
HAL Id: hal-00762612
https://hal.science/hal-00762612v2

Submitted on 18 Apr 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the complexity of partitioning a graph into a few
connected subgraphs

Julien Bensmail

To cite this version:
Julien Bensmail. On the complexity of partitioning a graph into a few connected subgraphs. Jour-
nal of Combinatorial Optimization, 2014, A paraître, http://link.springer.com/journal/10878. �hal-
00762612v2�

https://hal.science/hal-00762612v2
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

On the complexity of partitioning a graph into a few
connected subgraphs

Julien Bensmail

the date of receipt and acceptance should be inserted later

Abstract Given a graph G, a sequence τ = (n1, ..., np) of positive integers
summing up to |V (G)| is said to be realizable in G if there exists a realization
of τ in G, i.e. a partition (V1, ..., Vp) of V (G) such that each Vi induces a con-
nected subgraph of G on ni vertices. We first give a reduction showing that
the problem of deciding whether a sequence with c elements is realizable in
a graph is NP-complete for every fixed c ≥ 2. Thanks to slight modifications
of this reduction, we then prove additional hardness results on decision prob-
lems derived from the previous one. In particular, we show that the previous
problem remains NP-complete when a constant number of vertex-membership
constraints must be satisfied. We then prove the tightness of an easiness re-
sult proved independently by Györi and Lovász regarding a similar problem.
We finally show that another graph partition problem, asking whether several
partial realizations of τ in G can be extended to obtain whole realizations of
τ in G, is Πp

2 -complete.

Keywords arbitrarily partitionable graphs · partition into connected
subgraphs · partition under vertex prescriptions · complexity · polynomial
hierarchy

1 Introduction

Let G be a connected graph. A sequence τ = (n1, ..., np) of positive integers
is admissible for G if

∑p
i=1 ni = |V (G)|. We say that τ is realizable in G if

τ is admissible for G and there exists a realization of τ in G, i.e. a partition
(V1, ..., Vp) of V (G) such that Vi induces a connected subgraph of G on ni

J. Bensmail
Univ. Bordeaux, LaBRI, UMR 5800, F-33400 Talence, France
CNRS, LaBRI, UMR 5800, F-33400 Talence, France
E-mail: julien.bensmail@labri.fr
Tel.: +33-(0)5-40-00-35-17, Fax: +33-(0)5-40-00-66-69

2 Julien Bensmail

vertices for every i ∈ {1, ..., p}. We refer to p as the size of τ . A p-sequence is
a sequence with size p.

The problem of finding a realization of a given sequence in a graph gained
a lot of attention since the result, proved independently by Györi and Lovász,
which states that, for any q ≥ 1, every sequence with size at most q admissible
for a q-connected graph G is realizable in G [6,7]. Since then, several graph
properties based on the definition above have been investigated.

For instance, we say that G is arbitrarily partitionable (AP for short) if
every sequence admissible for G is also realizable in G. For the sake of the
upcoming next definitions, let us now consider a k-prescription of G, i.e. a
sequence (v1, ..., vk) of k pairwise distinct vertices of G with k ≤ p, where p
is the size of a sequence τ admissible for G. We say that τ is realizable in G
under (v1, ..., vk) if there exists a realization (V1, ..., Vp) of τ in G such that
vi ∈ Vi for every i ∈ {1, ..., k}. In other words, a k-prescription is a set of
vertices that were chosen to belong to the first k parts of a realization of τ in
G. Notice that, in our terminology, the k part sizes associated with these k
prescribed vertices are the first k ones of the sequence. Finally, the graph G
is said to be arbitrarily partitionable under k prescriptions (AP+k for short)
if every sequence with size at least k admissible for G is realizable in G under
every k-prescription of G. All these definitions were introduced to deal with a
practical problem of resource sharing among an arbitrary number of users [1,
3].

In this paper, we consider the computational complexity of some decision
problems derived from the definitions above. Thanks to our main reduction
given in Section 2, we show that the problem of deciding whether a sequence is
realizable in a given graph is NP-complete even when restricted to c-sequences
for every fixed c ≥ 2. This reduction may be related to one reduction from [5],
where similar gadgets as ours are used to prove the hardness of a min-max
tree partition problem. We then augment our reduction in further sections to
show additional complexity results. We first prove in Section 3 that requesting
prescriptions while partitioning a graph does not alter the complexity of the
problem, and this no matter how many such prescriptions are requested. In
Section 4, we investigate the tightness of the well-known easiness result proved
independently by Györi and Lovász mentioned above. We finally discuss the
complexity of the problems of deciding whether a graph is AP or AP+k in
Section 5. We locate these two problems in the Πp

2 complexity class of the
polynomial hierarchy and explain why we cannot modify our previous reduc-
tions to prove that these problems are Πp

2 -complete. We however show that our
graph partition problem is not ”incompatible” with the notion of Πp

2 -complete
problems by pointing out one such Πp

2 -complete problem.

2 Complexity of partitioning a graph into a few connected
subgraphs

In this section, we focus on the following decision problem.

On the complexity of partitioning a graph into a few connected subgraphs 3

Realizable Sequence - RealSeq
Instance: A graph G and a sequence τ .
Question: Is τ realizable in G?

Assuming that the size of τ is constant, we get the following refinement.

Realizable k-Sequence - k-RealSeq
Instance: A graph G and a k-sequence τ .
Question: Is τ realizable in G?

It is already known that RealSeq is computationally hard, even under
restrictions on G or τ . In particular, this problem remains NP-complete even
when G is a tree with maximum degree 3, or τ = (k, ..., k) has only one integer
value k ≥ 3 that divides |V (G)| (see [2] and [4], respectively). However, the
complexity reductions used to show these restrictions on RealSeq do not
imply the existence of a constant threshold c ≥ 1 such that:

– k-RealSeq is in P for every k ≤ c− 1;
– k-RealSeq is NP-complete otherwise.

The answer to an instance of 1-RealSeq is yes if and only if G is con-
nected. Since the connectedness of a graph can be checked easily, we have
c ≥ 2 assuming that c exists. In what follows, we prove that c = 2, i.e. that k-
RealSeq is NP-complete for every k ≥ 2. Our reduction is from the following
variant of 3SAT.

1-in-3 SAT
Instance: A 3CNF formula F over variables {x1, ..., xn} and clauses {C1, ..., Cm}.
Question: Is there a 1-in-3 truth assignment of the variables of F , i.e. a truth

assignment such that each clause of F has exactly one true literal?

Notice that we can suppose that every possible literal appears in F . Indeed,
if xi does not appear in any clause of F , then the 3CNF formula F ′ = F ∧
(xi∨xi∨xn+1)∧ (xn+1∨xn+1∨xn+1), where xn+1 is a new variable, admits a
1-in-3 truth assignment of its variables if and only if F admits one too. Since
there are 2n literals related to the variables of F , a formula equivalent to F
that contains every possible literal over its variables can be obtained from F
in polynomial time.

Our proof of the NP-completeness of k-RealSeq for every k ≥ 2 reads as
follows. We first show in Theorem 1 below that 2-RealSeq is NP-complete by
reduction from 1-in-3 SAT. We then explain, in Theorem 2, how to modify
our reduction from 1-in-3 SAT to 2-RealSeq so that we get a reduction from
1-in-3 SAT to k-RealSeq for any k ≥ 3.

Theorem 1 2-RealSeq is NP-complete.

Proof First of all, RealSeq is clearly in NP. One can indeed design an algo-
rithm that takes the graph G, the sequence τ and a realization R of τ in G
as input and checks whether R is correct. More precisely, such an algorithm
has to check that τ is admissible for G, the parts of R have the correct sizes

4 Julien Bensmail

vx2vx1 vx3

vx1 vx2 vx3

S1 S2 S3

Sc

S1,3

S1,2 S2,3

Fig. 1 Resulting subgraph in the clause subgraph of GF for a clause C1 = (x1 ∨ x2 ∨ x3)
of F

regarding τ , and that the subgraphs of G induced by R are connected. This
verification can be done in polynomial time regardless of the size of τ .

We now prove that 2-RealSeq is NP-complete by reduction from 1-in-3
SAT. For a given formula F over variables {x1, ..., xn} and clauses {C1, ..., Cm},
we construct a graph GF and a sequence τF admissible for GF such that F is
satisfiable in a 1-in-3 way if and only if τF is realizable in GF . Our reduction
is performed in such a way that τF is a 2-sequence.

The graph GF is composed of two main vertex-disjoint subgraphs. The
first one is the clause subgraph. Each literal `i of F is associated with a literal
vertex v`i in the clause subgraph. For each pair of literals `i and `i of F , we
then link the literal vertices v`i and v`i to the root vertex of a star Si with

n vertices of degree 1. Two literal vertices v`i and v`j such that `j 6= `i are
similarly linked to the root vertex of a star Si,j with n vertices of degree 1 if
they both appear in a same clause of F . We finally add a control star Sc with
n vertices of degree 1 to the clause subgraph of GF and link its root to every
literal vertex so that the clause subgraph is connected.

The construction so far is detailed in Figure 1. Let n2 be the number of
vertices of the clause subgraph. Then we have

On the complexity of partitioning a graph into a few connected subgraphs 5

vx2vx1 vx3

S1,2 S2,3

vC2
vC1

S1,3

Fig. 2 Connection between the base and clause subgraphs of GF for a clause C1 = (x1 ∨
x2 ∨ x3) of F

n2 ≤ 2n+ n(n+ 1) + 3m(n+ 1) + n+ 1

since there are exactly 2n literals and n pairs of literals of the form {`i, `i} in
F , all the clauses of F can have distinct literals, and the control star Sc has
exactly n vertices of degree 1.

The second subgraph of GF is the base subgraph. With each clause Ci in F
we associate a clause vertex vCi

in the base subgraph that is linked to n2 − n
vertices of degree 1. For each i ∈ {1, ...,m−1}, we finally add the edge vCi

vCi+1

to E(GF) so that the clause vertices induce a path in GF . If we denote by n1
the number of vertices of the base subgraph of GF , then we have

n1 = m(n2 − n+ 1).

We end up the construction of GF by adding some edges between the base
and clause subgraphs of GF : for each clause Ci = (`i1 ∨ `i2 ∨ `i3) in F , we add
vCiv`i1 , vCiv`i2 and vCiv`i3 to E(GF). See Figure 2 for an illustration of this
connection.

The number of vertices of GF is n1 + n2. Thus, the construction of GF

is performed in polynomial time regarding the size of F . Consider now the
sequence τF = (n1 + n, n2 − n). Since the two elements of τF are strictly
greater than 1, any part U from a realization R of τF in GF that covers the
root vertex of any star subgraph in GF must also contain all the vertices
of degree 1 attached to it. Indeed, if this were not the case, then the graph
GF −U would contain at least two connected components and, thus, the part
of R different from U could not induce a connected subgraph of GF .

6 Julien Bensmail

For this reason, observe that, because of all the induced stars Sn2−n+1 in
the base subgraph of GF , this subgraph must be covered by the part V1 with
size n1 + n of a realization (V1, V2) of τF in GF . Starting from this, we then
have to add n additional vertices from the clause subgraph of GF to V1. For
a similar reason as the one above, we can only pick up some literal vertices
of GF since picking up any other of its vertices would disconnect GF into too
many small components. According to our construction, we cannot also add
to V1 two literal vertices v`i and v`j such that `i and `j are a variable of F
and its negation, or appear in a same clause of F , since otherwise this would
once again make the subgraph GF − V1 disconnected.

We can then deduce a 1-in-3 truth assignment of the variables of F from a
realization R = (V1, V2) of τF in GF and vice-versa. If R is a correct realization
of τF in GF , then there are exactly n literal vertices v`i1 , ..., v`in from the
clause subgraph of GF that belong to V1. Since GF [V2] is connected, setting
the literals `i1 , ..., `in true makes F evaluated true in a 1-in-3 way since no pair
of these literals is a variable of F and its negation or appears in a same clause
of F . Conversely, if F is satisfiable in a 1-in-3 way, then let φ : {`1, ..., `2n} →
{0, 1} be a satisfying 1-in-3 truth assignment of its literals. Then observe that
(V1, V2), where

– V1 contains all the vertices from the base subgraph of GF and every literal
vertex v`i from the clause subgraph of GF such that φ(`i) = 1,

– V2 = V (GF)− V1,

is a correct realization of τF in GF according to the arguments above. ut

We finally explain how to generalize the reduction of Theorem 1 so that
we get a reduction from 1-in-3 SAT to k-RealSeq for any k ≥ 3.

Theorem 2 k-RealSeq is NP-complete for every k ≥ 2.

Proof k-RealSeq is in NP for every k ≥ 2 as mentioned in the proof of
Theorem 1. The proof that k-RealSeq is NP-complete for every k ≥ 3 is
based on our reduction from 1-in-3 SAT to 2-RealSeq. More precisely, we
modify the instance resulting from the reduction, i.e. the graph GF and the
sequence τF , in such a way that the arguments given in the proof of Theorem 1
are still correct and not altered by the modifications.

For the sake of this proof, let us introduce the following definition. Given
a graph H, a vertex v ∈ V (H) and an arbitrary integer a ≥ 3, the (a, v)-star-
augmentation of H is the graph obtained as follows:

1. consider the union of H and a star Sa with a− 1 vertices of degree 1,
2. add an edge between v and the root of Sa.

An example of an (a, v)-star-augmentation of a graph is depicted in Fig-
ure 3. Let us first show that 3-RealSeq is NP-complete by reduction from
1-in-3 SAT before generalizing our arguments. From a 3CNF formula F , we
construct a graph GF and a sequence τF = (n1, n2, n3) admissible for GF such
that F is satisfiable in a 1-in-3 way if and only if τF is realizable in GF .

On the complexity of partitioning a graph into a few connected subgraphs 7

v v

Fig. 3 A graph H and an arbitrary (a, v)-star-augmentation of H

By applying the reduction from 1-in-3 SAT to 2-RealSeq, we get a
graph G′F and a sequence τ ′F = (n′1, n

′
2) admissible for G′F that is realizable

in G′F if and only if F admits a 1-in-3 assignment of its variables. Besides,
recall that n′1, n

′
2 ≥ 2. Now consider, as GF , an (a, v)-star-augmentation of

G′F where a = n′1 + n′2 + 1 and v ∈ V (G′F) is arbitrary, and τF = (a, n′1, n
′
2).

In a realization (U, V1, V2) of τF in GF , notice that, because n′1, n
′
2 ≥ 2, the

star subgraph Sa of GF resulting from the star augmentation must be covered
entirely by the part U with size a since covering it with one of the other two
parts would disconnect GF into too many small components. Therefore, τF is
realizable in GF if and only if τ ′F is realizable in G′F , and by transitivity we
get that F is satisfiable in a 1-in-3 way if and only if τF is realizable in GF .

One can repeat the previous procedure as many times as wanted until τF
has the requested size. At each step, we get another instance of RealSeq
which is equivalent to the previous one but whose sequence has one more ele-
ment. Said differently, from the instance F of 1-in-3 SAT we first construct an
equivalent instance of 2-RealSeq. From this instance of 2-RealSeq is then
obtained an equivalent instance of 3-RealSeq thanks to a star-augmentation.
With the same construction, we then get an equivalent instance of 4-RealSeq.
And so on. All these reduced instances are obtained in polynomial time, and
are equivalent to F by transitivity. We thus get that k-RealSeq is NP-
complete for every k ≥ 3. ut

3 Complexity of partitioning a graph into connected subgraphs
following a prescription

In this section, we investigate the computational complexity of the following
decision problem.

Realizable Sequence Under Prescriptions - PrescSeq
Instance: A graph G, a sequence τ , and a prescription P of G.
Question: Is τ realizable in G under P?

Similarly as for RealSeq and its refinement k-RealSeq, we introduce a
refined version of PrescSeq obtained by assuming that the sizes of τ and P
are fixed.

8 Julien Bensmail

v
v

Fig. 4 A graph H and an arbitrary (a, v)-path-augmentation of H

Realizable k-Sequence Under k′ Prescriptions - (k, k′)-PrescSeq
Instance: A graph G, a k-sequence τ , and a k′-prescription P of G.
Question: Is τ realizable in G under P?

For any problem (k, k′)-PrescSeq, we have k ≥ k′ by definition. Besides,
(k, 0)-PrescSeq is equivalent to k-RealSeq which was shown to be in P
when k = 1, and NP-complete for every k ≥ 2 (Section 2). Note further
that the answer to an instance of (1, 1)-PrescSeq is yes if and only if G is
connected. Therefore, (1, 1)-PrescSeq is in P.

We now prove that the remaining problems (k, k′)-PrescSeq, i.e. with
k ≥ 2 and 1 ≤ k′ ≤ k, are NP-complete.

Theorem 3 (k, k′)-PrescSeq is NP-complete whenever k ≥ 2.

Proof One can clearly modify the checking algorithm for RealSeq we gave
in the proof of Theorem 1 so that it also takes the prescription P as an input
and makes sure that the vertices of P belong to the corresponding parts of R.
This modification does not alter the complexity of the algorithm. Therefore,
PrescSeq is in NP.

Let k and k′ be fixed. Clearly, if k′ = 0, then (k, k′)-PrescSeq is NP-
complete by Theorem 2. Suppose thus that k′ ≥ 1. We show that (k, k′)-
PrescSeq is NP-complete thanks to our reduction from 1-in-3 SAT to k-
RealSeq (Theorem 2) and the following construction. Let a ≥ 1 be an ar-
bitrary positive integer and v be an arbitrary vertex of some graph H. The
(a, v)-path-augmentation of H is the graph obtained from H as follows:

1. consider the union of H and Pa, a path of order a whose vertices are
consecutively denoted by u1, ..., ua;

2. add an edge between u1 and v.

This construction is depicted in Figure 4. First suppose that k − k′ ≥ 2.
From F , start by constructing a graph GF and a sequence τF = (n1, ..., nk−k′)
with size k − k′ admissible for GF such that F is satisfiable in a 1-in-3 way
if and only if τF is realizable in GF . This graph GF and sequence τF may
be obtained thanks to the reduction from Theorem 2 since k − k′ ≥ 2. Let
us now denote by G′F the graph obtained from GF by performing k′ ar-
bitrary path-augmentations, e.g. one (a1, v)-path-augmentation, one (a2, v)-
path-augmentation, etc., for some v ∈ V (GF) and integers a1, ..., ak′ ≥ 1. Let

On the complexity of partitioning a graph into a few connected subgraphs 9

u1, ..., uk′ denote the vertices with degree 1 of the resulting hanging paths,
where ui is the endvertex of the ith path-augmentation. Finally, let τ ′F =
(a1, ..., ak′ , n1, ..., nk−k′) and P ′F = (u1, ..., uk′) be a k-sequence admissible for
G′F and a k′-prescription of G′F , respectively.

Since the first k′ parts U1, ..., Uk′ of a realization of τ ′F in G′F under P ′F must
induce connected subgraphs ofG′F on a1, ..., ak′ vertices, respectively, including
u1, ..., uk′ , respectively, the only way for choosing the part Ui is to pick up every
vertex resulting from the ith path-augmentation. Once these parts have been
picked up, we still have to find a realization (V1, ..., Vk−k′) of the remaining

sequence (n1, ..., nk−k′) = τF in the remaining graph G′F −
⋃k′

i=1 Ui = GF .
Hence, τ ′F is realizable in G′F under P ′F if and only if τF is realizable in GF .
By transitivity, we get that F is satisfiable in a 1-in-3 way if and only if
τ ′F is realizable in G′F under P ′F . This reduction can clearly be performed in
polynomial time.

Note that this reduction does not work when k − k′ ∈ {0, 1} since, in this
situation, too much prescribed vertices are requested. But recall that, in the
reduction from 1-in-3 SAT to 2-RealSeq, some vertices from the base and
clause subgraphs of GF , respectively, have to be covered by the parts with size
n1 and n2, respectively, of a realization of τF in GF . Thus, we could request
up to 2 prescriptions, and directly get that (2, 1)- and (2, 2)-PrescSeq are
NP-complete. By performing the same reduction scheme as above but from
one of these two problems, we get that (k, k′)-PrescSeq is also NP-complete
when k − k′ ∈ {0, 1}. ut

4 Complexity of partitioning a graph with given connectivity into
connected subgraphs following a prescription

In the introduction section, we mentioned a famous result proved indepen-
dently by Györi and Lovász on the problem of realizing sequences in q-connected
graphs. Using our terminology, this result may be formulated as follows [6,7].

Theorem 4 (Györi and Lovász, independently) Every sequence with size
k ≤ q admissible for a q-connected graph G is realizable in G under k prescrip-
tions.

Theorem 4 implies that the answer to every instance of (k, k)-PrescSeq
such that G is a q-connected graph and τ is admissible for G is yes whenever
k ≤ q. We now show that this easiness result is in some sense tight, i.e. that
prescribing strictly more than q vertices while partitioning a q-connected graph
is difficult in general.

Theorem 5 (k, k′)-PrescSeq is NP-complete when restricted to q-connected
graphs for every q ≥ 1 whenever q < k′ ≤ k.

Proof The NP part of the claim derives from the NP part of PrescSeq which
was shown in the proof of Theorem 3. The hardness part can be proved thanks
to our previous reductions from 1-in-3 SAT.

10 Julien Bensmail

First, because (k, k′)-PrescSeq is NP-complete for every k ≥ 2 and our
proof of this statement was obtained by reducing instances of 1-in-3 SAT to
1-connected graphs (see Theorem 3), the statement holds for q = 1.

We now prove the general case, i.e. q ≥ 2. Let k′ > q and k ≥ k′

be fixed. Start from a 3CNF formula F , and produce a graph GF , a se-
quence τF = (n1, ..., nk−q+1) admissible for GF , and a (k′−q+1)-prescription
(u1, ..., uk′−q+1) PF of GF such that F is 1-in-3 satisfiable if and only if τF
is realizable in GF under PF . This reduced instance may be obtained thanks
to the reduction given in the proof of Theorem 1, and the star- and path-
augmentation constructions introduced in the proofs of Theorems 2 and 3,
respectively. Now consider the following instance of (k, k′)-PrescSeq.

– G′F is obtained by successively adding q − 1 universal vertices v1, ..., vq−1
to GF , i.e. vertices joined to all other vertices of the graph.

– τ ′F = (1, ..., 1, n1, ..., nk−q+1) is a sequence admissible for G′F with q−1 1’s.
– P ′F = (v1, ..., vq−1, u1, ..., uk′−q+1) is a prescription of G′F .

Clearly, G′F is q-connected since GF is 1-connected, and τ ′F and P ′F have
size k and k′, respectively. Besides, since prescribing a vertex to a part with
size 1 is like removing it from the graph, what is left once the vertices v1, ..., vq−1
have been assigned to parts with size 1 of a realization is GF , τF and PF .
Therefore, τ ′F is realizable in G′F under P ′F if and only if τF is realizable in
GF under PF . By transitivity, we get that F is 1-in-3 satisfiable if and only if
τ ′F is realizable in G′F under P ′F . ut

5 Some Πp
2 problems

In this section, we investigate the relationship between some graph partition
problems derived from our definitions and the Πp

2 complexity class. We start
with the following problem.

AP Graph
Instance: A graph G.
Question: Is G an AP graph?

This problem is not known to belong to either NP or co-NP. However, it is
clearly in Πp

2 since one can design a polynomial-time algorithm that takes G
and a sequence τ admissible for G as input and checks that τ is not realizable
in G using an oracle for RealSeq.

Consider next the following problem.

AP+k Graph
Instance: A graph G.
Question: Is G an AP+k graph?

Clearly, AP+k Graph is also in Πp
2 for every k ≥ 1. Indeed, recall that

PrescSeq is NP-complete whatever is the number of prescribed vertices (The-
orem 3). One can thus design a similar algorithm as the one we just mentioned
for AP Graph, except that this algorithm uses an oracle for PrescSeq.

On the complexity of partitioning a graph into a few connected subgraphs 11

a b

d e

c

a

e b

d c

Fig. 5 The graphs K1,4 and K5

We do not know whether AP Graph and AP+k Graph are Πp
2 -complete

problems. Indeed, to design a polynomial-time reduction from a Πp
2 -complete

problem A to one of these two problems, it would be necessary to ”translate”
the restrictions associated with an instance of A to some graph substructures
just like we did in the proof of Theorem 1 by introducing a lot of star subgraphs
in the reduced graphs. But introducing these graph substructures generally
makes the whole graph being not AP. That is why, for example, our reduction
from 1-in-3 SAT to RealSeq does not seem to be generalizable into some
reduction from a Πp

2 -complete version of 1-in-3 SAT to AP Graph.

Most of Πp
2 problems are of the form ”For every X, is there a Y such

that...?”. The AP Graph and AP+k Graph problems clearly catch this
form since one could reformulate them as ”For every admissible sequence, is
there a realization such that...?”. However, in most of Πp

2 -complete problems,
the two input objects X and Y have the same nature (e.g. truth assignments,
sets of vertices, etc.) while it is not the case for AP Graph and AP+k Graph.
This is another reason why it seems difficult to design a reduction from one
classical Πp

2 -complete problem to one of these two problems.

In order to show that graph partition problems are not ”incompatible”
with the notion of Πp

2 -complete problems, we introduce another problem. Let
G be a graph and τ = (n1, ..., np) be a sequence admissible for G. Given a
` ∈ {1, ..., p}, a n`-partition-level for τ and G is a set L` of subsets of V (G)
that induce connected subgraphs of G with order n`. A (n1, ..., n`)-partition-
hierarchy L for τ and G is a collection L = (L1, ..., L`) of ni-partition-levels
for τ and G for i up to ` such that no subsets in Li and Lj intersect for i 6= j.
We finally say that τ is realizable in G under L if for every collection of subsets
(V1, ..., V`) from the partition levels of L such that V1 ∈ L1, ..., V` ∈ L` there
exists a realization (V1, ..., V`, ..., Vp) of τ in G. In other words, we are given
partial realizations of τ in G, i.e. some ways for picking up the parts associated
with the ` first elements of τ , whose parts are dispatched into ` partition levels,
and we ask whether each of these partial realizations is extendable to a whole
realization of τ in G. A partition hierarchy is actually a compact way to
describe a large number of partial realizations.

As an illustration of these definitions, consider the two graphs K1,4 and
K5 of Figure 5. Let τ = (1, 1, 3) be a sequence admissible for K1,4 and K5,

12 Julien Bensmail

let L1 = ({a}, {c}) and L2 = ({b}, {e}) be two 1-partition-levels for τ and
both K1,4 and K5, and L = (L1, L2) be a (1, 1)-partition-hierarchy for τ
and both K1,4 and K5. Clearly, τ is not realizable in K1,4 under L since
({c}, {b}, V (K1,4)−{c, b}) is not a correct realization of τ in K1,4. However, τ
is realizable in K5 under L since ({a}, {b}, V (K5)−{a, b}), ({a}, {e}, V (K5)−
{a, e}), ({c}, {b}, V (K5) − {c, b}) and ({c}, {e}, V (K5) − {c, e}) are correct
realizations of τ in K5.

We now investigate the computational complexity of the problem associ-
ated with the definition above.

Dynamic Realizable Sequence - DynRealSeq
Instance: A graph G, a sequence τ = (n1, ..., np′ , ..., np) with size p ≥ p′, and

a (n1, ..., np′)-partition-hierarchy L for τ and G.
Question: Is τ realizable in G under L?

As understood above, DynRealSeq is a Πp
2 -complete problem. Our proof

of this claim is based on our reduction from 1-in-3 SAT to RealSeq (Sec-
tion 2). In order to reuse it, we need a Πp

2 -complete version of 1-in-3 SAT.

∀∃1-in-3 SAT
Instance: A 3CNF formula F over variables X ∪ Y and clauses {C1, ..., Cm},

where X = {x1, ..., xn′}, Y = {xn′+1, ..., xn} and n′ ≤ n.
Question: For every truth assignment of the variables of X, does there exist

a truth assignment of the variables of Y such that F is satisfied in a 1-in-3
way?

We first show below that ∀∃1-in-3 SAT is Πp
2 -complete by reduction from

the following classical Πp
2 -complete problem.

∀∃3SAT
Instance: A 3CNF formula F over variables X ∪ Y , where X = {x1, ..., xn′},
Y = {xn′+1, ..., xn} and n′ ≤ n, and clauses {C1, ..., Cm}.
Question: For every truth assignment of the variables of X, does there exist

a truth assignment of the variables of Y such that F is satisfied?

Lemma 6 ∀∃1-in-3 SAT is Πp
2 -complete.

Proof ∀∃1-in-3 SAT is clearly in Πp
2 . One can indeed design an algorithm

that takes F and a truth assignment φ1 to the variables of X for which there
is no truth assignment φ2 to the variables in Y making F evaluated in a 1-in-3
way as input. It just has to check that φ2 does not exist thanks to an oracle
dealing with 1-in-3 SAT. Such a checking algorithm runs in polynomial time
regarding the size of F .

We now show that ∀∃1-in-3 SAT isΠp
2 -complete by reduction from ∀∃3SAT.

From a 3CNF formula F over variables X ∪ Y , we construct a new 3CNF for-
mula F ′ over variables X ′ ∪Y ′ such that for every truth assignment φ1 to the
variables in X there exists a truth assignment φ2 to the variables in Y making
F evaluated true if and only if for every truth assignment φ′1 to the variables

On the complexity of partitioning a graph into a few connected subgraphs 13

(φ3(`i1), φ3(`i2), φ3(`i3)) φ′2(ai) φ′2(bi) φ′2(ci) φ′2(di) φ′2(ei) φ′2(fi)
(1, 0, 0) 1 0 0 0 0 0
(0, 1, 0) 0 0 1 0 0 0
(0, 0, 1) 0 0 0 0 1 0
(1, 1, 0) 1 0 0 1 0 0
(1, 0, 1) 1 0 0 0 0 1
(0, 1, 1) 0 0 1 0 0 1
(1, 1, 1) 1 0 0 1 0 1

Table 1 Truth assignment of φ′2 for the variables in Y − Y ′

in X ′ there exists a truth assignment φ′2 to the variables in Y ′ such that F ′ is
evaluated true in a 1-in-3 way.

The reduction is straightforward. First, replace each clause Ci = (`i1 ∨
`i2 ∨ `i3) in F by four clauses (`i1 ∨ ai ∨ bi), (`i2 ∨ ci ∨ di), (`i3 ∨ ei ∨ fi) and
(ai∨ci∨ei) in F ′ where ai, bi, ci, di, ei and fi are six new variables associated
with Ci. Finally, let X ′ = X and Y ′ = Y ∪

⋃m
i=1{ai, bi, ci, di, ei, fi}. Note that

F ′ has 4m clauses and may be obtained easily.
First suppose that for every truth assignment φ′1 to the variables ofX ′ there

exists a truth assignment φ′2 to the variables in Y ′ such that F ′ is satisfied in
a 1-in-3 way. Because every clause of F ′ has exactly one true literal under φ′1
and φ′2, it means that only one element in {ai, ci, ei} is evaluated true by φ′2
for every i ∈ {1, ...,m}. Let us suppose that for such an i we have φ′2(ai) = 1
and φ′2(ci) = φ′2(ei) = 0 without loss of generality. Thus, we have `i1 evaluated
true by either φ′1 or φ′2. It follows that the following truth assignment φ1 and
φ2 of the variables in X and Y , respectively,

– φ1 = φ′1,
– φ2(x) = φ′2(x) for every x ∈ Y ,

is such that F is satisfied. Conversely, suppose that for every truth assignment
φ1 to the variables in X there is a truth assignment φ2 to the variables in Y
such that F has all its clauses satisfied under φ1 and φ2. We explain how to
get a truth assignment φ′2 to the variables in Y ′ so that F ′ is evaluated true
in a 1-in-3 way under φ′2 and the truth assignment φ′1 = φ1 to the variables
in X ′. First, let φ′2(x) = φ2(x) for every x ∈ Y . We then have to provide a
truth assignment of ai, bi, ci, di, ei and fi via φ′2 for every i ∈ {1, ...,m}. This
assignment depends on the number of true literals in Ci = (`i1 ∨ `i2 ∨ `i3) via
φ1 and φ2. Let φ3 : X ∪ Y → {0, 1} be the truth assignment of the variables
in X ∪ Y deduced from φ1 and φ2 as follows:

– if i ∈ {1, ..., n′}, then φ3(xi) = φ1(xi);
– if i ∈ {n′ + 1, ..., n}, then φ3(xi) = φ2(xi).

Consider now that the images of the ai’s, bi’s, ci’s, di’s, ei’s and fi’s by φ′2
are the ones depicted in Table 1. It should then be clear that F ′ is evaluated
true in a 1-in-3 way under φ′1 and φ′2.

ut

14 Julien Bensmail

We finally prove that DynRealSeq is Πp
2 -complete.

Theorem 7 DynRealSeq is Πp
2 -complete.

Proof DynRealSeq is clearly a Πp
2 problem. One can provide a combination

of parts (V1, ..., Vp′) from the (n1, ..., np′)-partition-hierarchy for τ and G of
the problem instance to a polynomial-time algorithm checking that these parts
cannot be extended to a realization of τ in G. It just has to make sure that
τ is admissible for G, and the sequence (np′+1, ..., np) is not realizable in G−⋃p′

i=1 Vi using an oracle for RealSeq. Note further that DynRealSeq can
be neither in co-NP (for the same reason as RealSeq is not in co-NP) nor in
NP since the number of partial realizations encoded by the partition-hierarchy
may be exponential regarding the input size.

We now show that DynRealSeq is complete in Πp
2 by reduction from

∀∃1-in-3 SAT (Πp
2 -complete by Lemma 6). Our reduction is inspired by the

reduction from 1-in-3 SAT to RealSeq we gave in the proof of Theorem 1.
Remember that in this reduction, setting a variable of F to true is simulated
in an instance of RealSeq by adding a literal vertex of GF to the part with
size n1 + n of a realization of τF in GF . We here somehow want to keep that
relationship between setting a variable of F to true and putting a literal vertex
of the GF into a part of the realization. Given a truth assignment φ1 to the
variables in X, it means that we have to check whether every partial realization
of τF in GF whose part with size n1 +n contains the literal vertices associated
with the true literals via φ1 is extendible to a realization of τF in GF . All these
possible partial realizations are considered using a partition-hierarchy for τF
and GF .

First of all, let GF be the graph obtained from F using the reduction we
gave in the proof of Theorem 1. Then, let τF = (1, ..., 1, n1 + n − n′, n2 − n)
be a sequence with size n′ + 2 admissible for GF , let Li = {{vxi

}, {vxi
}}

be a 1-partition-level for τF and GF for every xi ∈ X, and L =
⋃n′

i=1 Li be a
(1, ..., 1)-partition-hierarchy for τF and GF . With a truth assignment φ1 of the
variables in X setting n′ literals of F to true is then associated a combination
of vertex-disjoint subsets (V1, ..., Vn′) from the 1-partition-levels in L, where
Vi = {xi} if φ1(xi) = 1 or Vi = {xi} otherwise.

Let us now suppose that for every truth assignment φ1 to the variables
in X there exists a truth assignment φ2 to the variables of Y such that F is
evaluated true in a 1-in-3 way. Then the realization (V1, ..., Vn′+2) of τF in GF ,
where

– for every i ∈ {1, ..., n′}, we have Vi = {vxi
} if φ1(xi) = 1 or Vi = {vxi

}
otherwise,

– Vn′+1 contains all the vertices from the base subgraph of GF and every
literal vertex v`i of the clause subgraph of GF such that φ2(`i) = 1,

– Vn′+2 = V (GF)−
⋃n′+1

i=1 Vi,

is correct according to the arguments we gave in the proof of Theorem 1.
Conversely, suppose that every combination (V1, ..., Vn′) of subsets from the

On the complexity of partitioning a graph into a few connected subgraphs 15

1-partition-levels of L is extendable to a realization (V1, ..., Vn′+2) of τF in
GF . As explained before, the partition (V1, ..., Vn′) is associated with a truth
assignment φ1 to the variables in X, and from the literal vertices contained
in Vn′+1 we can deduce a truth assignment φ2 to the variables in Y (see the
proof of Theorem 1). Clearly, F is evaluated true in a 1-in-3 way under φ1 and
φ2. ut

References

1. D. Barth, O. Baudon, and J. Puech. Decomposable trees: a polynomial algorithm for
tripodes. Discret. Appl. Math., 119(3):205–216, July 2002.

2. D. Barth and H. Fournier. A degree bound on decomposable trees. Discret. Math.,
306(5):469–477, 2006.

3. O. Baudon, J. Bensmail, J. Przyby lo, and M. Woźniak. Partitioning powers of traceable
or Hamiltonian graphs. Preprint, 2012. Available at http://hal.archives-ouvertes.fr/hal-
00687278.

4. M.E. Dyer and A.M. Frieze. On the complexity of partitioning graphs into connected
subgraphs. Discret. Appl. Math., 10:139–153, 1985.

5. N. Guttmann-Beck and R. Hassin. Approximation algorithms for min-max tree partition.
J. Algorithms., 24(2):266–286, 1997.

6. E. Györi. On division of graphs to connected subgraphs. In Combinatorics, pages 485–
494, Colloq. Math. Soc. János Bolyai 18, 1978.

7. L. Lovász. A homology theory for spanning trees of a graph. Acta Math. Acad. Sci.
Hung., 30(3-4):241–251, 1977.

