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Abstract

In this paper we consider a fundamental problem in the area of viral market-
ing, called TARGET SET SELECTION problem. We study the problem when the
underlying graph is a block-cactus graph, a chordal graph or a Hamming graph.
We show that if G is a block-cactus graph, then the TARGET SET SELECTION

problem can be solved in linear time, which generalizes Chen’s result [2] for
trees, and the time complexity is much better than the algorithm in [1] (for
bounded treewidth graphs) when restricted to block-cactus graphs. We show
that if the underlying graph G is a chordal graph with thresholds θ(v) ≤ 2 for
each vertex v in G, then the problem can be solved in linear time. For a Ham-
ming graph G having thresholds θ(v) = 2 for each vertex v of G, we precisely
determine an optimal target set S for (G, θ). These results partially answer an
open problem raised by Dreyer and Roberts [3].

Key words: target set selection, viral marketing, tree, block graph, block-
cactus graph, chordal graph, Hamming graph, social networks, diffusion of
innovations.

1 Introduction and preliminaries

A graph G consists of a set V (G) of vertices together with a set E(G) of unordered

pairs of vertices called edges. We use uv for an edge {u, v}. Two vertices u and v are

adjacent to each other if uv ∈ E(G). In this paper, all graphs are finite and have no

loops or multiple edges. For S ⊆ V (G), the subgraph of G induced by S is the graph

G[S] with vertex set S and edge set {uv ∈ E(G) : u, v ∈ S}. Denote by G − S the

subgraph of G induced by V (G) \S and, for convenience, we write G− v for G−{v}

when v ∈ V (G). The neighborhood of a vertex v in G is the set NG(v) = {u ∈ V (G) :
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uv ∈ E}. The degree dG(v) of v is defined by dG(v) = |NG(v)|. The distance dG(x, y)

of two vertices x and y in G is defined to be the length of the shortest path from x to

y in G. A complete graph is a graph in which every two distinct vertices are adjacent.

The complete graph on n vertices is denoted by Kn. The n-cycle is the graph Cn with

V (Cn) = {v1, v2, . . . , vn} and E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}. The n-path is

the graph Pn with V (Pn) = {v1, v2, . . . , vn} and E(Pn) = {v1v2, v2v3, . . . , vn−1vn}.

The topology of a person-to-person recommendation social network is usually

modeled by a graph G in which the vertices V (G) represent customers, and edges

E(G) connect people to their friends. Consider the following scenario: A company

wish to market a new product. The company has at hand a description of the social

network G formed among a sample of potential customers. The company wants to

target key potential customers S ⊆ V (G) of the social network and persuade them into

adopting the new product by handing out free samples. We assume that individuals in

S will be convinced to adopt the new product after they receive a free sample, and the

friends of customers in S would be persuaded into buying the new product, which in

turn will recommend the product to other friends. The company hopes that by word-

of-mouth effects, convinced vertices in S can trigger a cascade of further adoptions,

and many customers will ultimately be persuaded. This advertising technique of

spreading commercial message via social networks G is called viral marketing by

analogy with computer viruses. But now how to find a good set of potential customers

S to target?

In general, each vertex v is assigned a threshold value θ(v). The thresholds

represent the different latent tendencies of vertices (customers) to buy the new prod-

uct when their neighbors (friends) do. To be precise, let G be a connected undirected

graph equipped with thresholds θ : V (G)→ Z. Denote by (G, θ) the social network G

equipped with thresholds θ. When θ is a constant function such that θ(v) = k for all

vertices v, (G, θ) will be written as (G, k) for short. Vertices v of G are in one of two

states, active or inactive, which indicate whether v is persuaded into buying the new

product. We call a vertex v active if it has been convinced to adopt the new product

and assume that vertex v becomes active if θ(v) of its neighbors have adopted the

new product.

In this paper we consider the following repetitive process, called activation

process in (G, θ) starting at target set S ⊆ V (G), which unfolds in discrete steps.

Initially (at time 0), set all vertices in S to be active (with all other vertices inactive).

After that, at each time step, the states of vertices are updated according to following

rule:

Parallel updating rule: All inactive vertices v that have at least θ(v) already-
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active neighbors become active.

The activation process terminates when no more vertices can get activated. Let

[S]Gθ denote the set of vertices that are active at the end of the process. If F ⊆ [S]Gθ ,

then we say that the target set S influences F in (G, θ). Notice that if v has threshold

θ(v) > dG(v) and v ∈ [S]Gθ for some target set S, then it must be v ∈ S. We also note

that, according to our rule, if an inactive vertex v has threshold θ(v) ≤ 0 at time step

t, then it becomes active automatically at the next time step. We are interested in

the following optimization problem:

TARGET SET SELECTION: Finding a target set S of smallest possible size that influ-

ences all vertices in the social network (G, θ), that is [S]Gθ = V (G).

We define min-seed(G, θ) to be the minimum size of a target set that guarantees

that all vertices in (G, θ) are eventually active at the end of the activation process,

that is, min-seed(G, θ) = min{|S| : S ⊆ V (G) and [S]Gθ = V (G)}. For S ⊆ V (G),

if [S]Gθ = V (G) and |S| = min-seed(G, θ), then we call S an optimal target set for

(G, θ).

Domingos and Richardson [5] considered TARGET SET SELECTION problem in a

probabilistic setting and presented heuristic solutions. Kempe, Kleinberg, and Tardos

[9] considered probabilistic thresholds, called linear threshold model, and focused on

the maximization version of the TARGET SET SELECTION problem − for any given k,

find a target set S of size k to maximize the expected number of active vertices at the

end of the activation process. They showed that this problem is NP-hard and proved

that a hill-climbing algorithm can efficiently obtain an approximation solution that

is 63% of optimal.

In this paper we only consider the TARGET SET SELECTION problem with deter-

ministic, explicitly given, thresholds. In 2002, Peleg [11] showed that this problem

is NP-hard for majority thresholds, that is θ(v) = ⌈dG(v)/2⌉ for each vertex v in G.

In 2009, Dreyer and Roberts [3] showed that the problem is NP-hard for constant

thresholds − given a fixed k ≥ 3, θ(v) = k for each vertex v in G, and Chen [2]

proved that it is NP-hard for bounded bipartite graphs G with thresholds at most 2.

In general, the TARGET SET SELECTION problem is not just NP-hard but also

extremely hard to approximate. Kempe, Kleinberg, and Tardos [9] showed that a

maximization version of TARGET SET SELECTION with constant thresholds cannot be

approximated within any non-trivial factor, unless P = NP. In 2009, Chen [2] proved

that given any n-vertices regular graph with thresholds θ(v) ≤ 2 for any vertex v,

the TARGET SET SELECTION problem can not be approximated within the ratio of

O(2log
1−ǫ n), for any fixed constant ǫ > 0, unless NP ⊆ DTIME(npoly log(n)).
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Very little is known about min-seed(G, θ) for specific classes of graphs G.

Dreyer and Roberts [3] showed that when G is a tree, the TARGET SET SELECTION

problem can be solved in linear time for constant thresholds. Chen [2] showed that

when the underlying graph is a tree, the problem can be solved in polynomial-time

under a general threshold model. In 2010, Ben-Zwi, Hermelin, Lokshtanov and New-

man [1] showed that for n-vertices graph G with treewidth bounded by ω, the TARGET

SET SELECTION problem can be solved in nO(ω) time. In [3, 6], min-seed(G, θ) is com-

puted for paths, cycles and for different kinds of grids G under constant threshold

model.

The objective of this paper is to study the TARGET SET SELECTION problem

when the underlying graph is a block-cactus graph, a chordal graph or a Hamming

graph. In Section 2, we show that if G is a block-cactus graph, then the problem can

be solved in linear time, which generalizes Chen’s result [2] for trees, and the time

complexity is much better than the algorithm in [1] (for bounded treewidth graphs)

when restricted to block-cactus graphs. In Section 3, we show that if the underlying

graph G is a chordal graph with thresholds θ(v) ≤ 2 for each vertex v in G, then the

TARGET SET SELECTION problem can be solved in linear time. Our results partially

answer an open problem raised by Dreyer and Roberts at the end of their paper [3].

In Section 4, for a Hamming graph G having thresholds θ(v) = 2 for each vertex v of

G, we precisely determine an optimal target set S for (G, θ).

In order to study min-seed(G, θ) we introduce a sequential version of the above

activation process, called sequential activation process, which employs the following

rule instead of the parallel updating rule:

Sequential updating rule: At each time step t, exactly one of inactive vertices

that have at least θ(v) already-active neighbors becomes active.

The proof of the following lemma is straightforward and so is omitted. In the sequel,

Lemma 1 will be used without explicit reference to it.

Lemma 1 For a social network (G, θ), an optimal target set under sequential updat-

ing rule is also an optimal target set under parallel updating rule, and vice versa.

Let P be a sequential activation process on (G, θ) starting out from a target set S.

In this process, if v1, v2, . . . , vr is the order that vertices in [S]Gθ \ S are convinced,

then (v1, v2, . . . , vr) is called the convinced sequence of P, and we say that target set

S has a convinced sequence (v1, v2, . . . , vr) on (G, θ).
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2 Block-cactus graphs

A vertex v of a graph is called a cut-vertex if removal of v and all edges incident to it

increases the number of connected components. A block of a graph G is a maximal

connected induced subgraph of G that has no cut-vertices. A graph G is a block graph

if every block of G is a complete graph. A block B of a graph G is called a pendent

block of G if B has at most one cut-vertex of G. A graph G is a block-cactus graph

if every block of G is either a complete graph or a cycle. Let v be a cut-vertex of

G. If G − v consists of two disjoint graphs W1 and W2 and let Gi (i = 1, 2) be the

subgraph of G induced by {v}
⋃

V (Wi), then G is called the vertex-sum at v of the

two graphs G1 and G2, and denoted by G = G1⊕vG2.

In the following Theorem 2, let G1 ⊕v G2 be a social network equipped with

threshold function θ. Let θ1 be a threshold function of G1−v which is the same as the

function θ, except that θ1(x) = θ(x)− 1 for every x ∈ NG1
(v). Let S1 be an optimal

target set for (G1 − v, θ1) that maximizes the cardinality of the set NG1
(v) ∩ [S1]

G1

θ ,

where, by slight abuse of notation, θ also means the threshold function of G1 by

restricting the threshold θ of G1⊕vG2 to the set V (G1). Let θ2 be a threshold function

of G2 which is the same as the function θ, except that θ2(v) = θ(v)−|NG1
(v)∩ [S1]

G1

θ |.

Let S2 be an optimal target set for (G2, θ2). Now, with the definitions and notation

introduced in this paragraph, we prove the following theorem.

Theorem 2 S1 ∪ S2 is an optimal target set for (G1 ⊕v G2, θ).

Proof. Consider a sequential activation process in (G1 ⊕v G2, θ) starting at target

set S1∪S2. Clearly NG1
(v)∩ [S1]

G1

θ ⊆ [S1]
G1⊕vG2

θ , and hence V (G2) ⊆ [S1∪S2]
G1⊕vG2

θ ,

which implies V (G1) ⊆ [S1 ∪ S2]
G1⊕vG2

θ . That is the target set S1 ∪ S2 influences all

vertices in (G1 ⊕v G2, θ). To prove the theorem it remains to show that |S1|+ |S2| =

min-seed(G1 ⊕v G2, θ).

Let S be an optimal target set for (G1 ⊕v G2, θ) that minimizes the size of the

set S ∩ V (G1 − v). Since (S ∩ V (G1 − v)) ∪ {v} influences all vertices in (G1, θ), we

have that S ∩ V (G1 − v) influences all vertices in (G1 − v, θ1). It now follows that

|S∩V (G1−v)| = |S1| since if not, then we have |S∩V (G1−v)| ≥ |S1|+1, and hence

(S1+v)∪(S∩V (G2)) is an optimal target set for (G1⊕vG2, θ), a contradiction to the

choice of S. Therefore S ∩V (G1− v) is an optimal target set for (G1− v, θ1). By the

choice of S1, we see that |NG1
(v)∩ [S∩V (G1−v)]

G1

θ | ≤ |NG1
(v)∩ [S1]

G1

θ |. This implies

that S1 ∪ [S ∩ V (G2)] is an optimal target set for (G1⊕v G2, θ), and hence S ∩V (G2)

influences all vertices in (G2, θ2), which implies |S ∩V (G2)| ≥ |S2|. We conclude that

|S1|+ |S2| = |S ∩ V (G1− v)|+ |S2| ≤ |S ∩ V (G1− v)|+ |S ∩ V (G2)| = |S|. Therefore

S1 ∪ S2 is an optimal target set for (G1 ⊕v G2, θ).
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Corollary 3 min-seed(G1 ⊕v G2, θ) = min-seed(G1 − v, θ1)+ min-seed(G2, θ2).

Lemma 4 Let v be a vertex in the social network (G, θ). If G ∈ {Kn, Cn}, then an

optimal target set S for (G − v, θ1) that maximizes the size of the set NG(v) ∩ [S]Gθ
can be found in linear time, where θ1 is the threshold function of G− v which is the

same as the function θ, except that θ1(x) = θ(x)− 1 for every x ∈ NG(v). Moreover

the size of the set NG(v) ∩ [S]Gθ can also be determined in linear time.

Proof. Let F be the set of optimal target sets S for (G−v, θ1) such that S maximizes

the size of the set NG(v) ∩ [S]Gθ .

We first consider the case that G = Kn. Let V (G − v) = {v1, v2, . . . , vn−1}

such that θ1(v1) ≤ θ1(v2) ≤ · · · ≤ θ1(vn−1). Let S be an optimal target set for

(G− v, θ1). Since any two vertices vi, vi+1 in G− v have NG−v(vi) = NG−v(vi+1) and

θ1(v1) ≤ · · · ≤ θ1(vn−1), we give the following simple observation without proof.

Observation If vi ∈ S and vi+1 6∈ S, then (S \ {vi})∪{vi+1} is an optimal target set

for (G− v, θ1) and |[(S \ {vi}) ∪ {vi+1}]
G
θ | ≥ |[S]

G
θ |.

Since G is a complete graph, the above observation says that if min-seed(G −

v, θ1) = s, then the target set {vn−1, vn−2, . . . , vn−s} ∈ F . Moreover, such a target set

has a convinced sequence (v1, v2, . . . , vn−s−1) on (G− v, θ1). Now we are in a position

to show that Algorithm K outputs an optimal target set S for (G − v, θ1) such that

S ∈ F .

In steps 2-3 of the algorithm we see that min-seed(G − v, θ1) ≥ |{vi : θ1(vi) >

n − 2 and 1 ≤ i ≤ n − 1}| = ℓ. In steps 4-8, we want to find the value s such that

{vn−1, vn−2, . . . , vn−ℓ} ∪ {vn−ℓ−1, vn−ℓ−2, . . . , vn−s} ∈ F . During the ith iteration of

the for loop in step 4, we have {v1, v2, . . . , vi−1} ⊆ [{vn−1, vn−2, . . . , vn−s}]
G−v
θ1

. In step

6, when θ1(vi) > s + i − 1, in order to influence vertex vi in (G − v, θ1) we need to

add another θ1(vi)− (s+ i−1) vertices to the set {vn−1, vn−2, . . . , vn−s}. Note that in

step 5 we have θ1(vi) ≤ n− 2. If follows that after step 5 and before step 6 we have

n− (s+ [θ1(vi)− (s+ i− 1)]) > i. Therefore in step 7 if n− s = i+ 1, then it must

be min-seed(G − v, θ1) = s, and hence {vn−1, vn−2, . . . , vn−s} ∈ F . Clearly, the time

complexity of Algorithm K takes linear time, where the bucket sort algorithm is used

to sort vertices by their thresholds.

Let S be the output of the Algorithm K and |S| = s. Let V (G) \ S =

{u1, u2, . . . , un−s} such that θ(u1) ≤ θ(u2) ≤ . . . ≤ θ(un−s). Let U = {i : θ(ui) >

s+ i− 1 and 1 ≤ i ≤ n− s}. We define the value r by

r =

{

minU − 1, if U 6= ∅;
n− s, if U = ∅.
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Since G is a complete graph, it can be seen that [S]Gθ = S∪{u1, u2, . . . , ur}. Therefore

the size of the set NG(v) ∩ [S]Gθ can also be determined in linear time.

Algorithm K

Begin

1 s← 0;

2 for i = 1 to n− 1 do if θ1(vi) > n− 2 then s← s+ 1;

3 ℓ← s;

4 for i = 1 to n− ℓ− 1 do

5 begin

6 if θ1(vi) > s+ i− 1 then s← s+ [θ1(vi)− (s+ i− 1)];

7 if n− s = i+ 1 then STOP and output S = {vn−1, vn−2, . . . , vn−s};

8 end

End.

Finally, consider the remaining case that G = Cn. Let E(G) = {vv1, vvn−1} ∪

{vivi+1 : 1 ≤ i ≤ n − 2}. Thus V (G − v) = {v1, v2, . . . , vn−1}. Let H be the set

of optimal target sets S for (G− v, θ1). First we consider the following Algorithm C

which computes S1 and S2. Clearly, S1 ⊆ S for each S ∈ H and S2 ⊆ [S1]
G−v
θ1

.

Algorithm C

Begin

1 Find the set S1 = {vi : θ1(vi) > dG−v(vi) and 1 ≤ i ≤ n− 1}.

2 for i = 1 to n− 1 do if vi 6∈ S1 then θ1(vi)← θ1(vi)− |NG−v(vi) ∩ S1|;

3 for i = 1 to n− 2 do if vi 6∈ S1 and θ1(vi) ≤ 0 then θ1(vi+1)← θ1(vi+1)− 1;

4 for i = n− 1 downto 2 do if vi 6∈ S1 and θ1(vi) ≤ 0 then θ1(vi−1)← θ1(vi−1)− 1;

5 Find the set S2 = {vi 6∈ S1 : θ1(vi) ≤ 0 and 1 ≤ i ≤ n− 1}.

6 output S1 and S2;

7 output θ1;

End.

In the sequel, let S1, S2, θ1 be the outputs of the Algorithm C. Now let G− v −

S1 − S2 have exactly r connected components P1, P2, . . . , Pr. Denote by ℓi the value

min{k : vk ∈ V (Pi), 1 ≤ k ≤ n − 1}. We assume that ℓ1 < ℓ2 < · · · < ℓr. For each

1 ≤ i ≤ r, we note that Pi is a path and all vertices w in Pi have θ1(w) ∈ {1, 2},

moreover the two end-vertices w1, w2 of Pi have θ1(w1) = θ1(w2) = 1. Let V (P1) =

{va, va+1, . . . , va+b} and V (Pr) = {vc, vc+1, . . . , vc+d} for some integers a, b, c, d.

Case 1. r = 1. Let {u ∈ V (P1) : θ1(u) = 2} = {vi1, vi2 , . . . , viq} such that

i1 < i2 < · · · < iq. If q = 0, then S1 ∪ {va}, S1 ∪ {va+b} ∈ H. Clearly either

7



S1 ∪ {va} ∈ F or S1 ∪ {va+b} ∈ F . It follows that we can compute [S1 ∪ {va}]
G
θ

and [S1 ∪ {va+b}]
G
θ to find a desired set S in F . When q = 2t for some t ∈ Z

+,

let U1 = {va} ∪ {vi2 , vi4, . . . , vi2t} and U2 = {vi1 , vi3, . . . , vi2t−1
} ∪ {va+b}. It can be

seen that either S1 ∪ U1 ∈ F or S1 ∪ U2 ∈ F . One can compute [S1 ∪ U1]
G
θ and

[S1 ∪ U2]
G
θ to find a desired set S in F . When q = 2t − 1 for some t ∈ Z

+, let

U = {vi1 , vi3, . . . , vi2t−1
}. Clearly S1 ∪ U ∈ F .

Case 2. r ≥ 2. It suffices to assume that r = 3, that is G − v − S1 − S2

has exactly 3 connected components P1, P2, P3 and ℓ1 < ℓ2 < ℓ3. Let {u ∈ V (P1) :

θ1(u) = 2} = {vi1 , vi2 , . . . , viq} such that i1 < i2 < · · · < iq. Let {u ∈ V (P2) : θ1(u) =

2} = {vj1, vj2, . . . , vjs} such that j1 < j2 < · · · < js. Let {u ∈ V (P3) : θ1(u) = 2} =

{vk1, vk2 , . . . , vkℓ} such that k1 < k2 < · · · < kℓ. It suffices to consider the case that

q = 2t, s = 2t′−1, ℓ = 2t′′ for some integers t, t′, t′′ (the remaining cases follow similar

arguments as above). let U1 = {va} ∪ {vi2 , vi4, . . . , vi2t}, U2 = {vj1, vj3 , . . . , vj2t′−1
},

and U3 = {vk1, vk3, . . . , vk2t′′−1
} ∪ {vc+d}. It can be seen that S1 ∪ U1 ∪ U2 ∪ U3 ∈ F .

Concerning the running time of the above algorithm, it is clear that it is linear

time. Which completes the proof of the lemma.

Now Theorem 5 follows from Theorem 2 and Lemma 4 immediately.

Theorem 5 If G is a block-cactus graph, then an optimal target set for (G, θ) can be

found in linear time.

3 Chordal graphs

A graph is called chordal if it does not have an induced cycle of length greater than

three. A vertex v in G is called simplicial if the subgraph of G induced by the

neighbors of v is complete. Let σ = [v1, v2, . . . , vn] be an ordering of V (G). We say

that σ is a perfect elimination order if each vi is a simplicial vertex of the subgraph

G[vi, vi+1, . . . , vn]. In 1965, Fulkerson and Gross [7] showed that every chordal graph

has a perfect elimination order. In [12, 13] it was shown that if G is a chordal graph,

then there is a linear time algorithm which receives the adjacency sets of G and

outputs a perfect elimination order σ of V (G). For nonadjacent vertices u and v of

a graph G, a subset S ⊆ V (G) is called a u-v separator if the removal of S from G

separates u and v into distinct connected components. If no proper subset of S is a

u-v-separator, then S is called a minimal u-v separator.

Lemma 6 ([4]) Every chordal graph G has a simplicial vertex. Moreover, if G is

not complete, then it has two nonadjacent simplicial vertices.
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Lemma 7 ([7]) For nonadjacent vertices u and v of a chordal graph G, if S is a

minimal u-v separator of G, then S induces a complete subgraph of G.

Lemma 8 For t ≥ 2, let G be a t-connected chordal graph with θ(x) ≤ t for all

vertices x. If S ⊆ V (G) induces a complete subgraph of size t in G, then the target

set S influences all vertices in (G, θ).

Proof. Without loss of generality, we may assume that G is not complete. Let

|V (G)| = n. To prove this theorem, we want to demonstrate a sequence of distinct

vertices [v1, v2, . . . , vℓ] in G such that G − {v1, v2, · · · , vℓ} is a complete graph that

contains all vertices of S. Moreover, for 1 ≤ i ≤ ℓ, vertex vi is adjacent to at least

t vertices in the graph G − {v1, v2, · · · , vi}. It is clear that if such a sequence exists,

then the target set S influences all vertices in (G, θ), since θ(x) ≤ t for all vertices x

in G.

To construct such a sequence, by Lemma 6, we can pick a simplicial vertex v1

of G such that v1 6∈ S. Note that G− v1 is t-connected, since otherwise there is a set

U ⊆ V (G−v1) with |U | ≤ t−1 such that G−v1−U is disconnected. By Lemma 6 it

follows that G−U is disconnected, a contradiction to G is t-connected. Next, if G−v1
is not complete, then by Lemma 6 again, we can pick a simplicial vertex v2 of G− v1

such that v2 6∈ S. It can also be seen that G− v1 − v2 is t-connected. If we continue

in this way, we eventually have a desired sequence of distinct vertices [v1, v2, . . . , vℓ]

such that the graph G − {v1, v2, · · · , vi} is t-connected for each i ∈ {1, 2, . . . , ℓ − 1}

and G − {v1, v2, · · · , vℓ} is a complete graph that contains all vertices of S. Which

completes the proof of the lemma.

Theorem 9 Suppose that G is a t-connected chordal graph with t ≥ 2. (a) min-

seed(G, t) = t. (b) If θ(x) ≤ t for each vertex x of G and θ(v) < t for some vertex v.

then min-seed(G, θ) < t.

Proof. (a) By Lemma 6, the fact that G is a t-connected chordal graph implies

that G contains a complete subgraph H of t vertices. By Lemma 8, we see that the

target set V (H) influences all vertices in the social network (G, t), and hence min-

seed(G, t) ≤ t. Note that an inactive vertex v in (G, t) become active only if v has at

least t already-active neighbors. It follows that min-seed(G, t) ≥ t, which completes

the proof of part (a).

(b) If v is adjacent to all other vertices of G, then, by Lemma 6, G−v contains

a complete subgraph H of size t − 1, since G− v has a simplicial vertex and G is t-

connected. It follows that, by Lemma 8, the target set V (H) influences all vertices in

(G, θ), and hence min-seed(G, θ) < t. Now consider the case that v is not adjacent to
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some vertex u in G. Clearly there is a minimal v-u separator S such that v adjacent

to all vertices of S. Note that |S| ≥ t, since G is t-connected. Let S ′ ⊆ S with

|S ′| = t − 1. By Lemma 7, S ′ ∪ {v} induces a complete subgraph of size t in G. It

follows that, by Lemma 8 and the fact that θ(v) ≤ t− 1, the target set S ′ influences

all vertices of (G, θ). We conclude that min-seed(G, θ) < t.

Corollary 10 Let G be a 2-connected chordal graph with thresholds θ(v) ≤ 2 for

every vertex v of G. Then min-seed(G, θ) = 2 if and only if θ(v) = 2 for each vertex

v of G.

In the sequel, for convenience, we write S ∝ (G, θ) to mean that the target set

S influences all vertices in (G, θ). The following simple fact, which we state without

proof, will be used implicitly and frequently in Lemma 12.

Claim 11 Let v be a vertex in the social network (G, θ) and let θ1 be the threshold

function of G − v which is the same as the function θ, except that θ1(x) = θ(x) − 1

for every x ∈ NG(v). Then for S ⊆ V (G− v), we have S ∝ (G− v, θ1) if and only if

S ∪ {v} ∝ (G, θ).

We state Lemma 12 using the same notation and conventions as in Claim 11.

Lemma 12 Let G be a 2-connected chordal graph with thresholds θ(u) ≤ 2 for every

u ∈ V (G). For a vertex v in G, let F be the set of optimal target sets S for (G−v, θ1)

such that S maximizes the size of the set NG(v) ∩ [S]Gθ . Let I = {u ∈ V (G − v) :

θ1(u) ≤ 0}, J = {u ∈ V (G) : θ(u) < 2} and J0 = {u ∈ V (G) : θ(u) ≤ 0}. Let P1

(resp. Q1) be the property that there are two distinct vertices x, y ∈ I (resp. x, y ∈ J0)

such that dG(x, y) ≤ 2. Let P2 (resp. Q2) be the property that there is an edge xy in

G− v (resp. G) with x ∈ I (resp. x ∈ J0) and θ1(y) = 1 (resp. θ(y) = 1). Then we

have:

(a) If I ∩NG(v) 6= ∅, then ∅ ∈ F .

(b) If I ∩NG(v) = ∅ and P1 holds, then ∅ ∈ F .

(c) If I ∩NG(v) = ∅ and P2 holds, then ∅ ∈ F .

(d) If J = ∅, then {x} ∈ F and [{x}]Gθ = {x} for every x ∈ NG(v).

(e) If J 6= ∅, I ∩ NG(v) = ∅ and neither P1 nor P2 holds, then {x} ∈ F and

[{x}]Gθ = V (G) for every vertex x adjacent to some vertex w ∈ J .

(f) If Q1 or Q2 holds, then [∅]Gθ = V (G).

(g) If neither Q1 nor Q2 holds, then [∅]Gθ = J0.

Proof. (a) Let w ∈ I ∩NG(v). By the facts vw ∈ E(G), θ(w) ≤ 1 and by Lemma 8,

we see that {v} ∝ (G, θ), and hence ∅ ∝ (G− v, θ1).
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(b) Clearly θ(x) ≤ 0 and θ(y) ≤ 0. Since dG(x, y) ≤ 2, either xy ∈ E(G) or

x, y ∈ NG(z) for some vertex z. In both cases, by Lemma 8, we see that [∅]Gθ = V (G).

Thus by Claim 11, ∅ ∝ (G− v, θ1).

(c) Since x 6∈ NG(v), it can be seen that [{v}]Gθ ⊇ {x, y, v}. By Lemma 8, it

follows that {v} ∝ (G, θ), and hence ∅ ∝ (G− v, θ1).

(d) For each x ∈ NG(v), by Lemma 8, {x, v} ∝ (G, θ), and hence {x} ∝

(G− v, θ1). Clearly min-seed(G − v, θ) ≥ 1. It follows that {x} is an optimal target

set for (G − v, θ1). Since θ(u) = 2 for each u ∈ V (G), we have |[S]Gθ | = 1 for any

optimal target set S for (G− v, θ1). Therefore {x} ∈ F and [{x}]Gθ = {x}.

(e) Note that I ∩ NG(v) = ∅ implies that θ(y) = 2 for each y ∈ NG(v). We

claim that {v} can not influence all vertices in (G, θ). If not, then it must be that

either P1 or P2 holds, a contradiction. Thus min-seed(G− v, θ1) ≥ 1. Now let w ∈ J

and x ∈ NG(w). Note that x 6= v. Clearly [{x}]Gθ ⊇ {x, w} and hence, by Lemma 8,

{v, x} ∝ (G, θ). It follows that, by Claim 11, {x} ∝ (G− v, θ1). Moreover, we have

[{x}]Gθ = V (G), and hence {x} ∈ F . This completes the proof of (e).

Finally, by similar arguments as in the proofs of (c), (d) and (e), it is easy to

prove (f) and (g), so we omit the proofs of (f) and (g).

Using the same notation and conventions as in Claim 11 and Lemma 12, we

state and prove the following theorem.

Theorem 13 If G is a chordal graph with thresholds θ(x) ≤ 2 for each vertex x in

G, then an optimal target set for (G, θ) can be found in linear time.

Proof. Let G1 be a block of G which contains exactly one cut vertex v of G. If G is

not 2-connected, then G can be written as the following form: G = G1 ⊕v G2, where

G2 is an induced subgraph of G and is also chordal. To prove the theorem, we omit

the easy case G1 = K2, which follows from Lemma 4. We only consider the case that

G1 is a 2-connected chordal graph. By using Lemma 12, we can in linear time in

terms of the size of G1 find an optimal target sets S1 for (G1 − v, θ1) such that S1

maximizes the size of the set NG1
(v) ∩ [S1]

G1

θ and compute |NG1
(v) ∩ [S1]

G1

θ |.

Next, we want to find an optimal target set S2 for (G2, θ2), where θ2 is a

threshold function of G2 which is the same as the function θ, except that θ2(v) =

θ(v)− |NG1
(v) ∩ [S1]

G1

θ |. If G2 is a 2-connected chordal graph, then S2 can be found

in linear time in terms of the size of G2 by using Lemma 8 and Corollary 10, and

hence an optimal target set S1 ∪ S2 for (G, θ) can be found in linear time by using

Theorem 2.

If G2 has a cut vertex v′ and a pendent block G21 such that G2 = G21 ⊕v′ G22,

then we can repeat the arguments in the previous paragraphs and use Theorem 2 to
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find the desired S2 in linear time in terms of the size of G2, and hence an optimal

target set for (G, θ) can be found in linear time.

4 Hamming graphs

Given two graphs G and H , their Cartesian product is the graph G�H with vertex set

V (G)×V (H) and edge set {(g, h)(g′, h′) : gg′ ∈ E(G) with h = h′, or g = g′ with hh′ ∈

E(H)}. The Cartesian product is commutative and associative (see page 29 of [8]). A

Hamming graph is a Cartesian product of nontrivial complete graphs, i.e., of the form

Kn1
�Kn2

� · · ·�Knt
for some integers n1, . . . , nt ≥ 2, t ≥ 1, which is also denoted as

∏t

i=1Kni
. Note that

∏t

i=1Kni
has vertex set V (Kn1

)× V (Kn2
)× · · · × V (Knt

).

Let u = (u1, . . . , ut) and v = (v1, . . . , vt) be two vertices of
∏t

i=1Kni
. The

Hamming distance H(u, v) between u and v is the number of coordinate positions

in which u and v differ. Note that there is an edge between u and v if and only if

H(u, v) = 1. For S1, S2 ⊆ V (
∏t

i=1Kni
), denote by d(S1, S2) the value min{H(u, v) :

u ∈ S1, v ∈ S2}. Let [i, j] denote the set of integers k such that i ≤ k ≤ j. For

A ⊆ [1, t], if ui = vi for all i ∈ A, then we write u|A = v|A. Let uA denote the set

of vertices x in
∏t

i=1Kni
such that x|A = u|A. The proof of the following claim is

straightforward and hence omitted.

Claim 14 Let u, v, w be three distinct vertices of
∏t

i=1Kni
and u|A = v|A for some

set A ⊆ [1, t]. If w is adjacent to both u and v, then w|A = u|A = v|A.

Lemma 15 Suppose G = (V,E) is the Hamming graph
∏t

i=1Kni
. Let x, y ∈ V ,

i, j ∈ [1, t] and A,B ⊆ [1, t]. The following properties hold.

(a) If xy ∈ E and xi 6= yi, then [xA ∪ {y}]
G
2 = xA\{i}.

(b) [xA ∪ xB ]
G
2 = xA∩B.

(c) If xy ∈ E and xi 6= yi, then [xA ∪ yB]
G
2 = x(A∩B)\{i}.

(d) If H(x, y) = 2, xi 6= yi, xj 6= yj and i 6= j, then [xA ∪ yB]
G
2 = x(A∩B)\{i,j}.

(e) If d(xA, yB) ≥ 3, then [xA ∪ yB]
G
2 = xA ∪ yB.

Proof. (a) First let us consider the case of i 6∈ A. From Claim 14 and the fact

x|A = y|A, we see that [xA ∪ {y}]
G
2 = xA. Now we consider the remaining case i ∈ A.

To prove this case it suffices to consider the case that i = 1 and A = [1, j]. We want

to prove, by induction on j, that [x[1,j] ∪ {y}]
G
2 = x[2,j] for j = t, t − 1, . . . , 1. For

j = t, we see that [x[1,j] ∪ {y}]
G
2 = [{x, y}]G2 . Since x[2,t] = y[2,t], it follows from Claim

14 that if w ∈ [{x, y}]G2 then w|[2,t] = x|[2,t] = y|[2,t], and hence w ∈ x[2,t]. That is

[{x, y}]G2 ⊆ x[2,t]. Since any vertex in x[2,t] \ {x, y} is adjacent to both x and y, it

follows that [{x, y}]G2 ⊇ x[2,t]. Therefore [{x, y}]G2 = x[2,t].
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Next, we assume that [x[1,j] ∪ {y}]
G
2 = x[2,j] holds for some j ∈ [2, t]. From

this induction hypothesis it follows that x[2,j] ⊆ [x[1,j−1] ∪ {y}]
G
2 . For any vertex w in

x[2,j−1], either w ∈ x[2,j] ∪ x[1,j−1] or w is adjacent to at least one vertex in x[2,j] and

at least one vertex in x[1,j−1]. Thus x[2,j−1] ⊆ [x[1,j−1] ∪ {y}]
G
2 . On the other hand, by

the fact x[2,j−1] = y[2,j−1] and Claim 14, we also see that x[2,j−1] ⊇ [x[1,j−1] ∪ {y}]
G
2 .

Therefore [x[1,j−1] ∪ {y}]
G
2 = x[2,j−1], this completes the proof of Lemma 15(a).

(b) Since for any i ∈ A \B, there exists a vertex y ∈ xB such that xy ∈ E and

xi 6= yi, by Lemma 15(a), it follows that [xA ∪ xB]
G
2 ⊇ xA\(A\B) = xA∩B. We note

that if a vertex w is adjacent to at least two vertices in xA ∪ xB, then, by Claim 14,

it must be the case that w|A∩B = x|A∩B. Therefore [xA ∪ xB]
G
2 ⊆ xA∩B. We conclude

that [xA ∪ xB]
G
2 = xA∩B.

(c) Lemma 15(a) shows that [xA ∪ yB]
G
2 ⊇ [xA ∪ {y}]

G
2 = xA\{i}, and hence

[xA ∪ yB]
G
2 = [xA\{i} ∪ yB]

G
2 , since xA ⊆ xA\{i}. It follows that [xA ∪ yB]

G
2 = [yA\{i} ∪

yB]
G
2 = y(A\{i})∩B = x(A∩B)\{i}, by Lemma 15(b) and the fact that xA\{i} = yA\{i}.

(d) Without loss of generality, consider only the case {i, j} = {1, 2}. Clearly

there exist two vertices w, z in G such that (w1, w2) = (y1, x2), (z1, z2) = (x1, y2)

and w|[3,t] = z|[3,t] = x|[3,t] = y|[3,t]. Since w and z are each adjacent to both x and

y, we see that xA ∪ yB influences {w, z} in the social network (G, 2). It follows

that [xA ∪ yB]
G
2 ⊇ [xA ∪ {w} ∪ {z}]

G
2 and [xA ∪ yB]

G
2 ⊇ [yB ∪ {w} ∪ {z}]

G
2 . By

using Lemma 15(a) twice, we see that [xA ∪ {w} ∪ {z}]
G
2 ⊇ xA\{1,2}, and hence

[yB∪{w}∪{z}]
G
2 ⊇ yB\{1,2}. By the fact yB\{1,2} = xB\{1,2} and using Lemma 15(b), we

get that [xA∪yB]
G
2 ⊇ [xA\{1,2}∪xB\{1,2}]

G
2 = x(A∩B)\{1,2}. Since (xA∪yB) ⊆ x(A∩B)\{1,2},

we conclude that [xA ∪ yB]
G
2 = x(A∩B)\{1,2}.

(e) For a vertex w in V \ (xA ∪ yB), by Claim 14, we see that w cannot be

adjacent to two distinct vertices in xA (resp. yB). Note that since d(xA, yB) ≥ 3

there is no vertex w in V \ (xA ∪ yB) that is adjacent to one vertex in xA and is also

adjacent to one vertex in yB. This completes the proof of (e).

For U ⊆ [1, t], let U denote the set [1, t] \ U . Using the notation and results in

Lemma 15, we immediately obtain the following:

Claim 16 (a) If xA ∩ yB 6= ∅, then [xA ∪ yB]
G
2 = xA∩B.

(b) If d(xA, yB) = 1, then [xA ∪ yB]
G
2 = xA∩B∩{i} for some i ∈ [1, t].

(c) If d(xA, yB) = 2, then [xA ∪ yB]
G
2 = xA∩B∩{i,j} for some i, j ∈ [1, t].

Theorem 17 Suppose G = (V,E) is the Hamming graph
∏t

i=1Kni
and S is a non-

empty set of vertices.

(a) There exist vertices x1, x2, . . . , xk ∈ V and sets A1, A2, . . . , Ak ⊆ [1, t] such that

[S]G2 = ∪ki=1x
i
Ai

with d(xi
Ai
, xj

Aj
) ≥ 3 for any 1 ≤ i < j ≤ k.
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(b) If [S]G2 = ∪ki=1x
i
Ai

for some vertices x1, . . . , xk in V and some sets A1, . . . , Ak ⊆

[1, t] with d(xi
Ai
, xj

Aj
) ≥ 3 for any 1 ≤ i < j ≤ k, then the following inequality holds:

k
∑

i=1

|Ai| ≥ (2 + t)k − 2|S|. (⋆)

Proof. (a) Note that S = ∪x∈Sx[1,t] and [S ′∪S∗]G2 = [[S ′]G2 ∪S
∗]G2 for any S ′, S∗ ⊆ V .

By using several times Claim 16 and Lemma 15(e), we can get vertices x1, x2, . . . , xk ∈

V and sets A1, A2, . . . , Ak ⊆ [1, t] such that [S]G2 = ∪ki=1x
i
Ai

with d(xi
Ai
, xj

Aj
) ≥ 3 for

any 1 ≤ i < j ≤ k.

(b) To prove this part we use induction on the size of S. When |S| = 1 (say

S = {x1}), since in this scenario [S]G2 = x1
[1,t], it can be seen that the inequality (⋆)

clearly holds. Now assume that the statement of Theorem 17(b) holds for any S ⊆ V

having |S| < ℓ.

When |S| = ℓ ≥ 2, the proof is divided into cases according to the value of k.

Case 1. k = 1. In this case, pick x ∈ S and let S ′ = S \ {x}. Note that S ′

is not empty. By Theorem 17(a) we see that there are vertices y1, y2, . . . , yr ∈ V

and sets B1, B2, . . . , Br ⊆ [1, t] such that [S ′]G2 = ∪ri=1y
i
Bi

having d(yiBi
, yjBj

) ≥ 3 for

any 1 ≤ i < j ≤ r. We have x1
A1

= [S]G2 = [x[1,t] ∪ [S ′]G2 ]
G
2 = [x[1,t] ∪ (∪ri=1y

i
Bi
)]G2 .

Then from Claim 16 and Lemma 15(e) we see that A1 = (∩ri=1Bi) ∩ U for some

set U ⊆ [1, t] having |U| ≤ 2r. Since |S ′| < ℓ, by the induction hypothesis, we

have
∑r

i=1 |Bi| ≥ (2 + t)r − 2|S ′|. It follows that |A1| = t − |(∪ri=1Bi) ∪ U| ≥

t−
∑r

i=1(t−|Bi|)−2r ≥ t−rt+(2+ t)r−2|S ′|−2r = (2+ t)−2|S|. Thus inequality

(⋆) holds in this case.

Case 2. k > 1. In this case, let S∗ = S ∩ x1
A1

and S ′ = S \ S∗. Note that S∗ and S ′

are not empty. Clearly [S∗]G2 = x1
A1

and [S ′]G2 = ∪ki=2x
i
Ai
. By the induction hypothesis

we see that |A1| ≥ (2 + t) − 2|S∗| and
∑k

i=2 |Ai| ≥ (2 + t)(k − 1) − 2|S ′|. It follows

immediately that inequality (⋆) holds in this case. This completes the proof of the

theorem.

Theorem 18 If G = (V,E) is the Hamming graph
∏t

i=1Kni
, then min-seed(G, 2) =

1 + ⌈ t
2
⌉.

Proof. Note that V = V (Kn1
) × V (Kn2

) × · · · × V (Knt
). For each i = 1, 2, . . . , t,

pick two distinct vertices xi, yi ∈ V (Kni
). Let x = (x1, x2, . . . , xt). For 1 ≤ j ≤ t,

let pj = (pj1, . . . , p
j
t) be a vertex in V such that pji = xi when i 6= j, and pjj = yj.

For 1 ≤ j ≤ t − 1, let qj = (qj1, . . . , q
j
t ) be a vertex in V such that qji = xi when

i 6∈ {j, j + 1}, and qjj = yj, q
j
j+1 = yj+1.

14



First, we want to show that 1+ ⌈ t
2
⌉ is an upper bound for min-seed(G, 2). The

proof is divided into two cases according to the parity of t.

Case 1. t = 2ℓ. Let S = {p1, p2} ∪ {q3, q5, q7, . . . , qt−1}. By Lemma 15(d) it can

be seen that [{p1, p2}]G2 = p1[3,t] = x[3,t], [{p
1, p2, q3}]G2 = [x[3,t] ∪ q3[1,t]]

G
2 = x[5,t], and

[{p1, p2, q3, q5}]G2 = [x[5,t] ∪ q5[1,t]]
G
2 = x[7,t]. Continue in this way, we obtain [S]G2 =

[x[t−1,t] ∪ q
t−1
[1,t]]

G
2 = x∅ = V , which means that min-seed(G, 2) ≤ |S| = ℓ+ 1 = 1+ ⌈ t

2
⌉.

Case 2. t = 2ℓ + 1. Let S = {p1, p2, p3} ∪ {q4, q6, q8, . . . , qt−1}. By Lemma 15(d)

and the same arguments as above, we obtain [S]G2 = [x[t−1,t] ∪ qt−1
[1,t]]

G
2 = V , and hence

min-seed(G, 2) ≤ |S| = ℓ+ 2 = 1 + ⌈ t
2
⌉.

To show that 1 + ⌈ t
2
⌉ is also a lower bound bound for min-seed(G, 2), let S be

an optimal target set for (G, 2). Since [S]G2 = V = x∅, by Theorem 17(b), we have

|∅| ≥ (2+ t)− 2|S|, that is |S| ≥ 1+ t
2
. Which completes the proof of the theorem.
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