + ε)-approximation of the GBCP2 can be found
in O((1 + 1

ε )mN28m) time, in which N is the number of nodes and m is the number of
rows. For fixed number of rows, it is a FPTAS.

Proof: For any given ε > 0, we set ρ = ε
1+ε and r = ρW/(3N). By Lemma 26, the

approximation ratio is 1 + ε. By Theorem 24, the time complexity is O(mNW ′8m) =
O(mN( W

ρW/(3N))8
m) = O((1 + 1

ε )mN28m).

7 Concluding remarks

The technique in Section 4 may be used for other classes of graphs. For any graph class
on which the minimum non-separating path problem can be solved in polynomial time,
the BCP2 problem can be approximated with ratio 5/4 in the same time complexity.

The approximation algorithm shown in Section 6 is an FPTAS only for fixed number
of rows. The interesting open problems include how to design an FPTAS or PTAS for
the GBCP2 of non-fixed number of rows and how to evenly partition a (grid) graph into
more than two connected subgraphs.
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Appendix: Erratum

The mistake appears in the proof of Lemma 5 which states that

If P is a minimum st-path with at most one boundary subpath, then P is a
non-separating induced path.
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Figure 4: A separating path without boundary subpath but having two subpaths in one
face.

However, Figure 4 is a counter example. Due to this mistake, the algorithm for minimum
non-separating paths is also wrong.

The wrong algorithm for finding a minimum non-separating path is later used to find
a 5/4-approximation for GBCP2. So far, we do not know how to fix the mistake for the
non-separating path problem. Fortunately, we can fix the 5/4-approximation for GBCP2

as follows.
In this problem, we are given a vertex-weighted grid graph, i.e., a two-dimensional

matrix, and the goal is to partition it into two connected subgraphs as balanced as
possible. The cost function is defined by the smaller weight of the two subgraphs. By
some previous results we only need to consider the case that both the numbers of rows
and columns are at least three.

Let W be the total weight of the graph and H = {hi|w(hi) > W/5} be the set of
heavy nodes. Clearly |H| ≤ 4. The 5/4-approximation algorithm is divided into cases for
each possible value of |H|. The algorithm for minimum non-separating path is used in
the case of |H| = 3. We shall show how to find a 5/4-approximation solution for |H| = 3.
Let H = {h1, h2, h3} and w1 ≥ w2 ≥ w3 be their weights, respectively. There are two
cases.

• All the heavy nodes are on the boundary. The minimum non-separating for each
pair of heavy nodes can be easily found, and therefore the previous algorithm works.

• Otherwise, we claim that there are three internally disjoint paths Pi, 1 ≤ i ≤ 3,
between h2 and h3 such that

1. P1 passes through h1; and

2. P2, P3, and Q are non-separating, where Q is the subpath from h3 to h1 on
P1.

Since G is 3-connected, there are three internally disjoint h2h3-paths. When both
h2 and h3 are on the boundary, P2 and P3 are the two boundary paths, which
are non-separating, and there must be an internal h2h3-path passing through h1.
When h2 or h3 is not on the boundary, we can easily find the three desired paths.

If w(Q) ≤ 3W/5, then (Q,G −Q) is a 5/4-approximation solution since Q contains
two heavy nodes and has weight larger than 2W/5. Otherwise, we have w(Q) > 3W/5,
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and q ≡ w(Q) − w3 > 3W/5 − w3. W.l.o.g. we assume that w(P2) ≤ w(P3), and we
claim D = (P2, G− P2) is a 5/4-approximation solution.

If w(P2) ≤W/2, then we have done. Otherwise, the cost of the 2-partition c(D) is

W − w(P2) ≥ q + (W − q − w2 − w3)/2

= W/2 + q/2− (w2 + w3)/2

> W/2 + 3W/10− w3/2− (w2 + w3)/2

≥ 4W/5− (w2 + w3)/4− (w2 + w3)/2

= 4W/5− 3(w2 + w3)/4.

We divide the proof into two cases: w2+w3 ≤W/2 or w2+w3 > W/2. When w2+w3 ≤
W/2, we have that

c(D) ≥ (4/5 − 3/8)W = 17W/40 > 2W/5,

and the approximation ratio is less than 5/4. When w2 +w3 > W/2, the optimal cost is
at most W − (w2 + w3), and the ratio is

W − (w2 + w3)

4W/5− 3(w2 + w3)/4
< 20/17 < 5/4.
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