Skip to main content

Advertisement

Log in

A hybrid biased random key genetic algorithm approach for the unit commitment problem

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

This work proposes a hybrid genetic algorithm (GA) to address the unit commitment (UC) problem. In the UC problem, the goal is to schedule a subset of a given group of electrical power generating units and also to determine their production output in order to meet energy demands at minimum cost. In addition, the solution must satisfy a set of technological and operational constraints. The algorithm developed is a hybrid biased random key genetic algorithm (HBRKGA). It uses random keys to encode the solutions and introduces bias both in the parent selection procedure and in the crossover strategy. To intensify the search close to good solutions, the GA is hybridized with local search. Tests have been performed on benchmark large-scale power systems. The computational results demonstrate that the HBRKGA is effective and efficient. In addition, it is also shown that it improves the solutions obtained by current state-of-the-art methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abookazemi K, Mustafa M, Ahmad H (2009) Structured genetic algorithm technique for unit commitment problem. Int J Recent Trends Eng 1(3):135–139

    Google Scholar 

  • Arroyo J, Conejo A (2002) A parallel repair genetic algorithm to solve the unit commitment problem. IEEE Trans Power Syst 17:1216–1224

    Article  Google Scholar 

  • Bard J (1988) Short-term scheduling of thermal electric generators using Lagragian relaxation. Oper Res 36(5):756–766

    Article  MATH  MathSciNet  Google Scholar 

  • Bean J (1994) Genetic algorithms and random keys for sequencing and optimization. Oper Res Soc Am J Comput 6(2):154–160

    MATH  Google Scholar 

  • Carrion M, Arroyo J (2006) A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans Power Syst 21(3):1371–1378

    Article  Google Scholar 

  • Cohen AI, Yoshimura M (1983) A branch-and-bound algorithm for unit commitment. IEEE Trans Power Appar Syst 102(2):444–451

    Article  Google Scholar 

  • Dang C, Li M (2007) A floating-point genetic algorithm for solving the unit commitment problem. Eur J Oper Res 181(4):1370–1395

    Article  MATH  Google Scholar 

  • Ericsson M, Resende M, Pardalos P (2002) A genetic algorithm for the weight setting problem in OSPF routing. J Comb Optim 6(3):299–333

    Article  MATH  MathSciNet  Google Scholar 

  • Fan W, Liao Y, Lee J, Kim Y (2012) Evaluation of two Lagrangian dual optimization algorithms for large-scale unit commitment problems. J Electr Eng Technol 7(1):17–22

    Article  Google Scholar 

  • Fontes DBMM, Gonçalves JF (2007) Heuristic solutions for general concave minimum cost network flow problems. Networks 50(1):67–76

    Google Scholar 

  • Fontes DBMM, Gonçalves JF (2012) A multi-population hybrid biased random key genetic algorithm for hop-constrained trees in nonlinear cost flow networks. Optim Lett 7(6):1–22

    Google Scholar 

  • Frangioni A, Gentile C (2006) Solving nonlinear single-unit commitment problems with ramping constraints. Oper Res 54(4):767–775

    Article  MATH  Google Scholar 

  • Frangioni A, Gentile C, Lacalandra F (2008) Solving unit commitment problems with general ramp constraints. Electr Power Energy Syst 30(5):316–326

    Article  Google Scholar 

  • Frangioni A, Gentile C, Lacalandra F (2009) Tighter approximated MILP formulations for unit commitment problems. IEEE Trans Power Syst 24(1):105–113

    Article  Google Scholar 

  • Michalewicz Z, Janikow C (1991) Semidefinite programming: a practical application to hydro-thermal coordination. In: Proceedings of the fourteenth international power systems computation conference (PSCC), Seville, Spain

  • Gonçalves J, Resende M (2010) Biased random-key genetic algorithms for combinatorial optimization. J Heuristics 17(5):487–525

    Article  Google Scholar 

  • Gonçalves J, Resende M (2011) A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem. J Comb Optim 22(2):180–201

    Article  MathSciNet  Google Scholar 

  • Gonçalves J, Mendes JM, Resende M (2008) A genetic algorithm for the resource constrained multi-project scheduling problem. Eur J Oper Res 189(3):1171–1190

    Article  MATH  Google Scholar 

  • Hadji M, Vahidi B (2012) A solution to the unit commitment problem using imperialistic competition algorithm. IEEE Trans Power Syst 27(1):117–124

    Article  Google Scholar 

  • Huang K, Yang H, Yang C (1998) A new thermal unit commitment approach using constraint logic programming. IEEE Trans Power Syst 13(3):936–945

    Article  Google Scholar 

  • Jeong Y, Park J, Shin J, Lee K (2009) A thermal unit commitment approach using an improved quantum evolutionary algorithm. Electr Power Compon Syst 37(7):770–786

    Article  Google Scholar 

  • Jiang R, Wang J, Guan Y (2012) Robust unit commitment with wind power and pumped storage hydro. IEEE Trans Power Syst 27(2):800–810

    Article  Google Scholar 

  • Juste K, Kita H, Tanaka E, Hasegawa J (1999) An evolutionary programming solution to the unit commitment problem. IEEE Trans Power Syst 14(4):1452–1459

    Article  Google Scholar 

  • Kallrath J, Pardalos P, Rebennack S, Scheidt M (2009) Optimization in the energy industry. Energy systems, Springer, Berlin

  • Kazarlis S, Bakirtzis A, Petridis V (1996) A genetic algorithm solution to the unit commitment problem. IEEE Trans Power Syst 11:83–92

    Article  Google Scholar 

  • Kotsireas I, Koukouvinos C, Pardalos P, Simos D (2012) Competent genetic algorithms for weighing matrices. J Comb Optim 24(4):508–525

    Article  MATH  MathSciNet  Google Scholar 

  • Lau T, Chung C, Wong K, Chung T, Ho S (2009) Quantum-inspired evolutionary algorithm approach for unit commitment. IEEE Trans Power Syst 24(3):1503–1512

    Article  Google Scholar 

  • Lauer G, Sandell N, Bertsekas D, Posbergh T (1982) Solution of large scale optimal unit commitment problems. IEEE Trans Power Appar Syst PAS 101(1):79–96

    Article  Google Scholar 

  • Michalewicz Z, Janikow C (1991) Handling constraints in genetic algorithms. In: Belew RK, Booker LB (eds) Proceedings of the fourth international conference on genetic algorithms (ICGA-91). Morgan Kaufmann Publishers, San Mateo, California, University of California, San Diego, 151–157

  • Muckstadt J, Koenig S (1977) An application of Lagrangian relaxation to scheduling in power-generation systems. Oper Res 25(3):387–403

    Article  MATH  Google Scholar 

  • Ostrowski J, Anjos MF, Vannelli A (2012) Tight mixed integer linear programming formulations for the unit commitment problem. IEEE Trans Power Syst 27(1):39–46

    Article  Google Scholar 

  • Padhy N (2000) Unit commitment using hybrid models: a comparative study for dynamic programming, expert system, fuzzy system and genetic algorithms. Int J Electr Power Energy Syst 23(8):827–836

    Article  Google Scholar 

  • Padhy N (2004) Unit commitment: a bibliographical survey. IEEE Trans Power Syst 19(2):1196–1205

    Article  MathSciNet  Google Scholar 

  • Patra S, Goswami S, Goswami B (2009) Fuzzy and simulated annealing based dynamic programming for the unit commitment problem. Expert Syst Appl 36(3):5081–5086

    Article  Google Scholar 

  • Rebennack S, Pardalos P, Pereira MV, Iliadis N (2010a) Handbook of power systems I. Energy systems, Springer, Berlin

  • Rebennack S, Pardalos P, Pereira MV, Iliadis N (2010b) Handbook of power systems II. Energy systems, Springer, Berlin

  • Reeves CR (1993) Modern heuristic techniques for combinatorial problems. Genetic algorithms, Blackwell Scientific Publications, Oxford

  • Rong A, Hakonen H, Lahdelma R (2008) A variant of the dynamic programming algorithm for unit commitment of combined heat and power systems. Eur J Oper Res 190:741–755

    Article  MATH  Google Scholar 

  • Roque L, Fontes DBMM, Fontes FACC (2011) A biased random key genetic algorithm approach for unit commitment problem. Lect Notes Comput Sci 6630(1):327–339

    Article  Google Scholar 

  • Roque L, Fontes DBMM, Fontes FACC (2012) BRKGA adapted to multiobjective unit commitment: solving Pareto frontier for the UC multiobjective problem, ICORES 2012. In: Proceedings of the 1st international conference on operations research and enterprise systems, 64–72

  • Salam S (2007) Unit commitment solution methods. Proc World Acad Sci Eng Technol 26:600–605

    Google Scholar 

  • Schneider F, Klabjan D, Thonemann U (2013) Incorporating demand response with load shifting into stochastic unit commitment. doi:10.2139/ssrn.2245548

  • Sen S, Kothari D (1998) Optimal thermal generating unit commitment: a review. Electr Power Energy Syst 20:443–451

    Article  Google Scholar 

  • Simoglou CK, Biskas PN, Bakirtzis AG (2010) Optimal self-scheduling of a thermal producer in short-term electricity markets by MILP. IEEE Trans Power Syst 25(4):1965–1977

    Article  Google Scholar 

  • Sourirajan K, Ozsen L, Uzsoy R (2009) A genetic algorithm for a single product network design model with lead time and safety stock considerations. Eur J Oper Res 197(2):38–53

    Article  Google Scholar 

  • Sun L, Zhang Y, Jiang C (2006) A matrix real-coded genetic algorithm to the unit commitment problem. Electr Power Syst Res 76:716–728

    Article  Google Scholar 

  • Turgeon A (1978) Optimal scheduling of thermal generating units. IEEE Trans Autom Control 23:1000–1005

    Article  MATH  Google Scholar 

  • Valenzuela J, Smith A (2002) A seeded memetic algorithm for large unit commitment problems. J Heuristics 8(2):173–195

    Article  Google Scholar 

  • Venkatesh B, Jamtsho T, Gooi H (2007) Unit commitment: a fuzzy mixed integer linear programming solution. IET Gener Transm Distrib 1(5):836–846

    Article  Google Scholar 

  • Viana A, Pedroso J (2013) A new MILP-based approach for unit commitment in power production planning. Electr Power Energy Syst 44(1):997–1005

    Article  Google Scholar 

  • Wang Q, Guan Y, Wang J (2012) A chance-constrained two-stage stochastic program for unit commitment with uncertain wind power output. IEEE Trans Power Syst 27(1):206–215

    Article  Google Scholar 

  • Zhao B, Guo C, Bai B, Cao Y (2006) An improved particle swarm optimization algorithm for unit commitment. Int J Electr Power Energy Syst 28(7):482–490

    Article  Google Scholar 

  • Zheng Q, Wang J, Pardalos P, Guan Y (2012) A decomposition approach to the two-stage stochastic unit commitment problem. Ann Oper Res 1–24

Download references

Acknowledgments

We acknowledge the support of the ERDF (FEDER), the COMPETE through the FCT as part of projects PTDC/EGE-GES/099741/2008 and PTDC/EEA-CRO/116014/2009 and the North Portugal Regional Operational Programme (ON.2 O Novo Norte), under the National Strategic Reference Framework (NSRF), through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. M. M. Fontes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roque, L.A.C., Fontes, D.B.M.M. & Fontes, F.A.C.C. A hybrid biased random key genetic algorithm approach for the unit commitment problem. J Comb Optim 28, 140–166 (2014). https://doi.org/10.1007/s10878-014-9710-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-014-9710-8

Keywords

Navigation