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Abstract

A k-L(2, 1)-labelling of a graph G is a mapping f : V (G) → {0, 1, 2, . . . , k} such that
|f(u)− f(v)| ≥ 2 if uv ∈ E(G) and f(u) 6= f(v) if u, v are distance two apart. The smallest
positive integer k such that G admits a k-L(2, 1)-labelling is called the λ-number of G. In
this paper we study this quantity for cubic Cayley graphs (other than the prism graphs)
on dihedral groups, which are called brick product graphs or honeycomb toroidal graphs.
We prove that the λ-number of such a graph is between 5 and 7, and moreover we give a
characterisation of such graphs with λ-number 5.
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1 Introduction

Let G be a finite simple undirected graph and h ≥ k ≥ 0 be integers. An L(h, k)-labelling
of G is a mapping f from the vertex set of G to the set of nonnegative integers such that
|f(u) − f(v)| ≥ h if u and v are adjacent in G and |f(u) − f(v)| ≥ k if u and v are distance
two apart in G. We call these requirements the L(h, k)-conditions and f(v) the label of v under
f . Without loss of generality we always assume that the minimum label used is 0. Under this
assumption the span of f is defined to be the largest label used by f . Define λh,k(G) to be
the minimum span over all L(h, k)-labellings of G. In particular, λ(G) = λ2,1(G) is called the
λ-number of G. An L(2, 1)-labelling with span at most s is called an s-L(2, 1)-labelling.

Motivated by the channel assignment problem [17] for radio networks, the L(h, k)-labelling
problem [16] has received extensive attention especially in the case when (h, k) = (2, 1). The
reader is referred to [7] for a survey on this topic. Griggs and Yeh [16] conjectured that λ(G) ≤
∆2 for any graph G with maximum degree ∆ ≥ 2. This conjecture has been confirmed for
several classes of graphs, including chordal graphs [28], outerplanar graphs [5, 6, 25], generalized
Petersen graphs [14], Hamiltonian graphs with ∆ ≤ 3 [20], two families of Hamming graphs
[10, 33], etc. Improving earlier results [9, 21], Goncalves [15] proved that λ(G) ≤ ∆2 + ∆ − 2
for any graph G with ∆ ≥ 2. In [27], Molloy and Salavatipour proved that, for h ≥ k ≥ 1,
λh,k(G) ≤ kd5∆/3e+ 18h+ 77k− 18 for any planar graph G; in particular, λ(G) ≤ d5∆/3e+ 77
and thus the Griggs-Yeh conjecture is true for planar graphs with ∆ ≥ 9. Recently, Havet, Reed
and Sereni [18] proved that for any h ≥ 1 there exists a constant ∆(h) such that every graph
with maximum degree ∆ ≥ ∆(h) has an L(h, 1)-labelling with span at most ∆2. In particular,
this implies that the Griggs-Yeh conjecture is true for any graph with sufficiently large ∆.
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The results [18, 27] above suggests the need of studying the L(2, 1)-labelling problem for
graphs with small ∆. This is the first motivation of the present paper. Since the case ∆ = 2 is
relatively easy, it would be interesting to investigate the ‘smallest’ nontrivial instances, namely
graphs with ∆ = 3 and cubic graphs in particular. (A graph is cubic if all its vertices have
degree 3.) There are signs indicating that this ‘smallest’ case might have different behaviours,
as shown in [6, Section 5] when restricted to outerplanar graphs. Answering a question in [6],
recently the first and third authors of the present paper proved [24] that λ(G) ≤ 6 for every
outerplanar graph G with ∆ = 3. In [20], Kang proved that the λ-number of any graph with
∆ = 3 which contains a Hamiltonian cycle is at most 9. In [14], Georges and Mauro proved that
any generalized Petersen graph (which is cubic), with the exception of the Petersen graph itself,
has λ-number at most 8. They also conjectured that the Petersen graph is the only connected
cubic graph whose λ-number is equal to 9. On the other hand, it is known [16] that the λ-
number of any connected cubic graph is at least 5. It would be interesting to identify (or even
characterise) those cubic graphs whose λ-numbers achieve this smallest possible value.

Given a group X with identity element 1 and a subset S of X such that 1 /∈ S and x ∈ S
implies x−1 ∈ S, the Cayley graph of X with respect to S, denoted by Cay(X,S), is the
graph with vertex set X in which x, y ∈ X are adjacent if and only if x−1y ∈ S. The second
motivation of the present paper is the recent studies of the L(h, k)-labelling problem for Cayley
graphs. This was initiated in [33], where a general approach to L(h, k)-labelling Cayley graphs
on Abelian groups was proposed and results on λh,k for hypercubes and some Hamming graphs
were obtained. The work in [33] was continued in [32] and [11], where the focus was on a certain
family of Cayley graphs containing hypercubes, and no-hole L(2, 0)-labelling of Cayley graphs
on Abelian groups, respectively. Recently, Bahls [4] proved that λh,1(G) ≤ 2(h+ n− 1) if G is
a Cayley graph on an n-generator group with a cetain kind of presentation, and equality holds
if h < 2n+ 1.

With motivations above, in this paper we study the L(2, 1)-labelling problem for a family of
cubic Cayley graphs. These graphs have been studied independently in several contexts under
different names by various authors. They were studied, and called brick products, in [1, 3] with an
emphasis on Hamiltonian cycles and paths. In [26] they were studied as hexagonal embeddings
on the torus in the context of molecular structures. In recent years they have also been studied,
and called generalised honeycomb tori, as an attractive architecture for interconnection networks
in parallel and distributed computing (see e.g. [12, 29, 30, 31]). (See [8] for a recent paper
about L(h, k)-labelling some interconnection networks such as the butterfly networks, the cube-
connected cycles, the trivalent Cayley networks, etc.) The term honeycomb toroidal graphs was
suggested to name such graphs in a recent paper [2]. Yet, much earlier than all these works,
in 1950 some of these graphs were studied in the seminal paper [13] by the great geometer
Coxeter in the context of self-dual 1-designs. The purpose of the present paper is to study the
L(2, 1)-labelling problem for this remarkable family of Cayley graphs. We adapt the following
definition of such graphs from [1, 3] (see Figure 1 for an illustration).

Definition 1.1. ([1, 3]) Let l ≥ 2, m ≥ 1 and r ≥ 0 be integers such that m + r is even.
Let C2l be a cycle of length 2l. The (m, r)-brick-product of C2l, denoted by Br(2l,m, r), is the
graph with adjacency defined in two cases. For m = 1, r ≥ 3 must be odd and Br(2l, 1, r) is
obtained from the cycle C2l = (v0, v1, v2, . . . , v2l−1, v0) by adding chords joining v2i and v2i+r

for i = 0, 1, . . . , l − 1, where subscripts are taken modulo 2l. In the general case where m ≥ 2,
Br(2l,m, r) is obtained by first taking the vertex-disjoint union of m copies of C2l, denoted by

C2l(i) = (vi,0, vi,1, . . . , vi,2l−1, vi,0), i = 0, 1, . . . ,m− 1. (1)

Next, for each pair (i, j) ∈ {0, 1, . . . ,m− 2} × {0, 1, . . . , 2l− 1} such that i and j have the same
parity, an edge is added to join vi,j to vi+1,j . Finally, for odd j = 1, 3, . . . , 2l − 1, an edge is
added to join v0,j to vm−1,j+r, where the second subscript is modulo 2l.
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Figure 1: An illustration of brick-products: (a) Br(6, 4, 2); (b) Br(6, 3, 3).

In [2] it was proved that all brick products are Cayley graphs on generalised dihedral groups.
In particular, they are all vertex-transitive.

In the present paper we focus our attention on those brick products with m ≥ 2. (The case
m = 1 will be dealt with in another paper [23] since it requires different techniques.) As implied
in [3], these are precisely the brick products Br(2l,m, r) with m ≥ 2 and m + r ≡ 0 (mod 2l).
Let D2n = 〈ρ, ε | ρn = ε2 = 1, ερε = ρ−1〉 be the dihedral group of order 2n. It is implied in the
proof of [3, Theorem 3.1] that, for any integer n ≥ 3 and distinct integers a, b, c between 0 and
n−1, Cay(D2n, {ρaε, ρbε, ρcε}) is isomorphic to some Br(2l,m, r) with m+r ≡ 0 (mod 2l). (The
interested reader is referred to [3] for detail.) Conversely, using essentially the same argument
as in [3], one can show that any Br(2l,m, r) such that m+ r ≡ 0 (mod 2l) is isomorphic to some
Cay(D2n, {ρaε, ρbε, ρcε}) with n = lm.

The following is the main result of this paper. We would like to emphasize that, in view of
the paragraph above, this result is essentially above cubic Cayley graphs on dihedral groups.

Theorem 1.2. Let l,m ≥ 2 and r ≥ 0 be integers such that m+ r ≡ 0 (mod 2l). Then

5 ≤ λ(Br(2l,m, r)) ≤ 7. (2)

Moreover, λ(Br(2l,m, r)) = 5 if and only if one of the following holds:

(a) 3 divides l and 6 divides m;

(b) 6 divides l and 3 divides m.

Furthermore, if neither (a) nor (b) is satisfied, then λ(Br(2l,m, r)) = 6 provided that m = 2
(and l is even or odd), or both l and m are even.

In [20] it is proved that the λ-number of any Hamiltonian graph with ∆ = 3 is at most 9.
Since all brick product graphs are cubic and Hamiltonian [3], Theorem 1.2 can be viewed as an
improvement of this bound for the family of cubic Cayley graphs on dihedral groups. Theorem
1.2 also confirms the conjecture [14] that any connected cubic graph other than the Petersen
graph has λ-number at most 8, for the same family of graphs.

Theorem 1.2 gives an infinite family of cubic graphs with λ-number 5, which is smallest
possible as mentioned above. As far as we know, this is the second known infinite family
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of cubic Cayley graphs with smallest possible λ-number, the first being the family of prisms
Cn2K2 with 3 dividing n [19, 22], where Cn2K2 is the Cartesian product of the cycle Cn and
the complete graph K2 on two vertices. Interestingly, such graphs are also Cayley graphs on
D2n, namely Cn2K2

∼= Cay(D2n, S) [3] for any S ⊂ D2n such that 1 6∈ S, |S| = 3, S ∩ 〈ρ〉 6= ∅,
and x ∈ S implies x−1 ∈ S.

The rest of the paper is structured as follows. In Section 2 we set up notation and prove a
preliminary result. In Section 3 we prove that λ(Br(2l,m, r)) = 5 if and only if one of (a) and (b)
in Theorem 1.2 is satisfied. In Section 4 we prove the sufficient conditions for λ(Br(2l,m, r)) = 6,
and in Section 5 we prove the remaining statements in Theorem 1.2.

We would like to point out that the proof of Theorem 1.2 is technical in nature, but it seems
difficult to avoid such technicality.

2 Preliminaries

We will use the following lemma in the proof of Theorem 1.2.

Lemma 2.1. ([16]) The λ-number of any connected cubic graph is at least 5.

Definition 2.2. Given a graph G, a labelling f : V (G) → {0, 1, 2, . . .} and a subset A of
{0, 1, 2, . . .}, denote

f−1(A) = {u ∈ V (G) : f(u) ∈ A}.

If λ(G) = 5 and f is a 5-L(2, 1)-labelling of G, then we define

H0 = 〈f−1({0, 2, 4})〉, H1 = 〈f−1({1, 3, 5})〉

to be the subgraphs of G induced by f−1({0, 2, 4}), f−1({1, 3, 5}), respectively.

Lemma 2.3. Let G be a cubic graph with λ(G) = 5 and f a 5-L(2, 1)-labelling of G. Then the
following hold.

(a) Each of H0 and H1 is a vertex-disjoint union of paths and cycles.

(b) The end-vertices of each path component of H0 must be labelled 0, and that of each path
component of H1 must be labelled 5; so the length of such a path is a nonzero multiple of
3. Moreover, the vertices of any path component of H0 are labelled (in an order of their
appearance on the path) by

0, 2, 4, 0, 2, 4, . . . , 0, 2, 4, 0; or 0, 4, 2, 0, 4, 2, . . . , 0, 4, 2, 0; (3)

and the vertices of any path component of H1 are labelled by

5, 3, 1, 5, 3, 1, . . . , 5, 3, 1, 5; or 5, 1, 3, 5, 1, 3, . . . , 5, 1, 3, 5. (4)

(c) The length of any cycle in H0 or H1 must be a multiple of 3. Moreover, the vertices of
any cycle in H0 are labelled (in a cyclic order) in the way described in (3), with the two
end labels used on the same vertex; and the vertices of any cycle of H1 are labelled in the
way described in (4), with the two end labels used on the same vertex.

Proof It can be verified that H0 and H1 have minimum degree at least one and maximum
degree at most two. So each of them is a vertex-disjoint union of paths (with length at least
one) and cycles.

Let P = v1, v2, . . . , vk be a path component of H0. Then k ≥ 2 for otherwise all three
neighbours of v1 receive labels from {1, 3, 5} but this violates the L(2, 1)-conditions as f(v1) =
0, 2 or 4. Since P is a component of H0, the two neighbours u,w of v1 other than v2 receive
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labels from {1, 3, 5}. Since u and w are distance two apart or adjacent and f(v1) ∈ {0, 2, 4},
the only possibility is that (f(u), f(w)) = (3, 5), (5, 3) and f(v1) = 0. From this one can see
that the labelling of P must be in the form of (3). In the same fashion, one can prove that the
end-vertices of any path component of H1 must be labelled 5, and such a path has to be labelled
as in (4). This proves the statements in (b). Part (c) can be proved similarly. 2

Notation: We use u ∼ v and u ' v to denote respectively that u and v are adjacent and
distance two apart in the brick product under consideration. A typical argument in the following
proofs goes as follows. If some vertices adjacent to a vertex u or with distance two apart from
u have been labelled, then we can get the range of labels that can be assigned to u without
violating the L(2, 1)-conditions or declare that no feasible label can be assigned to u at all. For
example, if u ∼ v, u ∼ w, u ' x, u ' y, f(v) = 2, f(w) = 3 and f(x) = f(y) = 0 for some
5-L(2, 1)-labelling f , then we have to have f(u) = 5. This will be abbreviated to ‘f(u) = 5
[v, w;x, y]’, and similar abbreviations will be used throughout the next two sections.

The cycles C2l(i) of Br(2l,m, r) are as defined in (1) with the understanding that the first
subscript in vi,j is taken modulo m and the second modulo 2l.

We assume without mentioning explicitly that l,m ≥ 2 and r ≥ 0 are integers such that
m+ r ≡ 0 (mod 2l). The last condition implies that v0,2j+1 ∼ vm−1,2j+1−m for every j.

3 Brick products with λ-number 5

The plan of this section is as follows. Lemmas 3.3 and 3.4 pave the way to Lemma 3.5, which
states that if C2l(j) is not a component of Hi, then each component of Hi∩C2l(j) has exactly two
vertices. This together with Lemma 3.6 leads to Lemma 3.8, which concludes that, if C2l(j) is
not entirely in H0 or H1, then every component of H0 or H1 is in the form of a wrapped staircase.
Finally, in Lemma 3.9, we will make use of all these results to prove that λ(Br(2l,m, r)) = 5 if
and only if one of (a) and (b) in Theorem 1.2 is satisfied.

Assumption 3.1. In this section, before Lemma 3.9, we assume λ(Br(2l,m, r)) = 5 and we
use f to denote a 5-L(2, 1)-labelling of Br(2l,m, r).

Definition 3.2. Define

H0j = 〈f−1({0, 2, 4}) ∩ V (C2l(j))〉, H1j = 〈f−1({1, 3, 5}) ∩ V (C2l(j))〉, j = 0, 1, . . . ,m− 1

to be the subgraphs of Br(2l,m, r) induced by V (H0)∩V (C2l(j)), V (H1)∩V (C2l(j)) respectively,
where H0 and H1 are as defined in Definition 2.2.

Note that some Hij may be empty, that is, it may have no vertices. Note also that if C2l(j)
is not entirely in H0 or H1, then it is a union of path components of H0 and H1.

The roles of H0 and H1 are symmetric, and so are the roles of the H0j ’s and H1j ’s. The
reason is that, for any 5-L(2, 1)-labelling f of Br(2l,m, r), the labelling which assigns 5− f(u)
to every vertex u is also a 5-L(2, 1)-labelling of Br(2l,m, r). This kind of symmetry will be used
to simplify some proofs in the rest of this section.

Lemma 3.3. For i = 0, 1 and j = 0, 1, . . . ,m − 1, either Hij is empty or every component of
Hij contains at least two vertices.

Proof It suffices to prove this for H00 due to the symmetry of Br(2l,m, r) and the symmetric
roles of H0 and H1, and we do so by way of contradiction. Suppose to the contrary that
a component of H00 is a single vertex. Without loss of generality we may assume that this
component consists of v0,0 only, so that v0,1, v0,2l−1 ∈ V (H1). This assumption together with
Lemma 2.3(b) implies v1,0 ∈ V (H0). Since v0,0 ∼ v0,1 and v0,0 ∼ v0,2l−1, if f(v0,0) = 2 or
4, then both v0,1 and v0,2l−1 have to be labelled 5 or 1 respectively, which is impossible since
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v0,1 ' v0,2l−1. Hence f(v0,0) = 0 which implies f(v1,0) ∈ {2, 4}. By symmetry we may assume
f(v0,1) = 3 and f(v0,2l−1) = 5. It follows that f(v0,2) ∈ {1, 5} [v0,1; v0,0].

Case 1: f(v0,2) = 1. In this case we have f(v1,2) ∈ {4, 5} [v0,2; v0,1]. If f(v1,2) = 4, then
f(v1,0) = 2 because f(v1,0) ∈ {2, 4} as shown above. So there is no label available for v1,1 with-
out violating the L(2, 1)-conditions. This contradiction together with f(v1,2) ∈ {4, 5} implies
f(v1,2) = 5. Thus f(v1,0) = 4 for otherwise no label would be available for v1,1. Consequently,
f(v1,1) = 2 and f(v1,2l−1) = 1. We then have f(v0,2l−2) ∈ {2, 3} [v0,0, v0,2l−1; v1,2l−1] and
f(v1,2l−2) = 3 [v1,2l−1; v0,2l−1, v1,0]. Since v0,2l−2 ∼ v1,2l−2, this cannot happen.

Case 2: f(v0,2) = 5. Since f(v0,0) = 0 and f(v1,0) ∈ {2, 4} as shown above, we have
f(v1,1) 6= 0, 3, 5. Moreover, if f(v1,1) = 1, then no label is available for v1,2 [v1,1, v0,2; v0,1]. Thus
f(v1,1) ∈ {2, 4} and so (f(v1,0), f(v1,1)) = (2, 4) or (4, 2). Hence v0,0, v1,0, v1,1 is a path in H0.
Since v1,0 ∼ v1,2l−1, we have v1,2l−1 ∈ V (H1) by Lemma 2.3. If (f(v1,0), f(v1,1)) = (4, 2), then
f(v1,2l−1) = 1 [v1,0; v0,0, v1,1] and consequently f(v1,2l−2) = 3 [v1,2l−1; v1,0, v0,2l−1]. It follows
that no label is available for v0,2l−2 [v0,2l−1, v1,2l−2; v0,0, v1,2l−1]. Thus, (f(v1,0), f(v1,1)) = (2, 4),
which implies f(v1,2l−1) = 5 and f(v1,2) ∈ {0, 1}.

Note that m + r ≡ 0 (mod 2l) by our assumption. Thus, if m = 2, then v0,1 ∼ v1,2l−1. So
v0,2 ' v1,2l−1, but this contradicts the fact f(v0,2) = f(v1,2l−1) = 5.

Henceforth we assume m ≥ 3. Then f(v2,1) ∈ {0, 1} [v1,1; v1,0] and so (f(v1,2), f(v2,1)) =
(0, 1) or (1, 0) as v1,2 ' v2,1.

Subcase 2.1: (f(v1,2), f(v2,1)) = (0, 1). We have f(v1,3) ∈ {2, 3} [v1,2; v1,1, v0,2]. If f(v1,3) =
2, then f(v2,3) ∈ {4, 5} [v1,3; v1,2, v2,1] and f(v2,2) ∈ {3, 5} [v2,1; v1,1]. Since v2,2 ∼ v2,3, the
only possibility is f(v2,2, v2,3) = (3, 5). We then have f(v2,0) = 5 [v2,1; v2,2, v1,1]. However, this
contradicts the fact that v2,0 ' v1,2l−1 and f(v1,2l−1) = 5. Thus f(v1,3) 6= 2 and so f(v1,3) = 3.
Hence f(v2,3) = 5 [v1,3; v1,2, v2,1] and no label is available for v2,2 [v2,1, v2,3; v1,1, v1,3].

Subcase 2.2: (f(v1,2), f(v2,1)) = (1, 0). Similar to Subcase 2.1, we have f(v1,3) = 3, f(v2,3) =
5 and f(v2,2) = 2. We then obtain f(v1,4) = 0 [v1,3; v1,2, v2,3], f(v0,3) = 2 [v0,2; v0,1, v1,2, v1,4] and
f(v0,4) = 4 [v0,3, v1,4; v1,3, v0,2] in succession.

Since m + r ≡ 0 (mod 2l), we have vm−1,1−m ∼ v0,1 and vm−1,−1−m ∼ v0,2l−1. Hence
f(vm−1,1−m) = 1 [v0,0, v0,2], f(vm−1,−m) = 4 [vm−1,1−m; v0,1, v0,2l−1], and f(vm−1,2−m) = 5
[vm−1,1−m; vm−1,−m, v0,1]. We have f(vm−1,−1−m) = 2 [vm−1,−m; vm−1,1−m, v0,0], f(vm−2,−m) =
0 [vm−1,−m; vm−1,−1−m, vm−1,1−m], and f(vm−2,1−m) ∈ {2, 3} [vm−2,−m; vm−1,−m, vm−1,2−m]. Fi-
nally, we have f(vm−2,2−m) ∈ {2, 3} [vm−1,2−m; vm−2,−m, vm−1,1−m]. This is a contradiction
because vm−2,1−m ∼ vm−2,2−m and hence their labels should differ by at least two.

In summary, it is impossible to have any component of H00 with only one vertex. By
symmetry the same statement holds for other Hij . 2

We will use Lemma 3.3 and the following lemma to prove that each component of Hij is
isomorphic to K2 or C2l(j) (see Lemma 3.5).

Lemma 3.4. If C2l(i) is not a component of H0, 0 ≤ i ≤ m−1, then for any path component of
H0i with length at least two, say, vi,j , vi,j+1, vi,j+2, . . ., we have f(vi,j+1) 6= 4 and f(vi,j+2) 6= 4.

Due to the symmetry of the 5-labellings f(u) and 5 − f(u), the result in Lemma 3.4 is
equivalent to the following: If C2l(i) is not a component of H1, then for any path component
vi,j , vi,j+1, vi,j+2, . . . of H1i with length at least two, we have f(vi,j+1) 6= 1 and f(vi,j+2) 6= 1.

Proof By symmetry it suffices to prove the result for (i, j) = (0, 0). Let v0,0, v0,1, . . . , v0,k−1
be a path component of H00 with length k − 1 ≥ 2. Since C2l(0) is not a component of H0, we
have H00 6= C2l(0), 3 ≤ k < 2l, and v0,k, v0,2l−1 ∈ V (H1).

Claim 1: f(v0,1) 6= 4.
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Proof: Suppose otherwise. Then f(v0,0) ∈ {0, 2}. If f(v0,0) = 2, then (f(v0,2), f(vm−1,1−m)) =
(0, 1) [v0,1; v0,0, v0,2]. Since v0,2l−1 ∼ v0,0 and f(v0,2l−1) ∈ {1, 3, 5} by noting H00 6= C2l(0), we
have f(v0,2l−1) = 5 and so f(vm−1,−1−m) ∈ {0, 3} [v0,2l−1; v0,0, vm−1,1−m]. If f(vm−1,−1−m) = 3,
then no feasible label is available for vm−1,−m [vm−1,−1−m, vm−1,1−m; v0,2l−1], a contradiction.
Thus f(vm−1,−1−m) = 0 and so f(vm−1,−m) = 3 [v0,1], f(vm−1,2−m) = 5 [vm−1,1−m; vm−1,−m, v0,1]
and f(vm−2,−m) = 5. We then have f(v0,3) ∈ {2, 3} [v0,2; v0,1, vm−1,2−m], and f(v0,3) = 3 occurs
only when k = 3. Since v0,3 ∼ vm−1,3−m, no label is available for vm−1,3−m, a contradiction.

If f(v0,0) = 0, then (f(v0,2), f(vm−1,1−m)) = (2, 1) and f(v0,2l−1) ∈ {3, 5}. If f(v0,2l−1) = 3,
then f(vm−1,−1−m) = 5 [v0,2l−1; vm−1,1−m, v0,0] and so no feasible label is available for vm−1,−m.
So f(v0,2l−1) = 5. If vm−1,−1−m ∈ V (H1), then f(vm−1,−1−m) = 3 and no feasible label can
be assigned to vm−1,−m. Thus, vm−1,−1−m ∈ V (H0) and so f(vm−1,−1−m) = 2 [v0,2l−1; v0,0],
implying that no feasible label is available for vm−1,−m [vm−1,−1−m, vm−1,1−m; v0,1, v0,2l−1].

Claim 2 f(v0,2) 6= 4.

Proof: Suppose otherwise. Then f(v0,3) ∈ {0, 1, 2}. If f(v0,3) = 2, then by Lemma 2.3(b)
and noting v0,2l−1 ∈ V (H1), we have (f(v0,1), f(v0,0), f(v1,0)) = (0, 2, 4). By Lemma 2.3(a) we
then have f(v1,2) = 1 and so no label is available for v1,1. It remains to consider the following
two cases.

Case 1: f(v0,3) = 1. Assume f(v0,0) = 0 first. Then (f(v0,1), f(vm−1,1−m)) = (2, 5) and
so (f(vm−1,3−m), f(vm−1,2−m)) = (3, 0). Hence f(v1,2) = 0 [v0,2; v0,1, v0,3] and f(v0,4) = 5
[v0,3; v0,2, vm−1,3−m]. If v1,3 ∈ V (H0), then f(v1,3) = 2 by Lemma 2.3(b) and so there is no
feasible label for v1,4 [v1,3, v0,4; v1,2]. Thus v1,3 ∈ V (H1) and so f(v1,3) = 3. Hence no feasible
label is available for v1,4 [v1,3, v0,4; v1,2, v0,3].

Next assume f(v0,0) = 2 so that f(v0,1) = 0. Since v0,2l−1 ∼ v0,0 and v0,2l−1 ∈ V (H1)
by k < 2l, we have f(v0,2l−1) = 5. Also f(v0,4) ∈ {3, 5} [v0,3; v0,2] and f(v1,2) = 2 by
Lemma 2.3(b). If v1,3 ∈ V (H1), then f(v1,3) = 5, (f(v0,4), f(v1,4)) = (3, 0), f(vm−1,3−m) = 5
[v0,3; v0,2, v0,4] and f(vm−1,1−m) = 3 [v0,1; v0,0, v0,2, vm−1,3−m], resulting in no feasible label for
vm−1,2−m [vm−1,1−m, vm−1,3−m; v0,1, v0,3]. Hence v1,3 ∈ V (H0). In view of the path v0,0, v0,1, v0,2
of H0 and by Lemma 2.3(b), we then have (f(v1,2), f(v1,3)) = (2, 0). By Lemma 2.3(a), we
have v1,1 ∈ H1 and hence f(v1,1) = 5 [v1,2; v1,3, v0,2], resulting in no feasible label for v1,0
[v1,1, v0,0; v1,2, v0,1].

Case 2: f(v0,3) = 0. In this case (f(v0,0), f(v0,1)) = (0, 2) by Lemma 2.3(b). So f(v1,2) = 1
[v0,2; v0,1, v0,3]. If v1,0 ∈ V (H0), then f(v1,0) = 4 and so no feasible label can be assigned to v1,1.
Thus v1,0 ∈ V (H1) and f(v1,0) ∈ {3, 5} as v1,0 ' v1,2.

Subcase 2.1: f(v1,0) = 5. We have f(v1,1) = 3 [v1,0, v1,2] and f(v0,2l−1) = 3 [v0,0; v1,0] by
noting v0,2l−1 ∈ V (H1). We also have f(vm−1,1−m) = 5 [v0,1; v0,0, v0,2] and f(vm−1,−1−m) = 1
[v0,2l−1; v0,0, vm−1,1−m]. So no feasible label is available for vm−1,−m [vm−1,−1−m, vm−1,1−m;
v0,2l−1].

Subcase 2.2: f(v1,0) = 3. We have f(v1,1) = f(v0,2l−1) = f(vm−1,1−m) = 5 and f(v1,2l−1) =
1. Hence f(vm−1,−1−m) ∈ {1, 2, 3} [v0,2l−1; v0,0].

If f(vm−1,−1−m) = 2, then f(v0,2l−2) = 3 and there is no feasible label for v1,2l−2.
If f(vm−1,−1−m) = 1, then (f(vm−1,−m), f(vm−1,−2−m)) = (3, 4) and f(vm−1,−3−m) ∈ {0, 2}.

If f(vm−1,−3−m) = 2, then (f(v0,2l−2), f(v0,2l−3)) = (3, 0) and no label is available for v1,2l−2. If
f(vm−1,−3−m) = 0, then f(v0,2l−3) ∈ {2, 3} and no label is available for v0,2l−2.

If f(vm−1,−1−m) = 3, then (f(v0,2l−2), f(v1,2l−2), f(v0,2l−3)) = (2, 4, 0) and f(vm−1,−m) ∈
{0, 1}. If f(vm−1,−m) 6= 1, then no feasible label is available for vm−1,−2−m [vm−1,−1−m;
vm−1,−m, v0,2l−3, v0,2l−1]. Thus, f(vm−1,−m) = 0, leading to f(vm−1,−2−m) = 1 and f(vm−2,−2−m)
∈ {4, 5}. If f(vm−2,−2−m) = 4, then f(vm−2,−m) = 2 and no label is available for vm−2,−1−m. If
f(vm−2,−2−m) = 5, then (f(vm−1,−3−m), f(vm−2,−1−m)) = (4, 2) or (4, 3). In the latter case, no
feasible label is available for vm−2,−m. In the former case, (f(vm−2,−m), f(vm−2,1−m)) = (4, 1)
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and f(vm−1,2−m) = 3 since vm−1,2−m ∈ V (H1) by Lemma 2.3(b); consequently, no label is
available for vm−2,2−m. 2

Lemma 3.5. For i = 0, 1 and j = 0, 1, . . . ,m−1, if C2l(j) is not a component of Hi, then every
component of Hij is isomorphic to K2.

Proof Consider the case i = 0 first. It suffices to prove the statement for j = 0 due to the
symmetry. Suppose C2l(0) is not a component of H0. Then each component of H00 is a path with
at least two vertices (Lemma 3.3). Suppose a path component of H00, say, v0,0, v0,1, . . . , v0,k−1,
contains three or more vertices, that is, 3 ≤ k < 2l − 1. Then v0,k, v0,2l−1 ∈ V (H1) and
(f(v0,1), f(v0,2)) = (0, 2) or (2, 0) by Lemma 3.4. In either case we have f(v0,0) = 4. So
f(v0,2l−1) = 1 as v0,2l−1 ∈ V (H1) and (f(v0,2l−2), f(vm−1,−1−m)) = (3, 5) or (5, 3).

In the case when (f(v0,1), f(v0,2)) = (0, 2), we have f(vm−1,1−m) ∈ {3, 5} and so (f(v0,2l−2),
f(vm−1,−1−m), f(vm−1,1−m)) = (3, 5, 3) or (5, 3, 5). In either case, no feasible label is available
for vm−1,−m [vm−1,−1−m, vm−1,1−m; v0,1, v0,2l−1], a contradiction.

In the case when (f(v0,1), f(v0,2)) = (2, 0), we have f(vm−1,1−m) = 5. Hence (f(vm−1,−1−m),
f(v0,2l−2), f(vm−1,−m)) = (3, 5, 0). Thus vm−1,−m is in H0 but the two neighbours of it on
C2l(m− 1) are in H1, contradicting Lemma 3.3.

So far we have proved that each path component of H00 has exactly two vertices and so is
isomorphic to K2, completing the proof for i = 0. In the case i = 1, the same result holds due
to the symmetry between f and 5− f . 2

Lemma 3.6. The following hold for i = 0, 1, j = 0, 1, 2, . . . ,m− 1 and any integer k.

(a) If j is even, then Hi contains neither the path vj,2k−1, vj,2k−2, vj+1,2k−2, vj+1,2k−1 nor the
path vj,2k−1, vj,2k, vj+1,2k, vj+1,2k−1;

(b) If j is odd, then Hi contains neither the path vj,2k, vj,2k−1, vj+1,2k−1, vj+1,2k nor the path
vj,2k, vj,2k+1, vj+1,2k+1, vj+1,2k.

Proof It suffices to prove that H0 does not contain path P (j, k) : vj,2k−1, vj,2k−2, vj+1,2k−2,
vj+1,2k−1 when j is even. The other three statements are consequences of this because of the
symmetry of Br(2l,m, r) and the symmetric roles of H0 and H1.

Suppose to the contrary that H0 contains P (j, k) where j is even. Then the four vertices on
P (j, k) receive labels from {0, 2, 4} and moreover f(vj,2k−1) = f(vj+1,2k−1) by Lemma 2.3(b). By
Lemma 3.5, we have vj,2k, vj+1,2k ∈ V (H1). Since vj,2k ∼ vj+1,2k, we have (f(vj,2k), f(vj+1,2k)) =
(1, 3), (3, 1), (1, 5), (5, 1), (3, 5), (5, 3). However, since vj,2k−1 ∼ vj,2k and vj+1,2k−1 ∼ vj+1,2k,
in each case we cannot have f(vj,2k−1) = f(vj+1,2k−1) = 2 or 4. That is, f(vj,2k−1) =
f(vj+1,2k−1) = 0, and hence (f(vj,2k−2), f(vj+1,2k−2)) = (2, 4) or (4, 2). By Lemma 3.5, we
have vj,2k−3, vj,2k−4, vj+1,2k−3, vj+1,2k−4 ∈ V (H1). Thus f(vj,2k−3) = f(vj+1,2k−3) ∈ {1, 3, 5} by
Lemma 2.3(b). Since (f(vj,2k−2), f(vj+1,2k−2)) = (2, 4) or (4, 2), and since vj,2k−3 ∼ vj,2k−2 and
vj+1,2k−3 ∼ vj+1,2k−2, there exists no single label in {1, 3, 5} that can be assigned to both vj,2k−3
and vj+1,2k−3 without violating the L(2, 1)-conditions, a contradiction. 2

Definition 3.7. For k = 1, 2, . . . , l, denote

L(k) = (v0,2k−1, v0,2k−2, v1,2k−2, v1,2k−3, . . . , vm−2,2k−m, vm−1,2k−m, vm−1,2k−m−1, v0,2k−1) (5)

R(k) = (v0,2k−1, v0,2k, v1,2k, v1,2k+1, . . . , vm−2,2k−m−2, vm−1,2k−m−2, vm−1,2k−m−1, v0,2k−1). (6)

These are cycles of Br(2l,m, r) with length 2m.

Based on Lemmas 3.5 and 3.6 we now prove the following lemma.
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Lemma 3.8. Suppose m ≥ 3. For i = 0, 1, if there exists 0 ≤ j ≤ m− 1 such that C2l(j) is not
a component of Hi, then every component of Hi is L(k) or R(k) for some k.

Proof It suffices to prove the result for (i, j) = (0, 0) due to the symmetry. Suppose C2l(0)
is not a component of H0. Then by Lemma 3.5 each component of H00 is isomorphic to K2.
Suppose to the contrary that a path component P of H0 is not equal to L(k) or R(k) for any
k. By symmetry, and by Lemmas 3.5-3.6 we may assume without loss of generality that P is in
one of the following forms for some 1 ≤ q < m− 1:

v0,2k−1, v0,2k−2, v1,2k−2, v1,2k−3, . . . , vq−1,2k−q, vq−1,2k−q−1, vq,2k−q−1; (7)

v0,2k−1, v0,2k−2, v1,2k−2, v1,2k−3, . . . , vq−1,2k−q, vq−1,2k−q−1, vq,2k−q−1, vq,2k−q−2. (8)

By Lemma 2.3(b), that the length of P is a multiple of 3, it is clear that q ≡ 0 (mod 3) in (7)
and q ≡ 1 (mod 3) in (8).

Case 1: P is given by (7). Then vq−1,2k−q−2, vq−1,2k−q−3, vq,2k−q−3, vq,2k−q−2 is a path in
H1 by Lemma 3.5. However, this contradicts the results in Lemma 3.6 no matter q is odd or
even.

Case 2: P is given by (8). By Lemma 2.3(b), f(v0,2k−1) = f(vq,2k−q−2) = 0. By Lemma 3.5,
H1 contains the edges vq−1,2k−q−2vq−1,2k−q−3, vq,2k−q−3vq,2k−q−4 and vq,2k−qvq,2k−q+1. Since
P is a component of H0, vq+1,2k−q−2 ∈ V (H1) and so by Lemma 3.5, H1 contains either
vq+1,2k−q−2vq+1,2k−q−3 or vq+1,2k−q−2vq+1,2k−q−1.

Assume first that H1 contains vq+1,2k−q−2vq+1,2k−q−3. Then, by Lemma 3.5, H0 contains
vq+1,2k−q−4, vq+1,2k−q−5 and vq+1,2k−q−1vq+1,2k−q. Since vq+1,2k−q−2 and vq,2k−q are end-vertices
of H1, by Lemma 2.3(b) we have f(vq+1,2k−q−2) = f(vq,2k−q) = 5. Similarly, f(vq+1,2k−q−4) = 0
as vq+1,2k−q−4 is an end-vertex of H0. We then have f(vq,2k−q−3) = 3 [vq,2k−q−2; vq+1,2k−q−2] and
therefore f(vq,2k−q−4) = 5. It follows that f(vq−1,2k−q−3) = 1 [vq−1,2k−q−2, vq,2k−q−3; vq,2k−q−4]
and hence f(vq−1,2k−q−2) = 5. As vq−1,2k−q−1 ∈ V (H0), we then have f(vq−1,2k−q−1) = 2
[vq−1,2k−q−2; vq,2k−q−2]. Thus, by Lemma 2.3(b), it must be that f(vq,2k−q−1) = 4. This, how-
ever, contradicts the fact that f(vq,2k−q) = 5 and vq,2k−q−1 ∼ vq,2k−q.

Now we assume that H1 contains vq+1,2k−q−2vq+1,2k−q−1. By Lemma 3.5(b), H0 contains
vq+1,2k−q−3, vq+1,2k−q−4, vq+1,2k−qvq+1,2k−q+1, and vq,2k−q−5vq,2k−q−6. Note that vq+1,2k−q is an
end-vertex of H0, and both vq+1,2k−q−2 and vq,2k−q are end-vertices of H1. Thus, by Lemma
2.3(b), f(vq+1,2k−q) = 0 and f(vq+1,2k−q−2) = f(vq,2k−q) = 5. Hence, f(vq+1,2k−q−1) = 3,
f(vq+1,2k−q−3) = 2, f(vq,2k−q−1) = 2, and f(vq,2k−q−3) = 3. Applying Lemma 2.3(b) to P yields
f(vq−1,2k−q−1) = 4. Since vq+1,2k−q−4 is an end-vertex of H0, by Lemma 2.3, f(vq+1,2k−q−4) = 0.
So f(vq,2k−q−4) = 5 and f(vq−1,2k−q−3) = 1. Since vq−1,2k−q−2vq−1,2k−q−3 is an edge of H1, we
then have f(vq−1,2k−q−2) = 5. This, however, is impossible as vq−1,2k−q−2 ∼ vq−1,2k−q−1 and
f(vq−1,2k−q−1) = 4. 2

Equipped with the results above, we are now ready to prove the following lemma which forms
part of the proof of Theorem 1.2.

Lemma 3.9. Suppose m ≥ 3. Then λ(Br(2l,m, r)) = 5 if and only if one of the following holds:

(a) 3 divides l and 6 divides m;

(b) 6 divides l and 3 divides m.

Proof Suppose λ(Br(2l,m, r)) = 5. We will prove that one of (a) and (b) holds.

Case 1: There exists at least one pair (i, j) such that Hij = C2l(j). In this case, by
Lemma 3.8, for all 0 ≤ j ≤ m − 1, C2l(j) is a component of H0 or H1. Thus, by Lemma
2.3, 3 must be a divisor of 2l and hence a divisor of l. Using Lemma 2.3 one can verify that, if
C2l(j) is a component of H0 (H1 respectively) for some j, then both C2l(j−1) and C2l(j+1) are
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components of H1 (H0 respectively), where j± 1 is taken modulo m. Hence m is even. Because
of the symmetry of Br(2l,m, r) we may assume that C2l(0) is a component of H1. Then, by
Lemma 2.3, there are only three possible patterns for the labels of v0,0, . . . , v0,2l−1:

(i) 3, 5, 1, . . . , 3, 5, 1; (ii) 1, 3, 5, . . . , 1, 3, 5; (iii) 3, 1, 5, . . . , 3, 1, 5.

(Three other equivalent patterns are obtained by reversing these sequences.) One can verify
that, for each of these possibilities, the labels for all other vertices are uniquely determined. In
fact, in Case (i), for odd j, vj,0, . . . , vj,2l−1 must be labelled 0, 2, 4, . . . , 0, 2, 4; and for even j,
vj,0, . . . , vj,2l−1 must be labelled 3, 5, 1, . . . , 3, 5, 1. In Case (ii), for odd j, vj,0, . . . , vj,2l−1 must
be labelled 4, 0, 2, . . . , 4, 0, 2; and for even j, vj,0, . . . , vj,2l−1 must be labelled 1, 3, 5, . . . , 1, 3, 5.
In Case (iii), for odd j, vj,0, . . . , vj,2l−1 must be labelled 0, 4, 2, . . . , 0, 4, 2; and for even j,
vj,0, . . . , vj,2l−1 must be labelled 3, 1, 5, . . . , 3, 1, 5. Note that vm−1,1 ∼ v0,m+1 since m is even and
m + r ≡ 0 (mod 2l). In Case (i) ((iii) respectively), since vm−1,1 is labelled 2 (4 respectively),
v0,m+1 must be labelled 5 (1 respectively). Hence m is a multiple of 3. Since m is even, we see
that 6 divides m and therefore condition (a) is satisfied. In Case (ii), since vm−1,1 is labelled 0,
v0,m+1 cannot be labelled 1. If v0,m+1 is labelled 5, then v0,m+3 is labelled 3, which contradicts
the fact that v0,m+3 ∼ vm−1,3 and vm−1,3 is labelled 4. Thus, v0,m+1 must be labelled 3 in Case
(ii), and similar to Cases (i) and (iii), we see that (a) is satisfied.

Case 2: Hij 6= C2l(j) for all (i, j). In this case, by Lemma 3.8, for i = 0, 1 each component
of Hi is of the form L(k) or R(k). Since the roles of L(k)’s and R(k)’s are symmetric, without
loss of generality we may assume that the components of H0 and H1 are of the form L(k).
By Lemma 3.5, L(1), L(2), . . . , L(l) must be in H0, H1 alternatively. Hence l is even. Because
of the symmetry we may assume that H0 consists of L(2), L(4), . . . , L(l) and H1 consists of
L(1), L(3), . . . , L(l − 1). By Lemma 2.3(c), the length 2m of these cycles is a multiple of 3. So
3 is a divisor of m. We take each L(k) as oriented in (5) and treat v0,2k−1 as the first vertex of
L(k) in the following labelling. By symmetry, without loss of generality, we may assume that
the vertices of L(1) are labelled 5, 3, 1, . . . , 5, 3, 1. Then other cycles must be labelled as follows:
L(2): 4, 2, 0, . . . , 4, 2, 0; L(3): 3, 1, 5, . . . , 3, 1, 5; L(4): 2, 0, 4, . . . , 2, 0, 4; L(5): 1, 5, 3, . . . , 1, 5, 3;
L(6): 0, 4, 2, . . . , 0, 4, 2; L(7): 5, 3, 1, . . . , 5, 3, 1; etc. Since L(7) has to be labelled in the same
way as L(1), this pattern is repeated in a cyclic manner modulo 6. Thus 6 divides l and condition
(b) is satisfied.

Now we prove sufficiency. Suppose that one of (a) and (b) is satisfied. We now show that
λ(Br(2l,m, r)) = 5. Since by Lemma 2.1, λ(Br(2l,m, r)) ≥ 5, it suffices to prove the existence
of a 5-L(2, 1)-labelling of Br(2l,m, r).

Case 3: 3 divides l and 6 divides m. In this case, for each even j, we label the vertices
vj,0, vj,1, . . . , vj,2l−1 of C2l(j) by 0, 4, 2, . . ., 0, 4, 2; and for each odd j, we label vj,0, vj,1, . . . , vj,2l−1
by 3, 1, 5, . . . , 3, 1, 5. Under this labelling any two vertices distance two apart receive distinct
labels since they are either on the same C2l(j) or on consecutive C2l(j) and C2l(j+1) respectively.
It remains to verify that any two adjacent vertices receive labels differing by at least 2. By the
symmetry of Br(2l,m, r) we may assume without loss of generality that one vertex is on C2l(0)
and the other one is on C2l(m − 1). Since m is a multiple of 6 and m + r ≡ 0 (mod 2l),
v0,m+2j−1 is adjacent to vm−1,2j−1. If vm−1,2j−1 is assigned 3, then 2j−1 ≡ 0 (mod 3) and hence
m + 2j − 1 ≡ 0 (mod 3). Thus v0,m+2j−1 is labelled 0, and hence the labels of vm−1,2j−1 and
v0,m+2j−1 differ by at least 2. Similarly, a 5-labelled vertex on C2l(m − 1) can be adjacent to
a 2-labelled vertex on C2l(0) only, and a 1-labelled vertex on C2l(m − 1) can be adjacent to a
4-labelled vertex on C2l(0) only. Therefore the above-defined labelling is a 5-L(2, 1)-labelling of
Br(2l,m, r).

Case 4: 6 divides l and 3 divides m. Since 3 divides m, the length 2m of L(k) is a multiple
of 6. Label these cycles L(k) in the way as described in Case 2 above. One can verify that this
is a 5-L(2, 1)-labelling of Br(2l,m, r). 2
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4 Brick products with λ-number 6

In this section we prove two sufficient conditions for λ(Br(2l,m, r)) = 6 as stated in Theorem
1.2.

Lemma 4.1. λ(Br(2l, 2, r)) = 6 for any l ≥ 2.

Proof Since m = 2 and 2+r ≡ 0 (mod 2l) by our assumption, v0,2j+1 ∼ v1,2j−1 for all j. We will
first prove λ(Br(2l, 2, r)) ≥ 6 by way of contradiction. We will then present a 6-L(2, 1)-labelling
of Br(2l, 2, r) and thus complete the proof.

Suppose to the contrary that λ(Br(2l, 2, r)) ≤ 5. Let f be a 5-L(2, 1)-labelling of Br(2l, 2, r),
and let H0, H1 and Hij be as defined in Definitions 2.2 and 3.2 respectively. It can be verified
that, for i = 0, 1 and j = 0, 1, C2l(j) is not entirely in Hi. Thus, from Lemma 3.5, we have:

Claim 1. For i = 0, 1 and j = 0, 1, each path component of Hij is isomorphic to K2.

This implies that C2l(j) ∩ (H0 ∪ H1) has alternating pairs of vertices in H0 and H1. In
particular, l must be even.

Claim 2. For i = 0, 1, Hi does not contain any edge v0,jv0,j+1 where j is even, or any edge
v1,jv1,j+1 where j is odd.

Suppose to the contrary that H0 contains an edge v0,jv0,j+1 where j is even. Since j is
even and m = 2, v0,j ∼ v1,j and v0,j+1 ∼ v1,j−1 for every j. Thus, since by Claim 1,
v0,j−1, v0,j+2 ∈ V (H1), at least one of v1,j and v1,j−1 is in H0 by Lemma 2.3. Suppose first
that v1,j ∈ V (H0). Then v1,j−1 ∈ V (H1) for otherwise (v0,j , v0,j+1, v1,j−1, v1,j , v0,j) is a 4-
cycle in H0, which is impossible. Now that f(v1,j−1) ∈ {1, 3, 5}, by Lemma 2.3 we must have
(f(v0,j+1), f(v0,j), f(v1,j)) = (0, 4, 2) and f(v1,j−1) = 5. By Claim 1, we have f(v1,j−2) ∈ {1, 3}.
Since v0,j−1 ∈ V (H1) but f(v0,j) = 4, we have f(v0,j−1) = 1 and consequently f(v0,j−2) = 3
[v1,j−1]. However, we now have no feasible label from {1, 3} for v1,j−2 [v0,j−2; v0,j−1], a contra-
diction. The case v1,j−1 ∈ V (H0) can be dealt with similarly. This proves Claim 2 when i = 0
and j is even.

The case when i = 0 and j is odd is reduced to the case when i = 0 and j is even by swapping
C2l(0) and C2l(1) and reversing their directions. This proves Claim 2 for H0 and therefore for
H1 as well due to the symmetry between H0 and H1 (see the comments before Lemma 3.3).

v00 v01 v02 v03 v04 v05

v10 v11 v12 v13 v15

v0,2l-1

v14 v1,2l-1

…

…

Figure 2: Proof of Lemma 4.1.

Combining Claims 1-2 with Lemma 2.3 and noting that l is even as mentioned above, we
conclude that H0 and H1 must be cycles. (See Figure 2, where H0 consists of dashed lines and
H1 dotted lines.) Without loss of generality we may assume

H0 = (v0,0, v1,0, v1,1, v0,3, v0,4, v1,4, . . . , v1,2l−3, v0,2l−1, v0,0)

H1 = (v0,1, v0,2, v1,2, v1,3, v0,5, v0,6, . . . , v0,2l−3, v0,2l−2, v1,2l−2, v1,2l−1, v0,1).
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Since v0,0, v1,0, v1,1, v0,3 is a path in H0, by Lemma 2.3(b) we have f(v0,0) = f(v0,3) ∈ {0, 2, 4}.
However, since f(v0,1), f(v0,2) ∈ {1, 3, 5}, if f(v0,0) = f(v0,3) = 2 or 4, then the only label for
both v0,1 and v0,2 is 5 or 1 respectively. Since this contradicts the fact v0,1 ∼ v0,2, we must have
f(v0,0) = f(v0,3) = 0. Thus, (f(v0,1), f(v0,2)) = (3, 5) or (5, 3), and f(v1,1) = f(v1,4) ∈ {2, 4}.
However, since v1,2, v1,3 ∈ V (H1), if f(v1,1) = f(v1,4) = 2, then the only label for both v1,2 and
v1,3 is 5. Similarly, if f(v1,1) = f(v1,4) = 2, then the only label for both v1,2 and v1,3 is 1. Since
v1,2 ∼ v1,3, in both cases we have a contradiction. Therefore, λ(Br(2l, 2, r)) ≥ 6.

To complete the proof, we give the following labelling for each l ≥ 2, where the labels in
bold font comprise the pattern of repeating sequence. When labelling C2l(i) (i = 1, 2) we label
its vertices according to the order vi,0, vi,1, . . . , vi,2l−1 beginning with vi,0.

Case 1: l is even.
C2l(0) : 2,6,0,4,2,6,0,4, . . . ,2,6,0,4
C2l(1) : 0,6,2,4,0,6,2,4, . . . ,0,6,2,4

Case 2: l is odd and l ≡ 0 (mod 3).

C2l(0) : 0,6,4,0,6,2,0,6,4,0,6,2, . . . ,0,6,4,0,6,2
C2l(1) : 5,3,1,5,3,1,5,3,1,5,3,1, . . . ,5,3,1,5,3,1

Case 3: l = 7.
C2l(0) : 0, 2, 6, 4, 2, 5, 3, 0, 5, 2, 0, 6, 3, 5
C2l(1) : 6, 1, 3, 0, 6, 4, 1, 6, 3, 1, 4, 2, 0, 4

Case 4: l ≥ 13 is odd and l ≡ 1 (mod 3).

C2l(0) : 0, 5, 3, 6, 4, 1, 6, 4, 2, 6, 4,1,5,3,1,5,3,6,1,4,2,5,3, . . . , 1, 6, 2
C2l(1) : 4, 2, 0, 5, 2, 0, 3, 1, 5, 3, 0,6,2,0,4,2,0,6,3,0,6,4,0, . . . , 5, 3, 1

Case 5: l is odd and l ≡ 2 (mod 3).

C2l(0) : 3,5,0,3,5,0,3,5,0,3,5,0, . . . ,3,5,0,3,5,0, 2, 4, 6, 1
C2l(1) : 6,1,4,6,2,0,6,1,4,6,2,0, . . . ,6,1,4,6,2,0, 6, 4, 0, 2

In each case the above is a 6-L(2, 1)-labelling of Br(2l, 2, r). Therefore, λ(Br(2l, 2, r)) = 6. 2

In what follows m′ denotes the unique integer between 1 and 2l such that m ≡ m′ (mod 2l).
One may simply assume m = m′ in the following proofs. In fact, if m > 2l, then we simply
insert m −m′ rows between C2l(0) and C2l(1) and label them by using the patterns of C2l(1)
and C2l(2) alternatively.

Lemma 4.2. If both m ≥ 4 and l ≥ 2 are even, then λ(Br(2l,m, r)) = 5 or 6.

Proof By Lemma 2.1 it suffices to prove the existence of a 6-L(2, 1)-labelling of Br(2l,m, r).
Since l is even, we are able to cyclically label each C2l(i) by a group of four labels: be-

ginning with vi,0 we label the vertices of C2l(i) by 6, 0, 4, 2, . . . , 6, 0, 4, 2 when i is even and
4, 2, 6, 0, . . . , 4, 2, 6, 0 when 1 ≤ i ≤ m − 2 is odd. We label the vertices of C2l(m − 1) by
4, 2, 6, 0, . . . , 4, 2, 6, 0 if m′ ≡ 0 (mod 4), and by 4, 0, 6, 2, . . . , 4, 0, 6, 2 if m′ ≡ 2 (mod 4). This
labelling is shown in the following table:

C2l(0) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2
C2l(1) : 4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0

...
C2l(m− 4) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2
C2l(m− 3) : 4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0
C2l(m− 2) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2

C2l(m− 1) (m′ ≡ 0 mod 4) : 4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0
C2l(m− 1) (m′ ≡ 2 mod 4) : 4, 0, 6, 2, 4, 0, 6, 2, . . . , 4, 0, 6, 2
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Since m is even, v0,m+2j−1 ∼ vm−1,2j−1 for every j. Thus, when m′ ≡ 0 mod 4, the vertices of
C2l(m − 1) labelled 2 or 0 are adjacent to the vertices of C2l(0) labelled 0 and 2 respectively.
Similarly, when m′ ≡ 2 mod 4, the vertices of C2l(m − 1) labelled 0 or 2 are adjacent to the
vertices of C2l(0) labelled 2 and 0 respectively. One can verify that the labelling above is indeed
a 6-L(2, 1)-labelling of Br(2l,m, r). 2

5 Brick products with λ-number 6 or 7

In this section we prove the rest of the statements in Theorem 1.2. As before, when labelling
C2l(i) we label its vertices according to the order vi,0, vi,1, . . . , vi,2l−1 beginning with vi,0. Denote
by m′ the unique integer between 1 and 2l such that m ≡ m′ (mod 2l). (See the comments before
Lemma 4.2.) We assume m ≥ 3 since the case m = 2 was handled in Lemma 4.1 already.

Lemma 5.1. If m ≥ 4 is even and l ≥ 3 is odd, then λ(Br(2l,m, r)) ≤ 7.

Proof It suffices to prove the existence of a 7-L(2, 1)-labelling of Br(2l,m, r). Our assumption
on m, l and r implies 2l ≡ 2 (mod 4) and v0,m+2j−1 ∼ vm−1,2j−1 for every j.

In the case when m′ ≡ 0 (mod 4), we label the vertices of the cycles C2l(j) as follows:

C2l(0) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2, 5, 3
C2l(1) : 4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0, 7, 1
C2l(2) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2, 5, 3

...
C2l(m− 3) : 4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0, 7, 1
C2l(m− 2) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2, 5, 3

C2l(m− 1) :

2l−m′−2︷ ︸︸ ︷
4, 2, 6, 0, . . . , 4, 2, 6, 0, 4, 1, 6, 2,

m′−4︷ ︸︸ ︷
4, 0, 6, 2, . . . , 4, 0, 6, 2, 7, 0

The assumption m′ ≡ 0 (mod 4) implies that, among the first 2l − m′ − 2 (≥ 4) vertices of
C2l(m − 1), those with label 2 or 0 are adjacent to the vertices of C2l(0) between v0,m+1 and
v0,2l−3 with label 0 or 2 respectively. Among the next four vertices of C2l(m− 1), vm−1,2l−m−1
(with label 1) and vm−1,2l−m+1 (with label 2) are adjacent to v0,2l−1 (with label 3) and v0,1 (with
label 0) respectively, and so on. Based on these observations one can verify that the labelling
above is a 7-L(2, 1)-labelling of Br(2l,m, r).

In the case when m′ ≡ 2 (mod 4), we label C2l(j), 0 ≤ j ≤ m− 2, as follows:

C2l(0) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2, 5, 3
C2l(1) : 4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0, 7, 1
C2l(2) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2, 5, 3

...
C2l(m− 3) : 4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0, 7, 1
C2l(m− 2) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2, 5, 3

In addition, if m′ = 2l, then we label C2l(m− 1) by:

C2l(m− 1) : 4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0, 7, 1;

otherwise, 6 ≤ m′ ≤ 2l − 4 and we label C2l(m− 1) by:

C2l(m− 1) :

2l−m′−4︷ ︸︸ ︷
4, 0, 6, 2, . . . , 4, 0, 6, 2, 4, 0, 6, 1,

m′−2︷ ︸︸ ︷
4, 2, 6, 0, . . . , 4, 2, 6, 0, 7, 2.

Similar to the case m′ ≡ 0 (mod 4), one can verify that this is a 7-L(2, 1)-labelling of Br(2l,m, r).
2
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Lemma 5.2. If m ≥ 3 is odd and l ≥ 2 is even, then λ(Br(2l,m, r)) ≤ 7.

Proof Since m is odd, v0,m+2j ∼ vm−1,2j for every j. Using this and the fact that 2l is a
multiple of 4, one can verify that the following is a 7-L(2, 1)-labelling of Br(2l,m, r):

C2l(0) : 0, 4, 2, 5, 0, 4, 2, 5, . . . , 0, 4, 2, 5
C2l(1) : 2, 6, 0, 4, 2, 6, 0, 4, . . . , 2, 6, 0, 4
C2l(2) : 0, 4, 2, 6, 0, 4, 2, 6, . . . , 0, 4, 2, 6

...
C2l(m− 4) : 2, 6, 0, 4, 2, 6, 0, 4, . . . , 2, 6, 0, 4
C2l(m− 3) : 0, 4, 2, 6, 0, 4, 2, 6, . . . , 0, 4, 2, 6
C2l(m− 2) : 2, 5, 0, 4, 2, 5, 0, 4, . . . , 2, 5, 0, 4

C2l(m− 1) (m′ ≡ 1 mod 4) : 1, 7, 3, 6, 1, 7, 3, 6, . . . , 1, 7, 3, 6
C2l(m− 1) (m′ ≡ 3 mod 4) : 3, 7, 1, 6, 3, 7, 1, 6, . . . , 3, 7, 1, 6

This completes the proof. 2

Lemma 5.3. If both m ≥ 3 and l ≥ 3 are odd, then λ(Br(2l,m, r)) ≤ 7.

Proof Since m is odd, v0,m+2j ∼ vm−1,2j for every j. Since l is odd, 2l ≡ 2 (mod 4).
In the case when m′ ≡ 1 (mod 4), we label C2l(i) for odd i between 1 and m − 4 using the

same pattern, and label C2l(i) for even i between 2 and m− 3 using the same pattern. We label
C2l(m−2) in the same way as C2l(1) except that vm−2,2l−m′ is labelled 7 instead of 6. Moreover
explicitly, we label Br(2l,m, r) as follows.

C2l(0) : 0, 7, 2, 5, 0, 7, 2, 5, . . . , 0, 7, 2, 5, 1, 4
C2l(1) : 2, 6, 0, 4, 2, 6, 0, 4, . . . , 2, 6, 0, 4, 7, 5
C2l(2) : 0, 4, 2, 6, 0, 4, 2, 6, . . . , 0, 4, 2, 6, 1, 3

...
C2l(m− 4) : 2, 6, 0, 4, 2, 6, 0, 4, . . . , 2, 6, 0, 4, 7, 5
C2l(m− 3) : 0, 4, 2, 6, 0, 4, 2, 6, . . . , 0, 4, 2, 6, 1, 3

C2l(m− 2) : 2, 6, 0, 4, 2, 6, 0, 4, . . . , 2,

vm−2,2l−m′︷︸︸︷
7 , 0, 4, . . . , 2, 6, 0, 4, 7, 5

C2l(m− 1) :

2l−m′−1︷ ︸︸ ︷
1, 4, 7, 1, 5, 3, 7, 1, . . . , 5, 3, 7, 1, 6, 3, 5, 1,

m′−5︷ ︸︸ ︷
7, 3, 5, 1, . . . , 7, 3, 5, 1, 7, 3

In the case where m′ ≡ 3 (mod 4), we give the following labelling:

C2l(0) : 6, 1, 4, 2, 6, 1, 4, 2, . . . , 6, 1, 4, 2, 7, 3
C2l(1) : 4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0, 5, 1
C2l(2) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2, 7, 3

...
C2l(m− 4) : 4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0, 5, 1
C2l(m− 3) : 6, 0, 4, 2, 6, 0, 4, 2, . . . , 6, 0, 4, 2, 7, 3

C2l(m− 2) :

2l−m′−3︷ ︸︸ ︷
4, 2, 6, 1, . . . , 4, 2, 6, 1,

m′+1︷ ︸︸ ︷
4, 2, 6, 0, 4, 2, 6, 0, . . . , 4, 2, 6, 0, 5, 1

C2l(m− 1) :

2l−m′−3︷ ︸︸ ︷
0, 7, 3, 5, . . . , 0, 7, 3, 5, 0, 7, 5, 2,

m′−7︷ ︸︸ ︷
7, 0, 5, 3, . . . , 7, 0, 5, 3, 7, 0, 5, 7, 2, 6

In each case one can verify that the above gives a 7-L(2, 1)-labelling of Br(2l,m, r). 2

Proof of Theorem 1.2 This follows from Lemmas 3.9, 4.1, 4.2 and 5.1-5.3 immediately. 2
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6 Concluding remarks

In this paper we studied the L(2, 1)-labelling problem for the family of cubic Cayley graphs
(other than the prism graphs) on dihedral groups. Such graphs have been studied extensively in
several contexts, including Hamiltonicity of Cayley graphs, computer architecture and intercon-
nection networks, chemical structures, and combinatorics and geometry. They are called ‘brick
products’, ‘generalised honeycomb tori’ and ‘honeycomb toroidal graphs’ in the literature. We
proved that in the case when m ≥ 2 and m+ r ≡ 0 (mod 2l) the λ-number of the brick product
Br(2l,m, r) (see Definition 1.1) is equal to 5, 6 or 7, and moreover we give a characterisation of
such brick products with λ-number 5. This result confirms a conjecture of Georges and Mauro
[14] in the special case of cubic Cayley graphs on dihedral groups. It also gives an infinite family
of cubic graphs with smallest possible λ-number. The case when m = 1 will be dealt with in a
separate paper [23] because it requires different techniques.

At present we do not know any Br(2l,m, r), m ≥ 2, m+r ≡ 0 (mod 2l), with λ-number 7. We
did extensive computation by using the computer package CPLEX. All instances implemented
output a λ-number 5 or 6. This prompts us to propose the following conjecture.

Conjecture 6.1. λ(Br(2l,m, r)) = 5 or 6 for all brick products Br(2l,m, r) with m ≥ 2 and
m+ r ≡ 0 (mod 2l).
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