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Abstract

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other

edge. In this paper, we confirm the total-coloring conjecture for 1-planar graphs with maximum degree

at least 13.
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. We use V(G), E(G), δ(G) and ∆(G) to
denote the vertex set, the edge set, the minimum degree and the maximum degree of a graph G, respectively.
For a vertex v ∈ V(G), NG(v) denotes the set of vertices that are adjacent to v in G. By dG(v) := |NG(v)|, we
denote the degree of v in G. For a plane graph G, F(G) denotes its face set and dG( f ) denotes the degree of
a face f in G. Throughout this paper, a k-, k+- and k−-vertex (resp. face) is a vertex (resp. face) of degree k,
at least k and at most k. Any undefined notation follows that of Bondy and Murty [3].

Given a graph G and a positive integer k, a total k-coloring of G is a mapping from V(G) ∪ E(G) to
{1, 2, · · · , k} such that f (x) , f (y) for every pair of adjacent or incident elements x, y ∈ V(G) ∪ E(G). The
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total chromatic number χ′′(G) of a graph G is the least number of colors needed in any total coloring of G.
It is clear that χ′′(G) ≥ ∆(G)+1. The next step is to look for any Brooks-typed or Vizing-typed upper bound
on the total chromatic number in terms of maximum degree. However, to obtain such bounds turns out to be
a difficult problem and has eluded mathematicians for nearly fifty years. The most well-known speculation
is the total-coloring conjecture, independently raised by Behzad [2] and Vizing [14], which asserts that
every graph of maximum degree ∆ admits a total (∆ + 2)-coloring. The validity of this conjecture is known
to be true for graphs in several wide families. Rosenfeld [11] and Vijayaditya [13] confirmed it for ∆ ≤ 3,
Kostochka solved it for ∆ = 4 [8] and ∆ = 5 [9]. For ∆ ≥ 6 it remains open even for planar graphs, but
more is known. Borodin [5] confirmed the total-coloring conjecture for planar graphs with ∆ ≥ 9. Yap [16]
proved it for planar graphs with ∆ ≥ 8. The ∆ = 7 case was solved for planar graphs by Sanders and Zhao
[12].

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most one other
edge. The notion of 1-planar graphs was introduced by Ringel [10] while trying to simultaneously color
the vertices and faces of a plane graph G such that any pair of adjacent/incident elements receive different
colors. Various colorings including vertex coloring [4, 6, 10], list vertex coloring [1, 15], acyclic vertex
coloring [7], edge coloring [17–19, 22], acyclic edge coloring [21], list edge and list total coloring[23],
(p, 1)-total labelling [24] and the linear arboricity [20] of 1-planar graphs have been extensively studied in
the literature. In particular, Zhang, Wu and Liu [23] proved that every 1-planar graph with maximum degree
∆ ≥ 16 is (∆ + 2)-total choosable, which implies that the total-coloring conjecture holds for 1-planar graphs
with maximum degree at least 16. In this paper, we improve the lower bound for the maximum degree in
the above corollary to 13 by the following theorem.

Theorem 1. Let G be a 1-planar graph with maximum degree ∆ and let r be an integer. If ∆ ≤ r and r ≥ 13,
then χ′′(G) ≤ r + 2.

During the proof the Theorem 1, we use the discharging method, and in particular, we involve an unusual
approach to estimate the final charges of big vertices. This can be seen from Section 3.

2 Structural Properties of a minimal 1-planar graph

Let an r-minimal graph be a connected graph G on the fewest edges that has no total (r + 2)-colorings. In
the following lemmas, we always assume that r ≥ 13.

Lemma 2. Let G be a r-minimal graph and let uv be an edge in G. If dG(u) ≤ b r
2c, then dG(u)+dG(v) ≥ r+3.

Proof. Suppose, to the contrary, that dG(u) + dG(v) ≤ r + 2. Since G is r-minimal, the graph G′ = G − uv
has a total (r + 2)-coloring ϕ. First of all, erase the color of u from ϕ. Since dG′(u) + dG′(v) ≤ ∆(G) + 2− 2 =

∆(G) ≤ r, the uncolored edge uv is incident with at most r colored edges and one colored vertex, thus we
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can properly color uvwith a color involved in ϕ. At last, the vertex u can be easily colored since it is incident
with at most 2dG(u) ≤ r colors. �

Lemma 3. Let G be a r-minimal graph and let v be a vertex of G. If dG(v) = 3, then v cannot be contained
in a triangle.

Proof. Let NG(v) = {v1, v2, v3}. Suppose, to the contrary, that v is contained in a triangle vv2v3. By the choice
of G, the graph G′ = G − vv3 has a total (r + 2)-coloring ϕ with ϕ(vvi) = i for i = 1, 2. Now erase the color
of v from ϕ. For any color i ≥ 3, i must appear on v3 or on some edge incident with v3, since otherwise,
we can color vv3 with i, a contradiction. Thus, the colors 1 and 2 cannot appear on v3 or the edges incident
with v3. Now uncolor vv2 and color vv3 with 2. By the same argument, any color i ≥ 3 must appear on v2 or
the edges incident with v2 and the colors 1 and 2 cannot appear on there. Now recolor v2v3 with 1, color vv3

with ϕ(v2v3) and color vv2 with 2. At last, the vertex v can be easily colored since it is adjacent or incident
with at most 6 colors. �

Lemma 4. Let G be a r-minimal graph and let v be a 4-vertex of G with NG(v) = {v1, v2, v3, v4}. For any
1 ≤ i ≤ 4, the edge vvi cannot be contained in two triangles.

Proof. Suppose, to the contrary, that the edge vv4 is contained in two triangles vv1v4 and vv3v4. By the choice
of G, the graph G′ = G − vv4 has a total (r + 2)-coloring ϕ with ϕ(vvi) = i for i = 1, 2, 3. Now erase the
color of v from ϕ. For any vertex v in G′, let S ϕ(v) denote the set of colors not appearing on v or the edges
incident with v. First of all, we have i < S ϕ(v4) for any color i ≥ 4, since otherwise, we can color vv4 with i
and then the vertex v can be easily colored (in the following we would not mention the coloring of v for the
last step). This implies that S ϕ(v4) ⊆ {1, 2, 3}. Note that |S ϕ(v4)| ≥ 2.

Claim. S ϕ(v4) = {1, 3}

Proof. Otherwise, assume that 1 < S ϕ(v4). This implies that S ϕ(v4) = {2, 3}. Since ϕ is a proper total
coloring of G′, we may assume that ϕ(v1v4) = 4. If i ∈ S ϕ(v1) for some i ∈ {2, 3}, then recolor v1v4 with i
and color vv4 with 4. Otherwise, there is a color i0 ≥ 5 such that i0 ∈ S ϕ(v1). Note that 1 must appear on
v2 (resp. v3) or edges incident with v2 (resp. v3), since otherwise, we can color recolor vv2 (resp. vv3) with 1,
recolor vv1 with i0, and color vv4 with 2 (resp. 3). Moreover, for any i ≥ 4, the color i must appear on v2

(resp. v3), since otherwise, we can color vv2 (resp. vv3) with i and color vv4 with 2 (resp. 3). This implies that
3 ∈ S ϕ(v2) and 2 ∈ S ϕ(v3). Now we consider the color on v3v4. If ϕ(v3v4) , 1, then recolor v3v4 with 2 and
color vv4 with ϕ(v3v4). Otherwise, ϕ(v3v4) = 1. In this case, recolor vv3, v1v4 with 1, v3v4 with 3, vv1 with i0

and color vv4 with 4. �

By the above claim, one can see that one of the edges v1v4 and v3v4 shall be colored with a color i ≥ 4.
Without loss of generality, assume that ϕ(v1v4) = 4. Note that 3 < S ϕ(v1), since otherwise, we can recolor
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v1v4 with 3 and color vv4 with 4. Moreover, 1 < S ϕ(v3), since otherwise, we can exchange the colors on v1v4

and v1v, then recolor vv3 with 1 and color vv4 with 3. For any i ≥ 4, the color i < S ϕ(v j) for any j = 1, 3,
since otherwise, we can recolor vv j with i and color vv4 with j. Thus S ϕ(v1) = S ϕ(v3) = {2}. If there is a
color i ≥ 4 such that i ∈ S ϕ(v2), then we can recolor vv2 with i, vv1 with 2, and color vv4 with 1. Otherwise,
we have S ϕ(v2) ⊆ {1, 3}. Without loss of generality, let 1 ∈ S ϕ(v2). Then we recolor vv2 and v1v4 with 1, vv1

with 2, and color vv4 with 4. �

Lemma 5. Let G be a r-minimal graph and let Vi be the set of i-vertices in G. We have |V∆| > 2|V3|.

Proof. If |V3| = 0, then it is trivial. If |V3| , 0, then by Lemma 2, r = ∆. Let E be the set of edges in G
having one end-vertex in V3 and let H be the bipartite subgraph with vertex set V3∪V∆ and edge set E. First
of all, we prove that H is a forest. Suppose, to the contrary, that H contains a cycle C. Then this cycle is of
even length in which alternate vertices have degree 3 in G. Since G is ∆-minimal, the graph G′ = G − E(C)
has a total (∆+2)-coloring ϕ. Now erase the colors of the 3-vertices on C from ϕ. Let e be an arbitrary edge
of C. One can see that e is now incident with at most ∆ − 1 colored edges and one colored vertex, hence
there are at least (∆+2)− (∆−1+1) = 2 available colors for e. Therefore, the edges in E(C) can be properly
colored since every even cycle is 2-edge-choosable. At last, the 3-vertices on C can be colored since each of
them is now incident with at most six colored elements and no two of them are adjacent in G by Lemma 2.
This contradiction implies that H is a forest and thus |V(H)| = |V3|+ |V∆| > |E(H)|. Moreover, the neighbors
of every vertex in V3 belong to the vertex set V∆ by Lemma 2. This implies that |E(H)| = 3|V3|. Hence we
conclude that |V∆| > 2|V3|. �

In the following, we restrict the minimal graph G to be a 1-planar graph and assume that G has already
been embedded on a plane so that every edge is crossed by at most one other edge and the number of
crossings is as small as possible. The associated plane graph G× of G is the plane graph that is obtained
from G by turning all crossings of G into new 4-vertices. A vertex in G× is false if it is not a vertex of G
and true otherwise. By a false face, we mean a face f in G× that is incident with at least one false vertex;
otherwise, we call f true.

Lemma 6. [22] Let v be a 3-vertex in G. If v is incident with two false 3-faces vv1v2 and vv1v3 in G×, then
v2 and v3 are both false and v is incident with a 5+-face in G×.

Lemma 7. Every 4-vertex in G is incident with at most three 3-faces in G×.

Proof. Let v be a 4-vertex in G and let v1, v2, v3, v4 be the neighbors in G× of v that occurs clockwise around
v. Suppose that v is incident with four 3-faces in G×. Then v1v2, v2v3, v3v4, v4v1 ∈ E(G×). Since no two false
vertices are adjacent in G×, there are at most two false vertices among v1, v2, v3 and v4. If two of them, say v1

and v3, are false, then we would find two edges in G that connect v2 to v4: one goes through the point v1 and
the other goes through the point v3, contradicting the fact that G is simple. Thus we shall assume that there
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are at least three true vertices, say v1, v2 and v3, among the four neighbors of v. However, this is impossible
by Lemma 4 since vv1v2 and vv2v3 are two adjacent triangles in G with dG(v) = 4. �

Lemma 8. Every 5-vertex in G is either incident with at least two 4+-faces in G×, or adjacent to at least
three true vertices in G×, or incident with one 4+-face and adjacent to two true vertices in G×.

Proof. Let v be a 5-vertex in G and let v1, v2, v3, v4, v5 be the neighbors in G× of v that occurs clockwise
around v. Suppose that v is incident with at most one 4+-face and adjacent to at most two true vertices
in G×. Without loss of generality, assume that v1v2, v2v3, v3v4, v4v5 ∈ E(G×). Since no two false vertices
are adjacent in G×, there are at most three false vertices among v1, v2, v3, v4 and v5. This implies that v is
adjacent to exactly two true vertices in G×. On the other hand, v is incident with exactly one 4+-face because
otherwise v1v2v3v4v5 would be a 5-cycle in G×, which implies that at least three of those five vertices are
true, a contradiction to our assumption. �

Lemma 9. Every 5-face in G× is incident with at most four 4−-vertices.

Proof. Suppose, to the contrary, that the 5-face f is incident only with 4−-vertices in G×. Then f is incident
with at least three false vertices, because otherwise we would find an edge uv on f such that u and v are both
true 4−-vertices, which is impossible by Lemma 2. On the other hand, f can be incident with at most two
false vertices since no two false vertices are adjacent in G×. This contradiction completes the proof. �

3 The proof of Theorem 1

We call a vertex v in G× small if dG×(v) ≤ 5. Note that the degree of a false vertex in G× is four, so every
false vertex is small. We call u the tri-neighbor of v if uv is an edge of G with dG(v) = 4 and uv is incident
with a 3-face uvw in G× so that w is true. Note that in this situation u cannot be a tri-neighbor of w by
Lemma 2. Now we start to prove Theorem 1.

Suppose that G is a minimum counterexample to it. We then have that G is 2-connected and moreover,
δ(G) ≥ 3 by Lemma 2. In the following, we apply the discharging method to the associated plane graph G×

of G and complete the proof by contradiction. Note that G× is also 2-connected.

We now assign an initial charge c to each element x ∈ V(G×) ∪ F(G×) as follows. If x ∈ V(G×), then let
c(x) = dG×(x)−6. If x ∈ F(G×), then let c(x) = 2dG×(x)−6. Since G× is a planar graph,

∑
x∈V(G×)∪F(G×) c(x) =

−12 by the well-known Euler’s formula. We redistribute the initial charges on V(G×) ∪ F(G×) by the
discharging rules below. Let c′(x) be the final charge of an element x ∈ V(G×) ∪ F(G×) after discharging.
We still have

∑
x∈V(G×)∪F(G×) c′(x) = −12 < 0, since our rules only move charge around and do not affect the

sum.

R1. Every 4+-face redistributes its initial charge uniformly among the small vertices that are incident with
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it in G×.
R2. Every ∆-vertex gives 1

2 to a common pot from which each 3-vertex receives 1, if |V3| > 0.
R3. Let u, v be true vertices of G× and let uv ∈ E(G×). If v is small, then u sends 1

3 to v; moreover, if u is a
tri-neighbor of v, then u sends an addition of 1

12 to v.

Note that in R2, the common pot can also be seen as a pseudo-point that has initial charge zero. In the next
six rules, we assume that uv crosses xy at a false vertex w in G× there.

R4. If dG×(u) ≥ 9, ux, uy < E(G×) and v is a small vertex, then u sends 1
3 to v through w.

R5. If dG×(u) ≥ 9, ux < E(G×) and uy ∈ E(G×), then u sends 1
4 to w. Furthermore, if dG×(v) ≤ 4, then u

sends 1
3 to v through w.

R6. If dG×(u) ≥ 9, ux, uy, vx ∈ E(G×) and y is a small vertex, then u sends 3
4 to w. Furthermore, if dG×(v) ≤ 4,

then u sends 1
24 to v through w.

R7. If dG×(u) ≥ 9, ux, uy ∈ E(G×) and either vx < E(G×) or y is not a small vertex, then u sends 2
3 to w.

Furthermore, if dG×(v) ≤ 4, then u sends 1
8 to v through w.

R8. If dG×(u) = 8 and ux, uy ∈ E(G×), then u sends 1
2 to w.

R9. If dG×(u) = 8, ux ∈ E(G×) and uy < E(G×), then u sends 1
12 to w.

In the following, we check that the final charge c′ on each vertex and face is nonnegative. And we also
show that the final charge of the common pot is nonnegative. This implies that

∑
x∈V(G×)∪F(G×) c′(x) ≥ 0, a

contradiction.

First of all, since |V∆| > 2|V3| by Lemma 5, the final charge of the common pot is at least 1
2 |V∆| − |V3| > 0

by R2. One can also check that the final charge of every face in F(G×) is exactly 0 by R1. Thus in the
following we consider the vertices in G×.

Let v be a d-vertex in G× and let v1, v2, · · · , vd be its neighbors in G× that occur around v in a clockwise
order. By fi denote the face incident with vvi and vvi+1 in G×, where the addition on subscripts are taken
modulo d.

Case 1. d = 3.

Case 1.1. If v is adjacent to at most one false vertex in G×, then without loss of generality assume that
v2 and v3 are true. By Lemmas 2 and 3, neither v2 nor v3 is small and f2 is a 4+-face. Thus by R1 and R3,
v receives at least 2 × 1

3 + 2
4−2 = 5

3 from v2, v3 and f2. By Lemmas 3 and 6, at least one of f1 and f3, say
f1, shall be a 4+-face. Then by R1, f1 sends at least 2

4−1 = 2
3 to v. Furthermore, v would receive 1 from the

common pot by R2. Therefore, c′(v) ≥ −3 + 5
3 + 2

3 + 1 > 0.

Case 1.2. If v is adjacent to two false vertices in G×, say v1 and v2, then f1 is a 4+-face since v1v2 < E(G×).
By R1 and R3, v receives a total of 1+ 1

3 = 4
3 from the common pot and v3. Now we consider three subcases.

First, assume that f2 and f3 are both 4+-faces. Then by R1, f1, f2 and f3 sends at least 2
4 = 1

2 , 2
4−1 = 2

3

and 2
4−1 = 2

3 to v, respectively. Therefore, c′(v) ≥ −3 + 4
3 + 1

2 + 2
3 + 2

3 > 0.

Second, assume that f2 is a 4+-face and f3 is a 3-face. Let v′1 be a vertex such that vv′1 is an edge in G that
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goes through the false vertex v1 in G×. Then by Lemmas 2 and 3, v′1 is a ∆-vertex and v′1v3 < E(G×), because
otherwise vv′1v3 would be a triangle in G. Thus by R4 and R5, v receives 1

3 from v′1. If f2 is a 5+-face, then
by R1, f2 sends at least 4

5−1 = 1 to v (note that v3 is not a small vertex). Since f1 is a 4+-face, f1 would
send at least 2

4 = 1
2 to v by R1. Thus, c′(v) ≥ −3 + 4

3 + 1
3 + 1 + 1

2 > 0. So we suppose that f2 is a 4-face,
from which v receives at least 2

4−1 = 2
3 by R1. If f1 is a 5+-face, then by R1, f1 sends at least 4

5 to v. Thus
c′(v) ≥ −3 + 4

3 + 1
3 + 2

3 + 4
5 > 0. So suppose that f1 is a 4-face. Let v′2 and v′3 be the fourth (undefined) vertex

on f2 and f1, respectively. Since v2 is false and v2v
′
2, v2v

′
3 ∈ E(G×), v′2v

′
3 is an edge in G. By Lemma 2, one

of v′2 and v′3 is not small. If v′2 is not small, then by R1, f1 and f2 sends at least 2
4 = 1

2 and 2
4−2 = 1 to v,

respectively. It follows that c′(v) ≥ −3 + 4
3 + 1

3 + 1
2 + 1 > 0. If v′3 is not small, then by R1, f1 and f2 sends at

least 2
4−1 = 2

3 and 2
4−1 = 2

3 to v, respectively. It follows that c′(v) ≥ −3 + 4
3 + 1

3 + 2
3 + 2

3 = 0.

Third, assume that f2 and f3 are both 3-faces. Then by Lemma 6, f1 is a 5+-face. Let v′i (i = 1, 2) be
a vertex such that vv′i is an edge in G that goes through the false vertex vi in G×. By a similar argument as
the beginning of the second subcase above, one can prove that v receives 1

3 from each of v′1 and v′2. If f1 is a
6+-face, then by R1, f1 sends at least 6

6 = 1 to v. If f1 is a 5-face, then assume that v3x1 crosses vv′1 and v3x2

crosses vv′2 in G. It follows that x1x2 ∈ E(G). By Lemma 2, at least one of x1 and x2 is not small. Thus by
R1, f1 sends at least 4

5−1 = 1 to v. In each case we have c′(v) ≥ −3 + 4
3 + 2 × 1

3 + 1 = 0.

Case 1.3. If v is adjacent to three false vertices in G×, then f1, f2 and f3 are 4+-faces. By R2, v receives
1 from the common pot. If two of f1, f2 and f3 are of degree at least 5, then by R1 it is easy to calculate that
v receives at least 4

5 + 4
5 + 2

4 > 2 from its incident faces and therefore c′(v) ≥ −3 + 1 + 2 = 0. If exactly one of
f1, f2 and f3, say f3, is a 5+-face, then let x1 and x2 be the fourth (undefined) vertices of the 4-faces f1 and
f2, respectively. One can easily see that x1x2 ∈ E(G) and thus by Lemma 2, at least one of x1 and x2 is not
small. Therefore, v receives at least 4

5 + 2
4 + 2

4−1 = 59
30 from its incident faces by R1. Assume that vv′2 crosses

x1x2 in G, then by Lemma 2, v′2 is a ∆-vertex. Thus, v′2 sends at least 1
8 to v by R4–R7. This implies that

c′(v) ≥ −3 + 1 + 59
30 + 1

8 > 0. If f1, f2 and f3 are all 4-faces, then let xi (i = 1, 2, 3) be the fourth (undefined)
vertices of the 4-faces fi. It is easy to check that x1x2, x2x3, x3x1 ∈ E(G) by the drawing of G. Thus, at
most one of x1, x2 and x3 is small by Lemma 2. This implies that v receives at least 2

4 + 2
4−1 + 2

4−1 = 11
6

form its incident faces by R1. Assume that vv′i (i = 1, 2, 3) crosses vi−1vi in G, where the subscripts are
taken modulo 3, then by Lemma 2, v′i is a ∆-vertex, from which v receives at least 1

8 by R4–R7. Therefore,
c′(v) ≥ −3 + 1 + 11

6 + 3 × 1
8 > 0.

Case 2. d = 4 and v is a true vertex.

By Lemma 7, v is incident with at least one 4+-face in G×. Thus we consider four subcases.

Case 2.1. If v is incident with four 4+-faces in G×, then v receives at least 2
4 = 1

2 from each of its incident
faces by R1. This implies that c′(v) ≥ −2 + 4 × 1

2 = 0.

Case 2.2. If v is incident with exactly three 4+-faces in G×, say f2, f3 and f4, then v1v2 ∈ E(G×). Since no
two false vertices are adjacent in G×, at least one of v1 and v2, say v1, is true, and moreover, is a 12+-vertex
by Lemma 2. So by R3 and R1, v receives 1

3 from v1, at least 2
4−1 = 2

3 from f4 and at least 2
4 = 1

2 from each
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of f2 and f3. Therefore, c′(v) ≥ −2 + 1
3 + 2

3 + 2 × 1
2 = 0.

Case 2.3. If v is incident with exactly two 4+-faces in G×, then we consider two subcases.

Assume first that f1 and f3 are both 4+-faces. Then by a same argument as in Case 2.2, at least one
of v2 and v3 and at least one of v1 and v4 are 12+-vertices. If v1 and v2 are both 12+-vertices, then by R3
and R1, v receives 1

3 from each of v1 and v2, at least 2
4−2 = 1 from f1 and at least 2

4 = 1
2 from f3. Thus,

c′(v) ≥ −2 + 2× 1
3 + 1 + 1

2 > 0. If v1 and v3 are both 12+-vertices, then by R3 and R1, v receives 1
3 from each

of v1 and v3 and at least 2
4−1 = 2

3 from each of f1 and f3. This implies that c′(v) ≥ −2 + 2 × 1
3 + 2 × 2

3 = 0.

Second, assume that f1 and f2 are 4+-faces. If v1 and v3 are both true, then by Lemma 2 they are 12+-
vertices. So by R3 and R1, v receives 1

3 from each of v1 and v3 and at least 2
4−1 = 2

3 from each of f1 and f2.
This implies that c′(v) ≥ −2 + 2 × 1

3 + 2 × 2
3 = 0. So we assume that at least one of v1 and v3 is false, which

implies that v4 is true since no two false vertices are adjacent in G×.

If v1 is false and v3 is true, then let v′1 be the vertex of G so that vv′1 is a crossed edge in G with a crossing
v1. By Lemma 4, v′1v4 < E(G), because otherwise vv4v

′
1 and vv3v4 would be two adjacent triangles in G with

a common 4-vertex. Note that v′1 and v3 are 12+-vertices by Lemma 2. So v receives 1
3 from v′1 by R4 and

R5, 1
3 from each of v3 and v4 by R3 and at least 2

4 = 1
2 from each of f1 and f2 by R1. This implies that

c′(v) ≥ −2 + 1
3 + 2 × 1

3 + 2 × 1
2 = 0.

If v1 and v3 are both false, then let v′i and xi (i = 1, 3) be the vertices of G so that vv′i crosses v4xi in G at
the crossing vi. Note that v′1 and v′3 are both 12+-vertices by Lemma 2. By Lemma 4, v′1v4 and v′3v4 cannot
simultaneously be the edges of G, because otherwise vv4v

′
1 and vv4v

′
3 would be two adjacent triangles in G

with a common 4-vertex. Without loss of generality, assume that v′1v4 < E(G). By R3, R4 and R5, each
of v′1 and v4 sends 1

3 to v (recall that v4 is true). If v2 is true, then v receives 1
3 from v2 by R3. Moreover,

each of f1 and f2 sends at least 2
4 = 1

2 to v by R1. Thus, c′(v) ≥ −2 + 1
3 + 2 × 1

3 + 2 × 1
2 = 0. If v2 is false,

then let v′2 be the vertex of G so that vv′2 is a crossed edge in G with a crossing v2. By Lemma 2, v′2 is a
12+-vertex. If at least one of f1 and f2, say f1, is a 5+-face, then f1 sends at least min{ 66 ,

4
4 } = 1 to v by

R1 and Lemma 9 and f2 sends at least 2
4 = 1

2 to v by R1. Thus, c′(v) ≥ −2 + 2 × 1
3 + 1 + 1

2 > 0. So we
assume that f1 and f2 are both 4-faces. This implies that x1x3 is a crossed edge in G with the crossing v2.
By Lemma 2, at most one of x1 and x3 is small. So f1 and f2 totally sends at least 2

4−1 + 2
4 = 7

6 to v by R1.
Recall that v′2 and v′3 are 12+-vertices. By R4–R7, v′2 sends at least 1

8 and v′3 sends at least 1
24 to v. Therefore,

c′(v) ≥ −2 + 2 × 1
3 + 7

6 + 1
8 + 1

24 = 0.

Case 2.4. If v is incident with exactly one 4+-faces in G×, say f1, then v2v3, v3v4, v4v1 ∈ E(G×). Now we
claim that at least one of v1 and v2 is false. Suppose, to the contrary, that v1 and v2 are true vertices. If v3 is
true, then either vv3v4 (when v4 is true) or vv1v3 (when v4 is false) is a triangle in G that is adjacent to another
triangle vv2v3, which is impossible by Lemma 4. Thus we shall assume that v3 is false. By symmetry, v4 is
also false, but it contradicts the fact that v3v4 ∈ E(G×). Without loss of generality, assume that v1 is false. It
follows that v4 is a true vertex. By Lemma 4, exactly one of v2 and v3 shall be false, because otherwise vv2v3

and vv3v4 would be two adjacent triangles in G with a common 4-vertex. Thus we consider two subcases.
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Assume first that v2 is false and v3 is true. One can check that v3 and v4 are both tri-neighbors of v,
which follows that each of v3 and v4 sends 1

3 + 1
12 = 5

12 to v by R3. Let v′i (i = 1, 2) be the vertex of G
so that vv′i is a crossed edge in G with the crossing vi. It is easy to see that v′1 and v′2 are 12+-vertices by
Lemma 2. One can also prove that v′1v4, v

′
2v3 < E(G) by a similar argument as in Case 2.3. Thus by R4 and

R5, each of v′1 and v′2 sends 1
3 to v. Since f1 is a 4+-face, f1 sends at least 2

4 = 1
2 to v by R1. Therefore,

c′(v) ≥ −2 + 2 × 5
12 + 2 × 1

3 + 1
2 = 0.

Now assume that v2 is true and v3 is false. It is easy to see that vv2v4 is a triangle in G by the drawing of
G. Let v′i (i = 1, 3) be the vertex of G so that vv′i is a crossed edge in G with the crossing vi. One can see that
v′1 and v′3 are 12+-vertices by Lemma 2 and can prove that v′1v4, v

′
3v4 < E(G) by a similar argument as in Case

2.3. So each of v′1 and v′3 sends 1
3 to v by R3 and R4. Meanwhile, each of v2 and v4 sends 1

3 to v by R3 and f1

sends at least 2
4−1 = 2

3 to v by R1 (note that v2 is not small). Therefore, c′(v) ≥ −2 + 2 × 1
3 + 2 × 1

3 + 2
3 = 0.

Case 3. d = 4 and v is a false vertex.

Case 3.1. If v is incident with no 3-faces in G×, then by R1, each of f1, f2, f3 and f4 sends at least 2
4 = 1

2

to v. So c′(v) ≥ −2 + 4 × 1
2 = 0.

Case 3.2. If v is incident with exactly one 3-face, say f1, then v1v2 ∈ E(G). This implies that at most one
of v1 and v2 can be a 7−-vertex by Lemma 2. Assume first that min{dG×(v1), dG×(v2)} ≥ 8. Then by R1,each
of f2 and f4 sends at least 2

4−1 = 2
3 to v and f3 sends at least 2

4 = 1
2 to v. Moreover, each of v1 and v2 sends

at least 1
12 to v by R5 and R9. Thus c′(v) ≥ −2 + 2 × 2

3 + 1
2 + 2 × 1

12 = 0. Now assume that dG×(v1) ≤ 7. It
follows that min{dG×(v2), dG×(v3)} ≥ 9 by Lemma 2. Thus f2, f3 and f4 sends at least 2

4−2 = 1, 2
4−1 = 2

3 and
2
4 = 1

2 to v by R1, respectively. Therefore, c′(v) ≥ −2 + 1 + 2
3 + 1

2 > 0.

Case 3.3. If v is incident with exactly two 3-faces, then we consider two subcases.

Assume first that f1 and f2 are both 3-faces. Then v1v2, v2v3 ∈ E(G). If dG×(v2) ≤ 8, then by Lemma
2, min{dG×(v1), dG×(v3), dG×(v4)} ≥ 7. This implies that each of f3 and f4 sends at least 2

4−2 = 1 to v and
thus c′(v) ≥ −2 + 2 × 1 = 0. So we assume that dG×(v2) ≥ 9. It follows that v2 sends 2

3 to v by R7. If
one of v1 and v3, say v1, is small, then by R1, f3 and f4 sends at least 2

4−1 = 2
3 and 2

4 = 1
2 to v, respectively,

since in this case we also have dG×(v3) ≥ 11 by Lemma 2. Moreover, v3 sends 1
4 to v by R5. Therefore,

c′(v) ≥ −2 + 2
3 + 2

3 + 1
2 + 1

4 > 0. On the other hand, if neither v1 nor v3 is small, then by R1, each of f3 and
f4 sends at least 2

4−1 = 2
3 to v. Thus c′(v) ≥ −2 + 2

3 + 2 × 2
3 = 0.

Now assume that f1 and f3 are both 3-faces. If none of v1, v2, v3 and v4 is small, then by R1, each of
f2 and f4 sends at least 2

4−2 = 1 to v, which implies that c′(v) ≥ −2 + 2 × 1 = 0. If at least one of v1,
v2, v3 and v4, say v1, is small, then by Lemma 2, min{dG×(v2), dG×(v3)} ≥ 11. So f2 and f4 sends at least

2
4−2 = 1 and 2

4 = 1
2 to v by R1, respectively. Moreover, each of v2 and v3 sends 1

4 to v by R5. Therefore,
c′(v) ≥ −2 + 1 + 1

2 + 2 × 1
4 = 0.

Case 3.4. If v is incident with exactly three 3-faces, say f1, f2 and f3, then v1v2, v2v3, v3v4 ∈ E(G). If
dG×(v2) ≤ 7, then by Lemma 2, min{dG×(v1), dG×(v3), dG×(v4)} ≥ 9. So f4 sends at least 2

4−2 = 1 to v by R1,
each of v1 and v4 sends 1

4 to v by R5 and v3 sends at least 2
3 to v by R6 and R7. Thus c′(v) ≥ −2+1+2× 1

4 + 2
3 >
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0. So we shall assume that dG×(v2) ≥ 8. Similarly, we shall assume that dG×(v3) ≥ 8. If both v1 and v4 are
small, then by Lemma 2, min{dG×(v2), v3} ≥ 11. It follows that each of v2 and v3 sends 3

4 to v by R6.
Moveover, f4 sends at least 2

4 = 1
2 to v. Thus c′(v) ≥ −2 + 2 × 3

4 + 1
2 = 0. So we assume that at least one

of v1 and v4 is not small. It follows that f4 sends at least 2
4−1 = 2

3 to v by R1. If dG×(v1) ≤ 7 or dG×(v4) ≤ 7,
then by Lemma 2, min{dG×(v2), dG×(v3)} ≥ 9. So by R6 and R7, each of v2 and v3 sends at least 2

3 to v. Thus
c′(v) ≥ −2 + 2

3 + 2 × 2
3 = 0. So we shall assume that min{dG×(v1), dG×(v4)} ≥ 8. It follows that f4 sends at

least 2
4−2 = 1 to v by R1. Moreover, each of v2 and v3 sends at least 1

2 to v by R6, R7 and R8. Therefore,
c′(v) ≥ −2 + 1 + 2 × 1

2 = 0.

Case 3.5. If v is incident with four 3-faces, then v1v2, v2v3, v3v4, v4v1 ∈ E(G) and thus at most one of
v1, v2, v3 and v4 is a 7−-vertex by Lemma 2. Assume first that dG×(v1) ≤ 7. Then all of v2, v3 and v4 are
9+-vertices by Lemma 2. So by R6 and R7, each of v2, v3 and v4 sends at least 2

3 to v, which implies that
c′(v) ≥ −2 + 3 × 2

3 = 0. Now assume that all of v1, v2, v3 and v4 are 8+-vertices. Then by R6, R7 and R8,
each of those four vertices sends at least 1

2 to v. This implies that c′(v) ≥ −2 + 4 × 1
2 = 0.

Case 4. d = 5.

By R1 and R3, v receives at least 2
4 = 1

2 from each of its incident 4+-faces and 1
3 from each of its

adjacent true vertices in G×. We consider three subcases according to Lemma 8. If v is incident with at
least two 4+-faces, then c′(v) ≥ −1 + 2 × 1

2 = 0. If v is adjacent to at least three trues vertices in G×, then
c′(v) ≥ −1 + 3 × 1

3 = 0. If v is incident with one 4+-face and adjacent to two true vertices in G×, then
c′(v) ≥ −1 + 1

2 + 2 × 1
3 > 0.

Case 5. d ≥ 6.

If d ≤ 7, then it is trivial that c′(v) = c(v) ≥ 0, so we assume that d ≥ 8.

Let S f (v) denote the subgraph induced by the faces that are incident with v in G×. Then S f (v) can
be decomposed into many parts, each of which is one of the five clusters in Figure 1, and any two parts of
which are adjacent only if they have a coJPGmmon edge vw such that w is a true vertex. The hollow vertices
in Figure 1 are false vertices and the solid ones are true vertices; all the marked faces are 4+-faces and there
is at least one 4+-face contained in the clusters of type 2, 4 and 5.

Let ai denote the largest possible value of the charges sent by v to or through its adjacent false vertices
in a cluster of type i.

If d = 8, then by R8 and R9 we have a1 = 1
2 , a2 = 1

12 , a3 = 0, a4 = 2 × 1
12 = 1

6 and a5 = 0.

If 9 ≤ d ≤ 11, then by Lemma 2, v is adjacent to no 4−-vertices in G. Thus by R4, R5, R6 and R7 we
have a1 = 3

4 , a2 = 1
4 , a3 = 0, a4 = 2 × 1

4 = 1
2 and a5 = 0.

If d ≥ 12, then v may be adjacent to 4−-vertices in G, to which v can send charges through the false
vertices that are adjacent to v in G×. First of all, a1 = max{34 + 1

24 ,
2
3 + 1

8 } = 19
24 by R6 and R7 and a3 = 0. Let

Hi (i = 2, 4, 5) be a cluster of type i. Suppose that there are si false vertices that are adjacent to v in Hi. By
R4 and R5, we have a2 = 1

4 + 1
3 s2, a4 = 2 × 1

4 + 1
3 s4 = 1

2 + 1
3 s4 and a5 = 1

3 s5.
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Fig. 1: Five types of cluster

Denote by ni the number of clusters of type i contained in S f (v). Let m be the total number of false
vertices that are adjacent to v in the clusters of type 2, 4 and 5. One can easy to see that the following facts
hold.

(1) v is adjacent to n1 + n2 + n3 + n4 + n5 true vertices in G×.

(2) v is adjacent to n1 + m false vertices in G×.

(3) 2n1 + 2n2 + n3 + 3n4 + n5 ≤ d.

By (1) and (2), it is easy to see that m = d − 2n1 − n2 − n3 − n4 − n5.

First of all, we calculate the largest possible value of the charges sent by v to or through its adjacent
false vertices in G×, that is, the value of n1a1 + n2a2 + n3a3 + n4a4 + n5a5. Recall the values of ai we have
obtained in each of the above cases. One can deduce that

n1a1 + n2a2 + n3a3 + n4a4 + n5a5 =
1
2

n1 +
1

12
n2 +

1
6

n4

if d = 8,

n1a1 + n2a2 + n3a3 + n4a4 + n5a5 =
3
4

n1 +
1
4

n2 +
1
2

n4

if 9 ≤ d ≤ 11, and

n1a1 + n2a2 + n3a3 + n4a4 + n5a5 =
19
24

n1 +
1
4

n2 +
1
2

n4 +
1
3

m

=
19
24

n1 +
1
4

n2 +
1
2

n4 +
1
3

(d − 2n1 − n2 − n3 − n4 − n5)

=
1
3

d +
1
8

n1 −
1

12
n2 −

1
3

n3 +
1
6

n4 −
1
3

n5.
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if d ≥ 12.

Now, we calculate the largest possible value of the charges sent by v to its adjacent true small vertices
in G×. Note that we should only consider the case d ≥ 11 by Lemma 2. Since no two true small vertices
are adjacent in G, in each cluster of type 1 or 3 v is adjacent to at most one true small vertex in G×. This
implies that v is adjacent to at most n1 + n2 + n3 + n4 + n5 −

1
2 (n1 + n3) = 1

2 (n1 + n3) + n2 + n4 + n5 true small
vertices in G×. Recall the definition of tri-neighbors at the beginning of this section. One can see that v can
be tri-neighbors of at most n3 vertices. Therefore, v sends at most

1
6

(n1 + n3) +
1
3

(n2 + n4 + n5) +
1

12
n3

to its adjacent true small vertices in G× by R3. Note that R2 cannot be applied to v if 6 ≤ d ≤ 12, since the
application of R2 implies ∆ = r ≥ 13 by Lemma 2, and that v may send 1

2 to a common pot by R2 if d ≥ 13.

We combine those lines of calculation. Let γd be the largest possible value of the charges sent by v if
dG(v) = d. We have

γ8 =
1
2

n1 +
1

12
n2 +

1
6

n4

γ9 = γ10 =
3
4

n1 +
1
4

n2 +
1
2

n4,

γ11 =
3
4

n1 +
1
4

n2 +
1
2

n4 +
1
6

(n1 + n3) +
1
3

(n2 + n4 + n5) +
1

12
n3

=
11
12

n1 +
7

12
n2 +

1
4

n3 +
5
6

n4 +
1
3

n5,

γ12 =
1
3

d +
1
8

n1 −
1

12
n2 −

1
3

n3 +
1
6

n4 −
1
3

n5 +
1
6

(n1 + n3) +
1
3

(n2 + n4 + n5) +
1

12
n3

= 4 +
7
24

n1 +
1
4

n2 −
1
12

n3 +
1
2

n4,

and

γd =
1
3

d +
1
8

n1 −
1

12
n2 −

1
3

n3 +
1
6

n4 −
1
3

n5 +
1
6

(n1 + n3) +
1
3

(n2 + n4 + n5) +
1

12
n3 +

1
2

=
1
3

d +
7

24
n1 +

1
4

n2 −
1

12
n3 +

1
2

n4 +
1
2

i f d ≥ 13.

For each 8 ≤ d ≤ 12, we consider the following program Pd:

max γd

s.t. 2n1 + 2n2 + n3 + 3n4 + n5 ≤ d

n1, n2, n3, n4, n5, d ∈ Z+.

Let qd be the optimal value of the program Pd.
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Since γ8 ≤
1
4 (2n1 + 2n2 + n3 + 3n4 + n5) ≤ 2, q8 ≤ 2.

Since γ9 ≤
3
8 (2n1+2n2+n3+3n4+n5)− 3

8 (n3+n4+n5) ≤ 3, q9 ≤ 3. Note that if 2n1+2n2+n3+3n4+n5 = 9,
then n3 + n4 + n5 ≥ 1.

Since γ10 ≤
3
8 (2n1 + 2n2 + n3 + 3n4 + n5) ≤ 15

4 , q10 ≤
15
4 .

Since γ11 ≤
11
24 (2n1 + 2n2 + n3 + 3n4 + n5) − 1

8 (n2 + n3 + n4 + n5) ≤ 59
12 , q11 ≤

59
12 . Note that if 2n1 + 2n2 +

n3 + 3n4 + n5 = 11, then n2 + n3 + n4 + n5 ≥ 1.

Since γ12 ≤ 4 + 1
6 (2n1 + 2n2 + n3 + 3n4 + n5) ≤ 6, q12 ≤ 6.

Therefore, c′(v) ≥ d − 6 − qd ≥ 0 for each 8 ≤ d ≤ 12.

If d ≥ 13, then 2n1 +2n2 +n3 +3n4 +n5 ≤ d implies γd− (d−6) ≤ 1
6 (2n1 +2n2 +n3 +3n4 +n5)− 2

3d + 13
2 ≤

13−d
2 ≤ 0. Therefore, c′(v) ≥ d − 6 − γd ≥ 0 for d ≥ 13.
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